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Abstract 

The substantial phenotypic heterogeneity in autism limits our understanding of its genetic 
aetiology. To address this gap, we investigated genetic differences between autistic 
individuals (Nmax = 12,893) based on core (i.e., social communication difficulties, and 
restricted and repetitive behaviours) and associated features of autism, co-occurring 
developmental disabilities (e.g. language, motor, and intellectual developmental disabilities 
and delays), and sex. We conducted a comprehensive factor analysis of core autism features 
in autistic individuals and identified six factors. Common genetic variants including autism 
polygenic scores (PGS) were associated with the core factors but de novo variants were not, 
even though the latent factor structure was similar between carriers and non-carriers of de 
novo variants. We identify that increasing autism PGS decrease the likelihood of co-
occurring developmental disabilities  in autistic individuals, which reflects both a true 
protective effect and additivity between rare and common variants. Furthermore in autistic 
individuals without co-occurring intellectual disability (ID), autism PGS are overinherited by 
autistic females compared to males. Finally, we observe higher SNP heritability for males 
and autistic individuals without ID, but found no robust differences in SNP heritability by the 
level of core autism features. Deeper phenotypic characterisation will be critical to 
determining how the complex underlying genetics shapes cognition, behaviour, and co-
occurring conditions in autism.  

  Introduction 

The core diagnostic criteria for Autism Spectrum Disorder (henceforth, autism) 
consist of social communication difficulties, unusually restricted and repetitive behaviour, 
and sensory difficulties that are present early in life and affect social, occupational, and other 
important domains of functioning.1,2 However, these criteria are reasonably broad such that 
two individuals with very different phenotypic features, co-occurring conditions, support 
needs or outcomes may both be diagnosed as autistic1,3,1#. The advantage of broad diagnostic 
criteria is that they allow for different individuals to access important clinical, educational, 
and social support services. Nonetheless, this immense heterogeneity is a challenge for 
research that aims to understand the causes of autism and develop evidence-based support 
strategies for autistic people.  

Heterogeneity in autism can arise from multiple, partly overlapping sources. This 
includes differences in core diagnostic features (core features)1,3,4, and associated features 
such as IQ, adaptive behaviour, and motor coordination, all of which have an impact on life 
outcomes.3,5,6 Furthermore, sex and gender7,8 and co-occurring intellectual disability (ID) and 
developmental, behavioural, and medical conditions9,10 can alter the presentation and 
measurement of core autism features. Whilst a few studies have attempted to investigate the 
genetic influences on this heterogeneity11–18, substantial gaps remain. First, existing studies 
investigating genotype-phenotype associations have been limited to summed scores of core 

                                                 
1# We use identity first language as this is preferred by the autistic community.Further information is available 
at: how to talk about autism 
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autism features in smaller sample sizes19–21 rather than the underlying latent dimensions. This 
distinction is important given that autism is phenotypically dissociable12,22,23 and some 
associations may emerge only when latent traits are considered.  Second, whilst the impact of 
de novo genetic variants on co-occurring developmental disabilities is reasonably well 
characterised17,20,21, the impact of common genetic variants is unknown. Third, although sex 
differences in autism vary by the presence of ID17,24,25, the sex-differential impact of common 
genetic variants in autistic individuals with and without ID is unknown. Finally, the impact of 
latent core autism phenotypes, sex, and de novo variants on the common-variant heritability 
also warrants investigation in large sample sizes.  

Here, we address these four questions by combining genetic and phenotypic data from 
up to 12,893 autistic individuals from four different datasets. We focus on two classes of 
genetic variants that are robustly associated with autism - de novo protein truncating and 
missense variants in constrained genes (high-impact de novo variants)17,26, and polygenic 
scores, which model the common genetic liability for autism and genetically correlated 
phenotypes.16 Finally, this larger sample size alongside more detailed information on genes 
underlying severe developmental disorders27 also allows us to revisit and provide deeper 
insights into two additional important issues relevant to heterogeneity in autism: the 
association of high-impact de novo variants with (1) co-occurring developmental disabilities 
and (2) sex.  

   

 Results 

 Identifying latent phenotypes in core autism features 

         A critical challenge in identifying sources of heterogeneity in autism is understanding 
the latent structure of core autism phenotypes. Previous studies have conducted genotype-
phenotype association studies of core autism features using summed scores of several autistic 
trait measures and their subscales in relatively modest sample sizes.19–21 However, these 
summed scores may capture multiple aggregated latent traits, introducing statistical noise and 
limiting interpretability of the results. To this end, we combined two widely used parent-
report measures of autistic traits - Repetitive Behaviour Scale - Revised (RBS)28 and Social 
Communication Questionnaire - Lifetime version (SCQ)29 - in 24,420 autistic individuals 
from the Simons Simplex Collection (SSC)30 and the SPARK31 cohorts. These are the only 
measures of core autism phenotypes in SPARK, and together capture several social and non-
social aspects of the core autism diagnostic domains. We conducted exploratory factor 
analysis in approximately half of the autistic individuals from SSC (N = 901), randomly 
selected, followed by confirmatory factor analyses in the remaining half (N = 902) of the SSC 
and individuals from SPARK (N = 22,617, Methods). 

          We tested 42 different factor models, including bifactor models (Supplementary 
Table 1, Supplementary Figure 1). After multiple iterations, exploratory factor analyses 
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(Supplementary Figure 2) identified a correlated six factor model with good theoretical 
interpretation and confirmatory factor analyses identified fair fit indices (Confirmatory Fit 
Indices: 0.92 to 0.94; Tucker Lewis Indices: 0.92 to 0.94; Root Mean Square Errors: 0.056 – 
0.060). Fit indices increased modestly when including orthogonal method factors in the 
model (Supplementary Table 1). The explained common variances and hierarchical omegas 
for the bifactor models were low ( < 0.7), suggesting that general factors may not explain the 
data well (Supplementary Table 2). The six identified factors are: 1. Insistence on sameness 
(F1); 2. Social interaction at age five (F2); 3. Sensory-motor behaviour (F3); 4. Self-injurious 
behaviour (F4); 5. Idiosyncratic repetitive speech and behaviour (F5); 6. Communication 
skills (F6) (Supplementary Table 3). These broadly correspond to four restricted, repetitive 
and sensory behaviour factors i.e. non-social factors (Insistence of sameness, Sensory-motor 
behaviour, Self-injurious behaviour, and Idiosyncratic repetitive speech and behaviour) and 
two social factors (Social interaction and Communication skills).  

All inter-factor correlations were significant and moderate to high in magnitude, with 
higher correlation among non-social and social factors than between social and non-social 
factors (Figure 1A).  Autistic males scored higher (i.e., greater difficulties) than autistic 
females on all factors except ‘Self-injurious behaviour’ and ‘Insistence on sameness’ (Figure 
1B, Supplementary Table 4a). All six factors were negatively correlated with full-scale IQ 
(Figure 1C), and this was observed in both males and females separately (Supplementary 
Figure 3, Supplementary Table 4b). In this cross-sectional data, older participants had 
lower factor scores (i.e. fewer difficulties), with the exception of ‘Social Interaction’ (Figure 
1D). However, of the 21 items in the ‘Social interaction’ factor, 19 specifically ask about 
behaviour between ages 4 and 5 (or in the past 12 months for younger children, Methods), 
and this trajectory likely reflects recall bias, as caregivers are likely to report more severe 
behaviours retrospectively32.  Similar trends were observed in both males and females 
(Supplementary Figure 4). Some factor scores had modestly higher SNP heritability 
compared to RBS and SCQ (Supplementary Table 5), and there were moderate to high 
bivariate genetic correlations among the six factors (Supplementary Table 6). 
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 Figure 1: Factor analyses of the core autism features  

 

1A. Pearson’s Correlation coefficient between the six factors. Factors have been ordered based on 
hierarchical clustering, demonstrating higher correlations among social (teal labels) and non-social 
(red labels) factors than between them. 1B. Mean scores and 95% confidence intervals for the six 
factor scores in males and females. 1C. Mean scores and 95% confidence intervals for the six factor 
scores in 10 full-scale IQ bins. 1D. Mean factor scores for the six factors across age. The six factors 
are: 1. Insistence of sameness (F1); 2. Social interaction (F2); 3. Sensory-motor behaviour (F3); 4. 
Self-injurious behaviour (F4); 5. Idiosyncratic repetitive speech and behaviour (F5); 6. 
Communication skills (F6). F2 primarily consists of items related to Social interaction at ages 4 – 5  
(past 12 months if younger than 4), hence the trajectory likely reflects recall bias in participants.  
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Common genetic variants are robustly associated with core autism features 
but high-impact de novo variants are not 

  Previous smaller scale studies have identified associations with some autism features 
and both common and de novo variants.19–21 Here, we expanded both the sample size by 
combining genetic data from autistic individuals in four cohorts (Nmax = 12,893), and the 
number of phenotypes investigated (19 different core and associated features) and conducted  
genetic association analyses to understand the impact of different classes of genetic variants 
on these phenotypic features. These 19 features include measures and subscales of measures 
commonly included for a research diagnosis of autism, parent reports of autistic features, and 
measures of IQ, adaptive behaviour, and motor coordination (Methods). 

We first investigated the association between the 19 features and PGS2# for autism, 
intelligence, educational attainment, and schizophrenia, and, as a negative control, hair colour 
(N = 2,421 to 12,893, Supplementary Table 7). In multiple regression analyses, autism PGS 
were associated with increased core autism features (total scores on the RBS and SCQ, and 
self-injurious factor scores) (Figure 2A, Supplementary Table 8), and increased non-verbal 
IQ. Intelligence PGS were associated with increased full-scale and non-verbal IQ. 
Educational attainment PGS were associated with increased full-scale and verbal IQ and 
reduced scores on core autism features. Finally, schizophrenia PGS were associated with 
reduced adaptive behaviour, measured using the composite score of the Vineland Adaptive 
Behaviour Scales. The majority of the significant associations (13 out of 16) had concordant 
effect directions in all cohorts (Supplementary Figure 5). We did not identify any 
significant genotype-phenotype association using hair colour (blonde vs other) as a negative 
control (Supplementary Table 8). 

 In line with previous results,17,20,21 the number of high-impact de novo variants 
(protein truncating single nucleotide variants and structural variants, and missense variants 
with MPC score > 2, N = 2,863 to 4,442) was associated with reduced measures of IQ, 
adaptive behaviour, and motor coordination. Despite the expanded sample size17,20,21 and 
more fine-grained phenotypes19 investigated compared to previous analyses, these variants 
were not robustly associated with any of the core autism features  (Figure 2B, 
Supplementary Table 9). The effect sizes of the PGS did not attenuate after controlling for 
the presence of high impact de novo variants (Figure 2C, Supplementary Table 9, and 
Supplementary Figure 6), suggesting largely independent effects between common and rare 
variants. 

                                                 
2# Throughout the manuscript, to orient the reader, we indicate associations where PGS are the independent 
variable with BetaPGS, and where high-impact de novo variants are the independent variable with Betadenovo  
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Figure 2: Association of PGS and high-impact de novo variants with core and associate 
autism features 
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2A: Associations between the core and associated autism features and PGS for autism educational 
attainment, intelligence, and schizophrenia. 2B. Associations between high-impact de novo variants 
and autism features. For all association plots, standardized regression coefficients from linear 
regressions and 95% confidence intervals are provided. Yellow indicates significant association after 
Benjamini-Yekutieli correction (corrected p-value < 0.05). Red text indicates associated features,  
where higher values correspond to greater ability. 2C Correlation between beta coefficients (linear 
regression) for the four sets of PGS without (y axis) and after (x axis) controlling for the presence of 
high-impact de novo variants. Phenotypes are: ADOS Social affect (ADOS SA) and restricted and 
repetitive behaviour (ADOS RRB); ADI verbal communication (ADI VC), social interaction (ADI 
SOC), and restricted and repetitive behaviour (ADI RRB); Repetitive Behavior Scale-Revised (RBS); 
Social Communication Questionnaire (SCQ); Insistence of sameness factor (F1); Social interaction 
factor (F2); Sensory-motor behaviour factor (F3); Self-injurious behaviour factor (F4); idiosyncratic 
repetitive speech and behaviour (F5); Communication skills factor (F6); Vinelands Adaptive 
Behaviour Scales (VABS); Development Coordination Disorders Questionnaire (DCDQ); full-Scale 
IQ (FSIQ); non-verbal IQ (NVIQ); and Verbal IQ (VIQ). 

   

Measures of IQ are the primary features impacted by both classes of genetic variants, 
which may reflect both underlying biology and/or our ability to measure IQ with greater 
reliability than autistic traits. In autistic individuals, full-scale IQ reduced with increasing 
number of high-impact de novo variants but increased with increasing PGS for intelligence 
(Figure 3A). No strong evidence of interaction between PGS for intelligence and high-
impact de novo variants was observed, suggesting their additive effects on full-scale IQ.  
Among the significant genotype-phenotype associations, accounting for full-scale IQ did not 
attenuate the effects of PGS on core autism features (Figure 3B, Supplementary Table 10), 
which was supported by minimal and statistically non-significant genetic correlations 
between full-scale IQ and the core autism features (Supplementary Table 6). This suggests 
that full-scale IQ does not mediate the association between common genetic variants and core 
autism features. In contrast, associations between high-impact de novo variants and 
associated autism features attenuated, partly because of the moderate phenotypic correlations 
between these features and full-scale IQ (Figure 4C).   
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Figure 3: Association between genotype and full-scale IQ, and impact of full-scale IQ on 
genotype-phenotype associations 

3A: Line plots for full-scale IQ scores as a function of intelligence PGS and counts of high-impact de 
novo variants in SPARK and SSC (N = 3,197). Only binned full-scale IQ scores were available in 
SPARK and subsequently, full-scale IQ was binned in SSC and treated as a continuous variable 
(Methods). 3B: Point estimates of linear regression coefficients for the association between PGS and 
high-impact de novo variants and core and associated autism features without (y axis) and after (x 
axis) accounting for full-scale IQ scores. 95% confidence intervals for both regression provided. Only 
significant genotype-phenotype estimates are plotted. Point estimates closer to the diagonal line 
indicate no change in beta coefficient (linear regression) after controlling for full-scale IQ. NVIQ = 
non-verbal IQ, VIQ = Verbal IQ, DCDQ = motor coordination assessed by the Developmental 
Coordination Disorders Checklist, VABS = adaptive behaviour assessed by the Vineland Adaptive 
Behaviour Scales, F1 = Insistence on sameness, F2 = Social interaction F3 = Sensory-motor 
behaviour, F4 = Self-injurious behaviour, F5 = Idiosyncratic repetitive speech and behaviour, F6 =  
Communication skills, RBS = Repetitive Behaviour Scale, SCQ = Social Communication 
Questionnaire. 
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Mechanisms contributing to core autism phenotypes in autistic individuals 
with high-impact de novo variants  

Whilst high-impact variants in some autism-associated genes lead to core autistic 
features, notably in animal models (e.g.33,34), as a group they were not robustly associated 
with core autism features (Figure 2B). It is unclear if the latent structure of core phenotypes 
differ in autistic individuals with high-impact de novo variants (henceforth, carriers) 
compared to autistic individuals without any known high-impact de novo variant (henceforth, 
non-carriers). We thus investigated differences in the latent structure of core autism 
phenotypes between carriers (N = 325) and non-carriers (N = 2,727). Although likelihood 
ratio tests identified significant configural invariance violation (i.e., the factor structure 
dissimilar across groups, p < 2x10-16), this was due to the relatively large sample size: the fit 
indices and visual inspections of the latent structure suggested that the differences were 
minimal (Supplementary Table 11).  

 Given this, we first investigated whether autistic carriers had higher PGS for autism 
compared to non-carriers, which may account for core autism features in carriers (additivity). 
As demonstrated previously, but with a different set of polygenic scores,19 autistic carriers 
had lower PGS for autism than autistic non-carriers (BetaPGS = -0.16, se = 0.045, p = 3.67x10-

4, linear regression) (Figure 4A). This difference was not observed for PGS for educational 
attainment, IQ, or schizophrenia (Supplementary Table 12). However, whilst autistic non-
carriers had higher PGS compared to non-autistic siblings (BetaPGS = 0.19, se = 0.023, p = 
2.68x10-15, logistic regression), autistic carriers (N = 579) were indistinguishable from non-
autistic siblings (N = 3,681) based on autism PGS (BetaPGS= 0.028, se = 0.045, p = 0.53, 
logistic regression, Supplementary Figure 5).  

The PGS in a trio with an affected child can be summarised as the parental mean PGS 
(henceforth midparental PGS), and the deviation of the affected child’s PGS from the 
midparental PGS. As previously reported14, in this expanded sample size, we identify a 
overtransmission of autism PGS to autistic individuals (Mean = 0.17, se= 0.01, N = 6,981, p 
< 2x10-16), and curiously, a modest undertransmission to unaffected siblings (Mean = -0.03, 
se = 0.02, N = 3,832, p = 0.034) (Figure 4B, Supplementary Table 13). This likely reflects 
both reproductive stoppage35 and underdiagnosis of autism in the parental generation but 
greater awareness and opportunity to receive or exclude a diagnosis in children.36 Carriers 
had a modest overtransmission of autism PGS (Mean = 0.08, se = 0.04, N = 579, p = 0.02) 
whilst this was substantially higher in non-carriers (Mean = 0.18, se = 0.01, N = 4,997, p < 
2x10-16). Notably, whilst carriers had significantly lower overtransmission compared to non-
carriers (p = 0.02), they had a significantly higher overtransmission compared to siblings 
PGS (p = 9.1x10-3), providing additional support for additivity of common and rare genetic 
variants.   

 A second hypothesis is that the effect of high-impact de novo variants on core autism 
features is partly mediated by associated autism features. Core and associated autism features 
are modestly negatively correlated with each other (Figure 4C), and given that high-impact 
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de novo variants are associated with a relatively sizeable reduction in both full-scale IQ and 
motor coordination, we reasoned that there will be a knock-on effect on core autism features. 
The fact that we do not observe a significant association between high-impact de novo 
variants and core autism features (Figure 2B) may be due to attenuated correlations between 
core and associated features in carriers compared to non-carriers21. However, tests of matrix 
correlation equivalence suggested no differences in the phenotypic correlation structures of 
carriers and non-carriers (p = 9.25x10-4, Jennrich test for matrix equivalency). This was 
supported by the finding of no differences in pairwise Pearson’s correlation coefficients 
between each of the three associated features and the six factors, SCQ, and RBS between 
carriers and non-carriers (Fisher’s Z test, all p > 0.05). 

An alternate explanation is that we are underpowered to observe this effect. We used 
simulations to investigate whether we had sufficient statistical power to identify associations 
between high-impact de novo variants and core autism features. Assuming that all effects are 
completely mediated by only one of the three associated features (full-scale IQ, adaptive 
behaviour, or motor coordination), power calculations indicate that we have less than 80% 
power for all core autism features tested (Figure 4D). Larger samples may identify 
significant effects between high-impact de novo variants and core autism features, but it will 
be important to investigate whether the associations are mediated by associated autism 
features. 
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Figure 4: Additivity and impact of high-impact de novo variants on core autism features 

 

A. Beta-coefficients (Betadenovo) for carrying a high-impact de novo variant per decile of autism PGS 
in autistic individuals, after accounting for sex, age, 10 genetic principal components, and PGS for 
educational  attainment, intelligence, and schizophrenia, calculated using logistic regression. B. 
Overtransmission and 95% confidence errors of PGS for autism in all probands, siblings, carriers of 
high-impact de novo variants, and non-carriers. p-values on top provided for the overtransmission. 
We also compare differences in overtransmission between carriers and non-carriers and carriers and 
siblings, and provide the p-values for this from two-tailed Z tests. C. Phenotypic correlation between 
the core features and associated autism features. D. Statistical power for identifying a significant 
association between the number of high-impact de novo variants and core features based on the 
correlation with the three associated features, which is provided in 4C. The highest correlation 
between a core feature and an associated feature have been indicated on the power graph. DCDQ = 
motor coordination as measured by the Developmental Coordination Disorders Checklist; fsIQ = 
full-scale IQ; VABS = adaptive behaviour as measured by the Vineland Adaptive Behaviour Scales. 
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Relationship between autism PGS and co-occurring developmental 
disabilities in autistic individuals 

  Multiple co-occurring developmental disabilities are commonly observed in autistic 
individuals, including language, motor, and intellectual developmental disabilities and delays. 
These represent another source of heterogeneity among autistic individuals. Whilst co-
occurring developmental disabilities are associated with high-impact de novo variants,15,17,20 
it is unclear whether they are impacted by polygenic scores for autism.  We addressed this in 
SPARK (Methods). In line with previous research,15,17,20 carriers of high-impact de novo 
variants had an increased count of co-occurring developmental disabilities (Betadenovo = 0.31, 
se = 0.05, p = 1.55x10-8, N = 3,089; quasi-poisson regression). In contrast, higher PGS for 
autism was associated with reduced count of co-occurring developmental disabilities (BetaPGS 
= -0.037, se = 0.009, p = 3.91x10-5, N = 13,435, quasi-poisson regression) even after 
accounting for the other three PGS (Figure 5A, Supplementary Table 14a). Leave-one-out 
analyses indicated that the results were not driven by any one developmental disability 
(Supplementary Figure 8). Notably, autistic individuals with 5+ co-occurring 
developmental disabilities did not have statistically higher autism PGS compared to non-
autistic siblings (Figure 5A, Supplementary Table 14b). In contrast, even when restricting 
to autistic individuals with no co-occurring developmental disabilities, individuals with a 
high-impact de novo variant were more likely to be autistic compared to non-autistic siblings 
(Figure 5A, Supplementary Table 14b). 

The apparent protective effect of autism PGS on co-occurring developmental 
disabilities has not, to our knowledge, been reported earlier. This can reflect both true 
protective effects (e.g., PGS for autism increase IQ in both the general population16,37 and in 
autistic individuals as seen in Figure 2A) and the negative correlation between high-impact 
de novo variants and autism PGS. To better delineate this, we investigated the association 
between the two classes of genetic variants and two well-characterised developmental 
phenotypes: age of walking independently and age of first words. Both phenotypes were 
present in autistic individuals from SPARK and SSC, and in siblings from SPARK, allowing 
us to detect relatively modest effects and draw comparisons with non-autistic siblings. In 
autistic individuals, autism PGS were associated with earlier age of walking (BetaPGS = -
0.012, se = 0.003, p = 3.2x10-5, negative binomial regression) and earlier age of first words 
(BetaPGS = -0.0125 se = 0.005, p = 0.01, negative binomial regression) whilst high-impact de 
novo variants increased the age for both phenotypes (Figure 5B, Supplementary Table 
15b). The association between autism PGS and age of walking but not age of first words 
remained statistically significant after accounting for high-impact de novo variants and full-
scale IQ (Supplementary Table 15a). Similarly, the association between high-impact de 
novo variants and age of walking but not age of first words remained significant after 
accounting for full-scale IQ (Supplementary Table 15a). However, autism PGS were not 
significantly associated with either age of walking or age of first words in siblings 
(Supplementary Table 15a). Despite the negative association between autism PGS and the 
two phenotypes, even autistic individuals in the highest decile of autism PGS had higher 
mean age of walking and age of first words compared to siblings, as did autistic non-carriers 
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(Figure 5B) and autistic individuals with no co-occurring developmental disability, 
suggesting other sources of variation in these phenotypes (Supplementary Table 15b).  

 The above results demonstrate an enrichment of high-impact de novo variants in 
autistic individuals even in the absence of a known co-occurring developmental disability 
(Figure 5A). Yet, there is likely heterogeneity even within the broad class of constrained 
genes, with differential impact on autism vis-à-vis co-occurring developmental disabilities. 
Previous research has attempted to disentangle this heterogeneity by comparing counts of 
disrupting de novo variants in autism vs. severe developmental disorders (genetically 
undiagnosed developmental disorders with accompanying ID and/or developmental delays).17 
The lack of detailed phenotypic information in the cohorts assessed renders the previous 
research hard to interpret.38 Here we take a different approach to revisit this question. Using 
the more detailed data on co-occurring developmental disabilities in SPARK, we investigate 
if constrained genes robustly associated with severe developmental disorders (DD genes)27 
have differential effects on co-occurring developmental disabilities in autistic individuals 
compared to other constrained genes (non DD genes).  We use the term ‘non DD genes’ for 
convenience as this list is also likely to contain genes associated with severe developmental 
disorders which may be discoverable at larger sample sizes but are likely less penetrant (i.e., 
lower effect size) or lead to increased pre- or perinatal death (i.e., rarer) compared to variants 
in the DD genes.27 

In the SPARK cohort, 35.6% of the carriers had high-impact de novo variants in DD 
genes. Autistic individuals were more likely to be carriers of either set of genes compared to 
non-autistic siblings, which was observed even when restricting to autistic individuals 
without any known co-occurring developmental disability (Supplementary Table 14c and 
d, Figure 5C). However, whilst the risk for the count of co-occurring developmental 
disabilities was elevated in carriers of DD genes (Betadenovo = 0.54 , se =  0.08 , p = 6.48x10-

12;  quasi-poisson regression), this was much more modest for carriers of nonDD genes 
(Betadenovo = 0.15, se = 0.07, p = 0.035;  quasi-poisson regression). Supporting this, autistic 
carriers of high-impact de novo variants in DD genes started walking independently and 
using words ~ 3 months later compared to autistic carriers of high-impact de novo variants in 
non-DD genes (p < 0.05 in both, Figure 5B and Supplementary Table 15b). These results 
support a broad phenotypic distinction between the two sets of genes.  We ran sensitivity 
analyses using a larger but overlapping list of genes identified from a highly curated database 
Developmental Disorder Gene-to-Phenotype (DD2GP)39, and identified consistent results 
(Supplementary Tables 14 and 15).  
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Figure 5: Associations between high-impact de novo variants and autism PGS and co-
occurring developmental disabilities and delays 

 

A. Beta coefficients for the association of high-impact de novo variants (logistic regression) and 
autism PGS (linear regression) with case-control status (using sibling controls) by counts of co-
occurring developmental disabilities. B. Distribution  of and mean age of first words (top) and age of 
walking (bottom) in siblings, non-carriers, and carriers of high-impact variants in either DD or non-
DD genes. p-values were calculated using Wilcoxon Rank Sum Tests. Sample sizes for Figure C are 
provided in Supplementary Table 14B. C. Relative risk of autism and (any number of) developmental 
disabilities with 95% confidence intervals for different sets of probands with high-impact de novo 
variants. Sibling controls were used. All relative risks were statistically significant. All data for 
Figures A and B are from the SPARK cohort, and sample sizes are provided in Supplementary Table 
13. 
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Sex-differential overtransmission of autism PGS in autistic individuals 
without ID 

  We next turned to another potential source of heterogeneity – sex. Numerous previous 
studies have found that autistic females are more likely to have high-impact de novo variants 
than autistic males17,26,40,41. This observation is thought to support the Female Protective 
Effect in autism, which suggests that females need a greater genetic liability to cross the 
autism diagnostic threshold.13,40 However, a similar effect is observed in severe 
developmental disorders more generally, and is entirely explained by a relatively small 
number of genes significantly associated with severe developmental disorders (i.e. DD 
genes).42 The observed sex differences in high-impact de novo variants in autism may be 
explained entirely or partly by DD genes, which would suggest a biological mechanism 
shared by both autism and severe developmental disorders. We thus re-visited sex differences 
in high-impact de novo variants using data from SPARK and SSC (Supplementary Table 
16). Across all high-impact de novo variants, autistic females were more likely to be carriers 
compared to males (RR = 1.48, 95%CI: 1.27 – 1.71). However, this was explained entirely by 
high-impact de novo variants in DD genes (DD genes: RR = 2.09, 95% CI: 1.73 – 2.54; non-
DD genes: RR = 1.14, 95%CI: 0.93 - 1.42) (Figure 6A). This sex difference in DD genes 
remained and did not attenuate after accounting for the total number of co-occurring 
developmental disabilities in SPARK (Unconditional estimates:Betadenovo = 0.83, se = 0.21, p 
= 8.15x10-5 , Conditional estimates: Betadenovo = 0.82, se = 0.22, p = 3.53x10-4, logistic 
regression) and after accounting for full-scale IQ and motor coordination scores in SSC and 
SPARK (Unconditional estimates: Betadenovo = 1.10, se = 0.15, p = 3.42x10-13; Conditional 
estimates: Betadenovo = 1.31, se = 0.20, p = 8.19x10-11, logistic regression). We did not 
observe sex differences for either gene set in siblings (p > 0.05). These results suggest that 
sex differences in high-impact de novo variants are driven by a relatively small set of highly 
constrained genes that also increase the likelihood of co-occurring developmental disabilities 
in autism.  

Both the contribution of polygenic scores (Figure 5C) and the male:female ratio are 
higher in autistic individuals without ID compared to those with ID, suggesting that 
polygenic liability for autism may differ between sexes at IQ scores of 70 or above. Recent 
studies have found higher PGS for autism in females compared to males19, and greater 
overtransmission of PGS for autism in female non-carriers compared to male carriers43. Yet, 
sex differences in polygenic liability have not been investigated while stratifying by the 
presence of ID.  We conducted sex-stratified pTDT to investigate this (Nmax = 6,981 autistic 
trios). Whilst PGS for autism were overtransmitted in both male and female probands, this 
overtransmission did not differ by sex (Figure 6, Supplementary Table 17). However, in 
autistic individuals without ID (IQ>70), females had ~ 75% higher overtransmission of 
autism PGS than males (p = 0.02, two-tailed Z test, Figure 6B). When using a more 
conservating IQ threshold of 90 to remove individuals with borderline intellectual 
functioning, females had double the overtransmission of autism PGS compared to males 
(Females: Mean = 0.34, se = 0.06, N = 276; Males: Mean = 0.17, se = 0.03, N = 1,328, 
difference: p = 0.01, two tailed Z-test). We do not find any sex difference in overtransmission 
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for autistic individuals with ID or autistic carriers of a high-impact de novo variants. This sex 
difference in overtransmission was not observed for PGS for educational attainment and 
intelligence (Supplementary Table 17), suggesting that the results are not due to differences 
in IQ scores between sexes. We also do not find any sex differences in overtransmission of 
autism PGS in siblings. Furthermore, there was no difference in midparental PGS scores, 
family income, or parent education by sex or ID (p > 0.05 for all comparisons) - factors 
correlated with participation in research.44 This suggests that these results are unlikely to be 
explained by sex differences in participation. We cannot, however, distinguish the Female 
Protective Effect due to common or rare variants from diagnostic bias in the current 
study.24,45  

Figure 6: Sex differences in rare and common variants 

  

Figure 6: A: Relative risk and 95% confidence intervals for females compared to males for being  a 
carrier, a DD-gene carrier, and a non DD gene carrier. Sample sizes are provided in Supplementary 
Table 15.  B. Point estimates and 95% confidence intervals showing sex-stratified autism PGS for 
subgroups of autistic individuals. The first panel provides midparental estimates and the second panel 
provides the overtransmitted PGS scores.  All scores have been standardized to mid-parental means. 
p-values are provided from two-tailed Z tests.  Carriers = carriers of high-impact de novo variants, 
ID = autistic individuals with co-occurring intellectual disability (fsIQ < 70). Sample sizes are 
provided in Supplementary Table 17.  
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Sex and ID but not core autism features impact SNP heritability estimates 

         Given differences between subgroups of autistic individuals, we next investigated the 
impact of this heterogeneity on SNP heritability. We used 4,481 unrelated individuals of 
European ancestries from the ABCD cohort as population controls (Methods). Using a 
rigorous quality control pipeline, we calculated SNP heritability for autism and multiple 
subgroups (Figure 7A, Supplementary Table 18) using two methods - GREML 46,47 and 
PCGC48. All heritability estimates are reported on the liability scale, using sub-group-specific 
estimates of prevalence (see Methods) 

We identified a modest SNP heritability for autism (GCTA: h2
SNP = 0.29, se = 0.02; 

PCGC: h2
SNP = 0.29, se =0.03), which is  higher than estimates from iPSYCH16 but lower 

than estimates from the AGRE49 and PAGES50 cohorts. In line with previous analyses, 
autistic individuals with ID had lower SNP heritability (GCTA: h2

SNP = 0.20, se = 0.03; 
PCGC: h2

SNP  = 0.22, se = 0.09), whilst SNP heritability of autistic individuals without ID 
was similar to that observed for non-stratified autism (GCTA: h2

SNP : 0.32, se: 0.02; PCGC: 
h2

SNP : 0.33, se: 0.04), but was statistically higher than the SNP heritability of autistic 
individuals with ID (p = 1.6x10-3, two-tailed Z test). SNP heritability for autism in autistic 
carriers compared to general population controls (agnostic of carrier status) was modest 
(GCTA: h2

SNP : 0.20, se: 0.05; PCGC: h2
SNP : 0.14, se: 0.08), which is similar to the SNP 

heritability observed for autistic individuals with ID. However, when comparing autistic 
high-impact de novo carriers with autistic non-carriers, the SNP heritability was not 
statistically significant (GCTA: h2

SNP : 0.14, se: 0.14; PCGC: h2
SNP : 0.15, se: 0.19), 

suggesting that the observed SNP heritability for autistic carriers reflects autism rather than 
factors associated with the generation of germline mutations.51,52 This result is in line with 
our pTDT analyses which identify an overtransmission of PGS in carriers, and previous 
research that has identified a smaller, yet significant heritability for severe developmental 
disorders.53 

 Stratifying by sex had the largest effect on SNP heritability (Figure 7B). Males 
(GCTA:  h2

SNP : 0.42, se: 0.02; PCGC:  h2
SNP : 0.37, se: 0.04) had approximately 70% higher 

SNP heritability compared to females (GCTA: h2
SNP: 0.25, se: 0.05, PCGC: h2

SNP: 0.16, se: 
0.04; difference: p = 9.3x10-3, two-tailed Z test). This difference was observed across a range 
of prevalence estimates (Supplementary Table 19, Figure 7C), after downsampling the 
number of autistic males to match the number of autistic females  (Supplementary Table 
18), and varying the male-female ratio to 3.3:1 to account for diagnostic bias45 
(Supplementary Table 19).  In contrast, stratifying individuals by high scores (1 SD above 
the mean) on the core autism phenotypes or a combination of two core autism phenotypes 
modestly reduced or did not alter the SNP heritability for autism (Supplementary Table 18, 
Figure 7A).
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Figure 7: SNP heritability estimates 

 

A: SNP heritability and 95% confidence intervals for various subgroups (males and females 
combined) of autistic individuals. Estimates from two methods (GCTA-GREML and PCGC) shown. 
Empty shapes indicate that SNP heritability was not estimated due to low statistical power.  B: SNP 
heritability and 95% confidence intervals for  sex- and ID- stratified autism subgroups. Empty shapes 
indicate that SNP heritability was not estimated due to low statistical power. C: SNP heritability by 
sex for varying levels of autism prevalence in USA. Shaded regions provide 95% confidence intervals. 
The six factors are: 1. Insistence of sameness (F1); 2. Social interaction (F2); 3. Sensory-motor 
behaviour (F3); 4. Self-injurious behaviour (F4); 5. Idiosyncratic repetitive speech and behaviour 
(F5); 6. Communication skills (F6).  
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Discussion 

  We investigated the genetic correlates of heterogeneity in autism using the largest 
available genotyped and well-phenotyped autism datasets to date. We make three key 
observations. First, individual differences among autistic individuals in core and associated 
features are complex and genetically multifactorial. High-impact de novo variants and PGS 
have differential and often independent effects on these features. This suggests that variants 
associated with  autism as a group can have substantially different effects on presentation. 
Yet, despite differential effects of PGS on core-autism features, stratifying autism by core 
autism features has negligible impact on SNP heritability, similar to what has been previously 
reported at a much smaller scale18. In other words, phenotypic homogeneity using only the 
core autism phenotypes does not increase SNP heritability. This is either because autism is an 
emergent phenotype that lies at the intersection of multiple phenotypes or because there 
remains substantial heterogeneity in the underlying cognitive mechanisms that give rise to 
behavioural differences. 

Second, there is additivity between common and high-impact de novo variants in 
autism. These represent the most widely studied class of genetic variants in autism so far, yet 
emerging evidence suggests a role for other classes (e.g., rare inherited and de novo tandem 
repeats) of genetic variants as well17,19,54,55. However, genetic additivity does not imply 
phenotypic additivity. In other words, the two classes of genetic variants do not have the 
same effects on either the core or associated autism phenotypes, nor on co-occurring 
developmental disabilities. Importantly, autism PGS and high-impact de novo variants have 
seemingly opposite effects on co-occurring developmental disabilities. The ‘apparent 
protective effect’ of autism PGS on co-occurring developmental disabilities reflects both a 
true protective effect (e.g., for IQ37) and the additivity between rare and common variants. 
Supporting the latter, autism PGS was not significantly associated with earlier age of walking 
or first words in siblings, though this warrants further investigation in population cohorts. 
Furthermore, even among high-impact de novo variants we identify heterogeneity in effects - 
genes robustly associated with severe developmental disorders27 are the primary drivers of 
co-occurring developmental disabilities in autism.  

Third, we observe sizeable differences in both common and high-impact de novo 
variants based on sex and ID. Females were more likely to have both elevated autism PGS 
(non-ID only) and have lower SNP heritability, and also more likely to be carriers of high-
impact de novo variants compared to males, with differential effects based on ID. Whilst this 
may be interpreted as providing support for the Female Protective Effect13,40, we argue that 
this is not straightforward. First, the increased burden of high-impact de novo variants was 
observed only with genes associated with severe developmental disorders, not for other 
constrained genes, despite both sets of genes increasing the liability for autism. This suggests 
that the Female Protective Effect may be for severe developmental disorders rather than for 
autism specifically, which warrants further investigation. Second, the higher overtransmission 
of autism PGS must be interpreted alongside the reduced SNP heritability of autism in 
females. Assuming high genetic correlation between males and females, reduced SNP 
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heritability in females suggests that higher PGS are required to reach the equivalent levels of 
genetic liability in males.56 Yet, this raises another important question - why do autistic 
females have a lower SNP heritability compared to autistic males? Does this reflect 
ascertainment bias in the GWAS cohorts, diagnostic bias, diagnostic overshadowing, 
camouflaging/masking and/or social stigma?7,24,45 Several social factors can influence 
diagnosis in a sex differential manner, and investigating this is paramount to understanding 
sex differential genetic effects.  

Our findings have important implications for using genetics to understand autism. 
First, genetic investigations without deep phenotyping will certainly advance gene discovery, 
but will limit both the interpretation and utility of genetics in providing support for autistic 
individuals who need it. Second, phenotyping needs to be done at scale: effect sizes are 
modest, and some effects emerge only after considering multiple sources of heterogeneity. 
This requires concerted efforts from researchers to identify the most relevant phenotypes for 
investigation, in consultation with the autistic community. Third, both the diagnostic criteria 
and factors associated with receiving an autism diagnosis are changing57, and this will 
influence our understanding of heterogeneity in autism. Finally, for many autistic individuals, 
the most disabling aspects are not autism per se, but rather co-occurring developmental, 
physical, and mental health conditions alongside inadequate access to social, educational, 
financial, and occupational support. Thus, we need to prioritize research that investigates 
heterogeneity in both autism and co-occurring conditions to develop better targeted support 
strategies.  
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Methods 

Factor analyses 

Phenotypes and participants 

         We conducted factor analyses using the Social Communication Questionnaire- 
Lifetime version (SCQ)29 and the Repetitive Behaviour-Revised scale (RBS)28. The SCQ, is a 
widely used caregiver-report of autistic traits capturing primarily social communication 
difficulties and, to a lesser extent,  repetitive and restricted behaviours29. There are 40 binary 
(yes-or-no) questions in total, with the first question focusing on the individual’s ability to 
use phrases or sentences (total score: 0 to 39). We used the Lifetime version rather than the 
current version as this was available in both SPARK and SSC. Of note, in the Lifetime 
version, questions 1 - 19 are about behaviour over the life-time, whilst questions 20 - 40 refer 
to behaviour between the ages of 4 to 5, or in the last 12 months if the participant is younger.  
We excluded participants who could not communicate using phrases or sentences (N = 217 in 
SSC and 17,092 in SPARK) as other questions in the SCQ were not applicable to this group 
of participants. The RBS is a caregiver-report measure of presence and severity of repetitive 
behaviours over the last 12 months. It consists of 43 questions assessed on a four-point likert 
scale (total score: 0 to 129). Higher scores on both measures indicate greater autistic traits.  

We restricted our analyses to these two measures as these were the only measures of 
core autistic traits included in the SSC and SPARK cohorts. Participants had to have 
completed both measures. We also excluded autistic individuals with incomplete entries in 
either of the two measures (N = 5,754 only in SPARK). This resulted in 1,803 participants (N 
= 1,554 males) in SSC, 14,346 (N = 11,440 males) in SPARK version 3 and 8,271 (N = 6,262 
males) in extra entries from SPARK version 5  (SSC: Mean age = 108.75, SD = 43.29 ; 
SPARK version 3: Mean age = 112.11 months, SD = 46.43; SPARK version 5: Mean age = 
111.22 months, SD = 48.19). Only the SCQ was available for siblings in SPARK.   

Exploratory factor analyses 

         We conducted exploratory factor analysis in a random half of the SSC (N = 901 
individuals, of which 782 were males ) using ‘promax’ rotation to identify correlated factors 
as implemented ‘Psych’58 in R. We conducted three sets of exploratory correlated factor 
analyses: for all items, for social items, for non-social items. Previous studies have provided 
support for a broad dissociation between social and non-social autism features12,23, and have 
conducted separate factor analyses of social (e.g.,59,60) and non-social autism features 
(e.g.61,62). Thus, we reasoned that separating items into social and non-social may aid the 
identification of covariance structures that may not be apparent when analysing all items 
together. We divided the data into social (all of SCQ except item 1 and 9 other items and item 
28 from RBS) and non-social (9 items from SCQ: Items 8, 11, 12, 14 - 18, and all items from 
RBS except item 28) items, which was done after discussion between VW and XZ. The ideal 
number of factors to be extracted was identified from examining the scree plot 
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(Supplementary Figure 2), parallel analyses, and theoretical interpretability of the extracted 
factors. However, we examined all potential models using confirmatory factor analyses as 
well to obtain fit indices, and the final model was identified using both exploratory and 
confirmatory factor analyses.  

We then applied the model configurations from ‘promax’ rotated exploratory factor 
analysis for bifactor models, to explore the existence of general factor(s). In addition to a 
single general factor bifactor model, we divided the data into social and non-social items as 
mentioned earlier, and conducted bifactor models separately for the social and non-social 
items. Hierarchical Omega values and explained common variances (ECVs) were then 
calculated for potential models, as extra indicators of the feasibility of bifactor models, but 
hierarchical Omega values were not greater than 0.8 for most of the models tested, and ECVs 
were not greater than 0.763–65 for any of the models tested (Supplementary Table 2). 

Confirmatory factor analyses 

Three rounds of confirmatory factor analyses were conducted: first in the second half 
of the SSC, followed by SPARK participants whose phenotypic data was available in V3 of 
data release, and then, finally, in SPARK participants whose phenotypic data was available 
only in V4 or V5 of data release and not in the earlier releases. To evaluate the models, 
multiple widely adopted fit indices were considered, including the Comparative Fit Index 
(CFI), Tucker-Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA). 
In CFA, items were assigned only to the factor with the highest loading to attain parsimony. 
We conducted three broad sets of confirmatory factor analyses: (1) confirmatory factor 
analyses of all correlated factor models; (2) confirmatory factor analyses of the autism 
bifactor model; (3) confirmatory factor analyses of social and non-social bifactor models. For 
each of these confirmatory factor models we limited the number of factors tested based on the 
slope of the scree plots, and based on the number of items loading onto the factor (five or 
higher). For the confirmatory factor analyses of social and non-social bifactor models we 
iteratively combined various numbers of social and non-social group factors. In bifactor 
models, items without loading onto the general factor in the correspondent EFA were 
excluded. Items were allocated to different group factors which were identified based on the 
highest loading (items with loading < 0.3 were excluded). Due to the ordinal nature of the 
data, all CFAs were conducted using the Diagonally Weighted Least Squares estimator (to 
account for the ordinal nature of the data) in the R package Lavaan 0.6-566. We identified the 
model most appropriate for the data at hand with TLI and CFI > 0.9 (TLI and CFI > 0.95 for 
bifactor models), low RMSEA, and good theoretical interpretability based on discussions 
between authors VW and XZ. Additionally, as sensitivity analyses, the identified model 
(correlated six-factor model) was run again with two orthogonal method factors mapping 
onto SCQ and RBS-R,  to investigate if the fit indices remained high after accounting for 
covariance between items derived from the same measure, as these measures vary subtly on 
the period of time evaluated. We also re-analysed the identified model and after removing 
items loading onto multiple factors (> 0.3) to provide clearer theoretical interpretation of the 
model. For genetic analyses, we used factor scores from the correlated six-factor model 
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without including the orthogonal method factors and without dropping the multi-loaded 
items.          

Genetic quality control 

Participants 

We conducted analyses using data from four cohorts of autistic individuals: The 
Simons Simplex Collection (SSC, N = 8,813 samples)30, the Autism Genetic Resource 
Exchange (AGRE, CHOP sample) (Nmax = 1,200 autistic individuals)67, the AIMS-2-TRIALS 
LEAP sample (Nmax = 262 autistic individuals)68, and SPARK (N = 29,782 samples)31. For 
sibling comparisons, we included siblings from SSC (N = 1,829) and SPARK (N = 12,260). 
For trio-based analyses, we restricted to complete trios in SSC (N = 2,234) and SPARK (N = 
4,747). For all analyses we restricted the sample to autistic individuals who passed genetic 
quality control and who had phenotypic information. 

Genetic quality control 

Quality control was conducted for each cohort separately, by array. We excluded 
participants with genotyping rate < 95%, excessive heterozygosity (±3 standard deviations 
from the mean), non-European ancestry as detailed below, mismatched genetic and reported 
sex, and, for families, Mendelian errors > 10%. SNPs were excluded with genotyping rate < 
10%, or if they deviated from Hardy-Weinberg equilibrium (p < 1x10-6). Given the ancestral 
diversity in the SPARK cohort, Hardy-Weinberg equilibrium and heterozygosity were 
calculated in each genetically homogeneous population separately. Genetically homogeneous 
populations (corresponding to five super populations – Africa, East Asian, South Asian, 
Admixed American, and European) were identified using the 5 genetic principal components 
(PCs) calculated using SPARK and 1000 genomes Phase 3 populations69, and clustered using 
UMAP70. PCs were calculated using LD-pruned SNPs (r2 = 0.1, window size = 1000 kb, step 
size = 500 variants, after removing regions with complex LD patterns) using GENESIS71, 
which accounts for relatedness between individuals, calculated using KING72. 

Imputation was conducted using Michigan Imputation Server73 using the 1000 
genomes Phase 3 v5 as the reference panel49 (for AGRE and SSC), using HRC r1.1 2016 
reference panel74 (for AIMS-2-TRIALS), or using TOPMED imputation panel75 (for both 
releases of SPARK). Details of imputation have been previously reported76. SNPs were 
excluded from polygenic risk scores if they had minor allele frequency < 1%, had an 
imputation r2 < 0.4, or were multiallelic. 

Polygenic scores 

We restricted our polygenic score (PGS) associations to four GWAS. First, we 
included a GWAS of autism from the latest release from the iPSYCH cohort (iPSYCH-2015). 
This includes 19,870 autistic individuals and 39,078 individuals without an autism diagnosis. 
GWAS was conducted on individuals of European ancestry, with the first 10 genetic principal 
components included as covariates using a logistic regression as provided in Plink. Further 
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details are provided elsewhere.43 We additionally included GWAS for Educational attainment 
(N = 766,345, excluding the 23andMe dataset)77, 2. Intelligence  (N = 269,867)78, and 3. 
Schizophrenia (69369 cases and 236,642 controls)79. These GWAS were selected given the 
relatively large sample size and modest genetic correlation with autism. Additionally, as a 
negative control, we included PGS generated from a GWAS of hair colour (blonde vs other, 
N = 43,319 blondes and 342,284 others) from the UK Biobank, which was downloaded from 
here: Genome wide association study ATLAS (ctglab.nl). This phenotype has comparable 
SNP heritability to the other GWAS used (0.15, se = 0.014), is unlikely to be genetically or 
phenotypically correlated with autism and related traits, and has a large enough sample size 
to be a reasonably well-powered negative control.      

PGS were generated for three phenotypes using Polygenic Risk Scoring using 
continuous shrinkage (PRS-CS)80, which is among the best-performing polygenic scoring 
methods using summary statistics in terms of variance explained81. In addition, this method 
bypasses the step of having to identify a p-value threshold. We set the global shrinkage prior 
(phi) to 1E-02, as is recommended for highly polygenic traits. Details of the SNPs included 
are provided in Supplementary Table 3. 

de novo variants were obtained from Antaki et al., 202119. de novo variants (structural 
variants and single nucleotide variants) were called for all of the SSC samples and a subset of 
the SPARK samples (Phase 1 genotype release, single nucleotide variants only). To identify 
high-impact de novo SNVs, we restricted data to variants with a known effect on protein. 
These are damaging variants: “transcript_ablation”, “splice_acceptor_variant”, 
“splice_donor_variant”, “stop_gained”, “frameshift_variant”, “stop_loss”, “start_loss”, or 
missense variants with MPC82 (Missense Badness, PolyPhen-2, and Constraint) scores >2 . 
We further restricted data to variants in constrained genes with a LOEUF score < 0.3783, 
which represents the topmost decile of constrained genes. For SVs, we restricted data to SVs 
affecting the most constrained genes i.e., LOEUF score < 0.37, representing the first decile of 
most constrained genes. We did not make a distinction between deletions or duplications. To 
identify carriers, non-carriers, and parents, we restricted our data to samples in SPARK and 
SSC who had been exome-sequenced, and families in which both parents and the autistic 
proband(s) passed the genotyping QC.  

For genes associated with severe developmental disorders, we obtained the list of 
constrained genes that are significant genes associated with severe developmental disorders 
from Kaplanis et al., 202027. To investigate the association of this set of genes with autism 
and developmental disorders, we first identified autistic carriers with a high-impact de novo 
variant and then divided this group into carriers who had at least one high-impact de novo 
variant in a DDD gene, and carriers with high-impact de novo variants in other constrained 
genes.  

Only individuals with undiagnosed developmental disorders are recruited into the 
Deciphering Developmental Disorders study, and as such known genes associated with 
developmental disorders that are easy for clinicians to recognise and diagnose may be 
omitted from the genes identified by Kaplanis et al., 2020.27  To account for this bias,  we ran 
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sensitivity analyses using a larger but overlapping list of genes identified from the highly 
Developmental Disorder Gene-to-Phenotype database (DDG2P). From this database, we used 
constrained genes that are either ‘confirmed’ or ‘probable’ developmental disorder genes and 
genes where heterozygous variants lead to developmental phenotypes (i.e. monoallelic or X-
linked dominant).   

Phenotypes 

 Core and associated autism features 

We identified 19 autism core and associated features which: 1. Are widely used in 
studies related to autism; 2. Are a combination of parent-, self-, other-report and 
performance-based measures to investigate if reporter status affects the PGS association, 3. 
Are collected in all three cohorts; and 4. Cover a range of core and associated features in 
autism. The core features are:  

1. ADOS84: Social Affect (ADOS SA) 
2. ADOS84: Restricted and Repetitive Behaviour domain total score (ADOS RRB) 
3. ADI85: Communication (verbal) domain total score (ADI VC) 
4. ADI85: Restricted and repetitive behaviour domain total score (ADI RRB) 
5. ADI85: Social domain total score (ADI SOC) 
6.  Repetitive Behaviour Scale – Revised28 (RBS) 
7.  Parent-reported Social Responsiveness Scale - 286: Total raw scores (SRS) 
8. Social Communication Questionnaire (SCQ)29 
9. Insistence of sameness factor (F1) 
10. Social interaction factor (F2) 
11. Sensory-motor behaviour factor(F3) 
12. Self-injurious behaviour factor (F4) 
13. Idiosyncratic repetitive speech and behaviour (F5) 
14. Communication skills factor (F6) 

 The associated features are : 

1. Vineland Adaptive Behaviour Scales87: Composite standard scores (VABS) 
2. Full-scale IQ (fsIQ) 
3. Verbal  IQ (vIQ) 
4. Non-verbal IQ (nvIQ) 
5. Developmental Coordination Disorders Questionnaire88 (DCDQ) 

Measures of IQ were quantified using multiple methods across the range of IQ scores 
in AGRE, SSC, and LEAP. In SPARK, IQ scores were available based on parent reports on 
ten IQ score bins (see: Figure 1C). We used these as full-scale scores. For analyses involving 
SPARK and SSC, we converted full-scale scores from the SSC into IQ bins to match what is 
available in SPARK, and treated it as a continuous variable based on examination of the 
frequency histogram (Supplementary Figure 9). For the six factors, we excluded individuals 
who were minimally verbal (see Methods section on Factor analyses), but these individuals 
were not excluded for analyses with other autism features.  
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Developmental phenotypes 

We identified seven questions relating to developmental delay in the SPARK medical 
screening questionnaire. These are all binary questions (yes/no). Summed scores ranged from 
0 to 7. The developmental phenotypes include presence of: 

1.  Intellectual disability, cognitive impairment, global developmental delay, or borderline 
intellectual functioning 
2.      Language delay or language disorder 
3.    Learning disability (LD, learning disorder, including reading, written expression, 
math, or NVLD (Nonverbal learning disability)) 
4.      Motor delay (e.g., delay in walking) or developmental coordination disorder 
5.      Mutism 
6.      Social (Pragmatic) Communication Disorder (as included in DSM IV TR and earlier) 
7.      Speech articulation problems 

We included age of first words and age of walking independently for further analyses. 
This was recorded using parent-report questionnaires in SPARK and in ADI-R85 in SSC. 
Whilst other developmental phenotypes are available, we focussed on these two as these 
represent major milestones in motor and language development and are relatively well-
characterized.  

Statistical analyses 

 Genetic association analyses 

         For each cohort, PGS and high-impact de novo variants were regressed against the 
autism features with sex and the first 10 genetic principal components as covariates in all 
analyses, with all continuous independent variables standardised. In addition, array was 
included as a covariate in SSC and AGRE datasets. This was using linear regression for 
standardised quantitative phenotypes, logistic regression for binary phenotypes (e.g 
association between PGS and presence of a high-impact de novo variant), poisson regression 
for count data (number of developmental disorders/delays, not standardised), and negative-
binomial regression for age of walking independently/age of first words, not standardised 
(MASS89 package in R).  

For the association between genetic variables and core and associated autism 
phenotypes, we first conducted linear regression analyses for the four PGS first using 
multivariate regression analyses using data from SPARK (waves 1 and 2), SSC, AGRE, and 
AIMS-2-TRIALS LEAP. This is of the form: 

y ~ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence + sex + age + 10PCs – (eq 1) 

For negative control, we added the negative control as an additional independent variable in 
equation 1 
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y ~ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence + PGShaircolour + sex + age + 10PCs  – 
(eq 2) 

In AGRE and SPARK we ran equivalent mixed-effects models with family ID 
modelled as random intercepts to account for relatedness between individuals. This was done 
using the lme490 package in R.  

For high-impact de novo variants, we included the count of high-impact de novo 
variants as an additional independent variable  in equation 1 and ran regression analyses in 
SPARK (Wave 1 only) and SSC. To ensure interpretability across analyses, we retained only 
individuals who passed the genotypic QC, which included only individuals of European 
ancestries. Family ID was included as a random intercept: 

y ~ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence + high-impact de novo count + sex + 
age + 10PCs  – (eq 3) 

Effect sizes were meta-analysed across the three cohorts using inverse variance 
weighted meta-analyses with the following formula: 

wi=1/SEi
2 

SEmeta= √(1/Σi wi) 

Betameta=Σi βiwi /Σi wi 

Where βi is the standardized regression coefficient of the PGS, SEi is the associated 
standard error, and wi  is the weight. p-values were calculated from Z scores. Given the high 
correlation between the autism features and phenotypes, we used Benjamini-Yekutieli False 
Discovery Rates to correct for multiple testing (corrected p value < 0.05).  

In SPARK and SSC, we investigated the association between PGS (equation 1) and 
being a carrier of a high-impact de novo variant (equation 3) and the age of first walking and 
first words using negative binomial regression, and conducted inverse variance meta-analyses 
(equation 4). We ran the same analyses in SPARK to investigate the association between 
PGS (equation 1) and high-impact de novo variants (equation 3) and counts of co-occurring 
developmental disabilities (quasi-poisson regression). Leave one out analyses were conducted 
by systematically excluding one of seven co-occurring developmental disabilities and 
reconducting the analyses.  

To investigate additivity between common and high-impact de novo variants, we 
conducted logistic regression with carrier status as a dependent binary variable and all PGS 
included as independent variables and genetic PCs, sex, and age included as covariates. This 
was done separately in SPARK (Wave 1) and SSC and meta-analysed as outlined earlier.  

Phenotypic analyses 
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Statistical significance of differences in factor scores between sexes were computed 
using t-tests. Associations with age and IQ bins were conducted using linear regressions after 
including sex as a covariate.  

Matrix equivalency tests were conducted using the Jennrich Test in the Psych58 
package in R. Power calculations were conducted using simulations. Statistical differences 
between pairwise correlation coefficients (carriers vs non-carriers) in core and associated 
features were tested using the package cocor91 in R. Using scaled existing data on full-scale 
IQ, adaptive behaviour, and motor coordination, we generated correlated simulated variables 
at a range of correlation coefficients to reflect the correlation between the six core factors and 
the three associated features. We then ran regression analyses using the simulated variable 
and high-impact de novo variants as provided in equation 3.  We repeated this a thousand 
times and counted the fraction of outcomes where the association between high-impact de 
novo variant count and the simulated variable had  p < 0.05 to obtain statistical power. 
Differences in age of walking and age of first words between groups of autistic individuals 
and siblings were calculated using Wilcoxon Rank-Sum tests. 

Sex differences: Polygenic transmission disequilibrium tests 

Polygenic transmission deviation was conducted using polygenic Transmission 
Disequilibrium Tests14. To allow comparisons with midparental scores, residuals of the 
autism PGS were obtained after regressing out the first 10 genetic principal components. 
These residuals were standardized by using the parental mean and standard deviations. We 
obtained similar results using PGS that have not been residualized for the first 10 genetic 
principal components. We defined individuals without co-occurring intellectual disability 
(ID) as individuals whose full-scale IQ is above 70 in SSC and SPARK. Additionally, in 
SPARK, we excluded any of these participants who had a co-occurring diagnosis of 
“Intellectual disability, cognitive impairment, global developmental delay, or borderline 
intellectual functioning”. Analyses were conducted separately in the SSC and SPARK 
cohorts and meta-analysed using inverse-variance weighted meta-analyses. We additionally 
conducted pTDT analyses in non-autistic siblings to investigate differences between males 
and females. 

Sex differences: high-impact de novo variants 

 For sex differences in high-impact de novo variants, we calculated relative risk in 
autistic females vs males based on: 1. All carriers; 2. Carriers of DD genes; and 3. Carriers of 
non-DD genes (SPARK wave 1 and SSC). For sensitivity analyses, we conducted logistic 
regression with sex as the depedent variable and carrier status for DD genes, and either full-
scale IQ and motor coordination scores (in SPARK wave 1 and SSC) or number of 
developmental disorders (only in SPARK wave 1) as covariates. For each sensitivity analysis 
we provide the estimates of the unconditional analysis as well (i.e. without the covariates).  
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Heritability analyses 

We opted to conduct heritability analyses using unscreened population controls rather 
than family controls (i.e., pseudocontrols or unaffected family members), as this likely 
reduces SNP heritability92 owing to parents having higher genetic liability for autism 
compared to unselected population controls49 and due to assortative mating93. Case-control 
heritability analyses were conducted using the ABCD cohort as population controls; 
specifically, the ABCD child cohort in the USA, recruited at the age of 9 or 10. They are 
reasonably representative of the US population in terms of demographics and ancestry. As 
such they represent an excellent comparison cohort for the SPARK and SSC cohorts. ABCD 
was genotyped using the SmokescreenTM genotype array, a bespoke array designed for the 
study containing over 300,000 SNPs. Genetic quality control was conducted identical to 
SPARK. Genetically homogeneous groups were identified using the first five genetic 
principal components followed by UMAP clustering with the 1000 Genomes data. We 
restricted our analyses to 4,481 individuals of non-Finnish European ancestries in ABCD. 
Scripts for this are available here: https://github.com/vwarrier/ABCD_geneticQC. Imputation 
was conducted, similar to SPARK, using the TOPMED imputation panel. 

 For case-control heritability analyses we combined genotype data from ABCD, and 
from autistic individuals from SPARK and SSC. We restricted to 6,328,651 well-imputed 
SNPs (r2 > 0.9) with a minor allele frequency > 1% in all datasets. Furthermore, we excluded 
multi-allelic SNPs, and SNPs with minor allele frequency difference of > 5% between the 
three datasets, and, in the combined dataset, were not in HWE (p > 1x10-6) or had a 
genotyping rate < 99%. We additionally excluded related individuals as identified using 
GCTA-GREML and individuals with genotyping rate < 95%. We calculated genetic PCs for 
the combined dataset using 52,007 SNPs with minimal linkage disequilibrium (r2 = 0.1, 1000 
kb, step size of 500 variants, removing regions with complex long-range LD). Visual 
inspection of the PC plots did not identify any outliers (Supplementary Figure 10).  Whilst 
our quality control procedure is stringent, we note that there will be unaccounted for effects 
in the SNP heritability due to fine-scale population stratification, differences in genotyping 
array, and participation bias in the autism cohorts. However, our focus is on the differences in 
SNP heritability between subgroups of autistic individuals and unaccounted for case-control 
differences will not affect this. 

We calculated SNP heritability for autism, and additionally in subgroups stratified for 
the presence of ID, sex, sex and ID together, and presence of high-impact de novo variants. 
We also conducted SNP heritability in subgroups of autistic individuals with scores > 1SD 
from the mean for each of the six factors, autistic individuals with F1 scores > F2, and 
autistic individuals with F2 scores > F1.  

 We calculated observed scale SNP heritability (baseline and subgroups) using 
GCTA-GREML46,47 and additionally, using Phenotype Correlation-Genotype Correlation 
(PCGC)48. In all models except for the sex-stratified models, we included sex, age in months, 
and the first 10 genetic principal components as covariates.  In the sex-stratified models we 
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included age in months and the first 10 genetic principal components as covariates. For sex-
stratified heritability analyses, both cases and controls were from the same sex. For GCTA-
GREML, observed scale SNP heritability was converted into liability scale SNP heritability 
using equation 23 in Lee et al., 201194. PCGC estimates SNP heritability directly on the 
liability scale using the prevalence rates from Maenner et al., 202095. For all analyses we 
ensured that the number of cases does not exceed the number of controls, with a maximum 
case:control ratio of 1. 

 We used prevalence rates from Maenner et al., 202095 which provides prevalence of 
autism among 8 year olds (1.8%). The study also provides prevalence rates by sex and by the 
presence of intellectual disability. However, there is wide variation in autism prevalence. We 
thus re-calculated the SNP heritability across a range of state-specific prevalence estimates 
obtained from Maenner et al., 202095. For estimates of liability-scale heritability for subtypes 
defined by factor scores > 1 SD from the mean, we estimated a prevalence of 16% of the total 
prevalence. For F1 > F2, and F2 > F1, prevalence was estimated at 50% of the total autism 
prevalence. Estimating approximate population prevalence of autistic individuals with high-
impact de novo variant carriers is difficult due to ascertainment bias in existing autism 
cohorts. However, a previous study has demonstrated that the mutation rate for rare protein 
truncating variants is similar between autistic individuals and siblings from the SSC and 
autistic individuals and population controls from the iPSYCH sample in Denmark, which 
does not have a participation bias,96 implying that the de novo mutation rate in autistic 
individuals from SPARK and SSC may be generalisable. Using sex-specific proportion of de 
novo variant carriers and autism prevalence, we calculated a prevalence of 0.2% for being an 
autistic carrier of a high-impact de novo variant.  

For sex-stratified SNP heritability analyses, we additionally calculated SNP 
heritability for a range of state-specific prevalence estimates to better model state-specific 
factors that contribute to autism diagnosis. In addition, using a total prevalence of 1.8%, we 
estimated SNP heritability using a male-female ratio of 3.3:145 to account for diagnostic bias 
that may inflate the ratio. 

 We used GCTA-GREML to also estimate SNP heritability for the six factors, full-
scale IQ, and the bivariate genetic correlation between them. We used the same set of SNPs 
used in the case-control analyses. We were unable to conduct bivariate genetic correlation for 
the case-control datasets due to limitations of sample size.   

Ethics 

We received ethical approval to access and analyse de-identified genetic and 
phenotypic data from the three cohorts from the University of Cambridge Human Biology 
Research Ethics Committee. 

 Data availability 
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Genetic and phenotypic data for SFARI and SPARK are available upon application 
and approval from the Simons Foundation (SFARI | Autism Cohorts). Data for AGRE is 
available upon application and approval from Autism Speaks (AGRE - Autism Genetic 
Resource Exchange | Autism Speaks). Data for EU-AIMS Leap is available upon application 
and approval to the EU-AIMS LEAP committee (The LEAP Study (eu-aims.eu)). 

Scripts : 

All scripts used in this study are available here: 

● Genetic QC and imputation in SSC: vwarrier/SSC_liftover_imputation: Basic scripts 
used for imputing the SSC genotyped datasets (github.com) 

● Genetic QC and imputation in SPARK: vwarrier/SPARK_QC_imputation: QC and 
imputation of the SPARK dataset (github.com) 

● Genetic QC and imputation in ABCD: vwarrier/ABCD_geneticQC (github.com) 
● Bespoke genetic analyses: vwarrier/autism_heterogeneity: This git has the code for 

the heterogeneity in autism project (github.com) 

We used the following software packages: 

● PRScs: getian107/PRScs: Polygenic prediction via continuous shrinkage priors 
(github.com) 

● TOPMED imputation server: TOPMed Imputation Server (nih.gov) 
● Plink: PLINK 2.0 (cog-genomics.org) 
● GCTA-GREML: PLINK 2.0 (cnsgenomics.com) 
● PCGC: PCGC Regression | dougspeed.com 
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Supplementary Figure 1: Flowchart of the factor models tested 

 

 

 

We tested 42 models in total using a series of exploratory and confirmatory factor analyses. This 

includes two sets of correlated factor models (correlated factor, and correlated social and correlated 

non-social factors), and two sets of bifactor models (Autism bifactor and social + non-social bifactor 

models). 
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Supplementary Figure 2: Scree plots for 

the exploratory factor models 

 

 

Scree plots for: (1) Correlated factor; (2) Correlated social factor; and (3) Correlated non-social factor 

models. Examination of the scree plot suggested 6 correlated factors, 2 social factors and 4 non-social 

factors. 
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Supplementary Figure 3: Factor scores by sex and full-scale IQ bins 

 

 

Mean scores and 95% confidence intervals for the six factor scores in 10 full-scale IQ bins, stratified by sex
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Supplementary Figure 4: Age related trajectories in factor scores 

 

A. Age related trajectories in males. B Age related trajectories in females. The six factors 
are: 1. Insistence on sameness (F1); 2. Social interaction (F2); 3. Sensory-motor behaviour 
(F3); 4. Self-injurious behaviour (F4); 5. Idiosyncratic repetitive speech and behaviour (F5); 
6. Communication skills (F6). F2 primarily consists of items related to Social interaction at 
ages 4 – 5, hence the trajectory likely reflects recall bias in participants.  
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Supplementary Figure 5: Effect directions for the significant PGS associations 

Regression beta and 95% confidence intervals for the significant PGS-feature associations by 
cohort. Empty circles represent cohorts where the phenotypes were not available (F1, F2, 
F3, F4, F5, and SCQ were not available in AGRE and LEAP; full-scale IQ and verbal IQ 
were not available in AGRE, non-verbal IQ and verbal IQ were not available in SPARK). 
Meta an. Represent the meta-analysed estimates and associated 95% confidence intervals. 
Adaptive behaviour was measured using the composite scores from the Vinelands Adaptive 
Behaviour Scales. The five factors are: 1. Insistence on sameness (F1); 2. Social interaction 
(F2); 3. Sensory-motor behaviour (F3); 4. Self-injurious behaviour (F4); 5. idiosyncratic 
repetitive speech and behaviour (F5).
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Supplementary Figure 6: Correlation between beta coefficients for the four sets of PGS 
without and after controlling for the presence of high-impact de novo variants 

 

Correlation coefficients and associated 95% confidence intervals are provided in the inset.
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Supplementary Figure 7: Differences in autism PGS by sex, and diagnostic and carrier 
status 

 

Sex Category Mean N 

All Carriers -0.082 579 

All Non carriers 0.072 4997 

All Siblings -0.085 3681 

Females Carriers -0.031 149 

Females Non carriers 0.068 868 

Females Siblings -0.041 1888 

Males Carriers -0.101 430 

Males Non carriers 0.073 4129 

Males Siblings -0.132 1793 

 

Differences in standardised autism PGS (mean = 0, standard deviation = 1). Line is drawn to 
scale. Standard deviations (SDs) and p-values have been provided for select comparisons 
where visual inspection of the plot identified sizable differences in PGS between groups. p-
values have been calculated using linear regression using autism PGS residualised for 10 
genetic principal components, and with sex (non-stratified comparisons only) and cohort 
included as covariates. The table provides the mean PGS and sample size for each group. 
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Supplementary Figure 8: Leave-one-out analyses for genotype-developmental disability 
associations 

Leave-one-out analyses for the associations between autism polygenic scores or high-impact 
de novo variants and count of developmental disabilities. Regression betas and 95% 
confidence intervals provided. For high-impact de novo variants, we additionally conducted 
leave-one-out analyses after excluding both motor delay and ID (indicated using *), given the 
associations between high-impact variants and both IQ and motor coordination. We also 
provide the beta and 95% confidence intervals for the original regression for the count of all 
seven developmental disabilities (‘All’) for comparison. 
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Supplementary Figure 9: Distribution of full-scale IQ bins in SPARK and SSC 
combined 

 

 

Frequency histogram of binned full-scale IQ scores from the SPARK and SSC cohorts.
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Supplementary Figure 10: Distribution of individuals of European ancestries in 
SPARK, SSC, and ABCD by genetic principal components 

 

 

 

Individuals of predominantly European ancestries from the SPARK, ABCD, and SSC cohorts 
plotted based on the first four genetic principal components. Visual inspection of the plots 
identified substantial alignment between the three cohorts in the principal component space. 
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