Integrable dynamics in projective geometry via dimers and triple crossing diagram maps on the cylinder - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Integrable dynamics in projective geometry via dimers and triple crossing diagram maps on the cylinder

Résumé

We introduce twisted triple crossing diagram maps, collections of points in projective space associated to bipartite graphs on the cylinder, and use them to provide geometric realizations of the cluster integrable systems of Goncharov and Kenyon constructed from toric dimer models. Using this notion, we provide geometric proofs that the pentagram map and the cross-ratio dynamics integrable systems are cluster integrable systems. We show that in appropriate coordinates, cross-ratio dynamics is described by geometric R-matrices, which solves the open question of finding a cluster algebra structure describing cross-ratio dynamics.
Fichier principal
Vignette du fichier
main-v2.pdf (699.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03364744 , version 1 (04-10-2021)
hal-03364744 , version 2 (27-09-2023)

Identifiants

  • HAL Id : hal-03364744 , version 2

Citer

Niklas Affolter, Terrence George, Sanjay Ramassamy. Integrable dynamics in projective geometry via dimers and triple crossing diagram maps on the cylinder. 2023. ⟨hal-03364744v2⟩
131 Consultations
93 Téléchargements

Partager

More