
HAL Id: hal-03364941
https://hal.science/hal-03364941

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering-based solution approach for a capacitated
lot-sizing problem on parallel machines with

sequence-dependent setups
François Larroche, Odile Bellenguez, Guillaume Massonnet

To cite this version:
François Larroche, Odile Bellenguez, Guillaume Massonnet. Clustering-based solution approach for
a capacitated lot-sizing problem on parallel machines with sequence-dependent setups. International
Journal of Production Research, In press, �10.1080/00207543.2021.1995792�. �hal-03364941�

https://hal.science/hal-03364941
https://hal.archives-ouvertes.fr

Clustering-based solution approach for a capacitated lot-sizing

problem on parallel machines with sequence-dependent setups

François Larrochea, b, Odile Bellengueza and Guillaume Massonneta

aIMT Atlantique, LS2N, La Chantrerie, 4 rue Alfred Kastler, 44307 Nantes, France
bVIF, 10 Rue de Bretagne, 44240 La Chapelle-sur-Erdre, France

ABSTRACT
This paper studies an industrial lot-sizing and scheduling problem coming from
the food-industry that extends the multi-item capacitated lot-sizing and includes
lost sales, overtimes, safety stock and non uniform sequence-dependent setups on
parallel machines. We introduce two different formulations and adapt the well-known
Relax-and-Fix and Fix-and-Optimize heuristics in order to quickly obtain feasible
solutions on large industrial instances. The complexity of our problem prevents the
procedure to obtain good solutions within the time allocated by practitioners on
real-life cases, hence we propose to use a clustering approach to approximate the
sequence-dependent setup times. The resulting problem is significantly smaller to
solve and experimental results suggest that this transformation effectively improves
the solutions found on industrial instances. In particular, the combination of this
clustering method and Relax-and-Fix and Fix-and-Optimize procedure turns out to
be a promising approach to obtain good solutions in the given time-limit.

KEYWORDS
Lot-sizing; sequence-dependent setups; parallel machines; clustering

1. Introduction

In this paper, we focus on production problems that arise in practical cases from the
food industry and involve the manufacturing of several items on multiple production
lines. The main goal of the industrial application behind this study is to reach ”good”
feasible solutions in a short computational time, providing the planners with a decision
support tool that they can use on a daily basis. Unfortunately, those problems generally
combine multiple lot-sizing and scheduling constraints, which makes them difficult to
handle using a straightforward Mixed Integer Linear Programming (MILP) modeling.
In particular, when the setup times between different types of items heavily depend
on the production sequence, such approaches lead to large mathematical formulations
that turn out to be intractable by commercial solvers. Thus, fast and reliable dedicated
methods are necessary in order to meet practitioners’ requirements.

We call this problem the multi-item capacitated lot-sizing problem with lost sales,
safety stock, overtimes, and sequence-dependent setups on parallel machines, abbrevi-
ated CLSSD-PM in the remainder of this paper. It extends many existing lot-sizing
models that have been developed in the production planning literature following the

Supported by VIF Software

CONTACT François Larroche Email: francois.larroche@imt-atlantique.fr

work of Wagner and Whitin (1958). The ever-growing need to propose customized
models that allow to precisely describe and solve a wide range of industrial production
processes has shifted the interest of manufacturers towards different generalizations of
the original problem, see for instance Jans and Degraeve (2008) for a comprehensive
survey of these applications. The version that we consider in this paper regroups some
of these well-known extensions, along with new ones specific to our industrial case. In
particular, it includes several aspects related to the Capacitated Lot Sizing Problem
(CLSP) and the Asymmetric Travelling Salesman Problem (ATSP). Both problems
are proven NP-hard (see Florian, Lenstra, and Rinnooy Kan (1980) and Karp (1972),
respectively), hence it is straightforward that the CLSSD-PM is itself NP-hard.

The capacity constraints that appear in the practical applications we consider are
similar to the ones found in the CLSP, see Karimi, Fatemi Ghomi, and Wilson (2003)
or Quadt and Kuhn (2008) for reviews of extensions and solution approaches. Lost sales
is another aspect of the CLSSD-PM that frequently appears in the lot-sizing literature.
In particular, it is studied by Absi and Kedad-Sidhoum (2008), who introduce new
classes of valid inequalities. In Absi, Detienne, and Dauzère-Pérès (2013), a Lagrangian
heuristic is developed and provides good results for the CLSP with lost sales. On the
other hand, the safety stock is seldom considered in the deterministic production and
inventory literature. Loparic, Pochet, and Wolsey (2001) define the safety stock as
a lower bound on the number of units that must be held in the inventory in each
period. However, in many real-life cases, it is mainly seen as a target inventory level,
set to mitigate the risk of shortage rather than an hard constraint. Following this
approach, Absi and Kedad-Sidhoum (2009) choose to penalize missing units from the
safety stock in the objective function and develop a Lagrangian heuristic approach to
solve the problem.

The combination of production planning and scheduling problems is relevant in
practice, since setup times are often sequence-dependent. This observation has mo-
tivated the introduction of integrated models generally referred to as lot-sizing and
scheduling problems, that consider both levels of decision to properly approximate the
capacity consumption in each time period. For instance, Gicquel et al. (2009) present
a discrete lot-sizing and scheduling problem (DLSP) based on a small bucket formu-
lation, i.e. the production in each period is limited to only one type of item, with
the additional constraint that any production must be at full capacity. In contrast,
the so-called big bucket formulations consider that time periods are long enough to
produce multiple types of items. Fleischmann and Meyr (1997) are among the first
to study a sequence-dependent version of this problem, called the General Lot-sizing
and Scheduling Problem (GLSP), and consider two time structures, namely a set of
fixed periods (big buckets) that contain sequences of smaller variable production pe-
riods (small buckets). For a state of art of these different variants of the lot-sizing
and scheduling problem, the reader can refer to the extensive reviews of Guimarães,
Klabjan, and Almada-Lobo (2014) and Copil et al. (2017).

In most cases, complex lot-sizing problems with capacity restriction, sequence-
dependent (SD) setups and/or multiple machines are tackled using decomposition
and constructive heuristics to obtain feasible solutions. Almada-Lobo et al. (2007)
propose an iterative heuristic to solve the capacitated lot-sizing problem with sequence-
dependent setup times and costs (CLSD) and compare its result with a lower bound
from a strengthened formulation. The well-known Relax-and-Fix is also a popular de-
composition heuristic that usually offers a good trade-off between solution quality and
runtime. It is frequently combined with the local search heuristic Fix-and-Optimize
to improve the solutions. We refer the reader to Absi and Kedad-Sidhoum (2007) for

2

a thorough presentation of this class of methods, including an extensive parameter
analysis. Toso, Morabito, and Clark (2009) apply this type of procedure to the GLSP,
while Clark, Morabito, and Toso (2010) propose a solution procedure based on subtour
elimination and a patching heuristic. Lang and Shen (2011) use a Fix-and-Optimize
heuristic to address the single machine version of CLSD including overtimes. Fiorotto,
Neyra, and Araujo (2019) apply a Relax-and-Fix and Fix-and-Optimize procedure
to obtain feasible solutions for difficult instances of a single machine problem with
sequence-independent setup times including crossover (i.e. start a setup and end it
in the next period) and carryover (i.e. continue the production of an item from one
period to the next without incurring a new setup).

In addition, problems that include multiple resources are divided into two broad
categories: identical (Beraldi et al. (2008)) and non-identical (Kaczmarczyk (2013))
parallel machines. The problem CLSSD-PM that we address considers non-identical
production machines. It extends the case of sequence-dependent setup times and costs
on parallel machines presented in James and Almada-Lobo (2011), for which the au-
thors develop new MIP-based neighborhood search heuristics and compare them to
other solution procedures. Several methods have been experimented for similar frame-
works. Almada-Lobo et al. (2010) consider a version of the problem in which a given
machine can only produce one type of item per period and propose to combine the
addition of valid inequalities with a Lagrangian heuristic to obtain good solutions.
Mateus et al. (2010) solve an integrated version of the problem with an iterative pro-
cedure, while Xiao et al. (2013) develop an original Fix-and-Optimize algorithm to
address a problem from the semiconductor manufacturing industry. Other works such
as Fiorotto and de Araujo (2014) and Xiao et al. (2015) rely on Lagrangian decompo-
sition heuristics to deal with parallel machines problems. More recently, Armas and
Laguna (2020) study a similar problem, from the pipe-insulation industry, and pro-
pose a solution procedure that runs in two phases: In the first one, a simplified version
of the problem with sequence-independent setups is solved, before re-scheduling the
production using a post-processing heuristic in the second phase.

The remainder of this paper is organized as follows: Section 2 describes the notations
and assumptions of the CLSSD-PM problem, including a presentation of the industrial
context that explains the introduction of production sequence. In Section 3, we pro-
pose two different mathematical formulations for our problem, respectively referred to
as the aggregate and the facility location ones. In Section 4, we succinctly presents the
so-called Relax-and-Fix and Fix-and-Optimize heuristics adapted to the CLSSD-PM
problem in order to obtain feasible solutions in a short computational time on large
instances. Then we develop an approach based on a clustering procedure to approx-
imate the sequence-dependent setup times. The created clusters are used to reduce
the problem size and obtain good solutions within a limited computational time. In
the following, we introduce a two-phases approach: The first one aims at finding a
solution to the modified clustered-problem, which is then used in the second one to
build optimal production sequences for each machine in each period. This approach
ensures that any solution to the modified problem remains feasible in the original
framework. Finally, Section 5 presents a sensitivity analysis for parameters tuning and
computational results apply on instances inspired by practical data sets from our in-
dustrial partners. Numerical results suggest that even for medium size instances, our
approximation of the setup times enables us to quickly find better solutions to the
CLSSD-PM, regardless to the type of formulation used.

3

Table 1. Sets and constants
N : Number of items
N = {1, . . . , N}
M : Number of machines
M = {1, . . . ,M}
T : Number of periods
T = {1, . . . , T}

2. Problem description

2.1. Notations and assumptions

The problem CLSSD-PM is an extension of the CLSP with lost sales and safety stock
on (unrelated) parallel machines. The goal is to plan the production of N different
items over a discrete finite horizon of T periods, each one considered as a big bucket,
on M non-identical parallel machines (or other production resources). For conciseness,
we denote N , M and T the set of items, machines and periods, respectively (see
Table 1). In each period t ∈ T , there is a deterministic demand dit for each item i ∈ N ,
which is either lost or satisfied from on-hand inventory. For notation convenience,
we also let Di

tt′ =
∑t′

u=t+1 d
i
u be the cumulative demand from period t + 1 to t′

for all t < t′. While it is often advised to minimize the physical stock at all time,
production managers usually set a safety stock Sit for each item i and period t in order
to absorb uncertain perturbations of the production process (e.g. machine failures).
For all i ∈ N and m ∈M, we let τ im represent the per-unit production time of item i
on machine m. Each machine m ∈M has a time-dependent production capacity Cmt,
which corresponds to the expected production time necessary in period t, estimated
beforehand by the S&OP (Sales and Operations Planning). However, the planner can
choose to exceed this planned capacity for machine m up to a hard limit Cmt which
is the “true” available time capacity in period t. In that case, Cmt −Cmt corresponds
to the maximum overtime allowed. Finally, we also impose that such a production is
greater than a minimum production quantity qimin. For a given machine m, the setup
time required to switch from one type of item i to another type j 6= i depends on the
pair (i, j) and is denoted λijm. We assume that the sequence-dependent setup times
satisfy the triangle inequality.

All the above operations induce costs. Specifically, producing one unit of item i in
period t generates a per-unit production cost pimt. In addition, using machine m for
production or setup during period t incurs a cost cmt per time-unit of usage. Whenever
an overtime is requested, each extra unit of time needed is charged at an additional
cost c̄mt. Recall that the production planner aims at keeping the stock of each final
product as close as possible to its target inventory level. We penalize any deviation
from this objective with a holding cost hi+t that applies to each excess unit of item
i over the safety stock Sit at the end of period t. On the other hand, failing to meet
this safety stock requirement also induces a penalty cost hi−t for each missing unit.
The capacity restrictions that apply to the production process may also lead to some
unsatisfied demands. Every unmet unit of demand for item i induces a shortage cost
lit (lost-sales) in period t. The objective is to minimize the sum of inventory holding
costs, shortage costs, production costs and line usage costs. The different input data
are summarized in Table 2.

4

Table 2. Models parameters
dit Demand for item i in period t

Cmt Capacity (time) available on machine m in period t
Cmt Total capacity available on machine m in period t, including possible overtimes
τ im Time necessary to produce one unit of item i on machine m

qimin Minimum production quantity of item i
Sit Safety stock for item i in period t
λikm Changeover time from item i to item k on machine m

hi+t Per-unit holding cost for excess inventory of item i in period t

hi−t Per-unit penalty cost for item i in period t applied to inventory shortfall under Sit
lit Per-unit lost-sales cost for item i in period t

pimt Per-unit production cost for item i on machine m in period t
cmt Cost of usage time for machine m in period t, per time unit
cmt Cost of overtime for machine m in period t, per time unit

2.2. Production sequence

We focus on a version of the problem in which the periods are considered as inde-
pendent. Machines are reset between two consecutive periods, hence no carryover is
considered and each machine is regarded as idle at the beginning of each period. More-
over, we assume that the first setup is performed outside of the time slot available for
production in each period. This assumption is rare in related works on lot-sizing and
scheduling. To the best of our knowledge, it only appears in Clark, Morabito, and
Toso (2010). In our case, this is in line with many food-factory practices, in which a
team is assigned to the setup of machines before the actual production period begins.
We model this idle state of a machine using a virtual item indexed 0, which is always
considered as active, i.e. in production, at the beginning of a period. For notational
convenience we also let N0 = N ∪ {0} and artificially define null setup times between
item 0 and any other item i ∈ N , i.e. λ0i

m = 0 for all m ∈M.
One of the main challenges of the CLSSD-PM problem lies in the influence of the

production sequence on the setup times. The so-called sequence-dependent setups ex-
tension of lot-sizing problem reconciles production planning and scheduling problems,
in the sense that the two levels of decision are integrated. In the food-industry, as in
many other fields of application, the sequence-dependent setups are determined on the
basis of some items characteristics. One can think of the transition from non-organic to
organic products which requires a long clean-up to meet the sanitary standards, while
clean-up time is negligible in the opposite sequence, as an example of such features
likely to influence the setup times. In the CLSD case, the main works that deal with
sequence-dependent setups are related to the ATSP problem. Indeed once the produc-
tion mix is determined in a given period, the optimal production sequence corresponds
to the optimal tour for an ATSP on the selected subset of items. Figure 1 presents two
different sequences for a problem with 4 items on a single machine. The two solutions
are equivalent in terms of quantity produced in the period considered, but differ in
their respective cost due to a longer production overtime in the upper sequence. As
in the ATSP, the difficult part of this problem largely comes from the subtour elimi-
nation constraints. For a quick representation of the different subtour configurations,
see Almada-Lobo et al. (2007). Note that in the case of the CLSSD-PM problem, this
issue becomes even more significant with the multiplication of production resources,
each requiring to solve an ATSP problem for any subset of items affected to it.

5

beginning of
period t

end of
period t

capacity of
period t

Time

0→ 1 P1 1→ 3 P3 3→ 2 P2 2→ 4 P4

0→ 1 P1 1→ 4 P4 4→ 3 P3 3→ 2 P2

move P4

after P1

Figure 1. Illustrative example of two production sequences

3. Mathematical formulations

In the remainder of this section, we present two different formulations for the CLSSD-
PM. For conciseness, we first introduce decision variables and constraints that are
shared by both formulations, before giving a more detailed description for each of
them. In all of our models, we use the binary variables wijmt ∈ {0, 1} to indicate if item
i is the immediate predecessor of item j in the production sequence on machine m in
period t. We also use Umt and Omt ∈ R+ to represent the total production plus setup
time and the total overtime of machine m in period t, respectively.

Several constraints, relative to capacity restrictions and subtours elimination, are
present in all of our formulations, namely :

− Enforce the total production time of machine m in period t to be lower than the
capacity allocated to it, plus the possible overtime fixed by the planner:

Umt ≤ Cmt +Omt ∀m ∈M,∀t ∈ T (1)

− Prevent the overtime to exceed the difference between the physical (hard) ca-
pacity and the planned capacity in a given period:

Omt ≤ Cmt − Cmt ∀m ∈M, ∀t ∈ T (2)

− Impose that an item can only be setup if there exists a setup from the neutral
state to any real item:∑

i∈N
w0i
mt ≥

∑
i∈N0

wijmt ∀j ∈ N , ∀m ∈M, ∀t ∈ T (3)

− Allow a setup from an active item only if it belongs to the production sequence

6

of the period: ∑
j∈N0

wjimt ≥
∑
j∈N

wijmt ∀i ∈ N ,∀m ∈M,∀t ∈ T (4)

− Forbid more than one setup per item:∑
j∈N

wijmt ≤ 1 ∀i ∈ N0, ∀m ∈M,∀t ∈ T (5)

− Prevent disconnected subtours: The goal is to ensure that in each period t the
sequence variables wijmt defines a single cycle that starts and ends in the neutral
item 0.

Multiple options are available from the literature to satisfy this property:
One of the most frequently seen relies on the so-called MTZ constraints, see
e.g. James and Almada-Lobo (2011). More recently, Guimarães, Klabjan, and
Almada-Lobo (2014) introduces the Single Commodity Flow (SCF) constraints
and provides numerical evidences of their superior performances compared to
MTZ.

Formulations based on the SCF constraints turned out to be more efficient
in our numerical experiments, hence we focus on the latter in the remainder of
the paper. For all i ∈ N0,j ∈ N m ∈ M and t ∈ T , we introduce flow variables
f ijmt ∈ R+ that represent the flow of one commodity from item i to item j on
machine m in period t. The following set of constraints prevents the subtours in
the sequence :

∑
j∈N

f0j
mt =

∑
i∈N0

∑
j∈N

wijmt ∀m ∈M, ∀t ∈ T (6)

∑
i∈N0

f ijmt =
∑
i∈N0

wijmt +
∑
i∈N

f jimt ∀j ∈ N , ∀m ∈M, ∀t ∈ T (7)

0 ≤ f ijmt ≤ Nw
ij
mt ∀i ∈ N0, ∀j ∈ N , ∀m ∈M, ∀t ∈ T (8)

Constraints (6) ensure that for each period and machine, the total commodity
flow from the source corresponds to the number of items produced in the period
on each machine. Constraints (7) define the flow balance. Constraints (8) impose
an upper bound on the amount of flow.

− Define the domain of every variable :

wijmt ∈ {0, 1} ∀i ∈ N0,∀j ∈ N ,∀m ∈M,∀t ∈ T (9)

Umt, Omt ≥ 0 ∀m ∈M,∀t ∈ T (10)

We are now ready to introduce the two mathematical formulations for the CLSSD-PM.

3.1. Aggregate formulation MIP-AGG

We first present an aggregate formulation, which is the most common to describe
lot-sizing problems. Specific decision variables for this model are summarized below:

7

ximt ∈ R+ Quantity of item i produced in period t on machine m
Lit ∈ R+ Quantity of lost sales for item i in period t
Iit ∈ R+ Inventory of item i on hand at the end of period t

Ii+t ∈ R+ Overstock (based on safety stock value) of item i at the end of period t

Ii−t ∈ R+ Safety stock deficit of item i at the end of period t
zit ∈ {0, 1} Binary variable equals to 1 if the stock of item i is null at the end of period t

The aggregate formulation, inspired by Clark, Morabito, and Toso (2010), is expressed
with the following MIP:

min
∑
t∈T

∑
m∈M

(cmtUmt + cmtOmt)

+
∑
t∈T

∑
i∈N

(
hi+t I

i+
t + hi−t I

i−
t + litL

i
t +

∑
m∈M

pimtx
i
mt

)
(11)

s.t. Umt =
∑
i∈N

(τ imx
i
mt +

∑
j∈N

λjimw
ji
mt) ∀m ∈M, ∀t ∈ T (12)

Iit = Sit + Ii+t − I
i−
t ∀i ∈ N , ∀t ∈ T (13)

Iit = Iit−1 +
∑
m∈M

ximt + Lit − dit ∀i ∈ N , ∀t ∈ T (14)

Iit ≤ Di
tT (1− zit) ∀i ∈ N , ∀t ∈ T (15)

Lit ≤ zitdit ∀i ∈ N , ∀t ∈ T (16)

ximt ≤ Di
t−1,T

∑
j∈N0

wjimt ∀i ∈ N , ∀m ∈M, ∀t ∈ T

(17)

ximt ≥ qimin

∑
j∈N0

wjimt ∀i ∈ N , ∀m ∈M, ∀t ∈ T (18)

Constraints (1)-(10)

Ii+t ≤ Di
tT − Sit ∀i ∈ N , ∀t ∈ T (19)

Ii−t ≤ Sit ∀i ∈ N , ∀t ∈ T (20)

Lit, I
i
t , I

i+
t , Ii−t ≥ 0 ∀i ∈ N , ∀t ∈ T (21)

ximt ≥ 0 ∀i ∈ N , ∀m ∈M,∀t ∈ T (22)

Constraints (12) define the total working time of each machine which is equal to
the production time and the setup times. Constraints (13) defines the inventory on
hand for item i at the end of period t, which is equal to the safety stock value plus
the overstock minus the deficit. Constraints (14) are the inventory flow conservation
equations through the planning time horizon. Constraints (15) and (16) ensure that
lost sales for item i occur only when the corresponding stock is null. Constraints (17)
use the cumulative demand over the remainder of the horizon as an upper bound on
the quantity of each item produced on each machine in a given period. Constraints (18)
force the production to be higher than its minimum value. Finally constraints (19) and
(22) define the domain of specific variables.

8

3.2. Facility location formulation MIP-FL

The second formulation we present is inspired by the facility location problem. This
idea was originally developed in Krarup and Bilde (1977) for the uncapacitated lot-
sizing problem and adapted later to several of its extensions. It requires to define
new variables xitms ∈ R+ that represent the quantity of item i produced in period s
on machine m to satisfy a demand in period t. In this formulation, linear costs are
written using new parameters denoted by H it

ms that aggregate all the costs induced by
the production in period s till the demand satisfaction in period t, i.e. the production
cost and holding costs of the corresponding units. We introduce additional notations
to define the value of H it

ms. For a given demand i and period t, we let θit ≤ t be the
first period in which the safety stock contains units of item i that serve demand dit.
Note that since θit is uniquely defined for all pair (i, t), we implicitly assume that the
safety stock is defined in such a way that it covers the demand of an integer number
of future periods. This effectively turns the safety stock into a safety cover, which is
the case in practice. Using this new notations, one can express the inventory costs in
relation with the safety stock using only the production period s and the consumption
period t. Formally, we define parameters H it

ms as follow:

H it
ms = pims − lit +

θit−1∑
u=s

hi+u −
t−1∑

u=max{θit,s}

hi−u (23)

Note that the coefficients in front of the lost-sales and safety stock penalty costs
in (23) are negative. This is due to the fact that they both represent a deficit to a target
level (demand and safety stock, respectively), which is reduced through the production
of units of item i. In contrast, production and excess holding costs both increase
with the production of new units, which explains their positive coefficients in (23).

Therefore, one simply needs to add the constant
∑

i∈N
∑

t∈T

(
lit +

∑t−1
u=θit

hi−u

)
dit to

compare the solutions values to the ones obtained with the MIP-AGG formulation.

9

We define the MIP-FL formulation as follows :

min
∑
s∈T

∑
m∈M

(
cmsUms + cmsOms +

∑
i∈N

T∑
t=s

H it
msx

it
ms

)
(24)

s.t Ums =
∑
i∈N

τ im T∑
t=s

xitms +
∑
j∈N

λijmw
ij
ms

 ∀m ∈M,∀s ∈ T (25)

xitms ≤ dit
∑
j∈N0

wjims ∀i ∈ N ,∀m ∈M,∀s ∈ T (26)

∑
m∈M

t∑
s=1

xitms ≤ dit ∀i ∈ N ,∀t ∈ T (27)

T∑
t=s

xitms ≥ qimin

∑
j∈N0

wjims ∀i ∈ N ,∀m ∈M,∀s ∈ T (28)

Constraints (1)-(10)

xitms ≥ 0 ∀i ∈ N ,∀m ∈M,∀t ∈ T ,∀s = 1, . . . , t
(29)

The objective function (24) is still the minimization of the total cost incurred. Con-
straints (25) is just a reformulation of (12) with the new variables xitms. Constraints (26)
impose that an item can only be produced if the corresponding machine is setup for
it. Constraints (27) ensure that it is impossible to produce more that the demand in
period t from productions up to that period. Constraints (28) set the lower bound on
production quantities. Finally, constraints (29) define the specific variables.

4. Solution approach

The industrial specifications relative to this problem impose to solve the MIP presented
in the previous section in a short execution time. Unfortunately, both formulations
are too large and complex to quickly obtain good (or even feasible) solutions on any
realistic data set with any of the existing commercial solvers. In this section, we propose
alternative solution approaches to tackle this problem. A classical approach in such
cases is to use heuristics to obtain good, albeit often suboptimal, solutions in a short
computational time. One example of heuristic that is frequently encountered in the
lot-sizing literature is the so-called Relax-and-Fix (RF) procedure. In a nutshell, it is
a constructive heuristic that builds a feasible solution using a decomposition strategy
over the time horizon. It is often combined with a second step, called Fix-and-Optimize
(FO), that aims at improving the quality of the initial solution using a local search
procedure. Both approaches are quickly introduced and adapted to the CLSSD-PM in
section 4.1.

It turns out that a simple adaptation of a RFFO heuristic does not yield satisfactory
results in the allocated time on large instances. Since sequence-dependent setup times
make the problem significantly harder to solve, we then take advantage of the data
structure to overcome these limitations. Specifically, we introduce in section 4.2 a
clustering approach that allows us to derive a variation of the original problem. Thus,
it becomes easier to solve, through a significant reduction of the number of sequence

10

variables wijmt and subtour elimination constraints. Combining this approach with the
RFFO procedure, we are then able to obtain good solutions to this modified problem in
a limited amount of time. In addition, the production plans obtained remain provably
feasible for the original CLSSD-PM.

4.1. A Relax-and-Fix and Fix-and-Optimize procedure

We present two well-known decomposition-based heuristics: The Relax-and-Fix (RF)
and the Fix-and-Optimize (FO). Both procedures rely on the resolution of multiple
“easier” subproblems. The goal of each subproblem is to set the value of a small subset
of integer variables, while the remaining ones are either relaxed or fixed.

4.1.1. Relax-and-Fix with period-based decomposition

The RF heuristic constructs a feasible solution iteratively by solving several subprob-
lems with fewer binary variables. Several types of such decomposition exist in the lit-
erature, however we focus on the period-based decomposition which has been widely
applied and is generally considered the most efficient method (see Helber and Sahling
(2010) for a comparison with the product-based decomposition). The basic principle of
the procedure consists in moving a decision window of δ periods through the planning
horizon. The periods before and after the decision window are said to be frozen and
approximate, respectively.

Specifically, during the first iteration the algorithm solves the MIP-AGG (or MIP-

FL) problem considering binary variables wijmt in the decision window (t = 1, . . . , δ)

and their relaxed counterpart in the approximate periods, i.e. 0 ≤ wijmt ≤ 1 for all
t = δ + 1, . . . , T . In the second iteration, the decision window is shifted to the right
by δ − σ periods, where σ < δ is the number of overlapping periods in the decision
window between two consecutive iterations. The setup variables from the previous
approximated periods that enter the decision window are reverted to binary variables.
Binary variables that leave the decision window, i.e. whose time index belongs to
{1, . . . , δ − σ}, become frozen and keep their value from the previous resolution step.
The algorithm repeats the procedure of shifting and fixing variables until the decision
window reaches the end of the horizon. Figure 2 is inspired from Absi and Kedad-
Sidhoum (2007) and represents the different time windows during two consecutive
iterations of the heuristic.

Frozen window

T
Decision
window

ak bk

δ

Approximation window

Step k

σ

ak+1 bk+1

TStep k + 1

Figure 2. Horizon decomposition in the RF heuristic

We define solk(x) as the value of the decision variable x in the solution obtained at
iteration k of the algorithm and denote ak = 1 + (k− 1)(δ−σ) and bk = kδ− (k− 1)σ

11

the first and the last period of the associated decision window, respectively. Let Rk
be the corresponding relaxed subproblem, which is solved using either the aggregate
or the facility location formulation introduced in Section 3. Problem Rk is similar to
the original one, except for the variables definition constraints (9) that are replaced
by the following ones :

wijmt ∈ {0, 1} ∀i,∀j,∀m,∀t ∈ [ak, bk] (30)

wijmt ∈ [0, 1] ∀i,∀j,∀m,∀t ∈ [bk + 1, T] (31)

wijmt = solk−1(wijmt) ∀i,∀j,∀m,∀t ∈ [1, ak − 1],∀k ≥ 2 (32)

In order to control the total time necessary to obtain a solution with the RF pro-
cedure, we add two parameters that limit the computational time allocated to each
subproblem Rk. Specifically, we first set a target gap γ for the solution of Rk, i.e. in
each iteration k the solver returns the best solution found with a gap lower than or
equal to γ. To avoid situations in which reaching γ induces a long computational time,
we also set a time limit ρ for each iteration, i.e. the algorithm returns the best feasible
solution obtained in ρ units of time, regardless of the gap achieved.

Note that the RF heuristic we describe in Algorithm 1 uses a forward period decom-
position. A backward version, which starts at the end of the horizon and finishes at the
first period, has also been tested in the literature (Toso, Morabito, and Clark (2009)).
Since the two versions displayed equivalent performances during our preliminary tests,
we focus on the forward version in our numerical experiments.

Algorithm 1 Relax-and-Fix heuristic

1: procedure RF(δ, σ, γ, ρ)
2: k ← 1, ak ← 1, bk ← δ, solk ← ∅
3: while bk < T do
4: solk ← Solve Rk with maximum gap γ within ρ units of time
5: ak+1 ← bk − σ + 1, bk+1 ← min{bk + δ − σ, T}, k ← k + 1
6: end while
7: Solve Rk
8: Return solk

9: end procedure

4.1.2. Fix-and-Optimize

The RF approach is frequently combined with a local search procedure called Fix-and-
Optimize to improve the feasible solution found. As for the RF heuristic, the procedure
relies on a decomposition of the original problem into simpler subproblems, where the
most classic decomposition is again based on periods. Starting from an initial reference
solution, the idea is to “release” the subset of its binary variables whose time index
belongs to a given decision window and reoptimize over them in order to improve the
solution. If a better solution is found, it becomes the new reference and is used as such
in the next iterations. During each iteration, binary variables that do not belong to
the subset mentioned above are fixed either to their initial value or to a new value set
in a reference solution from a previous iteration. At each iteration, only the binary
variables (i.e setup variables) outside the decision window are fixed when others have
to be reoptimized.

12

4.1.3. RFFO applied on the CLSSD-PM

The combination of RF and FO heuristics, denoted RFFO, is particularly efficient
for complex lot-sizing problems and usually offers a good trade-off between execution
time and solution quality. For instance, James and Almada-Lobo (2011) present these
two approaches for the capacitated lot-sizing problem with sequence-dependent setups
on parallel machines and obtain good results in short computational time. In both
case, the size of the decision window greatly influences the computational time of the
procedure. The different steps of the proposed RFFO procedure are decribed below :

Initialization Define the parameters δ, σ, γ, ρ for the RF and FO steps.
Step 1 Apply the Relax-and-Fix heuristic RF(δ, σ, γ, ρ) to obtain a feasible solution.
Step 2 Apply the Fix-and-Optimize heuristic on the current solution with the same

parameters δ, σ, γ, ρ.

An analysis of the impact of the different parameters (i.e the decision window size,
the overlap between two consecutive decision windows, the limiting gap and time
during each iteration) is presented in Section 5. In the remainder of the paper, we
extend the notation introduced in the RF algorithm and denote RFFO(δ, σ, γ, ρ) the
RFFO procedure using the parameters δ, σ, γ, ρ in Step 1 and Step 2.

4.2. Clustering approach

As mentioned in the previous section, SD setups are computationally challenging when
one wishes to obtain a good solution in a reasonable time, even when they rely on fast
heuristics. In fact, the previous results obtained in the simpler framework of a single-
machine problem provide evidences that SD setups are much harder to tackle than
the traditional item-dependent setup. In contrast with this setting, we call sequence-
independent (SI) a setup time that only depends on the next item to produce on a

given machine, i.e. where λijm = λjm is independent of i for all (i, j,m) ∈ N 2 ×M.
Our main idea is to find a way to transform an instance I of CLSSD-PM into a

smaller instance Ĩ, for which some of the setups are considered sequence-independent.
Since this operation may remove crucial information on the true setup times associated
with a production sequence, we shall ensure that (i) there exists a feasible production
sequence on each machine in each period that contains the same quantity of each item
within the capacity available, and (ii) the SI setup times associated with a production
plan for Ĩ remain comparable to their SD counterpart in I.

We build our conversion procedure on a simple observation on the setup times
characteristics that is verified in many real-life manufacturing problems encountered
in food-industries. Indeed, the majority of switching times between items observed in
practice are either “long” (40 minutes to 2 hours) or “short” (1 to 10 minutes) and
satisfy the triangle inequality. For instance, let’s consider the case of a manufacturer
that produces three types of cookies. Type 1 cookies contain allergen ingredients while
types 2 and 3 are both free of allergens. The cleaning time between type 1 and any
of the two others will likely be significantly longer than the one between types 2 and
3, and extend the setup times accordingly. Similar asymmetries may also occur from
differences in oven temperatures, organic/non-organic product, etc.

In an attempt to reduce the global setup times and maximize resources utilization,
practitioners often adopt an intuitive scheduling policy and try to regroup items with
similar ingredients or recipe characteristics in the production sequences, with the ob-
jective to limit the number of long setup times in their production sequences. The

13

main driver of the total setup time then becomes the arrangement of these group of
items, rather than the sequence of items within a particular group. Our approach takes
advantage of this specificity and use the data available on the setup times to build
logical families of items. This allows us to define approximate instances for which we
only consider sequence-dependent switching times between families, while intra-family
item setup times are approximated by virtual, sequence-independent ones. In Robin-
son and Lawrence (2004), a problem including major family setups and minor setups
are presented for the coordinated replenishment lot-sizing problem but the authors
do not consider the sequence-dependent features. This approach reduces significantly
the number of sequence-based decision variables, therefore lowering the size of the
problem.

4.2.1. A clustering approach

Our procedure consists in partitioning the items into clusters that gather items to-
gether into families, such that the setup time between any two items in the same
cluster is negligible compared to the setup time between two items that belong to
different clusters. To this end, we rely on a partitioning algorithm called PAM (Parti-
tioning Around Medoids) sometimes referred to as k-medoids, whose only inputs are
an integer k and the setup times between all pairs of items. Hence PAM only requires a
matrix of distances for each pair of points, a desirable feature compared to alternative
procedures such as the well-known k-means that requires to define the coordinates of
every point in a normed space. Note that the original PAM algorithm considers sym-
metric distances to determine which medoid is the closest to a given point. To meet
this requirement while ensuring the robustness of our approach, we define a virtual
setup time λ̃ijm = max{λijm, λjim} for all i, j ∈ N and m ∈ M. Thus two items with
asymmetric changeover times (caused by organic components for instance), are likely
to end up in two different clusters if the maximum value of their changeover times is
large.

Although PAM is a well-known algorithm in the Machine Learning community, we
quickly describe it below to make the paper self-contained. In a nutshell, the procedure
builds clusters in an iterative fashion around specific points (items), considered as the
medoid (center) of their respective cluster. At any given stage of the algorithm, the
quality of the current partition on a given machine m ∈ M is evaluated using a cost
function Em that is defined from the virtual setup times as follows:

Em =
∑
i∈I

∑
j∈Ci

λ̃ijm (33)

, where I ⊆ N is the set of medoids in the current solution and for all i ∈ I, Ci is the
set of items that belong to the cluster associated with i. The procedure starts with an
initial partition based on k randomly selected medoids as the reference and proceeds
by performing successive swaps between one of the current medoid and other (non-
medoid) items. It then assigns every point to its closest medoid and takes this new
configuration as the new reference if it improves the quality of the clusters obtained
(based on the value of Em). The procedure repeats the previous steps until no further
improvement is observed. Algorithm 2 presents the PAM algorithm.

As mentioned earlier, one of the inputs required by PAM is the number k of clusters
to define. It thus remains to estimate a value of k that ensures a relevant partition
of items. To this end, we use an indicator based on the so-called silhouette score for

14

Algorithm 2 PAM

1: procedure PAM(k, N , m)
2: actualCost = +∞, I ← ∅
3: Choose randomly k items ∈ N to be the first medoids and update I
4: Associate each item i ∈ N \ I to the closest medoids
5: actualCost = Compute Em
6: while actualCost decrease do
7: for i in I do
8: for o in N \ I do
9: Compute Em for the set of medoids I ′ = I ∪ {o} \ {i}

10: if Em < actualCost then
11: actualCost ← Em
12: I ← I ′
13: Go to 6
14: end if
15: end for
16: end for
17: end while
18: Return I
19: end procedure

every item, which measures its matching quality with the other items that belong to
the same cluster. Formally, let m ∈ M and i ∈ I: The score obtained by an item
j ∈ Ci relies on a combination of the average distance between j and other items in
Ci, versus the average distance between j and the items in the cluster Ci′ closest to j
for i′ 6= i. Let us define am(j) as the average setup time from item j to other items in
cluster Ci on machine m:

am(j) =
1

|Ci| − 1

∑
j′∈Ci,j′ 6=j

λ̃jj
′

m (34)

and bm(i) as the average setup time from the closest cluster of j on machine m:

bm(j) = min
i′ 6=i

1

|Ci′ |
∑
j′∈Ci′

λ̃jj
′

m (35)

The silhouette score of item j, noted sm(j) is then obtained from (34) and (35):

sm(j) =
bm(j)− am(j)

max{am(j), bm(j)}
(36)

Note that the closest to 1 the silhouette score is, the better the item is positioned in
the cluster. One often considers having a convenient clustering for average silhouette
higher than 0.75. To obtain more details on the meaning of the silhouette score in a
clustering approach, see Laan, Pollard, and Bryan (2003) and Campello and Hruschka
(2006).

In order to select the best number of clusters k∗m for each machine m, we loop over
the possible values of k and apply the PAM algorithm at each iteration. For a given k

15

and a given machine m ∈ M, we consider the output of the procedure and compute
the average silhouette criterion as the mean of the silhouette score over all items:

Sm(k) =
1

|N |
∑
i∈N

sm(i) (37)

The higher this average score is, the better is the clustering quality for the machine
we consider. We select the clustering with the greatest average silhouette, which is
considered as the best possible on the machine for the given instance. In Section 5,
we show that Sm(k) is a good a priori indicator to obtain the best trade-off between
computational time and solution quality. For a quick description of the procedure, we
present the pseudo-code of the clustering pre-processing approach in Algorithm 3. Note
that for a CLSSD-PM instance, we run this algorithm |M| times since we consider
machine-dependent setups.

Note that we use PAM as a pre-processing procedure before the definition of the
MIP model. Its runtime is negligible (less than 15 seconds for the largest instances)
compared to the one necessary to the solver to obtain a solution to the CLSSD-PM.

Algorithm 3 Clustering

1: procedure Clustering(maxClusters, N , m)
2: actualClustering ← ∅, bestClustering ← ∅, actualScore ← 0, bestScore ← 0,
3: for k = 2, . . . ,maxClusters do
4: actualClustering ← Run PAM(k, N , m)
5: actualScore ← Compute AvgSilhouette(actualClustering)
6: if actualScore > bestScore then
7: bestScore ← actualScore
8: bestClustering ← actualClustering
9: end if

10: end for
11: Return bestClustering
12: end procedure

4.2.2. Cluster-based mathematical formulation

We now define a virtual setup time vjm = maxk∈Ci{λ
kj
m} for each item j ∈ Ci, which only

depends on the end point of the corresponding arc in the directed path representing
the production sequence. For each pair of medoids (i, i′) and for each machine we also

define a new sequence-dependent setup time f ii
′

m = maxj∈Ci,j′∈Ci′{λ
jj′
m − vj

′

m} incurred
when an item of Ci′ follows an item of Ci in the production sequence. Note that this
setup time excludes the end item individual setup time defined above, since the latter is
added to the total setup time if the item is indeed included in the production sequence.

With these new virtual setup times, we are now able to only consider sequence-
dependent setup times when the production switches from one cluster to another. In
particular we no longer take into account the production sub-sequences within a clus-
ter and therefore replace the transition variables wijmt with traditional setup binary

variables yjmt. In our modified model, the switching decision between two clusters is
represented by new binary variables zii

′

mt, equals to 1 if cluster i′ is setup just after clus-
ter i on machine m in period t and 0 otherwise. On the other hand, whenever an item

16

is produced on machine m in a given time-period, we only account for its item-specific
setup time vim in the total active time of the machine. Specifically, constraints (3) to
(8) can be directly adapted to take into account the clusters instead of the items in
the sequences of production. Constraints (12) are replaced by :

Ũmt =
∑
j∈N

(τ jmx
j
mt + vjmy

j
mt) +

∑
(i,i′)∈I2

f ii
′

m z
ii′

mt ≤ Cmt +Omt

∀m = 1, . . . ,M,∀t = 1, . . . , T

(38)

The constraint (25) for the facility location formulation is also replaced in an equivalent
fashion. We add (39) to force a cluster setup if we want to produce an item in the
cluster : ∑

i∈I
zii

′

mt ≥ y
j
mt ∀i′ ∈ I,∀j ∈ Ci′ ,∀m = 1, . . . ,M,∀t = 1, . . . , T (39)

We denote MIP-AGG-C and MIP-FL-C the modified versions of problems MIP-AGG
and MIP-FL, respectively. It remains to prove that one can easily build a feasible
solution to MIP-AGG (resp. MIP-FL) from a feasible solution to MIP-AGG-C (resp.
MIP-FL-C) without any overcost.

We prove this property for MIP-AGG, but a similar analysis can be conducted to
obtain the same results for MIP-FL. Let (x, z,y,O) be a solution to MIP-AGG-C. For
all j ∈ N , define µ(j) as the medoid of the cluster of item j, i.e. j ∈ Cµ(j), obtained after
applying the PAM clustering algorithm. We propose the following simple procedure
to create a solution to MIP-AGG: For all m ∈ M, t ∈ T , we define the following
transition variables:

w0j
mt =

{
1 if j = min{j′ ∈ N : z

0µ(j′)
mt = 1}

0 otherwise
(40)

wjj
′

mt =


1 if j′ = min{j′′ ∈ Cµ(j), j

′′ > j : yj
′′

mt = 1}
or z

µ(j)µ(j′)
mt = 1 and j′ = min Cµ(j′)

0 otherwise

(41)

The following proposition states that the above transformation yields a feasible solu-
tion to MIP-AGG:

Proposition 4.1. Let sC = (x, z,y,O) a solution to MIP-AGG-C. Then s =

(x,w,O) with w =
(
wijmt

)
i,j∈N ,m∈M,t∈T

defined from equations (40) and (41) is a

feasible solution to MIP-AGG that incurs at most the total cost of sC .

Proof. Let m ∈ M and t ∈ T and compute the total active time on machine m in

17

period t in solution s

Umt =
∑
j∈N

(
τ jmx

j
mt +

∑
i∈N

λijmw
ij
mt

)

=
∑
j∈N

(
τ jmx

j
mt +

∑
i∈N

(λijm − v
j
mt + vjmt)w

ij
mt

)

≤
∑
j∈N

(
τ jmx

j
mt + vjmt

∑
i∈N

wijmt +
∑
i∈N

max
i′∈Cµ(i)

{λi′jm − v
j
mt}w

ij
mt

)
(42)

=
∑
j∈N

τ jmxjmt + vjmty
j
mt +

∑
i/∈Cµ(j)

max
i′∈Cµ(i)

{λi′jm − v
j
mt}w

ij
mt

 (43)

=
∑
j∈N

(
τ jmx

j
mt + vjmty

j
mt

)
+
∑
j∈N

∑
i/∈Cµ(j)

max
i′∈Cµ(i)

{λi′jm − v
j
mt}z

µ(i)µ(j)
mt

=
∑
j∈N

(τ jmx
j
mt + vjmy

j
mt) +

∑
(i,i′)∈I2

f ii
′

m z
ii′

mt

= Ũmt ≤ Cmt +Omt

Inequality (42) comes from the fact that maxi′∈Cµ(j){λ
i′j
m −vjmt} = 0, while (43) follows

from the definition (41) of wijmt.
To conclude the proof, notice that all variables with nonzero coefficients in the

objective function are the same in s and sC , except Umt ≤ Ũmt whose coefficient is
positive. Hence the total cost incurred by s is at most equal to the total cost incurred
by sC .

In general, the partition of items into clusters reduces significantly the number
of decision variables related to the sequence of production. In the cluster version of
CLSSD-PM, the latter becomes quadratic in the number of clusters, as opposed to
quadratic in the number of items in the original version.

Our definition of the virtual setup times ensures that any production sequence of
items intra and inter-cluster will be lower than or equal to Ũmt, as defined in (38),
hence it is always possible to construct a feasible solution with at most a production
time Ũmt for all m ∈ M and t ∈ T . In particular, any algorithm that reconstructs
intra-cluster production sequences (random, closest neighbor, etc.) from a feasible
solution to MIP-AGG-C and then concatenates them according to the sequence of
clusters corresponding to variables zii

′

mt is guaranteed to be feasible for MIP-AGG. In
our computational experiments, we use a greedy algorithm to reconstruct the optimal
production sequences. Finally, note that in addition to the flexibility that the method
offers to the scheduler, one may also take advantage of such reductions in production
time to decrease production costs or even to serve demands that are considered lost
in MIP-AGG-C.

18

5. Computational experiments

The data that our industrial partner could gather from its clients was neither suf-
ficiently complete nor precise enough to perform a thorough numerical study. We
therefore chose to generate a new set of instances based on the information provided
and use them to compare the different methods introduced above. Data sets are in-
spired by different real cases from food-industry producers and are built to cover a
great variety of situations that one can expect to encounter in practice. One com-
mon characteristic of these instances lies in the structure of the setup times, which
permits to apply the clustering approach described in the previous section. Although
this assumption may seem restrictive, it reflects the distinctive feature of production
processes in the food-industry.

The algorithms are coded in Java and we use IBM Ilog CPLEX 12.10.0 version as
the MIP solver The experiments are performed using four threads on an Intel Xeon
X5650 @ 2.57 GHz. For CPLEX and CPLEX-C, we set a computational time limit of
900 seconds. For each method tested, we evaluate the solution quality based on the
deviation of its objective value from the lower bound LB obtained after 4 hours with
CPLEX using the MIP-FL formulation, known to yield better lower bound. If UB
corresponds to the best feasible solution found by the method tested, the gap is then
defined as follows:

Gap = 100 · UB − LB
LB

(44)

We use the following abbreviations to identify the algorithms used in our test :

− CPLEX : branch-and-cut by CPLEX on MIP-AGG
− CPLEX-C : branch-and-cut by CPLEX on MIP-AGG-C
− RFFO : Relax-and-Fix & Fix-and-Optimize heuristic on MIP-AGG
− RFFO-C : Relax-and-Fix & Fix-and-Optimize heuristic on MIP-AGG-C

The RFFO results presented in this section use the best settings obtained in section 5.2,
i.e. the ones reaching the best trade-off between solution quality and computational
time. After preliminary tests, we also observed that the solution methods that rely on
the MIP-AGG formulation obtain better feasible solutions compared to their MIP-FL
counterpart. Hence, we focus on the former and only use the latter to compute the
best possible lower bound.

5.1. Instance generation

Problem size. Recall that our main goal is to obtain good solutions in a short com-
putational time on large instances. The time limit is an important aspect for our
industrial partner and is loosely set to a few minutes. We agreed afterwards to set
it to 180 seconds, with a tolerance to up to 300 seconds for some instances (namely
with more than 100 different products). In order to determine the influence of problem
size (based on the number of items, machines and periods) on both the quality of the
solution and the computational burden, we generated several instances for different
combinations of values for N , M and T . We then partitioned the instances obtained
into three classes (small, medium and large), presented in Table 3. In order to test
the performances of the clustering approach in different settings, we use two different
approaches that generate symmetric and asymmetric sequence dependent setup times,

19

respectively. We create six instances for every combination of N , M and T , giving us
a total of 336 instances.

Table 3. Class instance size
Class N M T Max. time (s)
Small {20,30,40} {1, 2}

{15, 30}
180

Medium
{50}

{75,100} {2,4}
300

Large {125} {4,6}

Definition of problem parameters. We derive our instances from the information
provided by our industrial partner, with the objective to build data sets as close as
possible to real-life cases. The parameters are defined as follows:

Time Capacity. The production time capacity on each machine, in each period is
either 8, 16 or 24 hours. The maximum overtime is equal to 2% of the total
capacity but is not considered in the latter case.

Processing time for multiple machines. For instances with 2 machines or more,
we perform for each item i an independent Bernouilli trial to decide whether it
can be produced on several machines or not, with a success probability drawn
uniformly in [0.25, 0.5]. In case of success, we draw uniformly between 2 and M
the number Mi of machines compatible with i and randomly select their indices
as a subset of {1, . . . ,M} of size Mi. Whenever a machine can produce a given
item, the per-unit processing time is drawn uniformly in [0.05, 0.5] minutes.

Demand. We first determine how the total cumulative demand is allocated across
the different items. Specifically for each item i, we draw a random number from
a uniform distribution U(0, 1) and normalize the values obtained so that they
sum up to 1. We then define the demands in each period t in an iterative fash-
ion, assigning each unit to a specific item according to the probabilities previ-
ously defined. The procedure adds units of demand one after another as long as∑

i minm{τim}dit/Util <
∑

mCmt, where Util ∈ {0.6, 0.8} represents the capac-
ity utilization of the machines (decided beforehand as an input to the instance
generator). Finally, we consider that 25% of the items present a periodic demand
pattern, in which periods with null demand are regularly spaced in the planning
horizon.

Setup times. As mentioned earlier, we define two types of setup times, expressed
in minutes. In what follows, “short” setup times are drawn uniformly in the
interval [1, 10], while “long” ones are drawn uniformly in the interval [40, 120].
To ensure they satisfy the triangle inequality, we initialize their values to zero
and instantiate them sequentially: In each step of the procedure, we draw λijm in

the interval [max{lij , |λkjm − λikm|},min{uij , λikm + λkjm}] for any triplet i, j, k ∈ N ,
where lij and uij represent the minimum and the maximum of the corresponding
(i.e. short or long) domain. We distinguish two classes of instances depending on
how the setups are generated:
− Instances in the first set are strongly related to real applications. In the food

industry, an item is often characterized by several features (for instance or-
ganic, specific oven temperature or food allergens) that influence the setup
times. In practice, it is then the change in features between an item and its
successor in the production sequence that effectively defines the length of
this time interval. Based on this observation, we define 4 features for each
item. Each feature has either 2 (e.g. organic and non organic) or 3 (e.g. oven
temperatures) possible states. We then draw the setup times associated to

20

each features randomly in the “short” or the “long” interval, depending on
the nature of the feature considered. For the same feature, the switching
time between two states may be asymmetric: A typical example arise when
we set up a machine for allergen-free items after a production that con-
tains allergen, a longer operation than the one performed for the opposite
transition. As the setup operations corresponding to each specification are
usually performed in parallel, we define the changeover time between two
items as the maximum duration among all the switching times necessary
for their respective features states.

− We build the instances of the second set with the following procedure: (1)
We (randomly) choose a number of subsets, (2) We randomly assign each
item to a subset and (3) We assign short setup times between all pair of
items within the same subset and long setup times when they belong to
different ones, ensuring in the process that the triangle inequality is always
satisfied. This procedure guarantees that we obtain the clustering struc-
ture that is encountered in the food industry and for which our clustering
approach behaves well.

Safety stock. The safety stock of an item i in period t corresponds to the sum of
demands for i over future periods t+1, . . . , t+∆it. The number ∆it of future pe-
riods considered is often called safety cover and is chosen according to a discrete
uniform distribution U(1, 3). It can evolve over time with a low probability, but
always includes the cover of the previous period (i.e ∆i,t+1 ≥ ∆it− 1 for all i, t).

Minimum production quantity. This quantity is generated from a uniform distri-
bution U(1, 3).

Table 4 describes the generation of cost parameters. We consider an overcost equal to
50% of the regular line use cost. The lost sales cost for a given demand is built from the
greatest possible cumulated production cost and holding cost incurred to produce the
corresponding units. This ensures that serving a demand is always profitable whenever
it is possible.

Table 4. Cost parameters
Parameter Settings
cmt U(500, 1000)
cmt 0.5cmt
hi+u U(1, 3)

hi−u U(15, 30)
pimt U(0.2, 0.5)

lit maxs≤t,m,j{pims + (cmt + cms)(τ im +
γjim
qimin

) +
∑θit−1
u=s hi+u }

5.2. RFFO parameters analysis

The performances of the RFFO procedure heavily depends on the values δ, σ, γ and
ρ. Hence it is crucial to determine the combination of parameters that provides the
best expected trade-off between the cost of the solutions obtained and the average
computational time for each class of instances. After an empirical preliminary analysis,
we decided to focus on a limited number of settings. We set the number of overlapping
periods σ to 1 since increasing its value does not improve significantly the solutions but
severely deteriorates the computational time for medium and large instances. Even for
small instances, we did not observe a substantial gain in performances for σ > 1. We
tested different combinations of decision window length δ ∈ {2, 3}, gap tolerance (given

21

by CPLEX) γ ∈ {1, 3, 5, 8, 10}% and time limit per iteration ρ ∈ {30, 60, 90, 120}
seconds.

In order to decide which stopping criteria γ and ρ perform best, we analyzed their
impact on the solutions. Note that this analysis was made on RFFO-C as RFFO often
failed to find a feasible solution during the RF part on many instances. The results
for medium size instances are shown in Appendix A. As expected, the gap of the
final solution increases with γ, but this influence is mild when γ ≤ 5% (Figure A1)
On the other hand the influence of γ on the computational time is more pronounced,
for instance setting γ = 3% reduces significantly the computational time compared
to γ = 1%. The former value thus provides the best compromise between the final
gap and computational time. A similar analysis is conducted for different values of
ρ. On the other hand, we observe in Figure A3 that the time limit is never exceeded
for instances with N = 50. For other instances, the results suggest that ρ has a low
impact on both the total computational time and the final gap. Hence, according to
the results, ρ = 60 seems to be consistent as the time limit is seldom the limiting
parameter when γ is adjusted appropriately.

The tables in Appendix B presents the results using RFFO on each class of instances.
For each RFFO settings presented, we let σ = 1 and ρ = 60. We observe that δ = 3
leads to a better gap on small and medium instances for all the γ values we tested.

– For N ≤ 50, γ = 1% appears to produce the best solutions under 180 seconds
in general. Hence we decided to apply RFFO-C(3, 1, 1, 60) on instances with
N ≤ 50.

– For larger instances, γ = 3% turns out to be a good choice to configure RFFO-
C, except when N = 100 and T = 30, where γ = 5% gives a better trade-off
between performances and computational time.

– The effect of a bigger decision window is more visible on the largest instances
(N = 125), with a significant deterioration of the gaps obtained on instances
with (N = 125,M = 6, T = 30). In fact when N = 125 and T = 15, setting
δ = 2 appears to be a more robust choice in general. We thus decided to retain
RFFO-C(2, 1, 5, 60) for (N = 125, T = 15) and RFFO-C(3, 1, 8, 60) for (N =
125, T = 30) as the preferred configuration for the largest instances.

A summary of the RFFO configurations for the different types of instance is presented
in Table 5.

Table 5. RFFO configuration
N 20 30 40 50 75 100 125

T 15 30 15 30 15 30 15 30 15 30 15 30 15 30

γ (%) 1 3 5 8

δ 3 2 3

5.3. Clustering approach results

To investigate the benefits of our clustering approach, we performed computational
experiments using CPLEX directly and applying the RFFO procedure on both MIP-
AGG and MIP-AGG-C. The results are presented in Table 6 and 7. As expected, the
direct use of a commercial solver on the MIP formulation turns out to be inadequate,
even for some instances with 30 items. We allow CPLEX a maximum computational
time of 900 seconds, which already exceeds the industrial requirements of 3 to 5 min-

22

utes. While the solver is able to derive an optimal solution on some of the instances,
the quality of the production plans obtained with this approach is not satisfying on
average. Based on our observation, each acceptable solution from CPLEX was found
towards the end of that time limit, which increases the variability of the solutions and
makes it incompatible with an industrial approach.

In contrast, the clustering pre-processing reduces the size of the problem and allows
to find significantly better solutions in most scenarios, with a faster convergence rate.
The idea is that the loss in solution quality due to the approximation is compensated by
a faster resolution. The results obtained suggest that it is the case for instances with
N ≥ 40, for which CPLEX-C reaches better solutions than its sequence-dependent
counterpart. We observe that this tendency becomes more and more pronounced as
N increases. Finally, it appears that the length of the planning horizon T affects
significantly the solution quality for both approaches.

We also test whether the silhouette score introduced in section 4.2 is a relevant
criterion to drive the number of families considered. That is, we evaluate the solutions
obtained by MIP-AGG-C for several number of clusters k and compare their quality
with the corresponding average silhouette criterion Sm(k) as defined in (37). The gen-
eral conclusion is that the cost of the solution obtained decreases as this number grows
to its “best” value k∗ = arg max{Sm(k)}. When the number of clusters grows beyond
k∗, the solutions obtained either deteriorate significantly or show mild improvement.
Indeed as the number of families increases, we introduce more sequence-dependent
setup variables in the formulation MIP-AGG-C, which makes the problem closer to
the original one but harder to solve. In our case, the silhouette criterion thus appears
to be a suitable and easy-to-compute indicator of when this trade-off is favourable.
Figure 3 illustrates this tendency on the worst case we observed across the instances
generated for M = 2 and N = 100 for different number of clusters. The red and green
curves show the average silhouette score Sm(k) obtained on machine m ∈ {1, 2} for
different number of clusters k. The blue curve provides an indicator of the solution
quality, expressed as the ratio with the worst solution obtained across all the pos-
sible number of families considered. The quality of the solution clearly improves as
the number of clusters increases towards k∗. In the case of the RFFO resolution, we
see that slightly better solutions are found for a larger number of clusters, but the
increase in computational time is significant. On the contrary for a straightforward
CPLEX resolution in 900 seconds, we observe that beyond a certain point, the solution
quality deteriorates as we consider more clusters. We conclude that this criterion is
a viable candidate to choose a good number of clusters a priori in order to obtain a
good solution.

The experiments for the RFFO procedures are performed with the values δ, σ, γ
and ρ adjusted for each class of instances according to the analysis in the previous
section. In Table 6, we clearly observe a reduction of the average gap compared to
a straightforward MIP resolution. On small instances, the gap obtained by RFFO
combined with the clustering approach remains low compared to the others methods.
In general, we observe that combining these two approaches significantly reduces the
computational time while providing acceptable to good solutions on all the instances.

Despite performing better than CPLEX, the RFFO procedure directly applied to
the CLSSD-PM problem generally leads to insufficient results or time overrun even
on instances with N = 40. For larger instances, it often comes from incomplete iter-
ations during the RF part of the heuristic, which cannot find a solution within the
allocated time. A solution could be to increase the time limit ρ allowed for each it-
eration but this comes at the expense of a longer total computational time, which

23

5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

S
1
(k
)

S
2
(k
)

0.1

1

S
ol
u
ti
on

va
lu
e

(a) CPLEX-C

5 10 15 20
0

0.2

0.4

0.6

0.8

1

k

S
1
(k
),

S
2
(k
)

0

0.2

0.4

0.6

0.8

1

S
ol
u
ti
on

va
lu
e

(b) RFFO-C

Figure 3. Effect of the number of cluster on the solution quality and the silhouette score

then frequently exceeds the acceptable threshold set by the practitioners. In contrast
both the computational time and the average gap obtained remain acceptable when
we combine the RFFO procedure with the clustering approach. In Table 7 we com-
pare the results obtained with CPLEX and RFFO on the modified problems obtained
after the clustering pre-processing is performed. The clustering pre-processing defines
a number of clusters varying between 5 and 20. The results on medium size instances,
shown in Table 7, indicate that RFFO-C reaches better average gaps while maintaining
the computational time well below 3 minutes on average. However the minimum gap
(Gapmin) and maximum gap (Gapmax) obtained show that there is a great variation
in the solution qualities even within a single class of instances. Regardless, RFFO-C
has the best worst case performance among the two methods, with a maximum gap
of 204.19% compared to the one of CPLEX-C which exceed 7000%. In addition, we
observed that the average computational time for RFFO-C is sensitive to the different
parameters and size of the problem. Finally, for the 125-6-30 problem size instances,
we exceed the computational time objective, which calls for additional refinements of
the methods to obtain a quicker convergence.

Table 6. Summary of the results obtained with each method on small instances

Problem Size Avg. Gap (%) Sol. Time (s)

N-M-T CPLEX CPLEX-C RFFO RFFO-C CPLEX CPLEX-C RFFO RFFO-C

20-1-15 0.76 11.5 9.39 12.26 477.83 214.33 26.92 5.75
20-1-30 1.58 6.19 13.52 7.46 720.67 448.17 44.25 16.58
20-2-15 0.96 5.61 6.64 5.68 515.17 339.67 15.83 8.42
20-2-30 2.61 10.08 15.77 11.17 798.58 661.08 47.75 22.92
30-1-15 2.09 4.8 9.89 6.57 795.83 286.0 79.08 9.17
30-1-30 230.53 14.54 19.99 16.26 843.0 516.67 186.83 20.83
30-2-15 5.34 6.37 11.33 7.89 788.0 558.25 107.0 41.25
30-2-30 14.36 7.01 18.1 7.36 900.0 692.42 205.5 57.42
40-1-15 302.78 13.53 71.6 14.85 850.75 485.42 259.58 28.5
40-1-30 1984.33 102.33 65.24 23.27 900.0 756.17 516.33 108.75
40-2-15 27.39 7.75 18.01 9.35 812.33 618.33 203.92 37.0
40-2-30 1160.57 22.27 47.71 10.82 900.0 760.33 440.17 140.67

6. Concluding remarks and perspectives

We introduce two mixed-integer programming formulations for a production problem
on multiple non-identical machines encountered in the food industry, in which setup

24

Table 7. Summary of the results obtained with CPLEX-C and RFFO-C on medium and large instances

Problem Size CPLEX-C RFFO-C

N-M-T Gapmin(%) Gapmax(%) Avg. Gap (%) Sol. Time (s) Gapmin(%) Gapmax(%) Avg. Gap (%) Sol. Time (s)

50-1-15 1.2 59.26 23.2 511.92 1.85 56.62 24.7 48.5
50-1-30 0.16 186.68 51.19 702.25 0.35 56.39 23.22 87.0
50-2-15 0.17 33.16 9.62 568.67 1.32 33.72 9.56 85.08
50-2-30 2.14 95.63 19.39 900.0 3.98 35.35 12.42 122.0
75-2-15 0.45 121.87 41.83 785.17 2.22 119.97 40.03 49.75
75-2-30 6.2 805.77 163.09 900.0 8.73 161.9 48.29 106.58
75-4-15 0.66 149.64 42.07 900.0 3.12 73.5 27.69 146.33
75-4-30 0.79 3674.7 510.84 900.0 3.38 76.3 26.26 163.42
100-2-15 8.05 1051.87 211.85 848.92 9.56 169.51 69.92 140.75
100-2-30 5.57 4953.14 904.22 900.0 10.06 190.08 69.75 175.5
100-4-15 4.13 503.37 101.22 900.0 5.8 83.02 36.37 168.58
100-4-30 3.28 3954.51 713.25 900.0 8.9 143.64 54.52 166.33
125-4-15 2.24 3404.23 405.53 900.0 9.23 204.19 70.73 142.67
125-4-30 10.91 6488.41 1764.62 900.0 24.43 165.75 72.59 175.58
125-6-15 6.43 5696.75 954.55 900.0 11.28 131.28 57.09 171.92
125-6-30 6.25 7973.06 3863.41 900.0 19.25 164.1 78.78 351.58

times are sequence-dependent. Since the number of setup variables strongly influences
the computational effort necessary to solve such problems, we take advantage of the
characteristics of those changeover times to apply a clustering algorithm and derive
approximate instances of reduced size. The loss due to the approximation is regained
thanks to the effectiveness of the method on large industrial cases. When we combine
this approach with an adaptation of the classical Relax-and-Fix and Fix-and-Optimize
heuristics, we are able to derive acceptable solutions in a very short computational
time relative to the problem complexity. Our experiments allow us to test several com-
binations of parameters and determine which configuration is susceptible to provide
the best results for different classes of instances. In addition, we provide evidences
that the silhouette score is a good indicator to define an appropriate number of clus-
ters with respect to the final solution. Computational experiments confirm that our
procedure performs well on medium to large industrial instances, for which we were
able to obtain feasible production plans in less than 3 and 5 minutes, respectively.
Our approach remains useful on well structured instances in which setup times are
not uniformly distributed. In the general case however, it would likely be irrelevant
since we observe that a poor silhouette score results in a poor solution.

The approximate version of the problem obtained after our pre-processing clustering
algorithm remains quite rich and includes many industrial constraints. In this study, we
mainly focus on the contribution of the clustering on the resolution time and quality,
but we could refine our conclusions by examining in details the different influencing
factors. In particular, investigating the impact of the setup times or the parameter Util
on the solutions obtained may help to better explain the variability observed on the
gaps for similar problem sizes. From an academic standpoint, evaluating the impact
of each type of constraint such as the inclusion of safety stocks or overtimes may help
to identify which subproblems benefit the most from the clustering transformation.
One could also simplify even further the problem by defining sequence-independent
setup times between clusters of items. However, a direct application of our method
may loose too much accuracy since inter-cluster changeover times contribute a lot more
than their intra-cluster counterpart to the total machine usage time. The virtual setup
times that are currently defined as the maximum over all the possible changeover times
towards a given item are likely to be too far from the true value achieved. Hence, one

25

should seek a different upper bound that retains more information on the production
sequence to refine the approximation.

Finally, it is clear that all the solution methods presented in this paper are likely
to take advantage of a strengthened MIP formulation. First, deriving a better lower
bound would enable us to draw sharper conclusions on the quality of the solution
obtained, especially on large instances. In addition, tightening the formulation is likely
to speed up each iteration of the RFFO procedure while improving the gaps of the
intermediate solutions. A natural research direction is therefore to explore the impact
of adding valid inequalities on both the computational time and the final gap obtained.
This approach may indirectly benefit from the clustering approximation developed in
this paper since the structure of the modified problem may be compatible with a wider
range of possible cuts compared to its sequence-dependent counterpart.

Acknowledgement

The authors thank the two anonymous reviewers for their helpful comments. This
work has been partially financed by VIF Software.

Data availability statement

The data that support the findings of this study are available from the corresponding
author, Larroche, F, upon reasonable request.

References

Absi, Nabil, Boris Detienne, and Stéphane Dauzère-Pérès. 2013. “Heuristics for the multi-item
capacitated lot-sizing problem with lost sales.” Computers & Operations Research 40 (1):
264–272.

Absi, Nabil, and Safia Kedad-Sidhoum. 2007. “MIP-based heuristics for multi-item capacitated
lot-sizing problem with setup times and shortage costs.” RAIRO - Operations Research 41
(2): 171–192.

Absi, Nabil, and Safia Kedad-Sidhoum. 2008. “The multi-item capacitated lot-sizing problem
with setup times and shortage costs.” European Journal of Operational Research 185 (3):
1351–1374.

Absi, Nabil, and Safia Kedad-Sidhoum. 2009. “The multi-item capacitated lot-sizing problem
with safety stocks and demand shortage costs.” Computers & Operations Research 36 (11):
2926–2936.

Almada-Lobo, Bernardo, Diego Klabjan, Maria Antónia carravilla, and José F. Oliveira. 2007.
“Single machine multi-product capacitated lot sizing with sequence-dependent setups.” In-
ternational Journal of Production Research 45 (20): 4873–4894.

Almada-Lobo, Bernardo, Diego Klabjan, Maria Antónia Carravilla, and José F. Oliveira. 2010.
“Multiple machine continuous setup lotsizing with sequence-dependent setups.” Comput
Optim Appl 47 (3): 529–552.

Armas, Jesica de, and Manuel Laguna. 2020. “Parallel machine, capacitated lot-sizing and
scheduling for the pipe-insulation industry.” International Journal of Production Research
58 (3): 800–817.

Beraldi, Patrizia, Gianpaolo Ghiani, Antonio Grieco, and Emanuela Guerriero. 2008. “Rolling-
horizon and fix-and-relax heuristics for the parallel machine lot-sizing and scheduling prob-

26

lem with sequence-dependent set-up costs.” Computers & Operations Research 35: 3644–
3656.

Campello, R. J. G. B., and E. R. Hruschka. 2006. “A fuzzy extension of the silhouette width
criterion for cluster analysis.” Fuzzy Sets and Systems 157 (21): 2858–2875.

Clark, Alistair R., Reinaldo Morabito, and Eli A. V. Toso. 2010. “Production setup-sequencing
and lot-sizing at an animal nutrition plant through atsp subtour elimination and patching.”
Journal of Scheduling 13 (2): 111–121.

Copil, Karina, Martin Wörbelauer, Herbert Meyr, and Horst Tempelmeier. 2017. “Simultane-
ous lotsizing and scheduling problems: a classification and review of models.” OR Spectrum
39 (1): 1–64.

Fiorotto, Diego Jacinto, and Silvio Alexandre de Araujo. 2014. “Reformulation and a La-
grangian heuristic for lot sizing problem on parallel machines.” Annals of Operations Re-
search 217 (1): 213–231.

Fiorotto, Diego Jacinto, Jackeline del Carmen Huaccha Neyra, and Silvio Alexandre de Araujo.
2019. “Impact analysis of setup carryover and crossover on lot sizing problems.” Interna-
tional Journal of Production Research 0 (0): 1–20.

Fleischmann, Bernhard, and Herbert Meyr. 1997. “The general lotsizing and scheduling prob-
lem.” Operations-Research-Spektrum 19 (1): 11–21.

Florian, M., J. K. Lenstra, and A. H. G. Rinnooy Kan. 1980. “Deterministic Production
Planning: Algorithms and Complexity.” Management Science 26 (7): 669–679.

Gicquel, Celine, Michel Minoux, Yves Dallery, and Jean-Marie Blondeau. 2009. “A tight MIP
formulation for the Discrete Lot-sizing and Scheduling problem with parallel resources.” In
2009 International Conference on Computers & Industrial Engineering, 1–6. IEEE.

Guimarães, Luis, Diego Klabjan, and Bernardo Almada-Lobo. 2014. “Modeling lotsizing and
scheduling problems with sequence dependent setups.” European Journal of Operational
Research 239: 644–662.

Helber, Stefan, and Florian Sahling. 2010. “A fix-and-optimize approach for the multi-level
capacitated lot sizing problem.” International Journal of Production Economics 123 (2):
247–256.

James, Ross J. W., and Bernardo Almada-Lobo. 2011. “Single and parallel machine capaci-
tated lotsizing and scheduling: New iterative MIP-based neighborhood search heuristics.”
Computers & Operations Research 38: 1816–1825.

Jans, Raf, and Zeger Degraeve. 2008. “Modeling industrial lot sizing problems: a review.”
International Journal of Production Research 46 (6): 1619–1643.

Kaczmarczyk, Waldemar. 2013. “Modelling Set-up Times Overlapping Two Periods in the
Proportional Lot-Sizing Problem with Identical Parallel Machines.” DMMS 7 (1-2): 43.

Karimi, B., S.M.T. Fatemi Ghomi, and J.M. Wilson. 2003. “The capacitated lot sizing problem:
a review of models and algorithms.” Omega 31 (5): 365–378.

Karp, Richard M. 1972. “Reducibility among Combinatorial Problems.” In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program,
IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department,
edited by Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger, The IBM Re-
search Symposia Series, 85–103. Boston, MA: Springer US.

Krarup, Jakob, and Ole Bilde. 1977. “Plant location, Set Covering and Economic Lot Size: An
0 (mn)-Algorithm for Structured Problems.” In Numerische Methoden bei Optimierungsauf-
gaben Band 3: Optimierung bei graphentheoretischen und ganzzahligen Problemen, edited by
L. Collatz, G. Meinardus, and W. Wetterling, 155–180. Basel: Birkhäuser.

Laan, Mark Van der, Katherine Pollard, and Jennifer Bryan. 2003. “A new partitioning around
medoids algorithm.” Journal of Statistical Computation and Simulation 73 (8): 575–584.

Lang, Jan Christian, and Zuo-Jun Max Shen. 2011. “Fix-and-optimize heuristics for capac-
itated lot-sizing with sequence-dependent setups and substitutions.” European Journal of
Operational Research 214 (3): 595–605.

27

Loparic, Marko, Yves Pochet, and Laurence A. Wolsey. 2001. “The uncapacitated lot-sizing
problem with sales and safety stocks.” Mathematical Programming 89 (3): 487–504.

Mateus, Geraldo R., Mart́ın G. Ravetti, Mauŕıcio C. de Souza, and Táıs M. Valeriano. 2010.
“Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for
integration.” Journal of Scheduling 13 (3): 245–259.

Quadt, Daniel, and Heinrich Kuhn. 2008. “Capacitated lot-sizing with extensions: a review.”
4OR 6 (1): 61–83.

Robinson, E. Powell, and F. Barry Lawrence. 2004. “Coordinated Capacitated Lot-Sizing Prob-
lem with Dynamic Demand: A Lagrangian Heuristic.” Decision Sciences 35 (1): 25–53.

Toso, Eli A. V., Reinaldo Morabito, and Alistair R. Clark. 2009. “Lot sizing and sequencing
optimisation at an animal-feed plant.” Computers & Industrial Engineering 57 (3): 813–821.

Wagner, Harvey M., and Thomson M. Whitin. 1958. “Dynamic Version of the Economic Lot
Size Model.” Management Science 5 (1): 89–96.

Xiao, Jing, Huasheng Yang, Canrong Zhang, Li Zheng, and Jatinder N.D. Gupta. 2015. “A
hybrid Lagrangian-simulated annealing-based heuristic for the parallel-machine capacitated
lot-sizing and scheduling problem with sequence-dependent setup times.” Computers & Op-
erations Research 63: 72–82.

Xiao, Jing, Canrong Zhang, Li Zheng, and Jatinder N. D. Gupta. 2013. “MIP-based fix-and-
optimise algorithms for the parallel machine capacitated lot-sizing and scheduling problem.”
International Journal of Production Research 51 (16): 5011–5028.

28

Appendix A. Analysis of the stop criteria in RFFO

A.1. Analysis of the gap limit γ

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

500

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(a) ρ = 30, T = 15

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

500

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(b) ρ = 30, T = 30

1 3 5 8 10
0

50

100

150

200

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(c) ρ = 60, T = 15

1 3 5 8 10
0

50

100

150

200

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(d) ρ = 60, T = 30

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(e) ρ = 90, T = 15

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(f) ρ = 90, T = 30

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(g) ρ = 120, T = 15

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(h) ρ = 120, T = 30

Figure A1. Results for RFFO with δ = 3, σ = 1

29

1 3 5 8 10
20

40

60

80

100

120

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(a) ρ = 30, T = 15

1 3 5 8 10
20

40

60

80

100

120

140

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

500

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(b) ρ = 30, T = 30

1 3 5 8 10
0

20

40

60

80

100

120

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(c) ρ = 60, T = 15

1 3 5 8 10
0

50

100

150

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(d) ρ = 60, T = 30

1 3 5 8 10
20

40

60

80

100

120

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(e) ρ = 90, T = 15

1 3 5 8 10
20

40

60

80

100

120

140

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

1,200

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(f) ρ = 90, T = 30

1 3 5 8 10
20

40

60

80

100

120

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(g) ρ = 120, T = 15

1 3 5 8 10
20

40

60

80

100

120

140

γ(%)

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

1,200

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(h) ρ = 120, T = 30

Figure A2. Results for RFFO with δ = 2, σ = 1

30

A.2. Analysis of the time limit ρ

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(a) γ = 1, T = 15

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

1,200

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(b) γ = 1, T = 30

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(c) γ = 3, T = 15

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

400

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(d) γ = 3, T = 30

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

50

100

150

200

250

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(e) γ = 5, T = 15

30 60 90 120
0

20

40

60

80

100

120

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(f) γ = 5, T = 30

Figure A3. Results for RFFO with δ = 3, σ = 1

31

30 60 90 120
0

20

40

60

80

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(a) γ = 1, T = 15

30 60 90 120
0

20

40

60

80

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

200

400

600

800

1,000

1,200

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(b) γ = 1, T = 30

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

50

100

150

200

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(c) γ = 3, T = 15

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(d) γ = 3, T = 30

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

50

100

150

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(e) γ = 5, T = 15

30 60 90 120
0

20

40

60

80

100

ρ

G
ap

(%
)

Gap(%)
N = 50
N = 75
N = 100

0

100

200

300

C
P
U
-T

im
e
(s
)

CPU-Time
N = 50
N = 75
N = 100

(f) γ = 5, T = 30

Figure A4. Results for RFFO with δ = 2, σ = 1

32

Appendix B. Performances of RFFO for various combinations of
parameters

Table B1. Computational results for RFFO (σ = 1, ρ = 60s)
P

ro
b

le
m

S
iz

e
2
0
-1

-
1
5

2
0
-1

-
3
0

2
0
-2

-
1
5

2
0
-2

-
3
0

3
0
-1

-
1
5

3
0
-1

-
3
0

3
0
-2

-
1
5

3
0
-2

-
3
0

4
0
-1

-
1
5

4
0
-1

-
3
0

4
0
-2

-
1
5

4
0
-2

-
3
0

R
F

F
O

(2
,1
,1
,6

0
)

A
v
g
.

G
a
p

(%
)

1
2
.6

9
7
.6

8
6
.0

8
1
2
.0

7
.7

8
1
6
.6

9
8
.4

8
8
.1

3
1
7
.3

9
2
5
.1

3
1
0
.0

7
1
1
.6

S
o
l.

T
im

e
(s

)
6
.8

3
1
8
.0

9
.2

5
2
8
.0

8
.6

7
2
6
.5

8
2
5
.1

7
5
0
.2

5
1
9
.2

5
9
2
.2

5
2
3
.5

1
1
5
.0

8
R

F
F

O
(2
,1
,3
,6

0
)

A
v
g
.

G
a
p

(%
)

1
5
.3

1
1
1
.8

2
8
.6

4
1
6
.0

1
9
.9

5
2
0
.7

1
1
.0

1
3
.7

4
1
9
.3

1
3
0
.0

8
1
3
.6

4
1
6
.1

9
S

o
l.

T
im

e
(s

)
4
.8

3
1
3
.6

7
6
.5

8
2
0
.0

6
.4

2
1
9
.1

7
1
3
.8

3
3
2
.8

3
1
3
.6

7
4
6
.9

2
1
4
.3

3
5
7
.1

7
R

F
F

O
(3
,1
,1
,6

0
)

A
v
g
.

G
a
p

(%
)

1
2
.2

6
7
.4

6
5
.6

8
1
1
.1

7
6
.5

7
1
6
.2

6
7
.8

9
7
.3

6
1
4
.8

5
2
3
.2

7
9
.3

5
1
0
.8

2
S

o
l.

T
im

e
(s

)
5
.7

5
1
6
.5

8
8
.4

2
2
2
.9

2
9
.1

7
2
0
.8

3
4
1
.2

5
5
7
.4

2
2
8
.5

1
0
8
.7

5
3
7
.0

1
4
0
.6

7
R

F
F

O
(3
,1
,3
,6

0
)

A
v
g
.

G
a
p

(%
)

1
4
.0

7
1
0
.4

8
7
.8

9
1
5
.0

3
9
.1

8
1
9
.1

3
9
.7

3
1
1
.1

1
7
.7

1
2
8
.0

9
1
2
.1

9
1
4
.8

S
o
l.

T
im

e
(s

)
4
.1

7
9
.6

7
4
.9

2
1
3
.5

8
4
.7

5
1
3
.6

7
1
5
.3

3
2
6
.7

5
1
1
.5

8
4
4
.8

3
1
5
.7

5
4
9
.4

2

P
ro

b
le

m
S

iz
e

5
0
-1

-
1
5

5
0
-1

-
3
0

5
0
-2

-
1
5

5
0
-2

-
3
0

7
5
-2

-
1
5

7
5
-2

-
3
0

7
5
-4

-
1
5

7
5
-4

-
3
0

1
0
0
-2

-
1
5

1
0
0
-2

-
3
0

1
0
0
-4

-
1
5

1
0
0
-4

-
3
0

R
F

F
O

(2
,1
,1
,6

0
)

A
v
g
.

G
a
p

(%
)

2
6
.0

8
2
5
.0

6
1
0
.8

6
1
3
.3

8
3
8
.6

6
4
3
.4

7
2
5
.1

5
2
2
.0

2
6
6
.5

9
5
9
.2

6
3
3
.7

4
4
1
.5

S
o
l.

T
im

e
(s

)
3
6
.0

9
8
.0

8
4
5
.5

8
1
2
4
.5

8
1
.3

3
2
3
7
.6

7
2
3
9
.0

3
1
1
.6

7
1
7
8
.1

7
3
4
8
.5

8
3
1
7
.6

7
4
0
1
.5

R
F

F
O

(2
,1
,3
,6

0
)

A
v
g
.

G
a
p

(%
)

2
8
.7

5
2
9
.4

2
1
4
.2

7
1
7
.3

4
4
3
.0

9
4
8
.4

4
2
8
.8

6
2
7
.6

7
4
.0

1
6
7
.6

3
8
.2

1
4
8
.0

3
S

o
l.

T
im

e
(s

)
1
8
.8

3
5
0
.0

8
2
0
.7

5
6
3
.9

2
3
5
.2

5
1
0
5
.8

3
9
3
.1

7
1
4
4
.3

3
7
8
.7

5
1
8
0
.0

1
1
2
.9

2
1
9
4
.9

2
R

F
F

O
(2
,1
,5
,6

0
)

A
v
g
.

G
a
p

(%
)

3
2
.2

5
3
2
.7

8
1
6
.9

7
2
4
.0

5
4
7
.1

4
5
6
.4

6
3
3
.2

9
3
7
.9

1
7
8
.9

7
7
3
.4

4
4
3
.3

5
5
.9

S
o
l.

T
im

e
(s

)
1
7
.0

4
4
.2

5
1
8
.4

2
5
4
.2

5
2
9
.0

9
6
.4

2
7
0
.2

5
1
3
4
.6

7
7
0
.7

5
1
7
3
.1

7
9
1
.7

5
1
6
7
.0

8
R

F
F

O
(3
,1
,1
,6

0
)

A
v
g
.

G
a
p

(%
)

2
4
.7

2
3
.2

2
9
.5

6
1
2
.4

2
3
6
.6

6
4
2
.2

2
2
4
.6

8
2
1
.4

2
6
5
.1

5
9
.3

7
3
4
.0

2
4
1
.0

8
S

o
l.

T
im

e
(s

)
4
8
.5

8
7
.0

8
5
.0

8
1
2
2
.0

1
0
5
.1

7
2
5
4
.4

2
2
8
5
.0

8
2
7
4
.0

8
2
8
9
.8

3
3
8
6
.2

5
2
7
8
.9

2
3
8
1
.8

3
R

F
F

O
(3
,1
,3
,6

0
)

A
v
g
.

G
a
p

(%
)

2
7
.2

9
2
6
.6

1
1
2
.4

6
1
6
.9

3
4
0
.0

3
4
8
.2

9
2
7
.6

9
2
6
.2

6
6
9
.9

2
6
3
.1

3
6
.3

7
4
6
.0

3
S

o
l.

T
im

e
(s

)
2
2
.7

5
4
2
.6

7
2
5
.0

8
5
6
.9

2
4
9
.7

5
1
0
6
.5

8
1
4
6
.3

3
1
6
3
.4

2
1
4
0
.7

5
2
0
8
.0

8
1
6
8
.5

8
2
1
2
.2

5
R

F
F

O
(3
,1
,5
,6

0
)

A
v
g
.

G
a
p

(%
)

2
9
.4

1
3
2
.1

8
1
5
.1

4
2
1
.3

4
2
.5

8
5
3
.8

4
3
0
.7

5
3
3
.5

6
7
5
.3

6
6
9
.7

5
4
0
.7

6
5
4
.5

2
S

o
l.

T
im

e
(s

)
1
6
.5

3
5
.3

3
1
8
.5

4
8
.0

8
2
9
.7

5
8
6
.8

3
1
0
7
.6

7
1
2
0
.9

2
9
5
.8

3
1
7
5
.5

1
2
7
.4

2
1
6
6
.3

3

P
ro

b
le

m
S

iz
e

1
2
5
-4

-1
5

1
2
5
-4

-3
0

1
2
5
-6

-1
5

1
2
5
-6

-3
0

R
F

F
O

(2
,1
,5
,6

0
)

A
v
g
.

G
a
p

(%
)

7
0
.7

3
6
6
.4

7
5
7
.0

9
7
1
.1

4
S

o
l.

T
im

e
(s

)
1
4
2
.6

7
2
0
6
.2

5
1
7
1
.9

2
4
5
7
.6

7
R

F
F

O
(2
,1
,8
,6

0
)

A
v
g
.

G
a
p

(%
)

7
6
.0

9
7
8
.2

8
6
5
.4

3
8
5
.7

5
S

o
l.

T
im

e
(s

)
1
1
0
.5

1
7
8
.5

1
3
3
.1

7
3
8
0
.2

5
R

F
F

O
(2
,1
,1

0
,6

0
)

A
v
g
.

G
a
p

(%
)

8
7
.4

9
9
2
.1

5
7
3
.0

3
1
0
1
.1

8
S

o
l.

T
im

e
(s

)
1
0
5
.5

1
7
0
.0

1
1
8
.0

8
3
6
6
.3

3
R

F
F

O
(3
,1
,5
,6

0
)

A
v
g
.

G
a
p

(%
)

7
1
.2

7
6
3
.2

4
5
6
.9

4
7
0
.2

4
S

o
l.

T
im

e
(s

)
1
5
5
.0

8
1
9
9
.7

5
2
0
0
.8

3
4
4
8
.7

5
R

F
F

O
(3
,1
,8
,6

0
)

A
v
g
.

G
a
p

(%
)

7
6
.0

2
7
2
.5

9
6
3
.2

9
7
8
.7

8
S

o
l.

T
im

e
(s

)
1
1
4
.8

3
1
7
5
.5

8
1
5
8
.4

2
3
5
1
.5

8
R

F
F

O
(3
,1
,1

0
,6

0
)

A
v
g
.

G
a
p

(%
)

8
0
.7

5
7
9
.3

6
6
8
.1

7
1
1
0
.2

4
S

o
l.

T
im

e
(s

)
1
0
9
.7

5
1
6
7
.9

2
1
3
9
.2

5
3
4
4
.0

8

33

