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Does Performance-Sensitive Debt mitigate Debt Overhang?

Abstract

We model the expansion decision of a levered firm. Straight debt distorts both timing and scaling:

the firm invests less and later than its all-equity financed counterpart. The inclusion of performance

sensitivity in the debt contract mitigates such distortions. Moreover, performance sensitivity is

consistent with firm value maximization within a standard trade-off theory of capital structure. As

a result, our model rationalizes the widespread use of performance sensitive debt (PSD), especially

amongst fast growth firms.

Keywords: Debt Overhang, Performance-Sensitive Debt, Capital Structure, Real Options.
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1 Introduction

This article studies the optimal exercise of real options with time and scale flexibility when the

firm is financed with performance-sensitive debt (PSD). The issuance of hybrid debt instruments,

such as PSD, has become popular as an alternative to straight debt, especially for corporate bank

loans (see, e.g., Asquith, Beatty, and Weber, 2005; Manso, Strulovici, and Tchistyi, 2010). A

PSD contract stipulates interest payments that are not constant, but depend on a measure of

the borrower’s performance. The focus in the literature has been so far on (i) pricing such PSD

instruments and (ii) developing rationales for their use. A case in point where our setting would

apply would be a pharmaceutical company that decides on when to open another laboratory and

how large to build it, aware that the interest on the outstanding debt depends on the firm’s

Debt/EBITDA ratio. Asquith et al. (2005) detail Core Laboratories syndicated revolving loan

performance-pricing grid. Moreover, it is known since Myers’s (1977) paper that a firm financed

with straight debt underinvests compared to its unlevered counterpart; this is because shareholders

pay for the upfront cost of investment, but do not fully internalize its benefits (because of a debt

overhang). The purpose of this article is to address the following set of interrelated questions:

(a) What are the optimal default and capacity expansion policies for shareholders when the firm

is financed with PSD? (b) To which extent can PSD mitigate the debt-overhang problem in the

timing and scale of investment? (c) Can the widespread use of performance-pricing clauses in bank

loans (documented by Asquith et al., 2005) be rationalized within a standard tradeoff theory of

capital structure (see Kraus and Litzenberger, 1973)?

This paper answers these questions by modeling a firm partially financed with ‘risk-compensating’

PSD (Manso et al., 2010). Shareholders choose an optimal default policy (Leland, 1994) and decide

on the exercise of a real option (Dixit and Pindyck, 1994; Trigeorgis, 1996). Optimal leverage and

sensitivity of debt are jointly optimized in our setting. That is, we model a setting where the

initial shareholders (e.g., entrepreneurs) decide on the best debt contract among a menu offered

by their bank. Banks can offer straight debt, but they can also offer debt whose coupon payments

depends on the firm’s performance (PSD). We characterize how this financing choice depends on

the available investment opportunities the firm has, which we model as expansion real options.
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We are particularly interested in the role played by PSD in mitigating debt overhang, and how

such mitigating effect can rationalize the use of PSD by certain type of firms. To that end, we

compute the equilibrium capital structure and investment decision that maximizes shareholder

returns subject to the participation constraint of the banking sector.

The firm’s profitability and scale determine its free cashflows to equity (FCFEs). The management

can increase the firm’s scale at a time of its choosing. As in Myers (1977), shareholders finance

this expansion project. If the firm is financed with PSD, the management factors in the reduction

in debt payments resulting from greater scale when deciding about an expansion.

The timeline is as follows. Ex ante, the initial owners decide on the firm’s capital structure by

specifying a debt amount and the performance sensitivity of its debt given a preexisting scale

resulting from past investment decisions. That is, the initial shareholders decide which is the

optimal debt contract that can be offered to them by the bank. Banks can offer straight debt, but

they can also offer debt whose coupon payments depends on the firm’s performance.

The optimal capital structure trades off (a) bankruptcy costs, (b) tax advantage of debt and (c)

underinvestment induced by debt. Ex post, given outstanding debt, the management chooses the

expansion & default policy that maximizes shareholder value.

Our model helps us derive three novel insights. First, the expansion decision of a firm financed with

straight debt is distorted (compared to the decision of its unlevered counterpart) in both timing and

scaling: the former invests less and later. Our paper is the first to highlight such a distortionary

effect in a unifying framework showcasing optimal timing and scaling of investment.1 Intuitively,

shareholders finance the new project, yet do not fully internalize the benefits as debtholders capture

some benefits in the event of bankruptcy. Consequently, the management will defer the option

exercise until the benefits to shareholders are sufficiently large (in a sense that we shall specify

explicitly). Moreover, because of debt overhang, the marginal benefit of investment to shareholders

will always be lower than that of an unlevered firm, leading to a lower scale of investment.

Second, we show that PSD can mitigate the debt-induced distortions: the performance-sensitivity

criterion can induce a firm to invest sooner and in a larger amount than a similar firm financed

1Hennessy (2004) shows underinvestment in a neoclassical investment framework without timing considerations.
Mauer and Ott (2000) show investment delay in a real options framework with fixed scale.
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with straight debt. Because PSD rewards a firm with a larger scale with lower debt payments,

the management will approve a growth plan financed by shareholders. Under straight debt, invest-

ment increases the size of the pie, but also increases the size of the slice accruing to debtholders,

thereby constituting a transfer of wealth from shareholders to debtholders. By contrast, under

PSD, debtholders receive lower debt payments after investment, while shareholders internalize a

larger slice of the pie. It is therefore optimal for shareholders to invest earlier and more.2

Third, the initial shareholders may maximize total firm value by issuing PSD. Because PSD brings

the firm’s investment policy closer to the investment policy followed by an unlevered firm, total

firm value is enhanced by introducing performance sensitivity. Our model provides a theory for

optimal leverage and optimal sensitivity of debt, and rationalizes the extensive use of performance

sensitive clauses in private debt contracts documented by Asquith, Beatty, and Weber (2005).3

The paper is organized as follows. Section 2 provides a review of the literature. Section 3 introduces

the model and motivates the assumptions. Section 4.1 presents the benchmark model where the

firm decides uniquely on the time of default. Section 4.2 elaborates on the decision on the expansion

lump, while Section 4.3 discusses the timing decision. Section 5 justifies the use of PSD as a devise

to mitigate the debt overhang.

2 Literature Review

Empirical studies documenting the prevalence of performance sensitive debt include Asquith et al.

(2005), Manso et al. (2010), and Kjenstad, Su, and Xia (2018). Asquith et al. (2005) obtain

commercial loan data from the Loan Pricing Corporation (LPC) database and focuses primarily on

bank debt with long maturities. Of the bank loan sample, 41% (∼$943bn) contained a performance-

pricing component. This figure is consistent with Manso et al. (2010), who—based on bank loan

data from Thomson Financial’s SDC database—show that 40% of the loans have performance-

pricing provisions. Importantly, their finding that fast-growth firms are more likely to issue PSD

2Our results for the scale of investment are proven analytically in Corollary 1. The results for the timing of
investment are numerical, but robust to a wide range of parameter specifications.

3Other works rationalize the use of PSD, in particular Manso et al. (2010) based on the signaling theory, Tchistyi,
Yermack, and Yun (2011) based on the shareholder wealth extraction theory, and Adam, Burg, Scheinert, and Streitz
(2020) based on the theory of managerial overconfidence.
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is consistent with our model. Kjenstad et al. (2018) study the interplay between product market

competition and performance-pricing provisions. They posit that PSD and product market com-

petition act as substitutes to mitigate shareholder-debtholder conflicts and empirically document

that firms operating in markets with low levels of product market competition are more likely to

have performance-pricing clauses.

Despite being used widely in private debt contracts, only a few theory papers study performance

sensitivity. Manso et al. (2010) were the first to model PSD in the credit-risk literature. In a model

without investment, they showed that PSD reduces total firm value (compared to straight debt)

because it leads to earlier default. But they rationalize the existence of PSD as a signaling device

when borrowers have heterogeneous types (adverse selection). Our contribution is complementary

as we discuss yet another rationale: PSD helps align the interests of debtholders and shareholders

when a firm decides on its investment policy, an effect akin to mitigating shareholder moral hazard

on the optimal investment decision.

Other contributions in this literature stream include Manso (2013) who shows that when a firm’s

interest payments depend on its credit rating, there exists a soft-rating and a tough-rating equi-

librium featuring, respectively, low and high default rates. Tchistyi, Yermack, and Yun (2011)

focus on the optimal sensitivity of debt when managers are compensated with stock options. They

provide theoretical and empirical evidence that a more generous granting of stock options increases

the “vega” of the managers’ compensation package, thereby incentivizing them to increase risk

on equity via PSD. Following Sarkar and Zhang (2015), PSD can mitigate the excessive delay in

real option exercise induced by straight debt. Our paper expands their analysis by simultane-

ously studying the distortionary effect of debt on the timing and scale of investment as well as by

providing a theory for the joint determination of leverage and performance sensitivity of debt.

Very few real options papers discuss decisions on firm scale according to a recent survey by Trigeorgis

and Tsekrekos (2018). Dangl (1999) characterizes the optimal exercise of one expansion option

with scale flexibility. Bensoussan, Chevalier-Roignant, and Rivera (2019) consider a more general

problem of capacity expansion under fixed running costs, while Bensoussan and Chevalier-Roignant

(2018) study the sequential exercise of expansion options. The early literature ignored financing

considerations. More recently, several authors (see Mauer and Sarkar, 2005; Sundaresan and Wang,
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2007; Shibata and Nishihara, 2015) investigate the decision of an unlevered firm to finance a real

option’s exercise cost with debt.4 Our paper fills a gap in the literature by characterizing the

optimal exercise policy of a firm financed with PSD to expand its scale of production and by

explaining how the issuance of a performance-sensitive debt instrument helps reduce agency costs

by mitigating the debt-overhang problem in a dynamic setting.

A growing literature examines the relation between different types of contracts and the agency cost

of debt. Hackbarth and Mauer (2012) study the optimal priority structure of debt that minimizes

the debt overhang cost in a real options framework. Diamond and He (2014) show that short-term

debt alleviates the debt-overhang problem. Moreover, holding debt value constant, their model

implies an interior solution for the optimal maturity of debt.5 Bhanot and Mello (2006) study the

role of credit rating triggers on shareholder incentives to take risk. They conclude that such triggers

(that force shareholders to buy back debt after poor performance) can mitigate the risk-shifting

problem as long as the debt is paid for with freshly injected equity.6

Finally, our paper also relates to the literature calibrating the extent of debt overhang. Mello and

Parsons (1992) were the first to quantify the magnitude of the debt overhang problem. They note

that the magnitude of the agency cost of debt varies with its deflator (e.g., debt or equity value,

levered or unlevered firm value). They calculate this agency cost is 0.8% of firm value but 4.3% of

debt value. Moyen (2007) measures a larger overhang cost with both long and short-term debt. For

instance, with short-term debt, she computes the debt overhang cost add up to 5.12% of firm value.

More recently, Chen and Manso (2017) compute how debt-overhang costs depend on business cycle

risks. In their benchmark case, the debt overhang costs for a low leverage firm is less than 0.5%

of the total firm value without macroeconomic risk, while these costs are as large as 2.7% or 3.6%

4Recent contributions to the real option literature in non-standard settings also include Miao and Wang (2007), who
characterize optimal option exercise for a risk-averse entrepreneur under incomplete markets. Nishimura and Ozaki
(2007) and Miao and Wang (2011) study the optimal exercise of real option under ambiguity aversion. Bolton, Wang,
and Yang (2014), and Hugonnier, Malamud, and Morellec (2014) study real options within a liquidity management
framework. Gryglewicz, Hartman-Glaser, and Zheng, and Philippon and Sannikov (2007) characterize real option
exercise under managerial moral hazard. Lambrecht and Myers (2008) characterize optimal investment decisions
when managers maximize the present value of their future compensation.

5Other papers focusing on the optimal maturity of debt include Della Seta, Morellec, and Zucchi (2020); Titman
and Tsyplakov (2007); He and Xiong (2012), and He and Milbradt (2014).

6A large literature studies shareholder-debtholder conflicts including Edmans and Liu (2010); Jensen and Meckling
(1976); Myers (1977); Hackbarth, Rivera, and Wong (2018); Hennessy (2004); Mello and Parsons (1992); Leland
(1998); Ericsson (2000); Kumar and Yerramilli (2017); He (2011); Morellec (2001); Parrino and Weisbach (1999);
Rivera (2020); Schwartz (1982); Whited (1992); Wittry (2021) among others.
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in booms and recessions, respectively, in the presence of macroeconomic risk. Our contribution

relative to this literature is to show that the cost of debt-overhang encompasses a simultaneous

distortion of the scale and timing of investment, in relation to the first-best investment benchmark.

3 Model

We consider a continuous-time setting where a firm earns a running operating cashflow x
√
δ which

depends on its scale δ ≥ δ∗ > 0 and profitability x > 0.7 On the probability space (Ω,F ,P), we

consider a (standard) Brownian motion Z : Ω×R+ → R, which generates a filtration F = (F ; t ≥ 0).

The firm’s profitability X : Ω× R+ → R+ follows a geometric Brownian motion:





X0 = x, P-a.s.,

dXt = µXt dt+ σXt dZt, ∀t > 0.
(1)

We assume r > µ > σ2/2 and σ > 0 as usual. The expectation Ex,δ is conditional on the initial

values for the states x and δ. The initial firm scale δ is a result of the firm’s past investment history,

possibly zero.

At the outset, the firm finances itself via a mix of equity and PSD. Debt contracts often stipulate

negative covenants which prevent the issue of new debt until the outstanding debt has matured. In

this paper, we focus on such cases, so the issuance of new debt at the expansion time is precluded.

We consider a “risk-compensating” PSD, i.e., a debt instrument that pays higher interest payments

when performance worsens. We here proxy the firm’s performance by its operating cashflows (rather

than, say, its credit rating or a balance sheet ratio). Following the terminology introduced in Manso

et al. (2010), for tractability reasons we specifically assume a linear PSD for which the interest paid

is of the form β0 − β1 x
√
δ with β0, β1 ≥ 0. By construction, the interest payment can be negative

for large values of x or δ. However, in our numerical analyses, we calibrate the debt parameter

β1 such that the interest payments become negative only at very large values of x, an event which

occurs in the remote future. To focus on the effects induced by debt financing, we abstract away

7For tractability reasons we require the initial scale to be larger than the constant δ∗, specified below. As a
consequence our model is most applicable to firms with a non-trivial existing capacity.
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from any other fixed and variable costs. Firms pay corporate taxes at a rate θ ∈ (0, 1). As in

Leland (1994), the free cashflow to equity (FCFE) is

π(x, δ) := x
√
δ − (1− θ)

(
β0 − β1x

√
δ
)
. (2)

We allow the firm to raise its capacity at a stopping time τI by a lump size ξ (understood as a

FτI -measurable random variable) as well as allow it to renege on its debt obligations at a stopping

time τD. The cost incurred to increase the capacity from δ to δ+ξ is kξ, with k > 0. The scale ∆ν ,

a stochastic process adapted to the filtration F, depends on the strategy choice ν := {τI , ξ, τD}:

∆ν
t (ω) =





δ + ξ(ω), τI(ω) < t ≤ τD(ω),

δ, otherwise.

Agents are risk neutral, discount at the constant rate r, and have deep pockets. Management acts

in the interest of shareholders, which leads to an agency conflict with debtholders. In particular,

management chooses a strategy ν̂ = {τ̂I , ξ̂, τ̂D} that maximizes shareholder value:

F (x, δ) := sup
ν

Ex,δ
[ ∫ τD

0
e−rtπ

(
Xt,∆

ν
t

)
dt− e−rτIkξ1(0,τD)(τI)

]
. (3)

The first right-hand side (RHS) term corresponds to the present value of the FCFEs until default

at time τD, while the second term is the present value of the expansion cost. A key problem is

to determine shareholder value (3) and characterize the optimal strategy ν̂ (if one exists). This

problem (3) subsumes the unlevered case (for β0 = β1 = 0): an unlevered firm is not subject to a

distortionary effect of debt and chooses a policy that we call “first best.”

It also matters to determine the market value of the debt claim given by

D(x, δ) := Ex,δ

[∫ τ̂D

0
e−rt

(
β0 − β1Xt

√
∆ν̂
t

)
dt+ e−rτ̂D(1− α)

Xτ̂D

√
∆ν̂
τ̂D

r − µ

]
. (4)

The first RHS term in (4) corresponds to the interest payments until default. In the event of

bankruptcy, debtholders receive full ownership of the firm net of proportional bankruptcy costs
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α ∈ [0, 1].8

As in Leland (1994), our model features a choice of capital structure at time 0. Assuming an initial

capacity δ that is already in place and a profitability x (not modeled), initial shareholders choose

debt parameters (β̂0, β̂1) that maximize total firm value TV (x, δ;β0, β1), i.e., the sum of shareholder

value F (x, δ;β0, β1) and debt value D(x, δ;β0, β1).

4 Model solution

4.1 Benchmark default option

We consider a simple default option as a benchmark. In this case, shareholder value ϕ is

ϕ(x, δ) := sup
τD

Ex
[ ∫ τD

0
e−rtπ(Xt, δ) dt

]
. (5)

Before providing an explicit solution to (5) in Theorem 1, we introduce the terms

η0 := −(1− θ)β0

r
[< 0] (6)

η1 :=
1 + (1− θ)β1

r − µ [> 0] (7)

γA, γB := −µ− σ
2/2

σ2
±
√(

µ− σ2/2

σ2

)2

+
2r

σ2
, γB < 0 < 1 < γA. (8)

Theorem 1 (Benchmark default option). The shareholder value in (5) reads

ϕ(x, δ) =





0, x < x1(δ),

η0 + η1x
√
δ + η0

γB−1

(
x

x1(δ)

)γB
, x ≥ x1(δ),

(9a)

where

x1(δ)
√
δ := −η0

η1

γB
γB − 1

≥ 0, δ > 0. (9b)

8As in Leland (1994, 1998), we assume that, when debtholders become owners of the firm, they decide not to
re-leverage the distressed asset; by doing so, the debtholders limit the risk of having to file bankruptcy should the
firm not be able to recover quickly.
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Figure 1. Analysis of marginal benefit of increasing the capital stock. Panel A (resp.
Panel B) depicts ϕ with and without straight debt (resp. PSD). Panel C (resp. D) depicts the
marginal benefit of increasing the capital stock with and without straight debt (resp. PSD). The
parameter values are r = 0.12, σ = 0.10, µ = 0.01, k = 20, θ = 0.1, x = 8.

Following Theorem 1, a firm with a scale δ optimally defaults if profitability x falls below the

level x1(δ). Otherwise, shareholder value in (9a) comprises the perpetuity value of the FCFEs,

η0 + η1x
√
δ, plus the value of the default option. A larger firm is more able to service its debt and,

hence, less likely to default, i.e., x′1(·) < 0.

Panels A and C of Figure 1 depict respectively the value function ϕ(x, ·) and the marginal benefit

ϕδ(x, ·) with and without straight debt (where the under-script denotes the partial derivative).

There are two important observations: First, debt financing depresses the marginal benefits. Be-

cause debtholders claim the residual value at bankruptcy, shareholders do not fully internalize the

benefits from raised scale. This is an illustration of Myers’s (1977) debt-overhang problem. Sec-

ond, under debt financing, returns to scale are increasing for low capacities but decreasing for high

capacities. This reflects two opposing effects. Without the default option in (9a), the firm faces

diminishing marginal returns because the production function is concave. Yet, raising the scale

helps the levered firm reduce default risk, rendering the shareholders’ default option less valuable

as δ increases.
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Panel B of Figure 1 compares the value function ϕ(x, ·) with PSD (i.e., β0, β1 > 0) versus without

debt (i.e., β0 = β1 = 0). Panels C and D depict the respective marginal benefit δ 7→ ϕδ(δ, x).

Importantly, panel D shows that the marginal benefit of increasing scale in the presence of PSD

can be larger than the benefit in the absence of debt. Because PSD reduces total debt payments

when the firm’s operating cashflows are large, this acts as an additional benefit to the shareholders

from increasing scale. Through this channel, PSD can mitigate the underinvestment induced by

straight debt financing.

4.2 Optimal scale expansion

If the firm expanded capacity, it faces the optimal default problem (5) solved in Theorem 1. If it

decides to invest, it maximizes the net present value (NPV) from scale expansion given by

Φ(x, δ) := sup
ξ≥0

{
ϕ(x, δ + ξ)− kξ

}
. (10)

Hereafter, we study the mapping δ 7→ ϕ(x, δ) − kδ in order to characterize the optimal scale

expansion. Figure 2 depicts the NPV ϕ(x, δ) − kδ obtained by increasing capacity from 0 to δ.

First, as shown in Panel A, the firm is better off not to invest in any capacity if profitability x is

below the level

x? :=
1

(1− γB)η1

√
2kη0γB

(
2− γB

) 2−γB
1−γB ≥ 0. (11)

This critical level x? increases with β0 but decreases with performance sensitivity β1. The level

x? vanishes when β0 = 0. This implies that debt distorts the investment decision in that the

profitability x must be sufficiently high for shareholders to benefit from an expansion.

If profitability is larger, i.e., for x > x?, then the function δ 7→ ϕ(x, δ) − kδ has a local minimum

δ3(x) obtained by a first-order condition. The local maximum δ3(x) will be global if and only if

profitability x is larger than a level x?? > x?. The case for which δ3(x) is not (resp., is) a global

maximum is depicted in Panel B (resp., Panel C) of Figure 2.

If the firm with an initial scale δ and facing profitability x decides to invest (because it is optimal
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Figure 2. Study of δ 7→ ϕ(x, δ) − kδ. The parameter values are r = 0.12, σ = 0.10, µ = 0.01,
β0 = 8, β1 = 0, k = 20, θ = 0.1.

to do so), it raises its scale by a lump ξ̂(x, δ) = δ3(x) − δ. It is intuitive that lower profitability x

leads to a less ambitious expansion. That is

δ′3(x) = −ϕδx
(
x, δ3(x)

)

ϕδδ
(
x, δ3(x)

) > 0, x > x?, (12)

as shown in the Appendix. Moreover, as profitability x deteriorates to the level x?, the local

maximum δ3(x) falls to the point

δ? :=
η0γB
2k

(2− γB)
γB

1−γB ≥ 0. (13)

Henceforth, we restrict attention to the case δ ≥ δ?, which ensures existence of the inverse x3(δ) of

δ3(x). We interpret x3(δ) as the profitability level above which expanding the firm’s scale creates

shareholder value. A larger firm is less likely to launch an expansion program (i.e., x′3(·) > 0).

Theorem 2 summarizes our findings about the increase in shareholder value from scale expansion

in (10), and is illustrated in panel B of Figure 3. Panel A shows a numerical illustration of the more

involved case δ < δ∗. For this case analytical results are beyond the scope of this paper. Intuitively,

for small δ, debt overhang is large. Thus, the firm delays investment until higher values of x are

reached. However, once firms start investing, they will invest in large (discontinuous) amounts (see

12

                  



Figure 3. Positive vs Negative NPV regions (in the absence of timing considerations).
Panel A (resp. B) depicts a case where the firm is levered (resp. unlevered). The parameter values
are r = 0.12, σ = 0.10, µ = 0.01, k = 20, θ = 0.1. PSD values are β0 = 15, β1 = 1 for panel A, and
β0 = 0, β1 = 0 for panel B.

blue arrow in panel A), thereby rendering the obstacle non-differentiable.9

Theorem 2 (Shareholder value from scale expansion). We assume that δ ≥ δ?. The function Φ

in (10) is given by

Φ(x, δ) =





ϕ(x, δ), x ≤ x3(δ),

ϕ(x, δ3(x))− k
[
δ3(x)− δ

]
, x > x3(δ).

(14)

Further, the function x 7→ Φ(x, δ) is continuously differentiable.

We now want to specify the impact of PSD financing on the (static) investment policy:

Corollary 1. The region (x3(δ),∞) in which the management creates shareholder value by ex-

panding is decreasing in the fixed debt installment β0 and increasing in performance sensitivity

β1.

9This non-differentiability significantly complicates our analysis and prevents us from deriving analytical results
in this case.
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Figure 4. Comparative statics of investment vs noninvestment regions in the absence
of timing considerations. Panel A [resp. panel B] depicts comparative statics with respect to
the PSD parameter β0 [resp. β1]. The parameter values are r = 0.12, σ = 0.10, µ = 0.01, k = 20,
θ = 0.1.

Figure 4 illustrates the (analytic) findings in Corollary 1. Because the default probability increases

in β0, a larger share of the investment benefits accrues to bondholders if the parties agree on a larger

fixed amount β0. Thus, shareholders are less willing to expand when debt payments are increased

as shown in Panel A. The distortion from debt financing is significant when profitability x and

initial scale δ are low, but becomes negligible as profitability x and scale δ become very large. This

is because, in case x and δ are low, the firm is more likely to default soon after expansion, thereby

limiting the extent to which shareholders would benefit from expansion. Panel B of Figure 4 shows

that the positive NPV region is increasing in β1. Larger sensitivity makes expanding capacity more

lucrative for shareholders because it leads to reduced debt payments. Yet, because the firm still

incurs a fixed payment β0, it still should not invest for low profitability x and capacity δ.

In summary, Corollary 1 and Figure 4 prove that PSD mitigates underinvestment in the scale

14

                  



dimension. We now turn to whether PSD financing will have an impact on the default and expansion

timing decisions.

4.3 Default and expansion timing decisions

We now discuss the optimal strategy for the shareholder problem F in (3).10 The difference between

shareholder value in (3) and the NPV from immediate, optimal scale expansion in (10), namely

χ := F − Φ, captures the flexibility value or option time value. As a result, shareholders will wait

to invest (and default) until the investment (and default) options are “deep in the money.”

The solution of this problem can be characterized as a two-threshold strategy (see Appendix D

for exact definitions and all mathematical details). That is, the continuation set is of the form
(
x0(δ), x5(δ)

)
, with x0(δ) corresponding to the default threshold and x5(δ) to the investment thresh-

old. Further, the free boundaries x0(δ) and x5(δ) satisfy

x0(δ) < x1(δ) < x3(δ) < x5(δ), (15)

with x1(δ) defined in (9b) and x3(δ) the inverse of δ3(x).

Figure 5 depicts the state space (x, δ) distinguishing the default (to the left of the black curve) and

expansion regions (to the right of the red curve) as well as the negative (to the left of the green

curve) and positive NPV region (to the right of the green curve). This figure generalizes previous

insights to a larger set of scale values: A bigger firm is less likely to default on its debt obligations,

but also less likely to expand its scale further.

The impact of PSD financing on the firm’s default and expansion timing decisions is particularly

interesting. We explore this topic numerically in Figure 6 and conclude that PSD mitigates under-

investment in timing, in addition to the distortionary effect on scale documented in Corollary 1.

According to panel A, agreeing on a larger fixed installment β0 leads to delayed investment, an

effect which arises because shareholders do not fully internalize the investment benefits and because

the investment is deferred until the benefits accruing to shareholders are sufficiently large to justify

10In this section we proceed heuristically, but refer the interested reader to Appendix D for a more rigorous
mathematical treatment.
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Figure 5. Structure of the multiple regions. This figure depicts the default, positive NPV,
and investment regions. The parameter values are r = 0.12, σ = 0.10, µ = 0.01, β0 = 8, β1 = 0,
k = 20, θ = 0.1.

the costs, an excessive delay compared to the unlevered benchmark. Moreover, a larger β0 reduces

FCFEs, thereby hastening default. However, panel B shows that a larger sensitivity β1 to the

firm’s performance gives an incentive for shareholders to invest earlier. Such is the case because

increasing capacity entails a smaller interest payment when β1 > 0.

Panel C shows comparative statics for the investment lump ξ̂(x, δ) with respect to the fixed debt

installment β0. Higher β0 renders investment less attractive: investment is not only delayed, but

also the scale of investment is distorted downwards. Our paper is the first to simultaneously

highlight the time and scale dimensions of the debt-overhang problem: a levered firm invests later

and less.11 Panel D depicts comparative statics for ξ̂(x, δ) with respect to performance sensitivity

β1. Higher β1 makes investment more attractive, thereby leading to a larger investment lump.

As a result, PSD has the potential to mitigate the underinvestment problem in both dimensions:

time and scale. Interestingly, PSD can potentially lead to overinvestment, encouraging shareholders

11Myers (1977) focuses on the effect of debt on the scale of investment, while Mauer and Ott (2000) focuses on the
timing of investment.
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Figure 6. Comparative Statics for shareholder value function F and investment lump
ξ̂ with respect to β0 and β1. The dotted lines corresponds to the investment thresholds x5(δ).
Baseline parameter values are r = 0.12, σ = 0.10, µ = 0.01, β0 = 16, β1 = 0, k = 20, θ = 0.1,
δ∗ = 3, and δ = 3.
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to invest in projects sooner than the first-best time and in an amount larger than the first-best ca-

pacity. However, economic intuition suggests that overinvestment will not arise for the equilibrium

choices of β0 and β1. Our numerical results are consistent with this intuition.

We also derive interesting economic insights from the comparative statics depicted in Figure 7. As

seen in panel A, higher volatility σ delays both the default and investment decisions. The effect on

shareholder value F (x, δ) and investment lump ξ̂(x, δ) is ambiguous: higher volatility σ increases

the option value, but it also increases the probability of a costly bankruptcy. Moreover, as shown

in panel B, stronger growth µ benefits shareholders. Shareholders delay default (because a recovery

is more likely) and expansion (as the opportunity cost of “killing” the expansion option becomes

larger). Finally, panel C conforms with intuition: a larger investment cost k renders expansion less

attractive, so the firm defaults earlier and delays investment further.
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Figure 7. Comparative Statics for shareholder value function F (x, δ) and investment
lump ξ̂ with respect to σ, µ, and k. The solid (resp., dotted) lines corresponds to the default
thresholds x0(δ) (resp., investment thresholds x5(δ)). Baseline parameter values are r = 0.12,
σ = 0.10, µ = 0.01, β0 = 8, β1 = 0, k = 20, θ = 0.1 and δ = 3.
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5 Optimal PSD financing

In this section we study optimal PSD financing. First, we show that PSD mitigates debt overhang

in both the scaling and timing dimension when holding the market value of debt (4) constant. We

show that, for a given loan amount, an increase in the sensitivity of debt to the firm’s underlying

performance enhances firm value. Then, we allow shareholders to jointly optimize over the amount

and sensitivity of debt to maximize total firm value (ex-ante equity value).

5.1 PSD holding debt value constant

Following a procedure similar to Diamond and He’s (2014), we consider pairs (β0, β1) satisfying:

D(x, δ;β0, β1) = D̄, (16)

where debt value is defined in (4) and D̄ > 0 is a constant. The objective is to explore the effect on

the firm’s default and investment policies of changes to performance sensitivity β1, while holding

the loan amount constant. Figure 8 depicts investment and default policies for three (β0, β1)

pairs satisfying (16). Panel A shows that higher sensitivity hastens firm’s default, by triggering

higher payments as the firm’s situation deteriorates. However, it also hastens investment and

leads to a mitigation in excessive delay due to debt financing. Panel B corroborates our previous

intuition that higher sensitivity also leads to a larger investment amount. This figure highlights the

fundamental tradeoff regarding the optimal sensitivity of debt: on the one hand higher sensitivity

brings investment closer to first-best, but on the other hand it entails higher bankruptcy costs due

to earlier liquidation. In the following section these two forces balance out to yield the optimal

sensitivity of debt.

5.2 Capital structure

Figure 9 depicts total firm value TV (x, δ;β0, β1) = F (x, δ;β0, β1) +D(x, δ;β0, β1) as a function of

β0 and β1 for given initial profitability x and scale δ. Panel A shows that, in this instance, total
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parameter values are r = 0.12, σ = 0.10, µ = 0.01, β0 = 8, β1 = 0, k = 20, θ = 0.1 and δ = 3.

firm value has a unique interior optimum with β̂1 > 0. By identifying a capital structure that

maximizes total firm value and includes PSD, this section provides a rationale for the extensive use

of this debt instrument.

The optimal capital structure reflects a tradeoff among (a) the tax shield benefits, (b) expected

bankruptcy costs, and (c) the distortionary effect of debt on the investment policy. As shown

in Panel B, a change in performance sensitivity β1 (for β0 = β̂0 constant) has a nonmonotone

effect on total firm value: an increase in β1 leads to reduced debt payments and lower tax shield

benefits, a negative influence on total firm value, but to reduced bankruptcy risk and lower expected

bankruptcy costs, a positive influence. We observe a similar tension in Panel C which depicts total

firm value as a function of β0 (with β1 = β̂1 constant): a larger fixed debt payment β0 enhances

tax shield benefits, but increases the bankruptcy risk (and expected related costs) and exacerbates

underinvestment. Importantly, the interplay between these three forces has been studied in prior

literature highlighting other aspects of the debt contract. Hackbarth and Mauer (2012) explore the
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Figure 9. Optimal Capital Structure. Baseline parameter values are r = 0.05, σ = 0.11,
µ = 0.015, k = 20, θ = 0.1, δ = 2, and x = 5.5. Total firm value is maximized for β̂0 = 14.25, and
β̂1 = 0.11 in this example.

seniority of debt and characterize the optimal seniority of debt that maximizes firm value. Similarly,

Diamond and He (2014) obtain the optimal maturity of debt that trades off bankruptcy cost (b)

and underinvestment (c). They abstract away from the tax advantage of debt (a) in their model.

Our contribution complements this literature by exploring the sensitivity of debt that maximizes

firm value in a realistic environment with taxes, bankruptcy costs, and a growth opportunity with

a choice of timing and scale.

In summary, our model rationalizes the extensive use of performance sensitive clauses in debt

contracts (see, e.g., Asquith et al., 2005; Manso et al., 2010), as it delivered an optimal capital

structure with β̂1 > 0 for firms with available growth options. Importantly, because growth options

allow firms to grow faster, our model is consistent with the empirical finding that PSD is more

prevalent amongst fast-growth firms (see Table 2 in Manso et al. (2010)).
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Panel 1 with low µ Panel 2 with high σ Panel 3 with high k

Figure 10. Comparative Statics. Panel 1 depicts optimal capital structure for lower growth
firms (µ = 0.014). Panel 2 depicts optimal capital structure for higher volatility firms (σ = 0.115).
Panel 3 depicts optimal capital structure for firms with higher investment costs (k = 21). Baseline
parameter values are r = 0.05, σ = 0.11, µ = 0.015, k = 20, θ = 0.1, δ = 2, and x = 5.5.

5.3 Comparative Statics and Empirical Implications

Section 5.3 depicts the optimal capital structure chosen by three different types of firms relative to

our baseline case. For each case we show a “heat map” for total firm value as a function of (β0, β1),

where the blue dot corresponds to the capital structure that maximizes it. Taking comparative

statics with respect to the three key parameters characterizing a firm our model, namely the firm’s

profitability growth rate µ, its volatility σ, and its investment cost k, our model delivers the

following empirical implications:

First, firms with higher (lower) profitability growth stand more (less) to gain from available ex-

pansion opportunities. Because PSD brings the firm closer to the first best investment policy, our

model predicts a wider use of PSD for firms with higher growth rates. Panel 1 depicts the optimal

capital structure of a firm with lower profitability growth: β̂1 goes down from 0.11 to 0.07, as the

baseline growth rate µ decreases from 1.5% to 1.4%.

Second, firms with higher (lower) volatility are more (less) likely to default. Because PSD stipulates

higher debt payments as the firm’s profitability deteriorates, thereby triggering earlier liquidation,
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our model predicts a lower use of PSD for firms with higher volatility. Panel 2 depicts the optimal

capital structure of a firm with higher volatility: β̂1 goes down from 0.11 to 0.04 as the baseline

volatility σ increases from 11% to 11.5%.

Finally, firms with higher (lower) investment costs have more (less) to gain from available expansion

opportunities. Our model predicts that firms with higher investment costs will make less use of

PSD, as the benefit from implementing an optimal investment policy is relatively small. Panel 3

depicts the optimal capital structure of a firm with higher investment costs: β̂1 goes down from

0.11 to 0 as the baseline cost of increasing capacity k increases from 20 to 21. That is, in this

specific instance, the firm does not use any PSD and only issues straight debt.

6 Conclusion

This paper studies the effect of performance-sensitive debt on the shareholders’ decisions to default

and expand capacity. We show that a levered firm invests later and less than an unlevered firm.

However, PSD financing mitigates this underinvestment problem by bringing the firm’s investment

policy closer to the first-best investment policy. By reducing the misalignments of interests among

debt and shareholders, PSD mitigates the agency conflict between shareholders and debtholders

and enhances total firm value. This rationale underpins the widespread use of performance-pricing

loans.

Our modeling assumptions closely follow the stylized facts described by Asquith et al. (2005)

regarding performance sensitive clauses present in bank debt contracts. However, we speculate the

key intuition of our results carry over for richer type of debt contracts that feature lower interest

payments after good performance such as callable debt and finite maturity debt. Debt instruments

with equity features, e.g., convertible bonds, may also help align the interests of various parties.

Our model has certain limitations. We assumed homogeneous beliefs, risk aversion, and time pref-

erences among shareholders and debtholders. In particular, our intuition suggests that PSD can be

used as a mechanism to “bridge the gap in beliefs” between optimistic entrepreneurs and creditors;

similarly to how short-term debt operates in Landier and Thesmar (2008). A firm generally ex-
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pands capacity in stages, rather than once. The optimal exercise of sequential options will interact

with PSD financing. Relaxing this assumption would require refining the techniques developed

by Bensoussan and Chevalier-Roignant (2018). Finally, we assumed away liquidity considerations,

implicitly assuming that the firm can finance its expansion by reducing dividends and/or issuing

new equity acquired by existing shareholders. These directions present opportunities for future

research, yet relaxing these assumptions remains a major (technical) challenge.
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Appendices

A Proof of Theorem 1

VI. For the problem (5), the DP equation is a variational inequality (VI), which reads

min{ϕ(x, δ);Lϕ(x, δ)− π(x, δ)} = 0, a.e. x (17)

with L given in (41). A boundary condition is limx↑∞
ϕ(x,δ)
η1xγδε)

= 1. We conjecture the existence

of a free boundary x1(·) such that the continuation set is C1 =
{

(x, δ) ∈ R2
+ | x > x1(δ)

}
and we

consider the free-boundary problem (FBP)

ϕ(x, δ) = 0, ∀x < x1(δ), (18a)

Lϕ(x, δ) = π(x, δ), ∀x ≥ x1(δ) (18b)

ϕ
(
x1(δ), δ

)
= 0, (18c)

∂+
x ϕ
(
x1(δ), δ

)
= 0. (18d)

We know that x 7→ η0 + η1x
√
δ is a particular solution of (18b). The function

Q(γ) := r − γµ− 1

2
γ (γ − 1)σ2 (19)

has two distinct roots, γB < 0 and γA > 1, given in (8). We are interested in comparative statics

of γA/B with respect to the parameters p ∈ {r, µ, σ}. We note that Q is a function of both p and

γ and that γA/B is a root of Q which also depends on p. We now write

Q
(
p, γA/B(p)

)
= 0.

By total differentiation and the chain rule,

∂Q
∂p

(
p, γA/B(p)

)
+
∂Q
∂γ

(
p, γA/B(p)

)
×

dγA/B

dp
(p) = 0, p ∈ {r, µ, σ},
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so that

dγA/B

dp
(p) = −

∂Q
∂p

(
p, γA/B(p)

)

∂Q
∂γ

(
p, γA/B(p)

) , p ∈ {r, µ, σ},

We already know that γ 7→ ∂Q
∂γ

(
p, γ
)

is positive at γB < 0 and negative at γA > γ?. Besides,

from (19),

∂Q
∂p

(
p, γ
)

=





> 0, p = r,

< 0, p ∈ {µ, σ}.

It follows that

dγA
dr

(r) > 0,
dγA
dµ

(µ) < 0,
dγA
dσ

(σ) < 0 (20)

dγB
dr

(r) < 0,
dγB
dµ

(µ) > 0,
dγB
dσ

(σ) > 0.

Given the solution to the homogenous ODE, it follows that the ODE (18b) admits a solution of

the form

ϕ(x, δ) = η0 + η1x
√
δ +A1(δ)xγA +B1(δ)xγB , x ≥ x1(δ). (21)

The three unknowns A(·), B1(·) and x1(·) are obtained from the boundary conditions. We set

A1(·) ≡ 0. For a given δ > 0, it obtains from (18c)–(18d) that x1(δ) is a root of x 7→ γB−1
γB

η1xδ
1
2 +η0

in R+. Because γ ∈ (0, γA), γB−1
γB

η1

√
δ > 0 and thus x 7→ γB−1

γB
η1xδ

1
2 + η0 increases on R+ from

η0 < 0 to ∞, proving the uniqueness of a root in (9b). By differentiation, x′1(δ) < 0, whence x1(·)

is monotone decreasing on R+ from ∞ to 0 and invertible, with its monotone increasing inverse

function δ1(·) given by

δ1(x) :=
(
− η0

η1

γB
γB − 1

1

x

)2
. (22)

It now obtains by differentiation that

ϕx(x, δ) = η1δ
1
2 + γBB1(δ)xγB−1, x ≥ x1(δ), (23)
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so that B1(δ) obtains (18d) as being equal to

B1(δ) =
η0

γB − 1

(δ 1
2

λ

)γB
, (24)

where

λ := −η0

η1

γB
γB − 1

[> 0] (25)

In summary, we just established that the function ϕ in (9a) solves the FBP (18a)–(18d). The proof

that the solution ϕ to the FBP (18a)–(18d) solves the VI is fairly standard (and omitted here).

We note that

ϕδ(x, δ) =
η1

2

[
xδ−

1
2 − λ1−γBδ−1+ 1

2
γBxγB

]
1[δ1(x),∞)(δ), (26)

ϕδ(x, δ) =
η1

2
δ−

1
2xγ
[
1− λ1−γBδ

γB−1

2 xγB−1
]
1[δ1(x),∞)(δ). (27)

B Proof of Theorem 2

Local maximum at δ3(x). Because we can write (10) as

Φ(x, δ) = sup
∆≥δ

{
ϕ(x,∆)− k∆

}
+ kδ, (28)

it is meaningful to study δ 7→ ϕ(x, δ)− kδ. We have

ϕδδ(x, δ) =
1

2
η1

(
− 1

2
δ−

3
2x+ (1− γB

1

2
)λ1−γBδ−

3
2
γBxγB

)
1[δ1(x),∞)(δ)

= −1

4
η1δ
− 3

2x

(
1− (2− γB)λ1−γBδ−

1
2

(1−γB)xγB−1

)
1[δ1(x),∞)(δ).

We obtain

ϕδδ(x, δ) = −1

4
η1δ
− 3

2x

[
1−

( [2− γB]
2

1−γB δ1(x)

δ

) 1−γB
2

]
1[δ1(x),∞)(δ). (29)
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So the function δ 7→ ϕδ(x, δ) vanishes on (0, δ1(x)), increases on [δ1(x), [2− γB]
2

1−γB δ1(x)] and

decreases on [[2− γB]
2

1−γB δ1(x),∞). The global maximum attained at [2− γB]
2

1−γB δ1(x) is

ϕδ

(
x, [2− γB]

2
1−γB δ1(x)

)
=

1

4
η1

(
λ [2− γB]

1
1−γB )−1x2 1− γB

1− 1
2γB

.

We define the point x? in (11). We distinguish several cases:

A. If x ≤ x?, ∂δϕ
(
x, [2− γB]

2
1−γB δ1(x)

)
≤ k and so δ 7→ ϕ(x, δ) − kδ is decreasing in [0,∞).

From (28),

Φ(x, δ) = ϕ(x, δ), if x ≤ x?. (30)

B. If x > x?, ϕδ(x, δ) = k has two solutions in [δ1(x),∞), which we note δ3(x) and δ̃3(x) with

δ3(x) > [2− γB]
2

1−γB δ1(x) > δ̃3(x), x > x?. (31)

The function δ 7→ ∂δϕ(x, δ) increases at δ̃3(x) and decreases at δ3(x) and so the function

δ 7→ ϕ(x, δ) − kδ attains a minimum at δ̃3(x) and a unique local maximum at δ3(x). By

definition of δ3(x) and total differentiation,

δ′3(x) = −ϕδx
(
x, δ3(x)

)

ϕδδ
(
x, δ3(x)

) . (32)

It obtains from (29) and (31) that ϕδδ
(
x, δ3(x)

)
< 0. Furthermore,

ϕxδ(x, δ) =
1

2
η1δ
− 1

2

[
1− γB

(
λδ−

1
2

)1−γB
x−1+γB

]
, (33)

which is positive. So, δ′3(x) in (32) is strictly positive and δ3(·) monotone increasing on

(x?,∞). We note that δ̃3(x?) = δ2(x?) = δ3(x?) and denote this value δ?. To show that

δ3(x)→∞ as x→∞, we note that

1

2
η1

[
δ3(x)−

1
2x− λ1−γBδ3(x)−1+ 1

2
γB
]

= k. (34)
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It follows from δ3(x) > δ? that δ3(x)−1+ 1
2
γBx ↓ 0 as x ↑ ∞. Therefore,

δ3(x)
1
2 ≥ η1

2k
x− C,

where C is a constant.

We can now conclude that:

Lemma. (i) For any x < x∗ the function δ 7→ ϕ(x, δ) − kδ admits a unique local and global

maximum in [0,∞), at δ = 0.

(ii) For any x ≥ x∗ the function δ 7→ ϕ(x, δ)−kδ admits a unique local maximum δ3(x) in [δ1(x),∞).

Moreover, the function δ3(·) is monotone increasing on its domain [x?,∞) from δ? given in (13)

to ∞.

Global maximum. We introduce the function

φ(x) := ϕ(x, δ3(x))− kδ3(x), (35)

which is defined on the domain (x?,∞). The local maximum δ3(x) in case (ii) of the Lemma above

will not be a global maximum unless the value attained at that local maximum, φ(x), is above the

other local maximum 0 attained at δ = 0. We thus study the sign of φ(·) on the domain (x?,∞).

It follows from total differentiation and definition of δ3(x) that φ′(x) = ϕx(x, δ3(x)). It is immediate

from (9a) that φ′(x) ≥ 0 and, hence, that φ(·) is monotone increasing.

From (9a) and (34), we can re-write the function (35) as

φ(x) = η0 +
1

2
η1δ3(x)

1
2x+

η0(1− 1
2γB)

γB − 1

(δ3(x)
1
2x

λ

)γB
.

We define

δ3(x?) = δ? :=
(λ [2− γB]

1
1−γB

x?

)2
.
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It follows that

φ(x?) = η0 +
1

2
η1λ [2− γB]

1
1−γB +

η0

2

[2− γB]
1

1−γB

γB − 1
,

which we can simplify to

φ(x?) = η0

[
1− 1

2

(
2− γB

) 1
1−γB

]

thanks to (11) and (25). Because η0 < 0, we have

sgn
{
φ(x?)

}
= sgn

{
2− γB − 21−γB}.

The second-order derivative of x 7→ 2 − x − 21−x is − ln(2)221−x < 0, so the first-order derivative

x 7→ −1 + ln(2)21−x is monotone decreasing on (−∞, 0) from +∞ to a positive number. It follows

that the function x 7→ 2 − x − 21−x is monotone increasing on (−∞, 0) from −∞ to 0. Because

γB < 0, it can assert that φ(x?) < 0.

We now remark that the function φ(x) → ∞ as x → ∞ because δ3(x) → ∞. So we can now

conclude that:

Lemma. The function φ(·) defined in (35) is monotone increasing on [x?,∞). There is a unique

point x?? > x? such that φ(x) Q 0 iff x Q x??.

From the above Lemma, we conclude that δ3(x) will be a global maximum iff x ≥ x??.

NPV upon expansion. We now want to determine Φ in (10):

1) We recall the expression for Φ in (30) if x ≤ x?: .

2) If x ≥ x??, then φ(x) ≥ 0. The function Φ defined in (10) is thus

Φ(x, δ) =





φ(x) + kδ, δ < δ3(x),

ϕ(x, δ), δ ≥ δ3(x).

(36)

The function δ3(·) is monotone increasing on (x?,∞) from δ? to ∞, so its inverse x3(·) is

monotone increasing on (δ?,∞). We now assume δ ≥ δ?. Then x3(δ) ≥ x3(δ?) = x?. We can
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now re-write (36) as

Φ(x, δ) =





φ(x) + kδ, x3(δ) < x,

ϕ(x, δ), x3(δ) ≥ x,
(37)

We can now assert the expression for Φ in (14) in the case δ ≥ δ?. If δ ≥ δ?, we see from (37) that

Φ(·, δ) is continuous; it is also continuously differentiable by the definitions of φ(·) in (35) and of

δ3(·). This completes the proof of Theorem 2.

C Proof of Corollary 1

Suppose that (x, δ) is in the positive NPV region, i.e., that

Φ(x, δ;β0) > ϕ(x, δ;β0)

which implies that ∃ξ > 0 such that

ϕ(x, δ + ξ;β0)− kξ > ϕ(x, δ;β0).

We claim that

d

dβ0

(
ϕ(x, δ + ξ;β0)− ϕ(x, δ;β0)

)
< 0, (38)

which would imply that

ϕ(x, δ + ξ;β′0)− kξ > ϕ(x, δ;β′0),

for β′0 < β0. Therefore

Φ(x, δ;β′0) > ϕ(x, δ;β′0)

which means that (x, δ) ∈ I(β′0, β1).

We now prove claim (38). In order to prove the claim we precompute the following quantities:

dη0

dβ0
= −1− θ

r
< 0, dη0

dβ1
= 0
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dη1

dβ0
= 0, dη1

dβ1
= 1−θ

Q(γ) > 0

dλ

dβ0
= − 1

η1

γβ
γβ − γ

dη0

dβ0
> 0, dλ

dβ1
= η0

η21

γβ
γβ−γ

dη1
dβ1

< 0

Replacing from Theorem 1 we obtain that:

ϕ(x, δ+ξ;β0)−ϕ(x, δ;β0) = η0+η1x
γ(δ+ξ)

1
2 +

η0γ

γB − γ

(
x

x1(δ + ξ)

)γB
−kξ−η0−η1x

γδ
1
2− η0γ

γB − γ

(
x

x1(δ)

)γB

(39)

= η1x
γ
[
(δ + ξ)

1
2 − δ 1

2

]
+

η0γ

γB − γ

[(
x

x1(δ + ξ)

)γB
−
(

x

x1(δ)

)γB]
− kξ

where x1(δ) = ( λ

δ
1
2

)
1
γ . Deriving with respect to β0 yields:

dη0

dβ0︸︷︷︸
−

γxγβ

γB − γ︸ ︷︷ ︸
−

[
(x1(δ + ξ))−γB − (x1(δ))−γB

]
︸ ︷︷ ︸

−

+

+
η0γx

γβ

γB − γ︸ ︷︷ ︸
+

(
−γB
γ

)

︸ ︷︷ ︸
+

[
x1(δ + ξ)−γB − x1(δ)−γB

]
︸ ︷︷ ︸

−

1

λ

dλ

dβ0
< 0

︸ ︷︷ ︸
+

Similarly, suppose that (x, δ) is in the positive NPV region, i.e., that

Φ(x, δ;β1) > ϕ(x, δ;β1)

which implies that ∃ξ > 0 such that

ϕ(x, δ + ξ;β1)− kξ > ϕ(x, δ;β1).

We claim that

d

dβ1
(ϕ(x, δ + ξ;β1)− ϕ(x, δ;β1)) > 0, (40)

which would imply that

ϕ(x, δ + ξ;β′1)− kξ > ϕ(x, δ;β′1),
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for β′1 > β1. Therefore

Φ(x, δ;β′1) > ϕ(x, δ;β′1)

which means that (x, δ) ∈ I(β0, β
′
γ).

Deriving with respect to β0 yields:

dη1

dβ1
x

︸ ︷︷ ︸
+

[
(δ + ξ)

1
2 − δ 1

2

]

︸ ︷︷ ︸
+

+

+
η0γx

γβ

γB − γ︸ ︷︷ ︸
+

(
−γB
γ

)

︸ ︷︷ ︸
+

[
x1(δ + ξ)−γB − x1(δ)−γB

]
︸ ︷︷ ︸

−

1

λ

dλ

dβ1︸ ︷︷ ︸
−

> 0

D Appendix for Section 4.3

We now discuss the approach to solve for shareholder value F in (3). The difference between

shareholder value in (3) and the NPV from immediate, optimal scale expansion in (10), namely

χ := F − Φ, captures the flexibility value (resp., “option time value”) to use the terminology of

real (resp., financial) options. If we make the assumption δ ≥ δ?, then the function Φ(·, δ) is

continuously differentiable (see Theorem 2). We introduce the second-order differential operator L

given by

Lf(x) := rf(x)− µx f ′(x)− 1

2
σ2x2 f ′′(x). (41)

We interpret −LΦ as the excess capital gain from delaying and Π := π − LΦ as the temporary

economic profit or loss accruing to shareholders when the management delays decision making.

Using standard techniques (see the appendix), we can re-write the stochastic control problem (3)

as an optimal stopping problem, namely

χ(x, δ) = sup
τ

Ex
∫ τ

0
e−rtΠ(Xt, δ) dt for δ ≥ δ?. (42)

We assume that the option value χ(x, δ) vanishes as x ↓ 0. We will also need to ensure that the

payoff in (42) is finite. If we manage to solve (42), we can easily recover the value function F in
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(3) by using F = χ+ Φ, with Φ given in (14).

We use dynamic programming to solve (42). The dynamic programming equation corresponding

to this optimal stopping problem is

0 = min{χ;Lχ−Π} for δ ≥ δ? and a.e. x > 0. (43)

The equation (43) has an appealing economic interpretation. A first inequality, χ ≥ 0, asserts that

flexibility is of value to shareholders. A second inequality, Lχ ≥ Π, states that the total return

from holding the real option (weakly) exceeds the FCFE and the capital gain from delaying the

exercise. Finally, the condition χ×
[
Lχ−Π

]
= 0 asserts that the decisions to stay put or act (i.e.,

default or expand) are mutually exclusive. Below, we express sufficient conditions under which the

following theorem holds:

Theorem 3 (Flexibility value χ for δ > δ?). The continuation set C for the optimal stopping

problem (42) is of the form
(
x0(δ), x5(δ)

)
where x0(δ) and x5(δ) are free boundaries satisfying

x0(δ) < x1(δ) < x3(δ) < x5(δ). (44)

The flexibility value χ(·, δ) in (42) is continuously differentiable and given by

χ(x, δ) =





0, 0 ≤ x < x0(δ),

2

(γA − γB)σ2

[
xγB

∫ x

x0(δ)

Π(z, δ)

zγB+1
dz + xγA

∫ x5(δ)

x

Π(z, δ)

zγA+1
dz

]
, x0(δ) ≤ x ≤ x5(δ),

0, x > x5(δ).

(45)

Before proving this theorem we provide some intuition for the growth condition, namely γA >

2. Formally, for very large profitability x, the default option term in (9a) becomes negligible.

Consequently, for large profitability x, the amount δ3(x)—obtained by the first-order condition

ϕδ
(
x, δ3(x)

)
= k—increases in a quadratic manner. That is, the FCFE x

√
δ3(x) grows quadrat-

ically. The condition γA > 2 ensures that the FCFE stream has a finite perpetuity value. The

condition γA > 2 is less likely to hold when the parameters µ and σ take on larger values; this is

because an increase in any of them leads to a greater economic profit from delaying. By contrast,
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the condition is more likely to hold when the discount rate r increases because a delayed cash flow

yields a lower present value.

-10

-8

-6

-4

-2

0

2

4

6

Instantaneous Profit/Losses: Π(x, δ)

x1(δ) x3(δ) x4(δ) x5(δ)x0(δ)

Figure 11. Variations of the function x 7→ Π(x, δ) for δ ≥ δ? and γA > 2. The parameter
values are r = 0.12, σ = 0.10, µ = 0.01, k = 20, θ = 0.1. Debt parameters are β0 = 8 and β1 = 0.

Figure 11 plots the function Π(·, δ)—assuming δ ≥ δ? and γA > 2—and helps us intuit the threshold

ranking in (44). We recall the threshold x1(δ) in (9b) under which a firm that cannot expand

defaults and the NPV threshold x3(δ). The firm incurs temporary economic losses when it decides

not to default for low profitability x < x1(δ) or when it decides not to expand for large profitability

x > x4(δ). When x1(δ) < x < x3(δ) the firm earns no adjusted profits, but prefers to delay in

the expectation of making future profits. As per Figure 11, the firm makes an economic profit

from delaying if x3(δ) < x < x4(δ). Losses may be conjunctural: the shareholders may accumulate

economic losses in the short or medium term, yet may expect a recovery [if 0 < x < x1(δ)] or

a downturn [if x > x4(δ)]. The shareholders will therefore delay until the economic losses are

sufficient—namely, when 0 < x < x0(x) or x > x5(δ)—to justify making an irreversible decision.

This logic is consistent with classical real options reasoning (see, e.g., McDonald and Siegel, 1986),

but here applied to a more complex setup involving decisions on the expansion (τI) and default

times (τD) as well as on the optimal scale expansion (ξ).
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D.1 Proof of Theorem 3

Problem reformulation. Because ξ is a random variable that is FτI -measurable, we can re-write

the stochastic control problem (3) thanks to (10) as

F (x, δ) = sup
τI ,τD

Ex,δ
[ ∫ τI∧τD

0
e−rtπ(Xt, δ) dt+ e−rτIΦ(XτI , δ)1(0,τD)(τI)

]
.

Further, if we introduce τ := τI ∧ τD, we can express (3) as an optimal stopping problem:

F (x, δ) = sup
τ

Ex,δ
[ ∫ τ

0
e−rtπ(Xt, δ) dt+ e−rτΦ(Xτ , δ)

]
. (46)

We recall the operator L in (41). If δ ≥ δ?, then Φ(·, δ) is C1, so we can apply Dynkin’s formula

(see Bensoussan and Lions, 1982, Thm. 8.5, pp. 185–86) obtaining

Ex,δ
[
e−rτΦ(Xτ , δ)

]
= Φ(x, δ)− Ex,δ

∫ τ

0
e−rtLΦ(Xt, δ)dt.

for an arbitrary F-stopping time τ . The expression (42) readily obtains once we introduce the

functions χ := F − Φ and Π := π − LΦ. For convenience of notations, we drop the dependence of

the thresholds and functions on the parameter δ when there is no confusion.

Study of the function Π. From Theorems 1 and 2,

Π(x) = rη0 + η1(r − µ)x
√
δ, x < x1.

We further note that Q(γB) = 0 to obtain

Π(x) = 0, x1 < x < x3.
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The case x > x3 requires tedious calculations. By total differentiation of φ(·) in (35), we obtain

φ′(x) = ϕx(x, δ3(x)) + ϕδ(x, δ3(x))δ′3(x),

φ′′(x) = ϕxx(x, δ3(x)) + 2ϕxδ(x, δ3(x))δ′3(x) + ϕδδ(x, δ3(x))δ′3(x)2 + ϕδ(x, δ3(x))δ′′3(x).

It follows that

Lφ(x) =
[
rϕ(x, δ3(x))− µxϕx(x, δ3(x))− 1

2
σ2x2ϕxx(x, δ3(x))

]
− k
[
rδ3(x)− µxδ′3(x)− 1

2
σ2x2δ′′3(x)

]

− µxϕδ(x, δ3(x))δ′3(x)− 1

2
σ2x2

[
2ϕxδ(x, δ3(x))δ′3(x) + ϕδδ(x, δ3(x))δ′3(x)2 + ϕδ(x, δ3(x))δ′′3(x)

]
.

We recall that [x3,∞) is a subset of [x1,∞), the continuation region for (5) given in Theorem 1.

Hence,

rϕ(x, δ3(x))− µxϕx(x, δ3(x))− 1

2
σ2x2ϕx(x, δ3(x)) = rη0 + (r − µ)η1x

√
δ3(x).

Consequently,

Lφ(x) =rη0 +Q(γ)η1x
√
δ3(x)− rkδ3(x)

− µxδ′3(x)
[
ϕδ(x, δ3(x))− k

]
− 1

2
σ2x2δ′′3(x)

[
ϕδ(x, δ3(x))− k

]

− 1

2
σ2x2δ′3(x)

[
2ϕxδ(x, δ3(x)) + ϕδδ(x, δ3(x))δ′3(x)

]
.

It now obtains from the definition of δ3(x) and (32) that

Lφ(x) =rη0 + (r − µ)η1x
√
δ3(x)− rkδ3(x) +

1

2
σ2x2ϕxδ(x, δ3(x))2

ϕδδ(x, δ3(x))
. (47)

Substituting (47) into the expression for Π yields

Π(x) = −(r − µ)η1x
(√

δ3(x)−
√
δ
)

+ rk
(
δ3(x)− δ

)
− 1

2
σ2x2ϕxδ(x, δ3(x))2

ϕδδ(x, δ3(x))
, x > x3. (48)
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To summarize, the function g can be written as

Π(x) =





rη0 + η1(r − µ)x
√
δ, x < x1,

0, x1(δ) < x < x3,

−(r − µ)η1x
(√

δ3(x)−
√
δ
)

+ rk
(
δ3(x)− δ

)
− 1

2σ
2x2 ϕxδ(x,δ3(x))2

ϕδδ(x,δ3(x)) , x > x3.

Discontinuities arise because Φ(·, δ) is not C2 at x1 and x3.

We now discuss the sign of Π(·). The function Π(·) is monotone increasing on (0, x1). It now

obtains from (9b), (19) and (25) that

Π(x) <
η0

γB − 1

(
γBµ− r

)
< 0, if x < x1.

Further, it is immediate from (48) that

Π
(
x3 +

)
= −1

2
σ2x2ϕxδ(x3, δ)

2

ϕδδ(x3, δ)
> 0.

We want to study the behavior of Π(·) as x→∞. From the definition of δ3(x), we have

kδ3(x) =
η1

2

√
δ3(x)x

[
1−

(δ1(x)

δ3(x)

) 1−γB
2

]
. (49)

We have from (29) and (33) that

ϕxδ(x, δ3(x))2

ϕδδ(x, δ3(x))
=− η1

√
δ3(x)

x

(
1− γB

[
λx−1δ3(x)−

1
2

]1−γB)2

1−
[

[2− γB]
1

1−γB λx−1δ3(x)−
1
2

]1−γB

From (22)

ϕxδ(x, δ3(x))2

ϕδδ(x, δ3(x))
=− η1

√
δ3(x)

x

(
1− γB

(
δ1(x)
δ3(x)

) 1−γB
2

)2

1− [2− γB]
(
δ1(x)
δ3(x)

) 1−γB
2

(50)
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We recall that δ1(·) vanishes as x→∞ while δ3(·) goes to ∞. From (49) and (50) we conclude

Π(x)

η1x
√
δ3(x)

→ −r − σ
2

2
− µ, as x→∞. (51)

Furthermore, we can infer from (49) that

√
δ3(x)

x
→ η1

2k
as x→∞. (52)

Combining the limits (51) and (52), we conclude

Π(x)

x2
→ −Q(2)

4k
η2

1 as x→∞. (53)

We know that

Q(2) Q 0 ⇐⇒ 2 R γA.

From (53) we can now assert that Π(x)
x2

goes to a negative (resp., positive) constant if γA > 2 (resp.,

0 < γA < 2). To simplicity, we exclude the case γA = 2. We conclude that:

Lemma. The function Π(x) is discontinuous at x1 and x3. It is negative on (0, x1) and vanishes

on (x1, x3). It is positive at the right of x3 and goes to −∞ if γA > 0 and to +∞ if γA < 2.

If δ ≥ δ? and γA > 2, we define x4 > x3 as the point such that Π(x4) = 0 and Π(x) < 0 for all

x > x4. We thus established the pattern in Figure 11 except for the sign in x3 < x < x4 which we

could not prove.

Restriction γA > 2. Given optionality, the value function χ(·) in (42) must weakly exceed

¯
χ(x) = Ex

∫ ∞

0
e−rtg

(
Xt

)
dt. (54)

The functional representation of (54) is the solution to the second-order ODE

L
¯
χ(x) = Π(x), for δ ≥ δ? (55)
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while the functional representation of (42) is the solution χ to the VI (43).

Given the behavior of Π(·) in (53), the function
¯
χ(·) in (54) is finite iff

Ex
∫ ∞

0
e−rtX2

t dt <∞. (56)

But we know that

Ex
∫ ∞

0
e−rtX2

t dt = x2

∫ ∞

0
e−Q(2)tdt.

It follows that the condition (56) is satisfied iff Q
(
2
)
> 0, i.e., iff γA > 2. If 0 < γA < 2, the

solution to the VI (43) does not have the probabilistic interpretation (42).

Free-boundary problem. To solve the VI (43), we first conjecture a structure for the continu-

ation set, namely of the form (x0, x5) with free boundaries x0 and x5 such that

0 < x0 < x1 < x4 < x5. (57)

The corresponding FBP is

Lχ(x) = Π(x), x ∈ (x0, x5), (58a)

χ(x0) = χ(x5) = 0, [value matching (×2)] (58b)

χ′(x0) = χ′(x5) = 0. [smooth pasting (×2)] (58c)

As usual, we guess a solution to the ODE (58a) of the form

χ(x) = A(x)xγA +B(x)xγB with A′(x)xγA +B′(x)xγB ≡ 0 for x ∈ (x0, x5). (59)

It follows from (58a) that

A′(x) = − 2

(γA − γB)σ2

Π(x)

xγA+1
and B′(x) =

2

(γA − γB)σ2

Π(x)

xγB+1
. (60)
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The smooth-fit conditions (58b) and (58c) imply that

A(x0) = B(x0) = A(x5) = B(x5) = 0.

By integrating (60), this is equivalent to defining x0 and x5 as solutions to

∫ x5

x0

Π(ξ)

ξγB+1
dξ = 0 and

∫ x5

x0

Π(ξ)

ξγA+1
dξ = 0. (61)

We now state conditions to solve (61). We first assume that12

∫ x4

x1

Π(ξ)

ξγB+1
dξ =

∫ x4

x3

Π(ξ)

ξγB+1
dξ > 0. (62)

We may then define the term

x† := inf

{
0 < z < x1

∣∣∣∣
∫ x4

z

Π(ξ)

ξγB+1
dξ > 0

}
. (63)

We may have x† = 0; if it is not the case, we define 0 < x† < x1 as the solution to
∫ x4
x†

Π(ξ)ξ−γB−1dξ = 0.

For a given u ∈ (x†, x1), the function v 7→
∫ v
u

Π(z)

zγB+1 dz is monotone decreasing on its domain of

definition [x4,∞) from a strictly positive amount to −∞. This function therefore admits a unique

root v(u) in [x4,∞), satisfying ∫ v(u)

u

g
(
ξ
)

ξγB+1
dξ = 0.

We understand the mapping u 7→ v(u) as a function from (x†, x1) to [x4,∞). By the chain’s rule,

v′(u) =
Π(u)

Π(v(u))

(
v(u)

u

)γB+1

.

It follows from u < x1 (resp. v(u) > x4) that Π(u) < 0 (resp. Π(v(u)) < 0); hence, the function

v(·) is monotone increasing.

12We could not specify the sign of Π(x, δ) in
(
x3(δ), x4(δ)

)
. We instead made an assumption in ?? that, in

probabilistic terms, allows an episode when the firm incurs an economic loss [Π(Xt, δ) < 0] as long as the present
value is positive when profitability (Xt; t ≥ 0) remains in the range

(
x3(δ), x4(δ)

)
. The condition Π(x, δ) > 0 for all

x ∈
(
x3(δ), x4(δ)

)
is stronger and subsumed into our assumption.
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We next define the function

G(u) :=

∫ v(u)

u

Π(ξ)

ξγA+1
dξ. (64)

We can compute:

G′(u) =
Π(u)

uγA+1

[(v(u)

u

)γB−γA − 1

]
.

Because Π(u) < 0 and v(u) > u, it obtains that G′(u) > 0. Consequently, the function G(·) is

monotone increasing on its domain (x†, x1). For this function to have a unique root, it is necessary

and sufficient that

G(x†) < 0 and G(x1) > 0. (65)

If x† = 0, then the first assumption G(a) < 0 is satisfied because G(0) = −∞.

The above ensures the existence and uniqueness of solutions x0 and x5 to the equations (61). We

can then state the solution to the FBP (58a)–(58c) is continuously differentiable and given by (45).

Optimality. It remains to prove that

χ(x) ≥ 0, x ∈
(
x0, x5

)
(66a)

Lχ(x) ≥ Π(x), x ∈
(
0, x0

)
∪
(
x5,∞

)
(66b)

for C1 solution χ of the FBP (58a)–(58c) to solve the VI (43). Proving (66b) is immediate because

χ(x) = 0 and Π(x) < 0 in the stopping regions. To prove (66a) we consider subregions in turn:

a)
(
x0, x3

)
. It follows from (58b)–(58c) that

Lχ(x0+) = −1

2
σ2x2

0χ
′′(x0+).

Because Lχ
(
x0+) = Π(x0) < 0, it follows that χ′′(x0+) > 0. Therefore, for ε sufficiently

small, χ′′(x0 + tuε) > 0 with t, u ∈ (0, 1). If we integrate u 7→ χ′′
(
x0 + tuε

)
and then

t 7→ χ′
(
x0 + tε

)
on the interval [0, 1], then we obtain

χ(x0 + ε) = ε2

∫ 1

0

∫ 1

0
tχ′′
(
x0 + tuε) dtdu, ε > 0
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because of (58c)–(58c). Consequently, χ(x0+) > 0. Necessarily, the function χ(·) has positive

local maxima in
(
x0, x5

)
, possibly a maximum. At a local maximum z, we necessarily have

Lχ(z) > 0. Because Lχ(x) = Π(x) ≤ 0 in (x0, x3), it follows from the maximum principle that

there is no local maximum in (x0, x3). Therefore, χ(·) increases on (x0, x3) taking positive

values; in particular, χ(x3) > 0.

b) In the case
(
x4, x5

)
, we follow a reasoning similar to a). We have

χ
(
x5 − ε

)
= ε2

∫ 1

0

∫ 1

0
tχ′′(x5 − tuε) dt du, ε > 0.

We proceed similarly obtaining that χ(x5−) > 0. Because Lχ(x) = Π(x) < 0 on (x4, x5), it

follows from the maximum principle that there is no local maximum in (x4, x5). Consequently,

χ(·) decreases on (x4, x5) taking positive values and χ(x4) > 0.

c) The function χ(·) on
(
x3, x4

)
solves Lχ(x) = Π(x) with boundary conditions χ

(
x3

)
> 0 and

χ
(
x4

)
> 0. We assume that

the solution on (x3, x4) of LΓ(x) = Π(x) with boundary

conditions Γ(x3) = 0 and Γ(x4) = 0 is strictly positive. (67)

It is immediate that χ(x) > Γ(x) on
(
x3, x4

)
and, under the assumption (67), that χ(x) > 0

on
(
x3, x4

)
.

We conclude:

Theorem (Solution of the VI for δ ≥ δ? for γA > 2.). Assume that Π(·) satisfies (62). We define

x† and G(·) in (63) and (64) respectively. We make the assumptions (65) and (67). Then, x0 and

x5 solve equation (61) uniquely and satisfy (57). Besides, the function χ given in (45) is a C1

solution of the FBP (58a)–(58c) and of the VI (43).

We again omit the verification theorem, leveraging on the known connection between the solution

to a VI and the value function of optimal stopping (see Bensoussan and Lions, 1982).
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E Value of debt

The functional representation of the function D(·) defined in (4) is that of the solution D(·) to the

Dirichlet problem:

D(x0) = (1− α)
x0

√
δ

r − µ (68a)

LD(x) = β0 − β1x
√
δ x0 < x < x5, (68b)

LD(x) = β0 − β1x
√
δ3(x) x ≥ x5, (68c)

lim
x↑∞

D(x)

x2
= constant > 0 (68d)

We assume continuity at x0 and x5.

We conjecture the solutions

D(x) = a(x)xγA + b(x)xγB with a′(x)xγA + b′(x)xγB ≡ 0 for (68b)

D(x) = a?(x)xγA + b?(x)xγB with a′?(x)xγA + b′?(x)xγB ≡ 0 for (68c)

It follows respectively from (68b) and (68c) that

a′(x) = − 2

(γA − γB)σ2

β0 − β1x
√
δ

xγA+1
b′(x) =

2

(γA − γB)σ2

β0 − β1x
√
δ

xγB+1

a′?(x) = − 2

(γA − γB)σ2

β0 − β1x
√
δ3(x)

xγA+1
b′?(x) =

2

(γA − γB)σ2

β0 − β1x
√
δ3(x)

xγB+1

It follows by integration and from continuity at x5 that

a?(x) =
2

(γA − γB)σ2

∫ ∞

x

β0 − β1z
√
δ3(z)

zγA+1
dz x ≥ x5,

a(x) =
2

(γA − γB)σ2

[ ∫ x5

x

β0 − β1z
√
δ

zγA+1
dz +

∫ ∞

x5

β0 − β1z
√
δ3(z)

zγA+1
dz

]
, x0 < x < x5

b(x) = b(x0) +
2

(γA − γB)σ2

∫ x

x0

β0 − β1z
√
δ

zγB+1
dz x0 < x < x5,

b?(x) = b(x0) +
2

(γA − γB)σ2

[ ∫ x5

x0

β0 − β1z
√
δ

zγB+1
dz +

∫ x

x5

β0 − β1z
√
δ3(z)

zγB+1
dz

]
x ≥ x5.

49

                  



We know that

x
√
δ

r − µ =
2

(γA − γB)σ2

[
xγB

∫ x

0

z
√
δ

zγB+1
dz + xγA

∫ ∞

x

z
√
δ

zγA+1
dz

]

Therefore, by continuity at x0, it must be that

b(x0) =
2

(γA − γB)σ2

∫ x0

0

(1− α)z
√
δ

zγB+1
dz.

The expression for D(x, δ) obtains:

D(x, δ) =





(1− α)x
√
δ

r−µ , x ≤ x0(δ),

2
(γA−γB)σ2

[
xγB

∫ x0
0

(1−α)z
√
δ

zγB+1 dz + xγB
∫ x
x0

β0−β1z
√
δ

zγB+1 dz

+xγA
∫ x5
x

β0−β1z
√
δ

zγA+1 dz +
∫∞
x5

β0−β1z
√
δ3(z)

zγA+1 dz

]
, x0(δ) < x < x5(δ),

2
(γA−γB)σ2

[
xγB

∫ x0
0

(1−α)z
√
δ

zγB+1 dz + xγB
∫ x5
x0

β0−β1z
√
δ

zγB+1 dz

+xγB
∫ x
x5

β0−β1z
√
δ3(z)

zγB+1 dz + xγA
∫∞
x

β0−β1z
√
δ3(z)

zγA+1 dz

]
, x ≥ x5(δ).

(69)
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