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ABSTRACT
In this paper, we initiate the study of local model reconstruction at-
tacks for federated learning, where a honest-but-curious adversary

eavesdrops the messages exchanged between the client and the

server and reconstructs the local model of the client. The success

of this attack enables better performance of other known attacks,

such as the membership attack, attribute inference attacks, etc. We

provide analytical guarantees for the success of this attack when

training a linear least squares problem with full batch size and arbi-

trary number of local steps. One heuristic is proposed to generalize

the attack to other machine learning problems. Experiments are

conducted on logistic regression tasks, showing high reconstruction

quality, especially when clients’ datasets are highly heterogeneous

(as it is common in federated learning).
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1 INTRODUCTION
Federated learning (FL) [1–3] offers naturally a certain level of

privacy, as clients’ data is not collected at a third party. However,

maintaining the data locally does not provide itself formal privacy

guarantees. An (honest-but-curious) adversary can still infer some

sensitive client information just by eavesdropping the exchanged

messages (e.g., gradients). In fact, multiple recent works have shown

the possibility to reconstruct private data samples (e.g., images) by

inverting the gradients [4–8]. This attack works well when gra-

dients are calculated on extremely small batches or data points

belonging to the same class are similar, e.g., personal images of the

same person or images of the same digit inMNIST dataset. However,

this attack may not apply to FL settings, especially when clients are

allowed to do multiple stochastic gradient updates locally to save

significant communication costs. In [7, Table 6a] the authors show

that the success rate of a reconstruction attack degrades from 100%

to 39% when the number of local steps increases from 1 to 9, and

degrades from 100% to 13% when the batch size increases from 1 to

16. Similarly, anther study [8] shows that the best attack by invert-

ing the gradients can identify just 28% of ImageNet images with

batch size equal to 48. In addition to the reconstruction attack, other

attacks like membership attack and property inference attack (the

adversary can infer when a property appears or disappears in the
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data during training) are also studied for FL [9]. Furthermore, these

attacks are less effective as batch size increases [9, Table II], and

the application of differential private techniques does not change

the result [10, Figure 1,25].

In this paper, we initiate the study of a new attack, called the

local model reconstruction attack, where the adversary seeks to re-

construct the model a client would have trained using only its local

dataset. Allowing the adversary to have such information is dan-

gerous, as the adversary can then target various types of personal

information using model inversion attacks [11, 12], membership

attacks [13], attribute inference attacks [14–16]
1
, etc. Again, we

assume a weak adversary, who is honest-but-curious (i.e., it does

not interfere with the training process) and only eavesdrops the ex-

changed messages between the client and the server. The adversary

knows the structure of the trained model and the loss function, as

well as the training algorithm, which is common in the attacks for

FL [6–9, 17]. Differently from the attacks proposed in literature, a

local model reconstruction attack benefits from a larger batch size

and is less sensitive to the number of local steps in FL.

First, we show analytically that, when training a linear least

squares problem with full batch size and arbitrary number of local

steps in FL, the adversary can reconstruct the exact local model

of every client, just by eavesdropping the exchanged messages for

Θ(𝑑) number of rounds, where 𝑑 is the number of the features in

the data sample (Sec. 3.1). Second, we propose a heuristic to perform

this attack on any machine learning problem (Sec. 3.2). Empirical

results show that our heuristic works well for logistic regression

problems (Sec. 4).

2 MOTIVATION
We denote by C the set of all clients participating to FL. Let D𝑐 be

the local dataset of client 𝑐 ∈ C drawn from a universe X and |D𝑐 |
be the size of D𝑐 . In FL, clients cooperate to learn a global model,

which minimizes the following (weighted) empirical risk over all

the data owned by clients:

min

𝜃 ∈R𝑑
L(𝜃 ), whereL(𝜃 ) =

∑
𝑐∈C

𝑝𝑐L𝑐 (𝜃 ) =
∑
𝑐∈C

𝑝𝑐
©« 1

|D𝑐 |
∑

𝑥 ∈D𝑐

𝑙 (𝜃, 𝑥)ª®¬ ,
(1)

where 𝑙 (𝜃, 𝑥) : R𝑑 ,X → R+ measures the loss of the model 𝜃 on

the sample 𝑥 ∈ X and 𝑝𝑐 is the positive weight of client 𝑐 , s.t.∑
𝑐∈C 𝑝𝑐 = 1.

Let 𝜃∗ = argmin𝜃 ∈R𝑑 L(𝜃 ) be the global optimal model, i.e., the

true minimizer of problem (1). The global model is the objective

of FL training, and could be the target from where the adversary

starts different attacks, such as membership attacks [13], model

inversion attacks [12], and attribute inference attacks [14–16]. How-

ever, applying these attacks on the global model suffers from the

1
These attacks aim to learn hidden sensitive attributes of a data instance for which

non-sensitive attributes are known to the public.
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plausible deniability of the clients, as the global model does not

capture identity information of data instances (i.e., to which client

each data belongs). Moreover, due to the heterogeneity of the data

distribution, the global model may not perform well on individual

local data, which makes these attacks less accurate.

In this paper, we propose the idea that the adversary can per-

form the attacks mentioned above not on the global model learned

through FL, but on the local optimalmodel𝜃∗𝑐 , i.e.,𝜃
∗
𝑐 = argminL𝑐 (𝜃 ).

Then, the adversary needs first to estimate such a local model;

this first step is the local model reconstruction attack we focus

on in this paper. The local model reconstruction attack benefits

from the local model overfitting the client’s dataset and is more

effective under non-i.i.d. clients’ data distributions, which is ex-

actly the case in FL. In FL, the degree of non-i.i.d can be quanti-

fied by the dissimilarity between the global optimal model and

the local optimal model. In [18], the authors define the degree

as

∑
𝑐∈C 𝑝𝑐 (L𝑐 (𝜃∗) − L𝑐 (𝜃∗𝑐 )). In [19, 20], the authors define the

dissimilarity degree as

∑
𝑐∈C 𝑝𝑐 (∇L𝑐 (𝜃∗) − ∇L𝑐 (𝜃∗𝑐 )).

3 LOCAL MODEL RECONSTRUCTION
To start, we present a general framework for FL in Algo. 1, which

generalizes a majority of the FL algorithms, including FedAvg [1],

FedProx [3], and FL with different client sampling techniques [21–

23]. The model
˜𝜃 = 𝜃 (𝑇 ) in the FL framework is the final output

for problem (1). Its performance depends on the applied FL algo-

rithm, which precises how the clients are selected in line 2, how

the updated local models are aggregated in line 5 and how the local

update rule works in line 8.

Algorithm 1 Framework for cross-device federated learning

Output: 𝜃 (𝑇 )
Server: // global model 𝜃 ∈ R𝑑 , local models {𝜃𝑐 ∈ R𝑑 ,∀𝑐 ∈ C}.
1: for 𝑡 ∈ {0, ...,𝑇 − 1} do
2: Server selects a subset of the clients C𝑠 (𝑡) ⊆ C,
3: Server broadcasts the current global model 𝜃 (𝑡) to C𝑠 (𝑡),
4: Server waits for the updated local models 𝜃𝑐 from every

client 𝑐 ∈ C𝑠 (𝑡),
5: Server updates 𝜃 (𝑡 +1) by aggregating the received updated

local models.

Client 𝑐 ∈ C: // global model 𝜃 , local model 𝜃𝑐 , local dataset D𝑐

6: while FL training is not completed do
7: Client listens for the arrival of new global model 𝜃 ,

8: Client updates its local model: 𝜃𝑐 ← Local_Update
𝑐 (𝜃,D𝑐 )

9: Client sends back 𝜃𝑐 to the server.

Our attack targets any FL algorithm falling into the framework

presented in Algo. 1. Notice that this FL framework does not con-
sider the possible use of secure aggregation protocols [24, 25], which

allow the server to aggregate the local updates without having ac-

cess to each individual update. Secure aggregation protocols prevent

our adversary from decoding the local model of a specific client, as

the identity information is lost after secure aggregation. However,

they require significant additional computation, which makes these

protocols hard to scale to a large system when training a large

neural network. In this paper, we consider the case where no secure

aggregation protocol is applied. Remember that the known attacks

for FL where the clients are honest, such as gradient reconstruction

attack [4–8] and inference attack [17], are all against FL without

secure aggregation protocols.
2

3.1 Exact model reconstruction for linear least
squares regression in FedAvg

Here we show the possibility to reconstruct the exact local model

in polynomial time when training a least squares linear regression

through FedAvg [1] with full batch size and arbitrary number of

local steps. The local update rule of FedAvg is given in Algo. 2. The

procedure for the exact reconstruction is shown in the proof of

Observation 1.

Algorithm 2 Client 𝑐’s local update rule in FedAvg [1]

Local_Update
𝑐 (𝜃,D𝑐 ) // 𝜃 : server model,D𝑐 : local dataset, 𝐵: batch

size, 𝐸: the number of local epochs, 𝜂: learning rate.
1: 𝜃𝑐 ← 𝜃 , B ← (split D𝑐 into batches of size 𝐵)

2: for each local epoch 𝑒 from 1 to 𝐸 do
3: for batch 𝑏 ∈ B do
4: 𝜃𝑐 ← 𝜃𝑐 − 𝜂 × g(𝜃𝑐 , 𝑏), where g(𝜃𝑐 , 𝑏) =

1

𝐵

∑
𝑥 ∈𝑏 ∇𝑙 (𝜃𝑐 , 𝑥)

5: Return 𝜃𝑐

Observation 1. Consider training a least squares linear regression
through FedAvg with full batch size and assume that a client’s design
matrix has rank 𝑑 equal to the number of features. Once the client has
communicated with the server 𝑑 + 1 times, the adversary can recover
the client’s local optimal model in 𝑂 (𝑑3) operations.

Proof. Let X ∈ R𝑚×𝑑 be the design matrix with rank 𝑑 and

y ∈ R𝑚 be the labels in the local dataset D𝑐 of the client 𝑐 . Let𝑚

be the number of the local samples, i.e.,𝑚 = |D𝑐 |. The local loss
function of client 𝑐 is:

L𝑐 (𝜃 ) =
∥X𝜃 − y∥2

𝑚
(2)

Let H = X𝑇X, we know that 𝜃∗𝑐 = (X𝑇X)−1X𝑇 y. When the

batch size is set to𝑚 in FedAvg:

g(𝜃 ) = 2

𝑚

(
H𝜃 −H𝜃∗𝑐

)
. (3)

At round 𝑡 , if client 𝑐 is selected, it receives the server model and

executes Algo. 2. Let 𝜃𝑡𝑐 (𝑒) be the model after the 𝑒-th local epoch’s

update. Replacing (3) with line 4 in Algo. 2, we have

𝜃𝑡𝑐 (𝐸) = 𝜃𝑡𝑐 (𝐸 − 1) −
2𝜂

𝑚

(
H𝜃𝑡𝑐 (𝐸 − 1) −H𝜃∗𝑐

)
= (I − 2𝜂

𝑚
H)𝜃𝑡𝑐 (𝐸 − 1) +

2𝜂

𝑚
H𝜃∗𝑐

= (I − 2𝜂

𝑚
H)𝐸𝜃𝑡𝑐 (0) +

[
I − (I − 2𝜂

𝑚
H)𝐸

]
𝜃∗𝑐 .

2
In [9], the authors claim that their property attack can succeed even in presence

of secure aggregation protocols, but the attack can detect when a certain property

appears during training, not at at which client.
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LetW =

[
I − (I − 2𝜂

𝑚 H)𝐸
]
and v = W𝜃∗𝑐 . We have

𝜃𝑡𝑐 (0) − 𝜃𝑡𝑐 (𝐸) =
[
I − (I − 2𝜂

𝑚
H)𝐸

]
𝜃𝑡𝑐 (0) −

[
I − (I − 2𝜂

𝑚
H)𝐸

]
𝜃∗𝑐

(4)

=W𝜃𝑡𝑐 (0) − v. (5)

Note that 𝜃𝑡𝑐 (0) is the server model and 𝜃𝑡𝑐 (𝐸) is model returned

from client 𝑐 to server in Algo. 2. The adversary has access to

both of them as it can eavesdrop messages exchanged between

the server and the client. Since W ∈ R𝑑×𝑑 and v ∈ R𝑑 , once the
adversary gets 𝑑 + 1 exchanged messages, it can reconstruct the

exact matrix W and the vector v by solving 𝑑 systems (one for

each row of W and the corresponding element of v in (5)), each

with 𝑑 + 1 linear equations (one for each communication round).

Solving a system of 𝑑+1 linear equations requires𝑂 (𝑑3) operations,
thus solving 𝑑 systems in parallel requires only 𝑂 (𝑑3) operations.
Since H is positive definite, W is invertible. Then, we can compute

𝜃∗𝑐 = W−1v. Note that in this reconstruction process, the adversary

does not require knowledge of the parameters in FedAvg, such as

the learning rate and the number of local steps. □

Observation 2. Consider training a least squares linear regression
through FedAvg and assume that a client’s design matrix has rank
𝑑 equal to the number of features. For any FL algorithm where a
client’s local update rule can be seen as a first-order black box 3, at
least one client is required to communicate with the server Ω(𝑑) times
for the convergence to the optimum. In addition, to reconstruct the
local optimal model of this client, the adversary must eavesdrop Ω(𝑑)
times.

We do not detail the proofs of Observation 2 due to the lack

of space. Briefly, for Observation 2, we construct a specific “hard"

scenario in FL (inspired by the work [26, Sect. 2.1.2]) to show the

lower bound for the number of communications.

Combining Observation 1 and Observation 2, we can conclude

that the reconstruction algorithm presented in Observation 1 for

least squares linear regression training through FedAvg, is optimal
for local model reconstruction attack, in terms of the number of

the communications that the adversary eavesdrops.

3.2 Heuristic for local model reconstruction
In this section, we propose a heuristic (Algo. 3) for a local model

reconstruction attack suited for any algorithm falling into the FL

framework (Algo. 1) and any machine learning problem.

Let T 𝑐
be the indexes of the rounds at which client 𝑐 has been

selected by the server, i.e., T 𝑐 = {𝑡 |𝑐 ∈ C𝑠 (𝑡),∀𝑡 ∈ {0, . . . ,𝑇 }}. We

denote byM𝑐
the messages exchanged in Algo. 1 between client

𝑐 and the server, i.e.,M𝑐 = {(𝜃 (𝑡), 𝜃𝑐 (𝑡)),∀𝑡 ∈ T 𝑐 }. Our approach
to (approximately) reconstruct the local model of client 𝑐 consists

of two steps. First, the adversary learns a mapping function G𝑐 to
mimic the local update rule of the client, by exploring the messages

inM𝑐
(see (6) in Algo. 3). More precisely, given the server model

𝜃 as input, G𝑐 predicts the update difference Δ𝜃 = 𝜃 − 𝜃𝑐 . Second,
3
For every client 𝑐 , its local model 𝜃𝑐 (𝑡 ) can be expressed as

𝜃𝑐 (𝑡 ) = 𝜃𝑐 (0) + span{∇L𝑐 (𝜃𝑐 (0)), ∇L𝑐 (𝜃𝑐 (1)), ..., ∇L𝑐 (𝜃𝑐 (𝑡 − 1)) }.

the adversary estimates the local model of client 𝑐 as the one which

minimizes ∥G𝑐 (𝜃 )∥2 (see (7) in Algo. 3). The intuition behind this

step is that the client does not update the model (Δ𝜃 = 0) once it

has reached the local optimal model.

When executing FedAvg using full batch size, the exact map-

ping function G𝑐 can be correctly estimated for least squares linear

regression, and is shown to be linear (see (5) in the proof of Obser-

vation 1). In this case, minimizing ∥G𝑐 ∥2 corresponds to solving the
linear systems mentioned in the proof. We can then conclude that

the decoding algorithm in Observation 1 can be seen as a particular

instance of Algo. 3 and, in particular, leads to an exact local model

reconstruction as proved above.

Generally speaking, the performance of our heuristic depends

on two effects: 1) How well the mapping function G𝑐 mimics the

behavior of the local update rule integrated in FL algorithm, 2) How

close is the estimated
ˆ𝜃 to the true minimizer of problem (7), when

G𝑐 is non-convex.
The first effect depends on the complexity of the learning task,

the randomness introduced by the local update rule in the FL al-

gorithm (line 8 in Algo. 1), and the number of messages observed

by the adversary. More randomness is introduced, less accurate is

the estimation of G𝑐 , and then the final local model reconstruction.

This corresponds to the fact that differentially private algorithms,

which amplify the randomness in the original algorithm by adding

noise, sub-sampling [27, 28], reshuffling [29, 30], etc., can better

protect private information from attacks. The second effect depends

on the convexity of problem (7), and then on the structure of G𝑐 .

Algorithm 3 Local model reconstruction attack

// Input:M𝑐 , the messages exchanged between client 𝑐 and the
server

1: ΔM𝑐 = {(𝜃,Δ𝜃 = 𝜃 − 𝜃𝑐 ),∀(𝜃, 𝜃𝑐 ) ∈ M𝑐 }
2: Define a mapping function G𝑐 with parameters𝑤 ∈ R𝑚 , taking

the server model 𝜃 ∈ R𝑑 as input and predicting the difference

between server model and local model, i.e.,G𝑐 : R𝑚×R𝑑 → R𝑑 .
3: Estimate G𝑐 parameters, denoted by �̂� , by minimizing the

empirical risk:

min

𝑤∈R𝑚

∑
(𝜃,Δ𝜃 ) ∈ΔM𝑐

∥G𝑐 (𝑤, 𝜃 ) − Δ𝜃 ∥2 (6)

4: Estimate the model
ˆ𝜃𝑐 , by minimizing the local update differ-

ence G𝑐 for fixed parameters �̂� :

min

𝜃 ∈R𝑑
∥G𝑐 (�̂�, 𝜃 )∥2 (7)

5: Return
ˆ𝜃∗𝑐 as the estimator for the local model of client 𝑐

4 EXPERIMENT
We have evaluated our proposed heuristic (Algo. 3) on two logis-

tic regression tasks in the federated learning setting: LEAF syn-

thetic [31] and Adult [32] (detailed below). For the structure of

the mapping function G𝑐 , we use a simple neural network with

one hidden layer of size 1000 followed by ReLu activation. Adam

optimizer is used for solving the problems (6) and (7).
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(a)
∥𝜃∗

𝑖
−𝜃∗

𝑗
∥2

∥𝜃∗
𝑗
∥2 (b) Mapping loss vs batch size (c) Test accuracy vs batch size

Figure 1: Adult, one local step and 𝜂 = 0.001. Figs 1b and 1c show the mean and the 95% confidential interval over 10 runs.

LEAF synthetic. This dataset is designed for classification, where
clients’ data sets are highly heterogeneous both in terms of num-

ber of samples and underlying statistical distribution. The detailed

generation procedure can be found in [31, Appendix A]. We set

the number of features to 10, the number of the classes to 2, the

number of clusters (determining statistical heterogeneity) to 5, and

the number of the clients to 5. The batch size is set to 256. The

numbers of samples for each client are 280, 184, 1536, 256 and 208

respectively.

Adult. This dataset contains individual information such as

sex, age, education level, family situation, working class, etc. This

information is used to predict whether a person has an income

higher than 50k$, which can be seen as sensitive information. We

perform our attack on a subset of the data where the individual’s

education level is at least “bachelor".
4
There are 10 clients. To

simulate a non-iid data distribution scenario, we distribute the

records of people with a PhD degree among the first three clients

according to their age. The first client owns the data of young PhDs

less than 38 years old, the second client owns the data of PhDs aging

between 38 and 52 years old, and the third client owns the data of

PhDs elder than 52 years old. The numbers of training samples for

the first three clients are 126, 258 and 134, respectively. The rest

of the data is uniformly distributed among the remaining clients.

To show the dissimilarity between clients, the relative Euclidean

distance between each client’s local optimum model is evaluated

(See Fig. 1a). We can observe that, due to our specific non-iid data

distribution, the local models of the first three clients are quite far

from the rest of the local models, which is reasonable as people with

PhD degree are more likely to have a different salary prediction

pattern.

Performance. To evaluate the performance of the decoded local

model
ˆ𝜃∗𝑐 obtained from Algo. 3, we consider as a baseline the last

model
˜𝜃𝑐 returned by the client 𝑐 at the end of training (instead of

the final global model
˜𝜃 ). The last returnedmodel is potentiallymore

susceptible to attacks than the final global model, as it containsmore

personal information. For every attack scenario, 10 independent

runs were conducted with different seeds.

4
The number of the data points are reduced from 48842 to 12300.

Local Model 𝐴𝑐𝑐𝑐 (𝜃𝑐 ) of client 𝑐 (%) ∑
𝑐 𝐴𝑐𝑐𝑐 (𝜃𝑐 )

5steps 𝜃𝑐 c=0 c=1 c=2 c=3 c=4

1

˜𝜃𝑐 53.9 49.7 85.1 28.3 75.8 58.6

ˆ𝜃∗𝑐 67.0 74.3 80.6 77.9 91.0 78.1

5

˜𝜃𝑐 60.1 54.6 87.6 33.6 79.2 63.0

ˆ𝜃∗𝑐 65.6 72.9 76.9 72.5 86.2 74.8

10

˜𝜃𝑐 69.4 60.4 90.6 42.3 83.9 69.3

ˆ𝜃∗𝑐 67.5 79.5 78.1 75.8 88.9 78.0
Table 1: Average train accuracy on client 𝑐’s local dataset of
the final personalized model of FedAvg ˜𝜃𝑐 and the decoded
model ˆ𝜃∗𝑐 over 10 independent runs. LEAF synthetic dataset
with 5 clients, batch size 256 and learning rate 0.01.

In Table 1, we show the average training accuracy of
˜𝜃𝑐 and

ˆ𝜃∗𝑐
over 10 runs on each client’s local dataset, under LEAF synthetic

data distribution. Note that larger training accuracy values suggest

the model is more suited to the local dataset and it may then leak

more personal information. As the number of local steps increases,

the accuracy of the last returned model increases as the model has

been obtained through more local updates. We can see from the

last column that, on average, our attack outperforms the baseline

with 10%-20% improvement. The performance of the local model

reconstruction attack is almost insensitive to the number of local

steps. Moreover, this attack is more effective on client 3, whose

local dataset is probably very different from the others as suggested

by the low accuracy of the model
˜𝜃𝑐 .

In Figure 1b, we show the performance of the mapping function

G𝑐 when attacking one of the first three client 𝑐 , under different

batch size scenarios in FL for Adult dataset. Small batch size would

introduce more randomness into the data set ΔM𝑐
. Thus, the map-

ping loss (Eq. 6) is higher for small batch size. Figure 1c shows that

the decoded local model outperforms the baseline (dash line) for

test accuracy as well.

5 CONCLUSION
In this paper, we initiate the study of a new attack for FL training:

the adversary estimates a client’s local/personalized model which
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may reveal private information and open the road to other classical

model-based attacks. In comparison to state-of-the-art attacks on

the global model, our attack reduces the plausible deniability and

does not suffer the problem of large batch size (on the contrary,

it works better the larger the batch size). There is still space for

the improvement of our local model reconstruction attack and it

would be interesting to evaluate its performance on neural networks

which is one of our future research directions.
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