Sergey Foss 
  
Takis Konstantopoulos 
  
Bastien Mallein 
  
Sanjay Ramassamy 
  
Estimation of the last passage percolation constant in a charged complete directed acyclic graph via perfect simulation

Keywords: perfect simulation, coupling (from the past), random graph, Markov process, stationarity, last passage percolation AMS 2010 subject classification. Primary 82M31; secondary 60K15, 60G10, 05C80

Our object of study is the asymptotic growth of heaviest paths in a charged (weighted with signed weights) complete directed acyclic graph. Edge charges are i.i.d. random variables with common distribution F supported on [-∞, 1] with essential supremum equal to 1 (a charge of -∞ is understood as the absence of an edge). The asymptotic growth rate is a constant that we denote by C(F ). Even in the simplest case where F = pδ 1 + (1 -p)δ -∞ , corresponding to the longest path in the Barak-Erdős random graph, there is no closed-form expression for this function, but good bounds do exist. In this paper we construct a Markovian particle system that we call "Max Growth System" (MGS), and show how it is related to the charged random graph. The MGS is a generalization of the Infinite Bin Model that has been the object of study of a number of papers. We then identify a random functional of the process that admits a stationary version and whose expectation equals the unknown constant C(F ). Furthermore, we construct an effective perfect simulation algorithm for this functional which produces samples from the random functional.

Preliminaries

A Barak-Erdős random graph is a directed acyclic version of the standard Erdős-Rényi graph [START_REF] Barak | On the maximal number of strongly independent vertices in a random acyclic directed graph[END_REF]. We let Z + , the set of non-negative integers, serve as the set of vertices. For each pair of vertices i, j with i < j, declare (i, j) as an edge directed from i to j with probability p, independently from any other pair. Then the maximum length L n of all paths from vertex 0 to n satisfies a law of large numbers [START_REF] Newman | Chain lengths in certain random directed graphs[END_REF][START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF]: lim n→∞ L n /n = C(p), a.s., where C(p) is a certain deterministic, increasing, analytic function of 0 < p ≤ 1 [START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF][START_REF] Mallein | Two-sided infinite-bin models and analyticity for Barak-Erdős graphs[END_REF]. Owing to the fact that such a graph appears as a model in various natural applications, such as in computer systems [START_REF] Gelenbe | An approximation of the processing time for a random graph model of parallel computation[END_REF][START_REF] Isopi | Speed of parallel processing for random task graphs[END_REF], in mathematical ecology [START_REF] Newman | Chain lengths in certain random directed graphs[END_REF][START_REF] Newman | A stochastic theory of community food webs IV: theory of food chains in large webs[END_REF] and others, information about C(p) has been the subject of a number of papers [START_REF] Newman | Chain lengths in certain random directed graphs[END_REF][START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF][START_REF] Denisov | Limit theorems for a random directed slab graph[END_REF][START_REF] Foss | Long-range last-passage percolation on the line[END_REF][START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF][START_REF] Mallein | Two-sided infinite-bin models and analyticity for Barak-Erdős graphs[END_REF][START_REF] Foss | Limiting properties of random graph models with vertex and edge weights[END_REF][START_REF] Foss | Probabilistic and analytical properties of the last passage percolation constant in a weighted random directed graph[END_REF].

Longest paths in Barak-Erdős graphs may be seen as a special case of the last passage percolation model, which studies the growth rate of the length of the longest path in a directed acyclic graph whose edges and/or vertices are equipped with random weights. By contrast, first 1 passage percolation is a model studying shortest paths between two points in a graph (usually undirected) whose edges and/or vertices are equipped with random weights. Both models have mainly been studied in the case when the graphs are of the form Z d , see e.g. [START_REF] Dauvergne | RSK in last passage percolation: a unified approach[END_REF][START_REF] Auffinger | 50 years of first-passage percolation[END_REF] and references therein. First passage percolation has recently been investigated for Barak-Erdős graphs in the sparse inhomogeneous setting [START_REF] Mallein | On the length of the shortest path in a sparse Barak-Erdős graph[END_REF].

We take interest in a generalization of Barak-Erdős graphs, considering the last passage percolation problem on a complete directed acyclic graph, in which each edge has a signed charge distributed according to an independent copy of the random variable w taking values in R ∪ {-∞} with a support bounded from above. We denote by F the law of w, and let {w i,j , 0 ≤ i < j}, be a collection of i.i.d. copies of w. If π is a path from i to j, namely an increasing collection of vertices (i = i 0 , i 1 , . . . , i = j) then its charge is defined as the sum of the charges of its edges: w(π) = w i 0 ,i 1 + • • • + w i -1 ,i , using the convention that -∞ + x = -∞ for all x ∈ R. In other words, if a path goes through an edge with charge -∞, then the charge of the path is -∞. We define by convention the charge of a path consisting of a single vertex as 0.

We are concerned with the quantity W n := sup{w(π) : π is a path from 0 to n},

the maximum charge of all paths between 0 and n. Observe that (W n , n ≥ 0) is a superadditive random sequence as direct computations show that for all n, m ≥ 0,

W n+m ≥ W n + W n,n+m ,
with W n,n+m = sup{w(π) : π is a path from n to n + m}. As W n,n+m is a copy of W m independent of W n , by Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF] we have

W n n → C(F ), a.s. as n → ∞ (2) 
where C(F ) is a deterministic function of the law F . We refer to C(F ) as the last passage percolation constant of F . The objective of the present article is to develop an approach to compute this constant through Monte Carlo methods.

We denote by

L = inf{z ∈ R : P(w > z) = 0}
the essential supremum of F (this is the maximal point of the support of the distribution F ).

Consider momentarily the case L ≤ 0. Then edge weights are nonpositive a.s., and, since

-W n = -inf{-w(π), π is a path from 0 to n},
the problem is that of first passage percolation on the complete directed graph. We claim that C(F ) = 0. Indeed, with n ≥ 2, considering the 2-edge path (0, j, n),

0 ≥ W n ≥ sup 1≤j≤n-1
(w 0,j + w j,n ) a.s., hence

P(W n ≥ 2(L -1)) ≥ P (w 0,j + w j,n ≥ 2(L -1) for all 1 ≤ j ≤ n -1) ≥ 1 -(1 -P(w > L -1) 2 ) n-1 .
Thus, by the Borel-Cantelli lemma, W n /n → 0 in probability, and hence C(F ) = 0, as claimed. It is not hard to see that W n itself converges weakly to the random variable max(w, 2L).

We only consider the case L > 0 in the rest of the article. In this situation, up to replacing w by w/L, we will assume without loss of generality that the essential supremum of F is 1.

Hence, we work under the following assumption for the distribution F of w:

∀ε > 0, F ([1 -ε, 1]) > 0 and F ((1, ∞)) = 0. ( 3 
)
The case F = pδ 1 + (1 -p)δ -∞ formally corresponds to a Barak-Erdős graph as any edge with charge -∞ can be ignored. Such a graph was studied in [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF] and a more general version of it in [START_REF] Denisov | Limit theorems for a random directed slab graph[END_REF]. The constant C(p) mentioned earlier is, with an abuse of notation, the constant

C(pδ 1 + (1 -p)δ -∞ ).
We know that C(p) > 0 for all p > 0 which means that eventually, any two vertices that are far apart enough are connected by a path that has charge > -∞. It was shown in [START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF][START_REF] Mallein | Two-sided infinite-bin models and analyticity for Barak-Erdős graphs[END_REF] that the function p → C(p) is analytic on (0, 1] and a two-term asymptotic expansion was given in the limit p → 0 as well as the power series expansion around p = 1.

The case F = pδ 1 + (1 -p)δ x , where x ∈ (-∞, 1), was studied in [START_REF] Foss | Probabilistic and analytical properties of the last passage percolation constant in a weighted random directed graph[END_REF]. For this case, the quantity C(F ) was denoted by C p (x), a differentiable function of x ∈ (-∞, 1) \ I, where I is the union of nonpositive rationals and of the inverses 1/n, n ≥ 2. Moreover C(p) is the decreasing limit of C p (x), as x → -∞. In the special case when x = 0, it was shown in [START_REF] Dutta | On limit constants in last passage percolation in transitive tournaments[END_REF] that C p (0) = 1/ψ(1 -p) where ψ is a Ramanujan theta function.

Let F be a distribution on [-∞, 1] with essential supremum 1. Comparing F with the distribution pδ 1/2 + (1 -p)δ -∞ where p = F ([ 1 2 , 1]), it is not hard to see that C(F ) > 0. The goal of this paper is to construct a random variable with expectation C(F ) that can be perfectly simulated via an explicit algorithm. Perfect simulation of a functional of a Markov chain in its "steady-state" is a technique that, whenever applicable, avoids the bias introduced by standard MCMC (=Markov Chain Monte Carlo) methods, in which one would approach C(F ) by a realization of W n /n for n large enough. The terminology and algorithm were introduced in [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF].

A survey can be found in [START_REF] Kendall | Notes on perfect simulation[END_REF]. Its relation to the so-called backwards-coupling was studied in [START_REF] Foss | Perfect simulation and backward coupling[END_REF]. It belongs to the broader area of coupling methods for stochastic recursions that may entirely lack the Markovian property [START_REF] Borovkov | Stochastically recursive sequences and their generalizations[END_REF][START_REF] Comets | Processes with long memory: regenerative construction and perfect simulation[END_REF][START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF].

Our perfect simulation algorithm is based on the construction of a particle system, that we call the Max Growth System (MGS) associated to the charged complete directed graph. This particle system can be seen as an extension of the Infinite Bin Model (IBM) [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF][START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF][START_REF] Chernysh | Coupling any number of balls in the infinite-bin model[END_REF][START_REF] Mallein | Two-sided infinite-bin models and analyticity for Barak-Erdős graphs[END_REF] arising in connection to the Barak-Erdős graph. We mention en passant that the IBM is a particle system in discrete time introduced in [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF] but one which falls in a natural class of similar particle systems, manifestations of which have appeared frequently in the literature, e.g. in [START_REF] Aldous | The asymptotic speed and shape of a particle system[END_REF].

In Section 2, we first define the MGS with charge distribution F and describe some properties of its dynamics. In Section 3, we show that a certain functional of the MGS is a Markov chain that admits a stationary version. In Section 4, we pull the random variable mentioned above from the stationary version, show that its expectation is C(F ) and describe a perfect simulation algorithm. We conclude by suggesting further directions of research in Section 5.

The Max Growth System (MGS)

The Max Growth System is a particle system on R ∪ {-∞} in which at every step a new atom is added to the process. This auxiliary particle system is constructed in such a way that starting from a single particle at position 0, the nth particle in the system will be placed at position W n . The precise connection between the Max Growth System and the last passage percolation model introduced in the previous section is given in Lemma 2.

Deterministic dynamics of the MGS

We let N be the set of locally finite point measures on R ∪ {-∞} with a finite maximal element, namely, measures whose values are nonnegative integers and which are finite on every interval of the form [x, ∞). Another way to define N is as the set of Radon measures ν on R ∪ {-∞} such that x → ν([x, ∞)) is a non-increasing function from R to Z + . This will be the state space on which the MGS is defined. Any such measure ν ∈ N is specified by the nonincreasing sequence

ν 1 ≥ ν 2 ≥ • • • ≥ -∞ of
the locations of the points (atoms) of ν. This sequence may be finite or infinite. For example, ν = 2δ 0 + δ -1.5 + 3δ -4 is equivalently represented by the finite sequence (0, 0, -1.5, -4, -4, -4). We shall therefore think of any ν ∈ N either as a point measure ν = k≥1 δ ν k or as a sequence (ν 1 , ν 2 , . . .). Note that the zero measure 0 is an element of N and corresponds to an empty sequence of points. The total mass ν = ν(R ∪ {-∞}) of ν is the number of its points (counted with multiplicity). We let inf ν := ν ν be the location of the last point of

ν if ν < ∞. If ν = ∞, we let inf ν = -∞.
Let w = (w 1 , w 2 , . . .) be a sequence of elements of R ∪ {-∞}, such that sup k≥1 w k ≤ 1. Let W be the collection of such sequences. Given ν a non-zero element of N , define the quantity

m(ν, w) := sup k≥1 (ν k + w k ), ν = 0, w ∈ W.

Here the supremum is taken either over all

k ≥ 1 if ν = ∞ or over 1 ≤ k ≤ ν if ν is finite.
Observe that m(δ 0 , w) = w 1 for all w ∈ W. The map responsible for the dynamics of the MGS is defined by

Ψ w ν := ν + δ m(ν,w) ,
that consists in adding at every step an atom in the process at a position given by m(ν, w).

We will later employ a "coupling from the past" technique. To this end, it is worth describing the MGS starting from an arbitrary point in time. Let (w(t), t ∈ Z) be a sequence of elements of W, ν a point measure in N and T ∈ Z. The MGS starting from ν at time T is the process (ν(t), t ≥ T ) defined recursively by

ν(T ) = ν and ν(t + 1) = Ψ w(t+1) ν(t), t ≥ T.
When (w j (t), j ∈ Z + , t ∈ Z) is i.i.d. with law F , we say that (ν(t), t ≥ 0) is an MGS with charge distribution F . To simplify notation, for all s ≤ t ∈ Z, we write

Ψ s,t w = Ψ w(t) • Ψ w(t-1) • • • • • Ψ w(s) ,
in which case we have ν(t) = Ψ T +1,t w ν for all t > T .

To consider stationary versions of the MGS, we will sometimes need to work with the particle system seen from the rightmost particle. We denote by N 0 the set of ν ∈ N with ν 1 = 0. For ν ∈ N , we define its shift σν seen from the front by

f (x) d(σν)(x) := f (x -ν 1 ) dν,
for all ν ∈ N and all positive bounded functions f . Thus σ : N → N and can be thought of as: "place the origin at the position of the rightmost atom". For example, σ(δ

a + δ b ) = δ 0 + δ -|a-b| .
Observe that σ is a projection of N onto N 0 , which is consistent with the definition of the MGS as σΨ w = σΨ w σ, for all sequences w ∈ W. It is also worth mentioning that, for all ν ∈ N , we have

m(σν, w) = m(ν, w) -ν 1 . (4) 

Decoupling properties of the MGS

The following lemma shows that if there is a large enough gap in between the first and the second atom in the point measure ν, and the sequence of charges satisfies a "triangular" property, then the positions of the new particles only depend on a finite number of charges.

Lemma 1 (Decoupling property). Fix ∈ [0, 1) and a positive integer n. Let T ∈ Z and (w(T + t), t ≥ 1) be a sequence in W. Let ν be a point measure in N 0 such that ν 2 ≤ -. We define the sequences

ν(t) = Ψ w(t) ν(t -1) and ν(t) = Ψ w(t) ν(t -1), t ≥ T, with ν(T ) = ν and ν(T ) = δ 0 . For all n ∈ N, if w(T ; t) := max{w 1 (T + t), . . . , w t (T + t)} ≥ 1 - for all 1 ≤ t ≤ n, (5) 
then m(ν(T + n -1), w(T + n)) = m(ν(T + n -1), w(T + n)).
Proof. It suffices to prove this statement for T = 0. We prove, by induction, that

w(0; t) ≥ 1 -for all 1 ≤ t ≤ n ⇒ ν(n) |R + = ν(n) |R + and ν(n)(R + ) = n + 1 (6) 
Assume first that n = 1. In this case,

m(ν, w(1)) = max w 1 (1), max j≥2 [ν j + w j (1)] .
Since, by assumption, ν j ≤ ν 2 ≤ -for all j ≥ 2, we have ν j + w j (n) ≤ -+ 1 for all j ≥ 2. To prove [START_REF] Comets | Processes with long memory: regenerative construction and perfect simulation[END_REF] for n = 1 we must assume that w 1 (1) ≥ 1 -. But then w 1 (1) ≥ max j≥2 [ν j + w j (1)] and so m(ν, w(1)) = w 1 (1) = m(ν(0), w(1)).

Hence ν(1) = ν + δ w 1 (1) and, with ν(0) = δ 0 , ν(1) = δ 0 + δ w 1 [START_REF] Auffinger | 50 years of first-passage percolation[END_REF] . Hence (6) holds for n = 1.

Assume next that (6) holds for some n ≥ 2. We prove that it also holds for n + 1. To do this, it suffices to assume that ν(n

) |R + = ν(n) |R + , ν(n)(R + ) = n + 1
, and w(0; t) ≥ 1 -for all 1 ≤ t ≤ n + 1. In this case, we have

m(ν(n), w(n + 1)) = max max j≤n+1 [ν j (n) + w j (n + 1)], max j≥n+2 [ν j (n) + w j (n + 1)] .
But, for all j ≤ n + 1, ν j (n) ≥ 0 and so

max j≤n+1 [ν j (n) + w j (n + 1)] ≥ 1 -.
Taking into account the assumption ν 2 ≤ -, we have, for all j ≥ n + 2, ν j (n) ≤ -and so

max j≤n+1 [ν j (n) + w j (n + 1)] ≥ 1 -≥ max j≥n+2 [ν j (n) + w j (n + 1)],
which implies that

m(ν(n), w(n + 1)) = m(ν(n), w(n + 1)) = max j≤n+1 [ν j (n) + w j (n + 1)] ≥ 1 -> 0.
The configuration ν(n + 1) is thus obtained by adding a particle to ν(n) at a positive location. Since ν(n) = ν(n) on R + and since the particle is added at the same location for both, we have ν(n + 1) = ν(n + 1) on R + . Clearly, ν(n + 1)(R + ) = ν(n)(R + ) + 1 = n + 2, so (6) holds for n + 1.

The above lemma allows us to describe a set of conditions on the sequences (w(t)) so that the increments of ν and ν are algebraically independent of ν and ν.

Corollary 1. Let T ∈ Z, n ∈ N, ∈ [0, 1) and (w(T + t), 0 ≤ t ≤ n) a sequence such that w 1 (T ) ≥ and min{w(T ; 1), w(T ; 2), . . . , w(T ; n)} ≥ 1 -.

Let ν, ν be two elements of N 0 and define the sequences

ν(t) = Ψ w(t) ν(t -1) and ν(t) = Ψ w(t) ν(t -1), t ≥ T, with ν(T -1) = ν and ν(T -1) = ν. Then m(σν(t -1), w(t)) = m(σν(t -1), w(t)) for all T + 1 ≤ t ≤ T + n.
In other words, the sequence (m(σν(t -1), w(t)), T + 1 ≤ t ≤ T + n) is algebraically independent of ν(T -1) provided that w satisfies [START_REF] Denisov | Limit theorems for a random directed slab graph[END_REF].

Proof. We observe that as w 1 (T ) ≥ , we have

m(ν(T -1), w(T )) ≥ ν 1 (T -1) + w 1 (T ) ≥ and m(ν(T -1), w(T )) ≥ .
Therefore, the second largest atoms of σΨ w(T ) ν(T -1) and σΨ w(T ) ν(T -1) are both smaller than -, hence by (4) we can apply Lemma 1, which completes the proof.

The MGS derived from the charged complete directed graph

Consider the charged complete directed graph with i.i.d. edge charges {w i,j , 0 ≤ i < j} of law F , a collection of i.i.d. random variables in R ∪ {-∞} with common law F satisfying assumption [START_REF] Barak | On the maximal number of strongly independent vertices in a random acyclic directed graph[END_REF]. For all n ∈ N, we write W n for the length of the longest path between 0 and n. We observe that (W n , n ≥ 1) can be coupled with the MGS with charge distribution F .

Lemma 2. Let (ν(t), t ≥ 0) be an MGS with charge distribution F such that ν(0) = δ 0 and let (W t , t ≥ 0) as defined in (1). We have the following equality in distribution:

(ν(t), t ≥ 0) (d) =   t j=0 δ W j , t ≥ 0   . (8) 
Proof. By definition, we have ν(0) = δ 0 = δ W 0 , using that the path of length 0 between 1 and 1 has mass 0. Let t 0 ∈ Z + and assume that we can construct a coupling between ν and W such that (ν(t), t ≤ t 0 ) = ( t j=0 δ W j , t ≤ t 0 ) a.s. Conditionally on this coupling, let (w j,t 0 +1 , j ∈ Z + ) and (w j (t 0 + 1), j ∈ Z + ) be independent families of i.i.d. random variables with law F . By [START_REF] Auffinger | 50 years of first-passage percolation[END_REF], decomposing all paths π ending at t 0 + 1 according to their last step, we have

W t 0 +1 = max{W j + w j,t 0 +1 , 0 ≤ j ≤ t 0 } (d) = max{ν j (t 0 ) + w j (t 0 + 1), 1 ≤ j ≤ t 0 + 1} = m(ν(t 0 ), w(t 0 + 1)), therefore ν(t 0 + 1) (d) = t 0 +1 j=0 δ W j .
As a result, we can couple the two sequences of random variables in such a way that the above equality holds almost surely.

Hence, by recursion, there exists a coupling between the MGS and the last passage percolation problem such that (8) holds for all times.

A noteworthy observation is that the increments of W are the same as the relative increments of the MGS. More precisely, defining

M n = max 0≤k≤n W k = sup 0≤k≤n {w(π), π path from 0 to k} , (9) 
the increments of the sequence (M n , n ≥ 0) can be connected to the relative increments of the MGS.

Corollary 2. Under the foregoing assumptions,

(M n -M n-1 , n ≥ 1) (d) 
= (m(σν(n -1), w(n)) + , n ≥ 1).

Proof. In the proof above, we established a coupling between (ν(n), n ≥ 0) and (W k , k ≥ 0). Under this coupling, for n ∈ Z + , we have

W n = m(ν(n -1), w(n)) and M n = ν 1 (n).
As a result, under this coupling, we have

M n -M n-1 = (W n -M n-1 ) + = (m(ν(n -1), w(n)) -ν 1 (n -1)) + = m(σν(n -1), w(n)) + .

Stationarity via coupling

We recall that our aim is to compute the quantity C(F ) defined by

C(F ) := lim n→∞ W n n a.s.
As F has a finite essential supremum, it holds that ∞ 0 xF (dx) < ∞. Therefore, by [START_REF] Foss | Long-range last-passage percolation on the line[END_REF], it is known that

C(F ) = lim n→∞ M n n a.s. and in L 1 .
Thus, if F satisfies (3), we have

C(F ) = lim n→∞ E(M n ) n .
Using Corollary 2, we remark that for all n ∈ N,

M n n = 1 n n j=1 (M j -M j-1 ) = 1 n n j=1
m(σν(j -1), w(j)) + .

We show in this section that (m(σν(n -1), w(n)), n ≥ 1) admits a stationary version (where we recall that σν is the point measure shifted so that its rightmost element is at position 0). Since the process (m(σν(n -1), w(n)), n ≥ 1) is not Markovian, the term "stationary version" should be used with caution. For us, it means that it couples with a stationary process in finite time, as in the statement of Theorem 1 below. Then, letting m be the limit in distribution of m(σν(n -1), w(n)) as n → ∞, we have

C(F ) = lim n→∞ 1 n n j=1 E m(σν(j -1), w(j)) + = E(m + ),
as m(σν, w) + ∈ [0, 1] a.s. In the next section, we introduce the perfect simulation algorithm, which consists in giving a realization of m without constructing the limit in distribution of σν(n) as n → ∞. In the special case of Barak-Erdős graphs, a simpler case of a perfect simulation algorithm was explained in [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF].

Theorem 1. Suppose that F is a distribution satisfying (3). Let ∈ [0, 1) be such that p := F ([1 -, 1]) ∈ (0, 1]. Let w = (w i , i ∈ N) be i.i.d
. random variables with law F and (w(t), t ∈ Z) i.i.d. copies of w. Given ν(0) ∈ N , we define the MGS by

ν(t + 1) = Φ w(t+1) ν(t), for all t ≥ 0.
There exists a stationary process (m(t), t ∈ Z) such that m(σν(t -1), w(t)) = m(t) a.s. for t large enough.

In particular E(m(0) + ) = C(F ).

Proof. For T ∈ Z and t ∈ N, we recall the notation w(T ; t) = max{w 1 (T + t), . . . , w t (T + t)} from Lemma 1. We introduce the event

R k := ∞ j=1 {w 1 (k) ≥ , w(k; j) ≥ 1 -}.
It is clear from its definition that (R k , k ∈ Z) is a stationary sequence of events with

P(R k ) = P(R 0 ) = F ([ , 1]) ∞ j=1 (1 -(1 -p) j ) > 0.
Consider the stationary random set J := {k ∈ Z : R k holds}. Since P(R k ) > 0, we have, by ergodicity (more specifically by the Poincaré recurrence theorem), inf J = -∞ and sup J = ∞ a.s. We enumerate the elements of J by

• • • < T -1 < T 0 ≤ 0 < T 1 < T 2 < • • • We define ν(t) := σ i∈Z 1 {T i <t≤T i+1 } Ψ T i ,t w δ 0 , t ∈ Z.
It is clear from its definition that (ν(t), t ∈ Z) is stationary, as (w(t), t ∈ Z) is a stationary sequence, and (ν(T i + 1), i ∈ Z) are i.i.d. elements of N 0 . Next, we define

m(t) = m(ν(t -1), w(t)), t ∈ Z,
which is again a stationary sequence.

By Corollary 1, we observe that for all t ≥ T 1 + 1, the quantity m(σν(t -1), w(t)) does not algebraically depend on ν(T 1 -1). Hence, we have m(σν(t -1), w(t)) = m(t), using that m(t) is the same quantity for the MGS started from δ 0 at time T 1 -1. As T 1 < ∞ a.s. this completes the proof of the first part of the theorem.

Next, using that

C(F ) = lim n→∞ E(M n ) n = lim n→∞ 1 n n j=1
E(m(σν(j -1), w(j)) + ) a.s., and using the eventual equality between m(σν(t -1), w(t)) and m(t), we have

C(F ) = lim n→∞ 1 n n j=1 E(m(j) + ) = E(m(0) + ),
by stationarity and ergodicity of the sequence.

Remark 1. The random times T i split the process into independent and identically distributed pieces (thereby making the process strictly regenerative) yielding a number of limiting results including a (functional) central limit theorem. In terms of the last passage percolation model, the T i are the locations of points through which every longest path must pass. Thus the stationary last passage percolation model admits bi-infinite longest paths, and any longest path in a finite graph grown from a single initial vertex will eventually coalesce with some bi-infinite longest path.

Perfect simulation

The formula (2) for C(F ) suggests a straightforward method for estimating C(F ): starting from ν(0) = 0, generate iteratively ν(1), ν(2), . . . , ν(n), and take ν 1 (n) for an estimation of C(F ). This standard (so-called MCMC) method introduces a bias. Indeed, E(ν 1 (n))/n is not equal to C(F ), but merely converges to that constant.

To eliminate this bias, we produce an algorithm that constructs the variable m(0), whose distribution is unknown. Then, by standard Monte Carlo method, an unbiased estimation of C(F ) can be constructed. This is done in this case by using the construction described in the proof of Theorem 1.

This algorithm is a development of a similar construction for functionals of stochastic recursions in [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF] and is based on the ideas of so-called "backward coupling", see [START_REF] Foss | Perfect simulation and backward coupling[END_REF]. It is close in spirit to the coupling-from-the-past method for Markov chains [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF] and to the perfect simulation construction for processes with "long memory" [START_REF] Comets | Processes with long memory: regenerative construction and perfect simulation[END_REF]. Note that the algorithm from [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF] is applicable to either finite Markov chains or ordered monotone Markov chains possessing a unique minimal state and a unique maximal state, so it cannot be applied to our case.

Theorem 2 (Perfect simulation). Define

T * := sup{t ≤ -1 : w 1 (t) ≥ , min 1≤j≤|t| w(t; j) ≥ 1 -}.
Then |T * | < ∞ a.s., and

m(0) = m σΨ T * ,-1 w δ 0 ; w(0) a.s.
Proof. We recall that (T -j , j ∈ N) are the negative elements of the random set J, with T -1 > -∞. We remark that

w 1 (T -1 ) ≥ , w(T -1 ; j) ≥ 1 -for all j > 0, therefore T * ≥ T -1 , proving its finiteness. Moreover, since w 1 (T * ) ≥ , min 1≤j≤|t| w(T * ; j) ≥ 1 -,
by Corollary 1, the quantity m σΨ T * ,-1 w ν; w(0) does not algebraically depend on the value of ν ∈ N 0 . As a result, it is equal to m(0), defined as m σΨ T * ,-1 w δ 0 ; w(0) .

Remark 2. If the essential supremum L of F is infinite, then the perfect simulation algorithm we defined cannot apply. Indeed, in this situation, Lemma 1 does not apply and we could not find an event depending on a finite number of charges such that an analogue of this lemma would hold. When L = ∞, even if the tail of F decays fast enough, we would still need to look at infinitely many values of w j (1) to increment just the first time step of the MGS, making it impossible to hope for a perfect simulation algorithm which ends in finite time for any starting configuration.

Fix t = 0 and J = 1; Generate the variable w 1 (0); Fix Stopping = False; while Stopping = False do while max 1≤j≤J w j (t) < 1 -do Increase J by 1; Generate the variable w J (t); while J > 1 do

Decrease J by 1 and t by 1; Generate w 1 (t), . . . w J (t); while max 1≤j≤J w j (t) < 1 -do Increase J by 1; Generate the variable w J (t); Decrease t by 1; Generate w 1 (t); Fix Stopping = {w 1 (t) ≥ }; Fix ν = δ 0 ; for s from t + 1 to -1 do Generate the variables w 1 (s), . . . , w ||ν|| (s) ; Set m = max{ν j + w j (s) for 1 ≤ j ≤ ν }; Add δ m to ν; Set m = max{ν j + w j (0) for 1 ≤ j ≤ ν }; Return: m -ν 1 ;

Algorithm 1: Construction of a variable of law m(0).

The perfect simulation algorithm

We now describe more precisely the perfect simulation algorithm. Let F be a probability distribution satisfying (3), we fix ∈ [0, 1) such that F ([1 -, 1]) ∈ (0, 1). The algorithm requires the construction of an array of i.i.d. random variables with common distribution F until the random variable T * can be constructed.

To construct T * as well as m(0) from the sequence {w j (t), j ∈ N, t ∈ Z}, one only needs to consider a.s. finitely many elements of this set, as {T * = t} is a measurable function of

{w 1 (t)} ∪ {w j (t + k), 1 ≤ j ≤ k ≤ |t|} and m(0) is a measurable function of {w 1 (T * )} ∪ {w j (T * + k), 1 ≤ j ≤ k ≤ |T * |}.
Therefore, we can explore triangular arrays of the form

{w 1 (t)} ∪ {w j (t + k), 1 ≤ j ≤ k ≤ |t|},
progressively decreasing t until time T * is detected. Once this random variable is known, we construct the random variable m(0) using the procedure described in Theorem 1 from the

0 -1 -2 -3 -4 -5 -6 1 2 3 4 5 6 w j (t) ≥ 1 - w j (t) < 1 - w j (t) ≥ w j (t) < t j
Figure 1: Illustration of the execution of Algorithm 1 on an example, in the case where < 1 -. The variables sampled until the Boolean variable Stopping becomes True are pictured by black/white squares and disks. One searches for the first time T * such that every line of index T * + 1 ≤ t ≤ 0 has at least one black disk between columns 1 and t -T * and such that there is a black square in position (T * , 1). The full triangular array of variables used in the construction of ν is enclosed by a red boundary.

previously discovered random variables. A possible implementation is described in Algorithm 1. We show a graphical representation of a run of Algorithm 1 in Figure 1.

We observe that this algorithm has a complexity of (T * ) 2 , as it is the number of steps needed to generate the variable m(0). It is worth noting that -T * can be constructed as the first hitting time of 0 of the Markov chain (X n ) with initial state X 0 = min{j ≥ 1, w j (0) ≥ 1 -} and with transition probabilities defined for all j ≥ 2 and i ≥ j by P (j, j -1) = 1 -(1 -p) j-1 and P (j, i) = p(1 -p) i-1 where p = P(w 1 (0) ≥ 1 -), with

P (1, 0) = P(w 1 (0) ≥ ), P(1, 1) = P(1 -≤ w 1 (0) < ), P (1, j) = p(1 -p) j-1 for j ≥ 2.
The quantity X n corresponds to the value of the variable J at the end of the period when t = -n in Algorithm 1. In the example shown in Figure 1, we have (X 0 , X -1 , X -2 , X -3 , X -4 , X -5 , X -6 ) = (4, 3, 2, 1, 2, 1, 0). Note that T * has exponential tails.

The choice of the parameter may have an important effect on the behaviour of the average complexity E((T * ) 2 ) of the algorithm. We plotted → E((T * ) 2 ) in Figure 2, when the charge distribution is given by F (dx) = 1 {x≤1} e x-1 dx. Additionally, as p → 0, the quantity E((T * ) 2 ) grows to ∞. We estimated E((T * ) 2 ) for F = pδ 1 + (1 -p)δ -∞ and plotted this quantity as a function of p in Figure 3. We observe in Figure 2 that different choices of the value can have a dramatic impact on the efficiency of Algorithm 1. Choosing a value too small has the effect of making the first appearance of a triangular event too late. On the other hand, if is too big then with high probability, one will have w 1 (T ) ≤ , and thus the first "successful" triangular event will appear much later. For the distribution F we chose, it appears that an optimal choice of seems to be around = 0.7, which balances between these two extremes. We observe in Figure 3 that if F puts a large mass on the negative half-line, the complexity of Algorithm 1 can become quite large. The function p → E(T * ) 2 grows at least exponentially in 1/p as p → 0 in the Barak-Erdős graph, but we were not able to obtain a good estimate of this rate of increase.

Further directions of research

In this article we considered last passage percolation on the directed complete graph, which has a total order on its vertex set. One extension of this would be to construct a perfect simulation algorithm for so-called directed slab graphs [START_REF] Denisov | Limit theorems for a random directed slab graph[END_REF] where the set of vertices is only partially ordered. Another possible extension would be to add i.i.d. vertex weights with a distribution that has a finite essential supremum. In both cases, as well as in the setting considered in this paper, one should be able to obtain a perfect simulation algorithm if one replaces the i.i.d. weights by more general stochastic recursions with stationary drivers, as was considered in [START_REF] Foss | Extended renovation theory and limit theorems for stochastic ordered graphs[END_REF].

As discussed in the previous section, the complexity of our perfect simulation algorithm may dramatically vary with . In the case of F (dx) = 1 {x≤1} e x-1 dx presented in Figure 2, there seems to be a unique optimal choice for ˆ around 0.7. It would be interesting to find some classes of distributions F for which one has good bounds on the optimal value ˆ .

Yet another research direction would be the estimation of the constants appearing for last passage percolation on a 2-dimensional version of the Barak-Erdős directed graph on the set N × N and whose edges are as follows: if u = (u 1 , u 2 ), v = (v 1 , v 2 ) ∈ N × N are two vertices such that i 1 ≤ j 1 , i 2 ≤ j 2 , then declare the pair (u, v) as an edge directed from u to v with probability p, independently over all such pairs. Then maximum length L n of all paths from (1, 1) to (n, n a ), for a certain a > 0, rescaled appropriately, converges weakly [START_REF] Konstantopoulos | Convergence to the Tracy-Widom distribution for longest paths in a directed random graph[END_REF] to a random variable having a Tracy-Widom distribution depending on two parameters. The estimation of these parameters is an open problem.
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 2 Figure 2: Dependency in the parameter of the complexity of Algorithm 1 with a charge distribution F (dx) = 1 {x≤1} e x-1 dx. The figure was obtained with a Monte Carlo simulation of N = 10 4 copies of T * for 100 different values of . For this charge distribution, the Monte Carlo simulations give C(F ) = 0.4432 ± 0.0006.
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 3 Figure 3: Dependency in the parameter p of the complexity of Algorithm 1 applied to the detection of the longest path in the Barak-Erdős graph with parameter p. Figure obtained through Monte Carlo simulation of N = 10 5 copies of T * for 120 different values of p.

  Figure 3: Dependency in the parameter p of the complexity of Algorithm 1 applied to the detection of the longest path in the Barak-Erdős graph with parameter p. Figure obtained through Monte Carlo simulation of N = 10 5 copies of T * for 120 different values of p.

Acknowledgements

We thank the referees for suggestions to improve the exposition. SF was partially supported by the RFBR collaborative grant 19-51-15001 and TK, BM and SR were partially supported by the CNRS PRC collaborative grant CNRS-193-382 with the common title "Asymptotic and analytic properties of stochastic ordered graphs and infinite bin models".

Sergey Foss, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK E-mail address: sergueiorfoss25@gmail.com Takis Konstantopoulos, Department of Mathematical Sciences, University of Liverpool, Liverpool, UK E-mail address: takiskonst@gmail.com Bastien Mallein, Université Sorbonne Paris Nord, LAGA, UMR 7539, F-93430, Villetaneuse, France E-mail address: mallein@math.univ-paris13.fr Sanjay Ramassamy, Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France E-mail address: sanjay.ramassamy@ipht.fr