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Abstract

We consider a Dynamic Voltage and Frequency Scaling (DVFS) processor
executing jobs with obsolescence deadlines: A job becomes obsolete and is
removed from the system if it is not completed before its deadline. The
objective is to design a dynamic speed policy for the processor that minimizes
its average energy consumption plus an obsolescence cost per deadline miss.
Under Poisson arrivals and exponentially distributed deadlines and job sizes,
we show that this problem can be modeled as a continuous time Markov
decision process (MDP) with unbounded state space and unbounded rates.
While this MDP admits a continuous time optimality equation for its average
cost, the standard uniformization approach is not applicable. Inspired by the
scaling method introduced by Blok and Spieksma, we first define a family
of truncated MDPs and we then show that the optimal speed profiles are
increasing in the number of jobs in the system and are uniformly bounded
by a constant. Finally, we show that these properties are inherited from
the original (infinite) system. The proposed upper bound on the optimal
speed profile is tight and is used to develop an extremely simple policy that
accurately approximates the optimal average cost in heavy traffic conditions.
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1. Introduction

Minimizing the energy consumption of embedded systems with real-time
execution constraints is becoming more and more important. More func-
tionalities and better performance/cost trade-offs are expected from such
systems because of the increased use of real-time applications and the fact
that batteries are becoming standard power supplies. Dynamically changing
the speed of the processor is a common and efficient way to reduce energy
consumption and remarkable gains can be obtained when considering cache-
intensive and/or CPU-bound applications as the CPU energy consumption
may dominate the overall energy consumption Snowdon et al. (2005). In
fact, this is the reason why modern processors are equipped with Dynamic
Voltage and Frequency Scaling (DVFS) technology Weiser et al. (1994).

In the deterministic case where job sizes and arrival times are known, a
vast literature addressed the problem of designing both off-line and on-line
algorithms to compute speed profiles that minimize the energy consumption
subject to hard real-time constraints (deadlines) on job execution times; see,
e.g., Yao et al. (1995); Bansal et al. (2007); Li et al. (2017) and the references
therein. In a stochastic environment where only statistical information is
available about job sizes and arrival times, it turns out that combining hard
deadlines and energy minimization via DVFS-based techniques is much more
difficult. In fact, forcing hard deadlines requires to be very conservative, i.e.,
to consider the worst cases. In spite of these difficulties, this problem has been
investigated in Lorch and Smith (2001) for a single job and in Gaujal et al.
(2020) for multiple jobs. The former approach constructs the optimal speed
profile explicitly in “closed form” while the latter relies on the numerical
solution of a discrete time Markov Decision Process (MDP) Puterman (2014).
The latter approach has several drawbacks: i) it requires a discretization of
both time and space, which introduces by itself an approximation on the
optimal solution, ii) deadlines and job sizes need to be bounded, and iii) the
size of the state space of the underlying MDP is exponential in the size of the
maximal deadline. These issues makes this approach unusable in practice.

The approach followed in this paper circumvents the difficulties described
above by replacing the hard real-time constraints, i.e., jobs have hard dead-
lines that must be satisfied, by soft real-time constraints, i.e., jobs may miss
their deadlines, at some cost. While the hard deadline of a job must be known
at the job arrival, soft deadlines allow for a different information structure:
here, only the deadline distribution is known at the job arrival. In this paper,
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we further assume that jobs missing their deadlines become obsolete and are
dropped. Obsolescence is often found in real-time systems where the infor-
mation carried by jobs may not be valid any longer after their deadline as it
will be replaced by fresher input coming from other jobs. Therefore, obsolete
jobs become useless and can get discarded from the queue. Dropping obso-
lete jobs can also model impatient customers: customers wait for service for
some time (deadline) and quit (are dropped) if not served before that time.

1.1. Contribution

We investigate the problem above in a Markovian setting where jobs join
the system following a Poisson process and both the deadlines and sizes of
jobs are exponentially distributed. Under these assumptions, our goal is to
minimize the average cost, i.e., the average energy spent by the processor per
second plus the penalty due to jobs missing their deadlines. We formulate
this problem as an MDP in continuous time where the state is the number
of jobs in the system and the action is the processor speed.

Our main result, Theorem 2.2, shows the existence of an optimal speed
profile that is increasing in the number of jobs in the system and upper
bounded by some constant. This constant is defined in (3) as the minimizer
of a function that comes out from our analysis. Surprisingly, our bound
does not depend on the deadlines and arrival rates. In other words, our
bound on the optimal speed does not change upon variations of these job
characteristics. In addition, it yields a simple approximation for the optimal
policy and several numerical tests show that such approximation is accurate
in heavy-traffic conditions. Finally, the proposed approximation is used to
control the proportion of jobs that leave the system because they missed
their deadline in a simple manner.

Underlying the proof of our main result, there are some technical chal-
lenges that we now discuss. The proposed MDP satisfies the regularity as-
sumptions (stability, unichain) needed to establish an optimality equation as
described in Guo and Hernandez-Lerma (2009). However, this is not enough
to show structural properties of the optimal policy. In fact, the classical ap-
proach to do this is to uniformize the MDP and to investigate the properties
of the corresponding discrete time value iteration operator. Unfortunately,
this is not possible in our case because the transition rates are unbounded.
To uniformize the MDP, a typical approach consists of truncating the state
space. Indeed, this is the approach we follow. However, we notice that a naive
truncation will not help because the truncation barrier has a strong impact
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on the structure of the optimal policy in the sense that it would not pre-
serve any monotonicity property that it may have without truncation. This
is shown in Figure 2. Instead, we use the technique proposed in Blok and
Spieksma (2015), which smoothly scales down the upward rates of the trun-
cated system as a function of the size of its state space. This technique has
been successfully used in Hyon and Jean-Marie (2020); Bhulai et al. (2014)
to show structural properties of controlled queueing systems. However, these
works focus on discounted costs. Here, we use the same truncation technique
but we apply it to the average cost. To the best of our knowledge, this has
never been done before. In our specific case, the convergence to the infinite
system will be guaranteed by the monotone convergence theorem.

Our paper is organized as follows. In Section 2, our model and the cor-
responding MDP are described in detail. We also present our main result
(Theorem 2.2) as well as some hindsight on the construction of the proof.
Section 3 shows how the MDP is truncated and scaled and shows the proof of
the monotonicity as well as the construction of the upper bound on the opti-
mal speed. Section 4 focuses on the convergence when the truncation point
goes to infinity. Section 5 uses Theorem 2.2 to provide an approximation
on the optimal policy and estimate the deadline-miss probability. Finally,
Section 6 draws the conclusions of our work and addresses further research.

2. System Description, Problem Statement and Main Result

The system described here is a model for the dynamics of a real-time
device composed of a single computing resource (a processor) where incoming
jobs need to be executed under a constraint on the amount of time that they
spend in the system.

Processor. This is a DVFS processor whose speed can continuously vary in
the interval [0, Smax]. We consider that speed changes are immediate and
induce no energy cost. When the processor works at speed s, it processes
s units of work per second while its power dissipation is w(s) watts. The
classic simple model for the dynamic power dissipation of any CMOS circuit
is w = KαV 2f , see, e.g., Snowdon et al. (2005), where K is a constant, α
measures the activity of the logical gates, V is the supply voltage and f is
the clock frequency. The clock frequency of the gates is often linearly related
to the voltage and therefore DVFS processors adjust both variables together.
Within the model above, this means that w(s) is cubic in the speed s. In
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this paper, we just require that w(s) is continuous, increasing and strictly
convex in the speed s.

Jobs. They form a stochastic point process, with Poisson arrivals with rate
λ, i.i.d. deadlines exponentially distributed with rate δ and i.i.d. sizes expo-
nentially distributed with rate µ. Without loss of generality, we assume that
µ = 1.

Dynamics. At any point in time t, the processor chooses its speed s(t) and
executes one of the jobs in its backlog queue. We notice that the choice of the
job in execution, named active in the following description, is irrelevant here
because of the memory-less property of the deadlines and of the sizes. Thus,
at any point in time, at most one job can be active. As mentioned above,
this induces an instantaneous energy cost of w(s(t)). Now, three events can
happen in continuous time:

1. A new job may join the queue.

2. The active job is completed before its deadline. In this case, the job
leaves the system.

3. One job (active or inactive) reaches its deadline. In this case, this job
becomes obsolete, it is removed from the queue and an immediate cost
equal to C is paid.

Cost Function. If we denote by MT the number of missed deadlines in the
time interval [0, T ], the objective of this paper is to study the speed profile
s(t) of the processor that minimizes the long-run average cost given by the
missed deadlines plus power consumption, say J . Specifically, this is given
by

J := lim sup
T→∞

1

T

(
CMT +

∫ T

0

w(s(t)) dt

)
.

At this point, we claim that this problem can be modeled by a contin-
uous time Markov decision process with a discrete state space. To see this,
let us consider the system at time t under the speed profile s(·) and let i(t)
denote the number of jobs present in the system at time t. Each job is char-
acterized by two values: (ak, bk), respectively, the sojourn time of job k (how
long the job has been present) and its service quantity (how many elemen-
tary operations have already been executed on this job by the processor).
Also let rt be the time elapsed since the last arrival. Then the state of the
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system at time t is the tuple (rt, (a1, b1), . . . , (ai(t), bi(t))). From time t, the
cost function only depends on the expected future behavior of the system,
namely, the future arrivals, future services and future drops of packets due
to deadline misses. The memory-less property of the exponential distribu-
tion implies that this expected future behavior does not really depend on
(rt, (a1.b1), . . . , (ai(t), bi(t))), but only on i(t), the current number of jobs. As
a by-product, this implies that the choice of the optimal speed at time t only
depends on i(t), so that the optimal speed profile can only change when i(t)
changes, i.e., when an arrival, a service or a drop occur.

Markov Decision Process. We now formulate the problem of interest as an
MDP. As mentioned before, the state space is N and a state represents the
number of jobs in the system. The action space is [0, Smax], i.e., the set of
available speeds for the DVFS processor. Let σ = (σi)i∈N denote a stationary
and deterministic speed policy adopted by the processor, i.e., σi ∈ [0, Smax]
is the speed used in state i. It is well known that focusing on stationary
and deterministic policies can be done with no loss of optimality in our case
(Guo and Hernandez-Lerma, 2009, Theorem 5.9); in other words, we may
consider the broader set of history dependent randomized policies and then
use that there exist stationary and deterministic policies that are optimal
with respect to the cost defined below. For i, j ∈ N, the transition rates are
given by:

qi,j(σ) =



λ if j = i+ 1 (arrival of a new job)

σi + iδ if i ≥ 1 and j = i− 1 (completion of the active

job or obsolescence of one job)

−λ− iδ − σi if j = i

0 otherwise.

Under the speed policy σ = (σi)i∈N, the induced Markov chain, denoted
by Xσ, is a birth and death process that resembles an M/M/∞ queue but
with an additional decreasing rate, which comes from the processing speed;
see Figure 1.

By the ergodicity of the Markov chain Xσ under all policies σ, the long-
run cost J is equal to the long-run expected cost. Letting Eσi0 denote the
expectation given a speed policy σ and starting state i0, we have

J = J(i0, σ) := lim sup
T→∞

1

T

∫ T

0

Eσi0c(X
σ(t), σ) dt.
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Figure 1: Markov chain diagram under policy σ.

In this equation, the immediate cost function c(·, ·) is the expected cost
incurred by the system at time t. It only depends on the current state and
the current speed. Conditional on the state (Xσ(t) = i), the obsolescence
rate is iδ. Thus, the expected cost is:

c(i, σ) := Ciδ + w(σi).

With a slight abuse of notation, we will use both notations c(i, σ) or
c(i, σi) since c only depends on the speed used in state i and not on the
whole policy.

As mentioned before, for given speed policy σ, Xσ is ergodic so that
the MDP is unichain (all states are positive recurrent under all policies).
This implies that the cost can be defined independently of the starting state.
Moreover, for a given σ, there exists a unique stationary measure πσ for Xσ

so that we can define the cost independently of the initial state and express
it as a function of the stationary measure:

∀i0, J(σ) := J(i0, σ) = Eπσc(Xσ, σ) =
∑
i

πσi c(i, σi). (1)

Here, Eπσ is the expectation with respect to the invariant measure of Xσ.
Stationary policies that minimize (1) are optimal speed policies for the model.
In particular, they are also optimal over all policies (history dependent and
randomized) (Guo and Hernandez-Lerma, 2009, Theorem 5.9) . Also, our
MDP satisfies all the conditions given in (Guo and Hernandez-Lerma, 2009,
Theorem 5.9) to assert the existence of an optimal stationary deterministic
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policy σ∗ and an optimality equation of the form

J∗ = J(σ∗) = c(i, σ∗i ) +
∑
j

h∗(j)qi,j(σ
∗
i )

= min
s∈[0,Smax]

c(i, s) +
∑
j

h∗(j)qi,j(s), ∀i ∈ N, (2)

where h∗ is a real function defined on N, usually referred to as bias of the
optimal policy.

Main result. The goal of this paper is to investigate structural properties on
σ∗ and J∗. First, let us define B as

B := arg min
s∈R+

(w(s) + C(λ− s)). (3)

This constant is well defined in R+ ∪ {+∞} because w is strictly convex. In
addition, we have the following remark.

Remark 2.1. If w is super-linear, i.e., lims→∞
w(s)
s

=∞, then w(s)+C(λ−s) is
also super-linear and B is finite. In practice, all models of power dissipation
are super-linear in s, e.g., Chandrakasan et al. (1992). In the simple case
where w(s) = Ks3, we first notice that the constant K can be set to 1
without loss of generality because to compensate its effect one can adjust the

missed deadline cost C accordingly. Then, in this case, we obtain B =
√

C
3

.

Our main result is the following.

Theorem 2.2. There exists a deterministic optimal policy σ∗ = (σ∗i )i∈N that
is increasing in i and upper bounded by B.

Remark 2.3. The optimal speed policy of the processor is always bounded
by a finite constant, namely min(B, Smax). By definition, B only depends
on w (the power dissipation of the processor) and C the cost of each missed
deadline. Thus, we remark that B is independent of the job characteristics
(arrival rate, deadline and size distributions). This is both surprising and
helpful in practice. Indeed, if B is finite, one can set a priori the maximal
speed of the processor to Smax := B. This guarantees that in all cases, no
cost reduction would be possible by using a more powerful processor. Further
discussion about parameter settings, in particular the link between C and
the probability that jobs miss their deadline under the optimal policy, will
be discussed in Section 5.
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A proof of Theorem 2.2 is developed in Sections 3 and 4. Before delving
into the proof, we devote the remainder of this section to explain the technical
difficulties underlying our problem and the general approach that we follow.

The optimality equation (2) cannot be uniformized because the rates
qii(σ) are unbounded in i. Therefore, the study of structural properties of
the optimal policy must be done by constructing a sequence of truncated
MDPs whose optimal policies converge to σ∗ and for which we can prove
monotonicity and boundedness. This approach has been proposed for the
first time in Blok and Spieksma (2015) for MDPs with discounted cost by
truncating the state space and scaling the rates of all the events that take
the system out of the truncated space. This has been successfully applied in,
e.g., Bhulai et al. (2014); Hyon and Jean-Marie (2020), to show that threshold
type policies yield optimal admission control in one queue. However, all these
applications consider discounted costs. To the best of our knowledge, no work
has been done for the average cost. In the following, we will show that in our
case, the scaling technique of Blok and Spieksma (2015) also works for the
average cost and is the key ingredient to show Theorem 2.2, which gives new
hindsights on the optimal policy. Thus, our result is another evidence of the
power of this scaling approach, though our proof is quite different from the
approach used in the discounted case. In fact, the classical approach is to
show that the value iteration operator preserves structural properties of the
cost and of the policy (typically convexity properties of the cost and level sets
of the policy), so that successive iterations of the operator will also preserve
the properties and converge to the optimal cost/policy. Here, we will directly
consider the fixed point optimality equation and prove monotonicity of the
policy by induction on the state (see Sections 3.1, 3.2, 3.3).

3. Truncated Model

As mentioned before, the original MDP cannot be uniformized because
the transition rates qii(σ) grow to infinity when i goes to infinity. To construct
a discrete time model, we truncate the state space following the guidelines
from Blok and Spieksma (2015) to construct a finite state MDP MN with
linearly decaying arrival rates. The new state space is {0, · · · , N}, with the
same continuous action space [0, Smax] and an average cost per second JN(σ)
defined as

JN(σ) := lim sup
T→∞

1

T

∫ T

0

Eσi0c(X
σ(t), σ) dt (4)
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and with transition rates for all i, j ≤ N given by

qNi,j(σ) :=


λNi if i < N and j = i+ 1

σi + iδ if i > 0 and j = i− 1

−λi − iδ − σi if j = i

0 otherwise,

where the decaying arrival rate is λNi := λ
(
1− i

N

)
. Using decaying arrival

rates will be a key ingredient in this paper. To illustrate this, let us also
consider a naive truncated MDP, M′

N with fixed arrival rates in each state
given by λ. The state space is {0, · · · , N}, with the same continuous action
space [0, Smax] and the same cost function but with modified transition rates
given by

qN
′

i,j (σ) :=


λ if i < N and j = i+ 1

σi + iδ if i > 0 and j = i− 1

−λ− iδ − σi if j = i

0 otherwise,

The two finite MDPs MN and M′
N have been solved numerically using

the following parameters: λ = 10, δ = 0.14, C = 200, w(v) = v3, N = 60.
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(a) MN with decaying arrival rates (b)M′N with no decay of the arrival rates

Figure 2: Optimal policies σ∗ and σ∗
′

for the two truncated MDPs, respectively, MN (a)
and M′N (b).

The respective optimal policies σ∗ and σ∗
′

are displayed in Figures 2(a)-
(b). As one can see, the two models behave very differently. At the last
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state ofM′
N , the speed does not need to be as high as the maximal speed, as

the arrival rate drops from λ to 0, so that the speed plummets near the last
state. In contrast, the optimal policy for MN is increasing from 0 to some

bound slightly below
√

C
3

. Additional numerical tests where we let N grow

(reported in Figure 3) further suggest that σ∗ is increasing in the state i as
well as in the level of truncation N . The bound B also appears to be rather
tight when N is large in the example reported in Figure 3.

0 10 20 30 40 50 60

States

0

2

4

6

8

S
p

ee
d

Speed profile N = 1000

Speed profile N = 60

Upper Bound B

Figure 3: Two optimal speed policies in MN , for N = 60 and N = 1000 and the bound

B =
√

C
3 .

This makes the study of MN promising and, in the remainder, we focus
on this MDP with decaying arrival rates.

Since N is fixed here, we may remove it in the notation for simplicity. As
the state space is finite, we can uniformize this MDP to get a discrete time
MDP. Choosing

U := λ+Nδ + Smax (5)

as uniformization constant, we get a discrete time MDP DN with transition
probabilities given by

pNi,j(σ) =


1
U
λi if i < N and j = i+ 1

1
U

(σi + iδ) if i > 0 and j = i− 1
1
U
Ūi if j = i

0 otherwise,

where the complementary probability to stay in state i is Ūi := U−λi−δi−σi.
Again, we focus on stationary policies σ that minimize the cost JN(σ). The
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long-run average cost per step for the discrete time MDP is

g(σ) := lim sup
K→∞

1

K

K∑
k=1

Eσi0c(X
σ(k), σ).

A classical result for MDPs (see for example (Puterman, 2014, Section
11.5.3)) says that the discrete and continuous time MDPs are related by the
following relations: for any policy σ, Ug(σ) = JN(σ). This has the following
consequences:

� Both MDPs have the same optimal policies.

� Optimal long-run average costs coincide up to the multiplicative uni-
formization constant: Ug∗ = Ug(σ∗) = JN(σ∗) = J∗N .

We will first show the counterpart of Theorem 2.2 in the finite case. Let
us define

BN := arg min
s∈R+

(
w(s) +

C(λ− s)
1 + λ

δN

)
, (6)

which is well defined in R+ ∪ {∞} and unique because w is strictly convex.
We have the following properties for the optimal speed policy.

Theorem 3.1. (i) The optimal speed policy σ∗ minimizing (4) is unique.

(ii) The optimal speed policy is increasing in i: ∀i ≤ N, σ∗i < σ∗i+1.

(iii) The optimal speed policy is upper-bounded: ∀i ≤ N, σ∗i ≤ BN .

The proof of this result will be the object of Section 3.1 (monotonicity,
item (ii)), 3.2 (upper-bound, item (iii) ), 3.3 (uniqueness, item (i)). Then,
the relation with the original infinite MDP will be shown in Section 4.

3.1. Proof of Theorem 3.1(ii): Monotonicity of the Optimal Speed

In this subsection, we denote by σ∗ any optimal speed policy, X∗ the
associated Markov chain and J∗N the optimal cost induced by σ∗. Thus, the
optimal long-run average gain per step is

g∗ := lim
K→∞

1

K
Eσ∗

K∑
k=1

1

U
c
(
Xσ∗(k), σ∗

)
. (7)
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When the state space is finite, the bias H ∈ RN+1 for the optimal speed
σ∗ is defined up to an additive constant by

H(i) := Eσ∗i
∞∑
k=1

(
c
(
Xσ∗(k), σ∗

)
− Ug∗

)
, ∀i ≤ N. (8)

To fix the value of the bias vector, we set H(0) := 0.
Since the MDP is finite, unichain, the action space is compact and the

costs and transition probabilities are continuous and bounded in the actions,
(Puterman, 2014, Theorem 8.4.7) guarantees the existence of the optimality
equations for the optimal cost and for the bias. Specifically, for any state
i ∈ {0, . . . , N},

g∗+H(i) =
1

U
min

s∈[0,Smax]

{
c(i, s) + (δi+ s)H(i−1) + ŪiH(i) + λiH(i+1)

}
(9)

with H(−1) = H(N + 1) = 0 by convention.
For each state i, an optimal action σ∗i is the choice of a speed minimizing

the right hand side term. Notice that necessarily, σ∗0 = 0 (the speed of the
processor must be 0 when there is no work to do).

Using (9), for i ≥ 1, we can subtract H(i − 1) from H(i) and choose
s = σ∗i−1 in (9) to get

U(H(i)−H(i− 1)) ≤ δC + λ

(
1− i

N

)
(H(i+ 1)−H(i))

+

(
Ū ′i −

λ

N

)
(H(i)−H(i−1)) + (δ(i− 1) + σ∗i−1)(H(i−1)−H(i−2)) (10)

with Ū ′i := Ūi + σ∗i − σ∗i−1. Similarly, doing the same subtraction for s = σ∗i ,
we obtain

U(H(i)−H(i− 1)) ≥ δC + λ

(
1− i

N

)
(H(i+ 1)−H(i))

+

(
Ūi −

λ

N

)
(H(i)−H(i−1)) + (δ(i−1) + σ∗i )(H(i−1)−H(i−2)). (11)

Combining both inequalities together we get the inequality(
σ∗i − σ∗i−1

)
(H(i)− 2H(i− 1) +H(i− 2)) ≥ 0.

From this, we can deduce the following property of the model.
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Proposition 3.2. If H satisfies the following notion of discrete convexity:

∀i ≥ 2, (H(i)− 2H(i− 1) +H(i− 2)) > 0, (12)

then the optimal speed policy σ∗ is increasing.

Here are some additional properties of the finite MDP that will be needed
for the proof of the main result.

Lemma 3.3. The asymptotic cost per second is upper-bounded: Ug∗ ≤ Cλ
1+ λ

Nδ

.

Proof. The cost Ug∗ is the optimal asymptotic cost per unit of time. There-
fore, we have that Ug∗ ≤ Ug0, with Ug0 being the asymptotic cost per unit
of time when the speed is 0 for each state. Let π(0) be the asymptotic distri-

bution in that case. It is not difficult to see that π
(0)
i =

(
1 + λ

Nδ

)−N (N
i

) (
λ
Nδ

)i
and thus we can then compute the associated asymptotic cost as follows:

g0 =

(
1 +

λ

Nδ

)−N N∑
i=0

π
(0)
i δiC = δC

(
1 +

λ

Nδ

)−N N∑
i=0

i

(
N

i

)(
λ

Nδ

)i
= δC

(
1 +

λ

Nδ

)−N N∑
i=1

N

(
N − 1

i− 1

)(
λ

Nδ

)i
= Cλ

(
1 +

λ

Nδ

)−N (
1 +

λ

Nδ

)N−1
=

Cλ

1 + λ
Nδ

,

which concludes the proof.

We now want to show by backward induction on i that H satisfies (12).
For 0 ≤ i ≤ N − 1, the exact property P(i) that we will show is

H(i)−H(i− 1) < H(i+ 1)−H(i) <
C

1 + λ
Nδ

. (13)

Before investigating the initialization step, we show the following preliminary
inequality on the optimal cost.

Lemma 3.4. Let σ := Eπ∗ [σ∗X∗ ] be the average speed under the stationary
measure π∗. Then,

Ug∗ > w(σ) + C
λ− σ
1 + λ

Nδ

.
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0 • • • i i+ 1

(i+ 1)δ + σ∗i+1

λ
(
1− i

N

)
• • • N

Figure 4: The transition rates of the Markov chain X∗.

Proof. Consider the optimal Markov chain X∗ displayed in Figure 4, where
for clarity we represented the continuous Markov chain, as its behavior is
similar as the uniformized discrete time Markov chain.

Using Jensen’s inequality, since w is strictly convex and the stationary
measure π∗ is non trivial, we get the following strict inequality:

Ug∗ = J∗N = Eπ∗ [w(σ∗X∗)] + CδEπ∗ [X∗]
> w(Eπ∗ [σ∗X∗ ]) + CδEπ∗ [X∗]
= w(σ) + CδEπ∗ [X∗].

Now, we calculate Eπ∗ [X∗]. The underlying detailed balance equations are

π∗i+1[δ(i+ 1) + σ∗i+1] = π∗i

(
λ− i λ

N

)
.

The LHS is 0 for i = −1, and the RHS is also 0 for i = N . When we sum
these equations from 0 to N − 1, we can therefore write

N∑
i=0

π∗i (δi+ σ∗i ) =
N∑
i=0

π∗i

(
λ− i λ

N

)
,

which gives δEσ∗ [X∗] + σ = λ− Eσ∗ [X∗] λ
N
, i.e.,

Eσ∗ [X∗] =
λ− σ
δ + λ

N

. (14)

Thus, we finally have

Ug∗ > w(σ) + C
λ− σ
1 + λ

Nδ

as desired.
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Remark 3.5. The computation of the expectation that gave (14) remains true
for any speed policy, and in that case σ becomes the average speed of that
policy. This formula of the expectation will be needed later to rewrite the
cost J∗N in a different way.

For the initialization of the induction, we need the following lemma.

Lemma 3.6. H(N)−H(N − 1) < C
1+ λ

Nδ

.

Proof. For any σ, the optimality equation (9) at i = N gives

U(g∗ +H(N)) ≤ w(s) + CNδ + (δN + s)H(N − 1) + (U − δN − s)H(N),

which holds if and only if

Ug∗ + (δN + s)H(N) ≤ w(s) + CNδ + (δN + s)H(N − 1),

which holds if and only if

H(N)−H(N − 1) ≤ w(s) + CNδ − Ug
δN + s

, (15)

with equality if the chosen σ is optimal. We therefore want to show the
following inequality for some s:

h(s) :=
w(s) + CNδ − Ug∗

δN + s
<

C

1 + λ
Nδ

To show this, we use the inequality (3.4) on Ug∗ and choose s = σ. This
gives

h(σ) < C
Nδ − λ−σ

1+ λ
Nδ

δN + σ
< C

Nδ + σ

(δN + σ)(1 + λ
Nδ

)
<

C

1 + λ
Nδ

.

This concludes the proof by (15).

Therefore, for the initialization step we write the inequality (11) for i = N
to obtain

U (H(N)−H(N − 1)) ≥ δC +

(
U − δN − s− λ

N

)
(H(N)−H(N − 1))

+ (δ(N − 1) + s)(H(N − 1)−H(N − 2)),

16



which implies

(δ(N−1) + s) (H(N)−H(N−1)) ≥ δC −
(
λ

N
+ δ

)
(H(N)−H(N−1))

+ (δ(N−1) + s)(H(N−1)−H(N−2)),

which implies (using Lemma 3.6)

(δ(N−1) + s) (H(N)−H(N−1)) > (δ(N−1) + s)(H(N−1)−H(N−2)),

which as desired gives H(N)−H(N − 1) > H(N − 1)−H(N − 2). This new
inequality and Lemma 3.6 imply P(N − 1).

Now, let us assume that the property P(i) is true for some i ≤ N − 1.
We then have, writing (11) with s = σ∗i and using the first inequality of P(i)
(13),

U(H(i)−H(i− 1)) ≥ δC +

(
U − δi− s− λ

N

)
(H(i)−H(i− 1))

+ (δ(i− 1) + s)(H(i− 1)−H(i− 2))

which implies(
δi+ s+

λ

N

)
(H(i)−H(i− 1)) ≥ δC + (δ(i− 1) + s)(H(i− 1)−H(i− 2)),

which implies

(δ(i− 1) + s) (H(i)−H(i− 1)) > (δ(i− 1) + s)(H(i− 1)−H(i− 2)).

This inequality comes from the second inequality of P(i) (13), and from its
first inequality we finally obtain both inequalities of P(i− 1).

Thus, H(i)−H(i− 1) > H(i− 1)−H(i− 2) and the backward induction
is complete. Since H is strictly convex, with Proposition 3.2 we deduce that
σ∗ is increasing.

3.2. Proof of Theorem 3.1(iii): Upper Bound on the Optimal Speed

By definition, we recall that BN is the unique minimum of u, see (6). We
also have

JN(σ) =
∑
i∈S

πiu(σi),

where for all a ≥ 0,

u(a) := w(a) + C
λ− a

1 + λ
Nδ

.
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Proposition 3.7. If σ∗ is an optimal increasing speed policy, then it is upper-
bounded by BN , which means σ∗i ≤ BN for all i ≤ N .

Proof. We show this statement by contradiction. Let σ∗ be an optimal in-
creasing speed policy. As σ∗ is increasing, assume that σ∗N > BN . Let π be
the associated stationary measure. As σ∗N > BN ≥ 0 = σ∗0, we can define
i0 > 0 as the smallest state such that σ∗i0 > BN . Now, we can define the
following policy

σ̃i =

{
σ∗i if i < i0

BN if i ≥ i0

and let π̃ denote its associated stationary measure. By definition, we notice
that the minimum of the function u is reached at BN . Moreover, for all
i < i0, we get from the local balance equations that πi > π̃i. Indeed, when
i ≥ i0 − 1:

πi+1

πi
=

λ
(
1− i

N

)
(i+ 1)δ + σ∗i+1

<
π̃i+1

π̃i
,

with equality only when i < i0−1. It remains to show that the cost associated
to this new speed is lower than the original one. We have

J(σ∗)− J(σ̃) =
N∑
i=0

πiu(σ∗i )−
N∑
i=0

π̃iu(σ̃i)

=

i0−1∑
i=0

(πi − π̃i)u(σ∗i ) +
N∑
i=i0

πiu(σ∗i )−
N∑
i=i0

π̃iu(BN)

>

i0−1∑
i=0

(πi − π̃i)u(BN) +
N∑
i=i0

πiu(BN)−
N∑
i=i0

π̃iu(BN) > 0.

This contradicts the optimality of σ∗ and concludes the proof.

3.3. Proof of Theorem 3.1(i): Uniqueness of the Optimal Policy

The following lemma gives a different expression for σ∗i using the notion
of generalized inverse of the derivative w′ of w. First, since w is strictly
convex, w′ is continuous and well defined everywhere but on a countable
subset D ⊆ [0, Smax]. Moreover, w′ is strictly increasing and diverges, so
that we can correctly define the inverse

w′−1 : y 7→ inf{s ∈ R, w′(s) ≥ y},
and w′−1 is increasing.
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Lemma 3.8. If σ∗ is an optimal speed policy with bias function H, we can
relate the variation of the bias to the speed at a given state:

σ∗i = w′−1(∆i), ∀i ≥ 1

with ∆i := H(i)−H(i− 1) for i ∈ [1, N ].

Proof. Let σ∗ be an optimal speed policy with bias function H. For i ≥ 1,
the optimality equation (9) can be written as

J∗N = min
s
{w(s) + Ciδ − (δi+ s)∆i + λi∆i+1}, (16)

so that for any speed s:

w(σ∗i )− σ∗i ∆i ≤ w(s)− s∆i.

This yields {
w(σ∗i )−w(s)

σ∗i−s
≤ ∆i for s ≤ σ∗i

w(σ∗i )−w(s)
σ∗i−s

≥ ∆i for s ≥ σ∗i .

LetD = [0, Smax]\D. These inequalities on ∆i give: w′(σ∗−i ) ≤ ∆i ≤ w′(σ∗+i ),
so that there are two possibilities. Either i) ∆i ∈ w′

(
D
)

and w′(σ∗i ) = ∆i,

or ii) ∆i /∈ w′
(
D
)
, so that σ∗i = w′−1(∆i) ∈ D. In both cases, we have

σ∗i = w′−1(∆i).

Proposition 3.9. The optimal speed policy is unique, and therefore Blackwell
optimal.

Proof. Let σ, σ̃ be two optimal speed policies, H, H̃ their respective biases
and ∆, ∆̃ the respective variations of the biases. We will show by induction
that the variation of the speed and biases are equal.

We already have that σ(0) = σ̃(0) = 0. The optimality equation (9) for
i = 0 then gives

∆1 = ∆̃1 =
Ug∗

λ
=
J∗N
λ
.

Using Lemma 3.8, we then have σ1 = w′−1(∆1) = w′−1(∆̃1) = σ̃1.

Assume that for some i ≥ 1, σi = σ̃i and ∆i = ∆̃i. Writing (16) for both
optimal speeds, and using the assumption of the induction, we have ∆i+1 =
∆̃i+1. Then by using Lemma 3.8 again, σi+1 = w′−1(∆i+1) = w′−1(∆̃i+1) =
σ̃i+1.

The induction is complete, so that the optimal speed policy is unique.

This completes the last part of the proof of Theorem 3.1.
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4. Convergence of the Truncated MDPs

To show the convergence of the sequence of the truncated MDPs to the
infinite one as N goes to infinity, we first show monotonicity properties in
N . These guarantee the existence of the limit and allow us to invoke the
monotone convergence theorem to show that this limit satisfies the optimality
equation of the infinite MDP.

4.1. The Optimal Speed is Increasing in the Size of the State Space

The next proposition states that the optimal cost is increasing in the
number of states.

Proposition 4.1. Let N ≥ 1. Then, J∗N ≤ J∗N+1.

Proof. Let N ≥ 1 and let σ be the optimal speed policy when the state space
is {0, · · · , N + 1}. Let σ̃ be a speed policy for the MDP with state space
{0, · · · , N}, defined as the truncation of σ: for i ∈≤ i, σ̃i = σi. Recall that
X σ̃ is the continuous time Markov chain with speed policy σ̃ on the reduced
state space {0, · · · , N}, and therefore cannot be compared directly with Xσ,

which is defined on {0, · · · , N+1}. Thus, let X̃ be the following discrete time
Markov chain, with state space {0, · · · , N + 1} and transition probabilities
given by, for i ≤ N + 1,

p̃i,j =



1
U(N+1)λ

(N)
i if 1 ≤ j = i+ 1 ≤ N

1
U(N+1) (σi + iδ) if 0 ≤ j = i− 1 ≤ N − 1

1
U(N+1) Ū

(N+1)
i if 0 ≤ j = i ≤ N

1
U(N+1) (U − (N + 1)δ − σN+1) if j = i = N + 1

0 otherwise,

with the notations: U (N+1) := 2λ+ (N + 1)δ + σmax, λ
(N)
i := λ

(
1− i

N

)
and

Ū
(N+1)
i := U − λ(N)

i − δi− σi.
With a slight abuse of notation, we denote by Xσ and X σ̃ the uniformized

Markov chains with the same uniformization constant U (N+1), so that we will
be able to compare both Markov chains defined with the same time step.
Moreover, notice that the Markov chain X̃ is not irreducible: the use of
the last state is only to extend the chain to a larger number of states while
keeping the behavior of X̃ similar to the one of X σ̃.
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In order to effectively compare X̃ and Xσ, we will now define a coupling
(Ỹ , Y ) such that Ỹ and Y have the same distributions as X̃ and Xσ respec-
tively. For each time step k ∈ N, let A(k) be a uniformly distributed random
variable on [0, U (N+1)]. Then,

Ỹ (k + 1) =



Ỹ (k) + 1 if A(k) ∈ [0, λ
(N)

Ỹ (k)
] and Ỹ ≤ N

Ỹ (k) if A(k) ∈ [λ
(N)

Ỹ (k)
, U (N+1) − Ỹ (k)δ − σỸ (k)]

and Ỹ (k) ≤ N

Ỹ (k)− 1 if A(k) ∈ [U (N+1) − Ỹ (k)δ − σỸ (k), U
(N+1)]

and Ỹ (k) ≤ N

Ỹ (k) if A(k) ∈ [0, U (N+1) − Ỹ (k)δ − σỸ (k)]

and Ỹ (k) = N + 1

Ỹ (k)− 1 if A(k) ∈ [U (N+1) − Ỹ (k)δ − σỸ (k), U
(N+1)]

and Ỹ (k) = N + 1,

and similarly:

Y (k + 1) =


Y (k) + 1 if A(k) ∈ [0, λ

(N+1)
Y (k) ]

Y (k) if A(k) ∈ [λ
(N+1)
Y (k) , U (N+1) − Y (k)δ − σY (k)]

Y (k)− 1 if A(k) ∈ [U (N+1) − Y (k)δ − σY (k), U
(N+1)].

By construction, if Ỹ (0) = Y (0), then we show by induction that for all n,

Ỹ (k) ≤ Y (k).

We now check for all possible cases. For all i ≤ N + 1, λ
(N)
i < λ

(N+1)
i ,

therefore if Ỹ (k) = Y (k), then Ỹ (k + 1) ≤ Y (k + 1). If Ỹ (k) = Y (k) − 1

with Ỹ (k + 1) = Ỹ (k) + 1, then Y (k + 1) ≥ Y (k) by definition of U , as

U − Y (k)δ − σY (k) ≥ λ ≥ λ
(N)

Ỹ (k)
, and therefore Y (k + 1) ≥ Ỹ (k + 1). In the

remaining cases, Ỹ (k + 1) ≤ Y (k + 1).

Hence, for all k, Ỹ (k) ≤ Y (k), so that X̃ ≤st Xσ; here, ≤st denotes
the stochastic order Shaked and Shanthikumar (1994). As i 7→ c(i, σi) is
increasing, this implies:

Eσc(X̃, σ) ≤ Eσc(Xσ, σ) = J∗N+1,

and we have
JN(σ̃) = Eσ̃c(X σ̃, σ̃) = Eσc(X̃, σ).
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Therefore,
J∗N ≤ JN (σ̃) ≤ JN+1(σ) = J∗N+1

as desired.

The next proposition states that the optimal speed policy is increasing in
the size of the state space.

Proposition 4.2. Let N ≥ 1 and let σ(N) be the unique optimal speed policy
for the N-th MDP. Then, σ

(N)
i ≤ σ

(N+1)
i and ∆

(N)
i ≤ ∆

(N+1)
i for all i ≤ N .

Proof. We use the expression of the optimal speed from Lemma 3.8 and the
bias function to show by induction on the states i ≥ 1 that:

∆
(N)
i ≤ ∆

(N+1)
i and σ

(N)
i ≤ σ

(N+1)
i , (17)

where ∆
(N)
i = H(i)−H(i− 1) and H is the bias function for the MDP with

state space [0, N ].

We first have that σ
(N)
0 = σ

(N+1)
0 = 0 and that

∆
(N)
1 =

J∗N
λ
≤ J∗N+1

λ
= ∆

(N+1)
1 ,

where the inequality comes from Proposition 4.1. Let us now assume that for
some i ≥ 1, ∆

(N)
i ≤ ∆

(N+1)
i and σ

(N)
i ≤ σ

(N+1)
i . ∆

(N)
i ≤ ∆

(N+1)
i , we directly

have that σ
(N)
i ≤ σ

(N+1)
i .

To show the first inequality, we write the optimality equation (16) for N
and N + 1 with their respective optimal speed, and subtract one from the
other to get:

J∗N+1 − J∗N = −(iδ + σ
(N+1)
i )∆

(N+1)
i + (iδ + σ

(N)
i )∆

(N)
i + λi(∆

(N+1)
i+1 −∆

(N)
i+1).

Using Proposition 4.1 and the induction assumption, we get

λi(∆
(N+1)
i+1 −∆

(N)
i+1) ≥ 0.

Then using Lemma 3.8, as ∆
(N)
i+1 ≤ ∆

(N+1)
i+1 and w′−1 is increasing,

σ
(N+1)
i+1 = w′−1(∆

(N+1)
i+1 ) ≥ w′−1(∆

(N)
i+1) = σ

(N)
i+1 .

This completes the induction so that the optimal speed policy is increasing.
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4.2. Convergence Results and Proof of Theorem 2.2

For the truncated MDP in discrete time, let g∗, σ(N) and H(N) be the opti-
mal average cost, the optimal policy and its bias. They satisfy the optimality
equation.

g∗ +H(N)(i) =
1

U

(
c(i, σ

(N)
i ) +

∑
j

H(N)(j)pNi,j(σ
(N)
i )

)
∀i ≤ N.

This implies that for the truncated model in continuous time, JN = Ug∗,
σ(N) and H(N) also satisfy the optimality equation

JN = c(i, σ
(N)
i ) +

∑
j

H(N)(j)qNi,j(σ
(N)
i ) ∀i ≤ N.

Furthermore, for all N , JN ≤ Cλ by Lemma 3.3, σ(N) ≤ BN ≤ B by
Theorem 3.1 and since the function w′ is increasing, H(N)(i) ≤ iw′(B) for all
i ≤ N by Lemma 3.8.

Now, by the monotonicity of JN (Proposition 4.1) and the monotonicity
of σ(N) and H(N) (Proposition 4.2), they all converge to finite non-negative
limits when N goes to infinity, denoted respectively by J∞, σ(∞) and H(∞).

As for the rates, qNij (s) also converges monotonically to qij(s) and is con-
tinuous in s. Finally, the immediate cost c is continuous in σ. The monotone
convergence theorem implies that these limits satisfy an optimality equation,

J∞ = c(i, σ
(∞)
i ) +

∑
j

H(∞)(j)qi,j(σ
(∞)
i ) ∀i ∈ N.

This shows that these limits are respectively the optimal average cost
(J∞), an optimal policy (σ(∞)) and its bias (H(∞)) for the original MDP.
This completes the proof of Theorem 2.2.

5. Cost and Deadline-Miss Probability Approximations

Our main result, Theorem 2.2, may suggest to consider the simple policy
σB defined by σBi = B I{i>0} for all i ≥ 0, where B is defined in (3) and IA
is the indicator function of the event A. Thus, σB uses constant speed B
whenever the system is busy. In this section, we numerically show that the
dynamics induced by σB are “close” to the ones induced by σ∗ in the sense
that the optimal average cost J(σ∗) is very well approximated by J(σB).
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Then, we investigate mathematical properties of the Markov chain induced
by σB and we give an upper bound on the stationary probability of missing
deadlines as a function of the model parameters. In particular, by varying
the cost parameter C, this bound can be used to keep such probabilities
below a desired threshold.

In the following, we let πB denote the stationary probability of the Markov
chain induced by policy σB. Using the detailed balance equations, we obtain

πBi = πB0
λi∏i

j=1(δj +B)
, i ≥ 1

and, using
∑

i≥0 π
B
i = 1,

πB0 =

(∑
i≥0

λi∏i
j=1(δj +B)

)−1
=

δ

B

(
λ
δ

)B
δ

e
λ
δ γ
(
B
δ
, λ
δ

) (18)

where γ(·, ·) is the lower incomplete gamma function.
We will refer to the following proposition, which can be proven by sum-

ming the detailed balance equations of the underlying Markov chain as done
in the proof of Lemma 3.4; for this reason, we omit the proof.

Proposition 5.1. Let X be distributed as πB. Then, E[X] = 1
δ
(λ − B(1 −

πB0 )).

5.1. Approximation of the Average Cost

By definition, the average cost induced by σB, J(σB), is an upper bound
on the optimal average cost, J(σ∗). In particular,

J(σ∗) ≤ J(σB) =
∑
i≥0

c(i, σB) πBi = Cδ
∑
i≥1

i πBi +
∑
i≥1

w(σBi ) πBi

= C(λ−B(1− πB0 )) + w(B)(1− πB0 ).

where the last equality follows by Lemma 5.1.

5.2. Deadline-Miss Probabilities

Let us consider the probability pM that a job misses its deadline under
the stationary regime of policy σB. This is defined by

pM :=
∑
i≥1

πBi
1− πB0

δi

δi+B
. (20)
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Our objective here is to control pM by fine-tuning the model parameter C.
In other words, we want to design C such that pM remains below a given
threshold. Though the structure of πB0 in (18) implies that the exact relation
between C and pM is not trivial, this problem can be clearly solved numeri-
cally. Nonetheless, we aim at developing an upper bound on pM allowing for
a simple analytic evaluation.

The following proposition provides a first upper bound on pM .

Proposition 5.2.

pM ≤
1

1− πB0

(
1− δπB0

δ +B

)
− B

λ
. (21)

Proof. This proposition is proven by the following inequalities

pM ≤
∑
i≥1

πBi
1− πB0

δ(i+ 1)

δ(i+ 1) +B

=
δ

λ(1− πB0 )

∑
i≥1

(i+ 1)
λi+1∏i+1

j=1(δj +B)
πB0

=
1

1− πB0
δ

λ

∑
i≥1

(i+ 1)πBi+1

=
1

1− πB0

(
1− B

λ
(1− πB0 )

)
− δ

δ +B

πB0
1− πB0

(22)

=
1

1− πB0
− B

λ
− δ

δ +B

πB0
1− πB0

.

In (22), we have used Proposition 5.1.

By coupling the underlying Markov chain under σB with an auxiliary
M/M/∞ queue with arrival rate λ and service rate δ + B, we notice that
the state of the former is stochastically dominated by the latter. Therefore,

πB0 ≤ e−
λ

δ+B . Using that the mapping x 7→ 1
1−x

(
1− δx

δ+B

)
is increasing over

[0, 1) and the previous inequality on πB0 in (21), we obtain

pM ≤ pM =
1

1− e− λ
δ+B

(
1− δe−

λ
δ+B

δ +B

)
− B

λ
. (23)

We notice that pM = 1 if B = 0 and that pM → 0 as B →∞.
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Now, the bound pM can also be used to adjust the cost of missed dead-
lines C so that the proportion of jobs that miss their deadline will stay below
some acceptable level α.

Since Equation (23) cannot be inverted in closed form, a first order Taylor
expansion gives pM ≈ δ

δ+B
when B goes to infinity. Using the value B =√

C/3 for the classical power dissipation w(s) = s3 (see Remark 2.3), we get

C ≈ 3δ2
(

1−pM
pM

)2
. Therefore, C = 3δ2

(
1−α
α

)2
is the cost of missed deadlines

that keeps the deadline-miss probability below α.

5.3. Accuracy Assessment

By means of numerical calculations, we now evaluate the accuracy of the
bound in (19). For this purpose, we consider the two following set-ups. In
the first one, we focus on one acceptable value for the probability to miss a
deadline under policy σB and we consider that such an acceptable level is
pM = 0.1. We let the deadline rate δ and the arrival rate λ vary in [0.1, 1]
and [0.1, 50], respectively. Each value of the couple (λ, δ) induces a unique
value for B through (20) and for C through (3). Then, for each value of
(λ, δ), we compute the percentage relative error

E :=
J(σB)− J(σ∗)

J(σ∗)
100% (24)

where J(σB) and J(σ∗) are computed numerically by truncating the state
space to some N large enough so that increasing N does not change the
average cost by more than 10−4; in all cases, N ≤ 250.

Figure 5 depicts the level sets for the values of E . We observe that E
decreases as the arrival rate increases and that it is small under a wide set
of parameters. In particular, in heavy traffic conditions and with “large”
deadlines the percentage relative error can be smaller than 3%. Thus, we
conclude that our approximation is accurate within these conditions. On the
other hand, in light load conditions and with “short” deadlines, E can be
above 20% and in this case the optimal speed profile is more complex.

In the second set of experiments, we consider a fixed cost C instead of
a fixed miss probability. Specifically, we let C = 300, which implies that
the upper bound on the speed is B =

√
C/3 = 10. For each pair (λ, δ), we

compute the relative error E for policy σB compared with the optimal policy,
σ∗. The corresponding results are displayed in Figure 6. Unlike for the
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Figure 5: Level sets of the percentage relative error E with a fixed miss probability pM =
0.1. The darker (lighter) the zone, the higher (lower) the error.
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Figure 6: Level sets of the percentage relative error E with a fixed cost per deadline,
C = 300.
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case with fixed probability, the error decreases sharply as the arrival rate λ
increases. In particular, the error is very small in heavy traffic (λ ≥ B = 10).

6. Conclusion and Perspectives

In a stochastic environment, it is well known that the problem of de-
termining the load-dependent speed profile that a DVFS processor should
follow to minimize the mean energy consumption under hard deadlines is
difficult. In this paper, the basic idea is to follow a Lagrangian approach
where hard deadlines are replaced by soft deadlines, meaning that jobs are
allowed to miss their deadline, though each missed deadline comes with a
penalty that can be fine-tuned to keep the proportion of jobs missing their
deadline as small as desired. The resulting advantage of this approach stands
in the ability of formulating the problem above as a Markov decision pro-
cess for which we can establish constructive structural results (Theorem 2.2).
Beyond the existence of monotone optimal policies, we have found that the
optimal speed is bounded from above by some constant that does not depend
on the deadline and the arrival rates, which may be quite surprising, and that
such constant let us define an extremely simple policy whose average cost is
close to the optimal one.

There are some open questions that we leave as future research. First,
we have assumed that the available processing speeds vary continuously on
a compact set. On the other hand, it may be convenient to consider the case
where only a finite number of speeds is available. Second, it is interesting to
investigate whether our results are insensitive to the job size and/or deadline
distributions. This may be justified by the fact that the proposed queueing
system is somewhat similar, when the speeds are bounded, to an M/M/∞
queue. Furthermore, if service times were to follow a phase-type distribu-
tion, we could use again an MDP formulation to model the problem but the
analysis would require more work as the state space would be much larger.
Finally, we wonder whether the optimal policy could be “learned” and, in
this respect, how the proposed upper bound could speed up the learning
process.
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