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Abstract: Digital technologies are an opportunity to overcome disabilities, provided that accessibility
is ensured. In this paper, we focus on visual accessibility and the way it is supported in Operating
Systems (OS). The significant variability in this support has practical consequences, e.g., the difficulty
to recommend or select an OS, or migrate from one OS to another. This suggests building a variability
model for OS that would classify them and would serve as a reference. We propose a methodology
to build such a variability model with the help of the Formal Concept Analysis (FCA) framework.
In addition, as visual accessibility can be divided into several concerns (e.g., zoom, or contrast), we
leverage an extension of FCA, namely Relational Concept Analysis. We also build an ontology to
dispose of a standardized description of visual accessibility options. We apply our proposal to the
analysis of the variability of a few representative operating systems.

Keywords: visual accessibility; variability representation and management; separate concerns in
variability; Formal Concept Analysis; Relational Concept Analysis

1. Introduction

Digital technologies provide many opportunities, including overcoming a disability and
simplifying access to knowledge and services [1–3]. Several initiatives and laws, e.g., the
Americans with Disabilities Act (https://adata.org/topic/technology-accessible, accessed
on 1 September 2021), promote full participation of individuals to all areas of the society
and reduction of discriminations, including the digital sector [4]. For fostering software
accessibility on personal computers and mobile devices, computer accessibility guidelines and
standards have been proposed by organizations [5], including the International Organization
for Standardization, the International Electronical Commission [6], the European Commission,
the US Congress [4], and the W3C [7–10].

In this paper, we focus on visual accessibility in operating systems (OS). Vision is
the focal point of the recent studies in software accessibility [5]. Unfortunately, there is
no unique reference for software accessibility [5,11] and OS manufacturers make various
interpretations of the existing international recommendations [4]. As a consequence, each
OS proposes its own set of visual accessibility options, with specific terms, organization
and implementation. This variability has a number of practical consequences. We hereafter
mention just a few. During requirement analysis, it may be challenging for a manufacturer
to both integrate international recommendations and analyze competing OS, in order to
identify core solutions, or to propose advanced ones. For end users, finding the OS that
best matches their needs may be tricky. In addition, when users need to move to a new
system, it is difficult to assist them to select the OS preserving a significant part of their
current settings. This is very sensitive for users who have specific needs, especially those
who are visually impaired. For a single option, this may be relatively easy, e.g., a user
wishing option “invert colors” will find it in Android, iOS, MacOS and Ubuntu, but not in
Windows. However, if the user has complex settings, composed of many specific options,
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it might be difficult to find which system will provide the same or the closest configuration
from OS descriptions with different vocabulary and presentations.

Solutions to these issues involve comprehending OS variability. This can be based on
comparative studies, metrics, classifications and mappings between needs and OS. Com-
parative studies, classification and mappings are addressed in studies on OS accessibility
that have been conducted in the past on a limited set of OS and options [12–15]. They
mainly present and discuss tables that show which option appears in which OS, and they
remain at a coarse-grained level of description. These results are evidently useful, but we
think that it is possible to go beyond texts and tables and propose another approach for
analyzing and rendering variability at a fine-grained level. In particular, we would like to
provide a variability model supporting more assistance tools. e.g., finding the OS providing
a configuration best-matching the user needs or previous settings is not easy with a table,
especially if there are no details on options implementing a high-level feature, or if there
are many columns. Variability metrics are surveyed in [16]. Some of them are directly
connected to our work and some correspond to code variability that we do not approach.
Here, we aim to propose a variability model which can be navigated, and metrics.

The approach we propose is based on Formal Concept Analysis (FCA, [17]). This frame-
work builds classifications (also called conceptual structures) in which concepts group similar
objects. The hierarchical structure (concept lattice) highlights commonalities and differences.
In addition, it provides an easy support for navigation in the classifications [18–20]. We also
leverage an extension of FCA, namely Relational Concept Analysis (RCA, [21]), to analyze vari-
ability along separate concerns, such as contrast and color theme, text style, brightness or zoom.
With RCA, we analyze variability within each concern, and considering all of them as well. As
FCA applies to standardized descriptions, which do not exist for all visual accessibility options
in OS, we build an ontology. We develop an exploratory case study, where we observe different
types of variability relationships on eight operating systems.

To summarize our contributions, we propose:

• A methodology to build a variability model in the form of conceptual structures. This
model can be navigated to comprehend variability. It can also be observed through
various metrics. The novelty is that it allows us to analyze variability along separate
concerns, or as a whole. The variability model is a classification built with a fine-
grained knowledge on options. It thus opens the possibilities, for example, to help
manufacturers to position their offer with respect to competing ones, to help users to
choose an OS from scratch, given their preferences or needs, or to find an OS providing
settings close to their current settings in another OS by introducing their settings in
the classification (i.e., classifying the settings).

• An ontology for visual accessibility options stemming from representative OS and the
mappings between the OS terms and the ontology concepts. The existence of the ontol-
ogy is useful in this work to standardize the vocabulary and build an OS classification.
Outside this work, it may serve as the basis for other tasks. During OS development, it
may sensitize developers, help to standardize the documentation, structure the work
along a package hierarchy and test cases, and have a harmonized description over
different versions. If a documentary base is built on visual accessibility, the ontology
may be used to improve efficiency and reduce ambiguity in document indexing and
query expression. For teaching and communicating on visual accessibility, it may be
used to organize the presentation of visual accessibility features, and the mappings
help in understanding how and where the features are implemented. In addition,
the ontology may help in sketching questionnaires to capture the user’s needs.

• A proof-of-concept with an exploratory case study. This case study includes several OS
from the mainstream OS families. This case study is guided by the research question
“How do accessibility options vary in practice?”. We answer by observing feature
relationships (omnipresence, co-occurrences, binary implications, mutual exclusions)
and operating system relationships (similarity, superiority, incomparability).
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In Section 2, we draw the outline of the approach, which follows the knowledge
discovery process proposed in [22]. Data preparation is detailed in Section 3. Section 4
presents the selected data mining method (FCA and RCA) and how it applies in our context.
Section 5 shows how results are interpreted. Section 6 develops the exploratory case study.
Section 7 discusses related work. We conclude and draw future research directions in
Section 8.

2. Outline of the Variability Model Building

To build the variability model, we follow the general view of the Knowledge Discovery
process presented in [22] and largely adopted in the literature. This process is outlined as
a linear flow, although steps may be repeated to consolidate results. During the first major
step, data preparation, data is selected, pre-processed and transformed to conform to the
chosen data mining method and tool input. Data mining algorithms are applied during the
second step. They output knowledge patterns, that are subject to interpretation in the third
step: they are analyzed, post-processed and delivered to domain experts. Figure 1 draws
the main steps of our implemented KD process.

Feature 
Models RCFT files Interconnected

Concept lattices
Variability
knowledge

Ontology

Mappings

Selected 
representative

OS

Operating 
systems (OS)

Data preparation Data mining Interpretation

Figure 1. Outline of our implemented KD process.

Data preparation step (see Section 3) is composed of several sub-steps. The first one
consists in selecting representative operating systems (Section 3.1). Then, in Section 3.2, we
formalize the domain knowledge of each single operating system in a Feature Model (FM).
This corresponds to a) a list of features (also called options in our paper) and b) hierarchical
relationships between these features. FMs are variability models used in Software Product
Line Engineering [23,24]. We manually build these FMs during an exhaustive navigation of
the accessibility option set. To this aim, we explore the user interface provided by the operating
system. Vocabulary and organization of these FMs are very different. Thus, we also manually
build a domain ontology, capturing concepts of the studied visual accessibility mechanisms
(Section 3.3). This ontology is used to have a standard description. In addition, we establish
a mapping between each option of each single operating system and one ontology concept
(Section 3.4). This mapping ensures that a correspondence exists between: the interpretation
and vocabulary used in each operating system version, on one side, and the common domain
knowledge, on the other side. The last part of data preparation consists in translating and
enriching the descriptions of the different accessibility option sets. This is made using the
ontology concepts to obtain a consistent and standardized description. Section 3.5 explains
how we encode these descriptions in a simple data model composed of objects, boolean
attributes and binary relations between objects (RCFT). This data model conforms to the input
of Relational Concept Analysis (RCA).

Data mining step (Section 4) uses RCA to build a set of interconnected conceptual
structures. The final variability model is composed with these structures. They exhaustively
contain logical variability information.

During Interpretation step (Section 5), we post-process the conceptual structures with a
tool for extracting variability relationships. We also navigate them to produce knowledge
that can be delivered to non-experts. In the future, this analysis could be guided by
appropriate tools. This would enable non-experts to interpret the output.
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In what follows, the data preparation step is illustrated using the real description
of the brightness mechanism in representative operating systems (those that are used in
the case study). This mechanism is indeed sufficiently small in these systems. Brightness
is also chosen because of its primary importance to assist people with low vision. Then
the following steps are illustrated with a small fictitious yet realistic example. It includes
five operating systems, and options inspired by four mechanisms (contrast, text style,
brightness and zoom). It has been chosen to illustrate all the possible situations.

3. Data Preparation

This step builds data conform to the input of the data-mining method (Relational
Concept Analysis). It comprises five sub-steps: selection of representative operating
systems (Section 3.1); building of Feature Models (Section 3.2); building of an ontology
(Section 3.3); mapping between the FMs and the ontology (Section 3.4); building of a set of
binary tables for RCA (Section 3.5).

3.1. Operating System Selection

To have a variety of systems, we consider a few versions of widely used operating
systems, that we expect representative: Android, iOS/MacOS, Ubuntu and Windows.
They are used to explain the first steps of data preparation and in the case study. We
analyze 8 different operating systems, two from each family: Android5.1, Android6.0,
iOS5, MacOS10.10, Ubuntu12.04, Ubuntu14.10, Windows7.0 and Windows8.1. In these
systems, we consider separately four mechanisms: brightness, contrast and color, text style
and zoom. This division has been proposed by one co-author who is an expert in visual
accessibility for persons with low vision.

3.2. Modeling Accessibility Mechanisms through Features Models

The formalism for modeling options in a single operating system is borrowed from
the product line engineering paradigm [25]. In this paradigm, the high-level features are
gathered in feature sets and then organized into Feature Models (FMs). FMs are kinds of
logical trees [23,24]. The nodes represent the features and the child-parent edges represent
various types of refinement. Decorations on edges give information about optionality versus
obligation, and about feature groups (Or, Xor). The FMs also include textual logical constraints.
At the data-mining step, we will consider only the features and child-parent relationships.
Textual constraints will not be considered in this paper. Nevertheless, we thought useful to
formalize them for exhaustive description and further research. Figure 2 (left-hand side) shows
the FM for brightness in operating system iOS5. In this system, an end user configuration
contains or may contain:

• the root feature iOS5_Brightness (mandatorily);
• feature DisplayAndBrightness (mandatorily);
• feature AutoBrightness (optionally);
• features Brightness and Interval_From_Zero_ To_OneHundredPercent (mandatorily).
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Figure 2. Feature models for Brigthness of iOS (left-hand side, version iOS5) and MacOS (right-
hand side, version MacOS10.10) represented with FAMILIAR [26]. Black circles indicate mandatory
features; white circles indicate optional features.

Let us note that alternative modeling could be done during this phase. For example,
all possible values of brightness (if in finite number) could be shown as different features
in an Xor group, rather than making explicit an interval and its bounds. FM building is
summarized as follows (Box 1).

Box 1. Feature Model building.

FM building. Let us denote the set of operating systems by OS = {Android5.1,
Android6.0, iOS5, MacOS10.10, Ubuntu12.04, Ubuntu14.10, Windows7.0, Windows8.1}
and the set of mechanisms by MS = {Brightness, Contrast, TextStyle, Zoom}. At FM
building step, ∀ms ∈ MS, ∀os ∈ OS, we build the Feature Set FSos

ms and the Feature
Model FMos

ms. The whole feature set is denoted by F =
⋃

ms∈MS,os∈OS FSos
ms. The relation

associating the systems with the features they own is denoted by owns ⊆ OS×F .

We do it concretely by exhaustively and manually exploring the accessibility op-
tions as users who would be creating their accessibility profile. We use the path which
allows us to find the options of the mechanisms through the user interface to incremen-
tally add the options and organize them in the FM. The FM is built with FAMILIAR
(https://familiar-project.github.io/, accessed on 1 September 2021) (FeAture Model scrIpt
Language for manIpulation and Automatic Reasoning) [27]. Figure 2 shows two FMs for
brightness. The other FMs can be seen in the online repository (https://gite.lirmm.fr/
AccessibiliteNumerique/osvisualaccessibilityoptions, accessed on 1 September 2021).

3.3. Ontology Construction

Some high-level domain options with the same name share the same meaning in
several systems, e.g., Ubuntu12.04 and Ubuntu14.10 provide options called BrightnessUp
(increase brightness). However, for other terms, there is a need of clarification and standard-
ization. We here use ontologies as a specification of a conceptualization designed for the purpose
of enabling knowledge sharing and reuse [28]. We illustrate this with the brightness mechanism.

• Some options have the same meaning (e.g., “adjust automatically brightness”), but dif-
ferent names (e.g., AutoBrightness in iOS5 and AutomaticallyAdjustBrightness in
MacOS10.10); Brightness in iOS5 and Level in MacOS10.10 seem to be synonyms
as well.

• Some options can be considered as specializations of others (and the corresponding
names can be considered as hyponyms), e.g., term Level of MacOS10.10, where this

https://familiar-project.github.io/
https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions
https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions
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term means “manually set brightness”, can be considered a specialization of term
DisplayAndBrightness and iOS5_Brightness in iOS5.

• Some options gathered during the manual exploration of systems do not describe bright-
ness concepts, they correspond to paths in user interface, such as OpenDisplayPreferences
in MacOS10.10. We consider that they are accidentally present for our analysis.

To standardize these descriptions, we designed an ontology composed of 4 parts, one
per mechanism (they also can be considered as 4 ontologies). The ontology plays the role
of a formal and common vocabulary composed of concepts and relations. Each option
of a particular system can be mapped onto one ontology concept. In practice, to build
the brightness ontology, we analyzed the features in all the systems and we modeled and
organized the underlying concepts. The brightness ontology is shown in Figure 3. It high-
lights the concept BrightnessMechanism which can be specialized into two types of setting
functionalities: DisplayAutoBrightness and ManualDisplayBrightnessLevel, represented
by two sub-concepts. The first consists of enabling or disabling: if the user enables it,
the system automatically sets the value. For the second one, the user chooses one value
among a set of values. As a result, we define the concept IntervalValue as a specialization
of ManualDisplayBrightnessLevel. Alternatively the setting consists to increase (resp. de-
crease) the brightness level. That is why we define the concepts IncreaseBrightness and
DecreaseBrightness as specializations of ManualDisplayBrightnessLevel.

Figure 3. Brightness Mechanism Ontology made with CoGui editor.

In addition to specialization, other relations can be included in the ontology, and nu-
merical values need to be represented. For example, in the text style ontology, we establish
hasSize between concepts ThingsAreaTextSize and Size (see Figure 4).

Figure 4. Excerpt of Text Style Mechanism Ontology (CoGui editor).

The ontology has been technically developed using the Conceptual Graphs ontology
editor CoGui (http://www.lirmm.fr/cogui/3/, accessed on 1 September 2021) [29]. CoGui
ontologies can be exported into Protégé (https://protege.stanford.edu/, accessed on 1
September 2021) ontologies.

3.4. Feature-to-Ontology Concept Mapping

In parallel, a mapping between the specific features and the ontology concepts is
established. Table 1 shows the 8 OS brightness features mapped onto the ontology. This
is schematized for iOS5 and MacOS10.10 in Figure 5. This mapping is very important
because it traces the identified correspondences. It is also used to build standardized input
data for the data-mining step. It shows, for example, that AutoBrightness of iOS5 and
AutomaticallyAdjustBrightness of MacOS10.10 are mapped to DisplayAutoBrightness.

http://www.lirmm.fr/cogui/3/
https://protege.stanford.edu/


Future Internet 2021, 13, 230 7 of 28

Level of MacOS10.10 is mapped onto ManualDisplayBrightnessLevel concept, making
it a specialization of BrightnessMechanism on which iOS5_Brightness of iOS5 is mapped.
Accidental options, such as Display1 or Display2 are discarded from the ontology and the
mapping. The two steps (ontology building and mapping) are summarized as follows
(Box 2).

Box 2. Ontology and mapping building.

Ontology and mapping building. We build the ontology feature concepts and rela-
tions, as well as the mapping between the specific operating system features and the
ontology elements. The ontology element set is denoted by FO , and the mapping is
denoted by m : F → FO .

BrightnessMechanism

ManualDisplayBrightnessLevel

IncreaseBrightness

DecreaseBrightness

IntervalValue

DisplayAutoBrightness
IOS5_Brightness

DisplayAndBrightness

AutoBrightness Brightness

Interval_From_Zero_To_OneHundredPercent

MacOS1010_Brightness

Accessibility

AutomaticallyAdjustBrightness Level

Interval

Display1

DisplayResolution(...)DisplayPreferences

OpenDisplayPreferences

Display2

Brightness

mapping

Figure 5. Mapping iOS5 and MacOS10.10 brightness to ontology.

3.5. Construction of the Data Mining Method Input

The selected data mining method, i.e., FCA and its RCA extension expect as input
simple binary tables. The input table for FCA, called a formal context (FC), describes objects
and their attributes. RCA considers several object categories. The objects are described
by attributes, and by links to other objects of the same category, or of a different category.
RCA expects a set of binary tables, called a Relational Context Family (RCF). These tables
are of two kinds: formal contexts (FC), as FCA, and relational contexts (RC). RCA is used
to study the mechanisms both independently and combined in systems. Each mechanism
(e.g., brightness) is described by a formal context associating the implementations of this
mechanism in systems to the corresponding options. Another central formal context
globally describes the systems. It is left empty here, but could introduce some intrinsic
attributes. Relational contexts associate each system to its mechanism implementations.
We detail this description in the remainder of this section.

Table 1. Mapping between features and ontology concepts for Brightness. In row BrightnessMechanism, names have been
shorten, e.g., A51B stands for Android5.1_Brightness.

N. Concepts
Features

Android5.1 Android6.0 iOS5 MacOS10.10 Ubuntu12.04 Ubuntu14.10 Windows7.0 Windows8.1

1 BrightnessMechanism A51B A60B iOS5B M1010B U1204B U1410B W70B W81B

2 ManualDisplay-BrightnessLevel BrightnessLevel Brightness Brightness Level Brightness Brightness

3 DisplayAuto-Brightness Automatically-AdjustBrightness

4 IntervalValue IntervalFrom IntervalFrom IntervalFrom IntervalFrom IntervalFrom IntervalFrom

5 IncreaseBrightness BrightnessUp BrightnessUp

6 DecreaseBrightness BrightnessDown BrightnessDown
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3.5.1. FCA Input: Formal Context (FC)

For each mechanism m, we build a formal context Km = (Om, Am, Jm) designed to
describe the operating systems by their accessibility options, after terminology standard-
ization. For example, Table 2 shows the formal context for brightness mechanism. It is built
as follows.

• The objects of Om are the operating system implementations of m. The attributes of Am
are the ontology elements, i.e., concepts or roles other than specialization (e.g., hasSize).
Roles and concepts both represent provided options using the standardized terminology.

• The incidence relation Jm associates operating systems with ontology elements:

– A first rule encodes feature owning. For example, according to Table 1, we have
(Android5.1 , BrightnessLevel) ∈ owns and m(BrightnessLevel) = ManualDisp-
layBrightnessLevel, that is why, we have (Android5.1, ManualDisplayBright-
nessLevel) ∈ JBrightness (see Table 2). Formally, system o is associated with an
ontology element a when it owns a feature which is mapped to that element: if
(o, f ) ∈ owns and m( f ) = a, then we have (o, a) ∈ Jm.

– A second rule encodes the ontology specialization. For example, Ubuntu12.04
has a feature mapped to IncreaseBrigthness, and IncreaseBrigthness is a subcon-
cept of ManualDisplayBrightnessLevel. Thus Ubuntu12.04 is associated in the
formal context to both IncreaseBrigthness and ManualDisplayBrightnessLevel
(see BrightnessFormalContext in Table 2). Notice that initially, Ubuntu12.04 has
no feature which is mapped to ManualDisplayBrightnessLevel. This is an infor-
mation which is added for the purpose of generalization and to better identify
commonalities in the systems. Formally, for two ontology elements a1, a2 ∈ FO
such that a1 is a specialization of a2, if (o, a1) ∈ Jm, then we also have (o, a2) ∈ Jm.

Table 2. Brightness mechanism formal context.

Formal Context Brightness BrightnessMechanism ManualDisplayBrightnessLevel DisplayAutoBrightness IntervalValue IncreaseBrightness DecreaseBrightness

Android51_Brightness x x x

Android60_Brightness x x x

iOS5_Brightness x x x x

MacOS1010_Brightness x x x x

Ubuntu1204_Brightness x x x x

Ubuntu1410_Brightness x x x x

Windows70_Brightness x x x

Windows81_Brightness x x x

3.5.2. RCA Input: Relational Context Family (RCF)

We switch to a fictitious smallest example, inspired by the real systems. This example
allows us to illustrate all possible situations a conceptual structure may contain. We consider
5 fictitious operating systems: Diordna, SOcaM, Utnubu, Swodniw, and SOi. Figure 6
shows the parts of the ontology for 2 mechanisms (zoom, contrast) out of 4 (additionally
including brightness and text style mechanisms). The whole example is available online
(https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions, accessed on 1
September 2021).

https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions
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(a) Zoom Ontology (b) Contrast Ontology

Figure 6. Ontology from domain knowledge on zoom and contrast.

Table 3 shows the contrast formal context. It can be used separately to analyze each
system with respect to contrast, as the formal context shown in Table 2 can be used to
separately analyze brightness. For example, each row (i.e., each object) of Table 3 (Contrast
Formal Context) represents the contrast implementation of a particular operating system. Each
attribute is an ontology element that appears in Figure 6b. A formal context is built for
each mechanism.

Table 3. Formal context Contrast for the fictitious example.
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DiordnaContrast x x x

SOcaMContrast x x x x

UtnubuContrast x x x x x

SwodniwContrast x x x x x

SOiContrast x x x x x x x

The systems are described in an empty formal context System Formal Context repre-
senting the systems. It is shown in Table 4. This formal context is empty because there is no
intrinsic attribute used in this analysis. However, we could imagine introducing attributes,
like the system families (system for personal computer, system for mobile phone, Unix,
Linux, MacOS, Windows, etc.).

Table 4. Formal context Systems for the fictitious example. It has no columns.

Systems

Diordna

SOcaM

Utnubu

Swodniw

SOi
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Relational contexts, also called object-object contexts, express relations between objects of
several formal contexts. Here they are introduced to connect the systems and their four
mechanism implementations. Table 5 (Relational Context os2Contrast) shows the relational
context which connects systems (rows) to their contrast mechanism implementations
(columns). They are all built using the same scheme, with a diagonal of crosses.

Table 5. Relational context os2Contrast for the fictitious example.

os2Contrast D
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na

C
on

tr
as

t

SO
ca

M
C

on
tr

as
t

U
tn

ub
uC

on
tr
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t
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w

C
on

tr
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t

SO
iC

on
tr

as
t

Diordna x

SOcaM x

Utnubu x

Swodniw x

SOi x

RCF building is summarized as follows (Box 3).

Box 3. Relational Context Family Building.

RCF building. We build a Relational Context Family composed of:
• One system formal context: objects are the operating systems, attributes are empty

(or intrinsic attributes), e.g., Table 4.
• Several mechanism formal contexts, one for each mechanism: objects are operating

system implementations for this mechanism, e.g., Table 3 for Contrast.
• Several Systems-to-mechanisms relational contexts, one for each mechanism: source

context objects are the operating systems, target context objects are the operating
system implementations for this mechanism, e.g., Table 5 for Systems-to-Contrast.

4. Data Mining Method

Knowledge Discovery (KD) methods are many, ranging from decision trees to deep
learning, covering various needs including classification, categorization, regression, clus-
tering, pattern recognition, rule mining, recommendation or data summarizing. They also
differ in their capacity to deal more or less easily with different kinds of data, such as
data structured along data model, numerical data, images, sound, text, etc. As introduced
before, the selected data mining method for this paper relies on Formal Concept Analysis
(FCA), a KD method grounded on lattice theory [17]. FCA aims to extract knowledge,
mainly in the form of classifications, and associations or implications rule bases [30]. FCA is
well adapted to symbolic data mining. It provides solutions for complex data, and belongs
to the KD methods that enable output result explanation, visualization and exploration. It
has many extensions from the original binary formalism, to deal with numbers, intervals,
sequences, trees, graphs and multi-relational datasets [21,31–33]. FCA methods fit our
problem area since operating system description is mainly symbolic, with a few numerical
descriptions, for example for text size. There is an implicit underlying data model, revealed
during feature model and ontology extraction. Separating the analysis of the different
mechanisms is made possible by Relational Concept Analysis (RCA). In this section, we
detail FCA and RCA for our purpose.
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4.1. FCA Basics

FCA primary purpose is the extraction of a set of formal concepts. For a formal
context (O, A, J), each concept C = (E, I) is a maximal group of objects E associated with a
maximal group of attributes I these objects share. E = {o ∈ O | ∀a ∈ I, (o, a) ∈ J} is the
concept extent (objects sharing the attributes of I) and I = {a ∈ A | ∀o ∈ E, (o, a) ∈ J}
is the concept intent (attributes owned by the objects of E). For example, in the concept
(E5, I5), objects E5 = {SOcaMContrast, UtnubuContrast, SwodniwContrast, SOiContrast}
share attributes I5 = {ChangeContrast, HighContrast, NormalContrast} (see in Table 3 and
Concept_Contrast_5 in Figure 7).

A specialization relation is established between the extracted concepts. Let us
consider two concepts C1 = (E1, I1), and C2 = (E2, I2), the specialization relation
states that C1≤sC2 if and only if E1 ⊆ E2 (and equivalently I1 ⊇ I2). For exam-
ple, if we consider the concept (E3, I3) with E3 = {SOcaMContrast SOiContrast} and
I3 = {ChangeContrast, HighContrast, NormalContrast, ReduceTransparency}, we have
(E3, I3) ≤ s(E5, I5). The concept lattice is the set of all concepts CK of the formal context
K, provided with the specialization relation ≤s. We denote by ACK the set of concepts
introducing attributes (attribute introducer). A concept is an introducer concept for
attribute a, whenever it is the highest concept containing this attribute. For exam-
ple Concept_Contrast_5 introduces NormalContrast, because it is the highest concept
containing this attribute (see Figure 7).

We used the tool RCAexplore (http://dataqual.engees.unistra.fr/logiciels/rcaExplore,
accessed on 1 September 2021) to generate these lattices. Based on the specialization
order definition, a sub-concept inherits the attributes of its super-concepts. The inherited
attributes can thus be omitted in the graphical representation of the sub-concept, as it
is shown in the figures. Symmetrically, a super-concept inherits the objects of its sub-
concepts (and the inherited objects can be omitted in the graphical representation in the
super-concept, as it is shown in the figures).

The concept lattices for the formal contexts zoom and contrast are shown in Figure 7.

4.2. RCA Basics

Relational Concept Analysis (RCA) has been designed to deal with multi-relational
datasets [21]. In the present study, the different relations represent either the systems,
or the different implementations of the mechanisms in the systems, or they connect the
systems to their mechanism implementation. RCA input, i.e., a relational context family
(RCF), is formally a pair (K,R) with: K = {Ki}i=1,...,n a set of formal contexts Ki = (Oi, Ai, Ii)
and a set of relational contexts R = {rj}j=1,...,p. rj ⊆ Ok ×Ol for k, l ∈ {1, . . . , n}. RCA
groups objects (e.g., operating systems), not only by their intrinsic attributes, but also by the
relations they share to other objects or object groups (concepts). This is highlighted through
relational attributes. From a relation rj ⊆ Ok×Ol , relational attributes for Kk are built using
relations between objects of Ok and concepts built upon objects of Ol . A relational attribute
is similar to a formula in Description Logics. It is composed of a quantifier (e.g., ∃, ∃∀),
a relation (e.g., os2Contrast), and a concept (e.g., Concept_Contrast_3) [34]. For example,
using Relational Context os2Contrast from Table 5 and contrast concept lattice from Figure
7 (right): The relational attribute ∃os2Contrast(Concept_Contrast_3) is associated with
SOcaM and SOi because they have at least one link for os2Contrast with an object of the
Concept_Contrast_3 extent.

As previously shown, in our framework, the RCF is composed of a central formal
context, describing operating systems, together with four formal contexts describing the
different mechanisms and relations connecting the operating systems to the mechanism
implementations. This is reproduced at the level of lattices. The central concept lattice,
shown in Figure 8, combines information given in the different concept lattices defined
for the different mechanisms. Its top concept (Concept_Systems_0) shows the relational
attributes that are common to all studied systems. One example is relational attribute
exist os2contrast(Concept_Contrast_6) which indicates that all operating systems have at

http://dataqual.engees.unistra.fr/logiciels/rcaExplore
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least one os2contrast link towards an object in Concept_Contrast_6. This means that all
operating systems have accessibility options that concern the contrast mechanism. More
informative relational attributes will be presented hereafter.

Concept_Zoom_4

Zoom

Concept_Zoom_2

ZoomStyle
FullScreen

MagnificationGestures

DiordnaZoom

Concept_Zoom_0

PictureInPicture
FollowFocus

SOcaMZoom

Concept_Zoom_1

SOiZoom

Concept_Zoom_3

ZoomMax
ZoomMax::[12]
ZoomMax::[14]
ZoomMax::[16]

ZoomMin
ZoomMin::[12]
ZoomMin::[14]
ZoomMin::[16]

UtnubuZoom
SwodniwZoom

(a) Zoom concept lattice

Concept_Contrast_6

ChangeContrast
HighContrast

Concept_Contrast_1

DarkenColors
ReduceWhitePoint

SOiContrast

Concept_Contrast_3

ReduceTransparency

SOcaMContrast

Concept_Contrast_4

HighContrastText

DiordnaContrast

Concept_Contrast_5

NormalContrast

Concept_Contrast_0

Concept_Contrast_2

LowContrast
HighContrastTheme

UtnubuContrast
SwodniwContrast

(b) Contrast concept lattice

Figure 7. Concept lattices on zoom and contrast.

Concept_Systems_0

exist os2zoom(Concept_Zoom_4)
exist os2contrast(Concept_Contrast_6)

exist os2brightness(Concept_Brightness_1)
exist os2textSize(Concept_TextSize_4)

Concept_Systems_8

exist os2zoom(Concept_Zoom_2)

Concept_Systems_3

exist os2zoom(Concept_Zoom_0)

SOcaM

Concept_Systems_5

exist os2zoom(Concept_Zoom_1)
exist os2contrast(Concept_Contrast_3)

exist os2brightness(Concept_Brightness_0)

Concept_Systems_9

exist os2zoom(Concept_Zoom_3)
exist os2contrast(Concept_Contrast_5)
exist os2textSize(Concept_TextSize_2)

Concept_Systems_1

exist os2contrast(Concept_Contrast_0)

Concept_Systems_2

exist os2contrast(Concept_Contrast_1)

SOi

Concept_Systems_4

exist os2contrast(Concept_Contrast_2)
exist os2textSize(Concept_TextSize_0)

Utnubu
Swodniw

Concept_Systems_6

exist os2contrast(Concept_Contrast_4)

Diordna

Concept_Systems_7

exist os2textSize(Concept_TextSize_1)

Concept_Systems_10

exist os2textSize(Concept_TextSize_3)

Figure 8. Concept lattice of Operating System accessibility options. In figures that correspond to
RCAexplore tool output, quantifiers appear as plain text (e.g., exist) rather than symbols (e.g., ∃) to
avoid encoding issues.

The data mining output method is summarized below (Box 4). Its results are inter-
preted in the next section for the target domain in the software product line paradigm.
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Box 4. Output of Relational Concept Analysis.

RCA output. From the formal and relational contexts, we generate, through the RCAex-
plore tool, one concept lattice for each formal context:
• One central system lattice, which structures information about all systems on all

mechanisms, e.g., Figure 8.
• Several mechanism lattices, each focusing on a mechanism, e.g., Figure 7a,b for

zoom and contrast.

5. Interpretation

Several types of observations can be made from the concept lattices: Relations between
features and systems (Section 5.1), relations between systems (Section 5.2) and logical
relations between features (Section 5.3). These relations can be extracted visually, from the
RCAexplore tool interface or from the generated image files, that are used in most of the
figures of this paper. Logical relations between features are extracted with the Java library
CLEF [35]. This library generates textual files.

5.1. Relations between Features and Systems

From the lattices, we can observe how features are spread over the systems. Features
in the highest levels of the lattices are more frequent than features in lowest levels, and the
frequency is measured by the concept extent size compared to the total number of systems.
For example, as shows the Contrast concept lattice (Figure 7b), few systems (1/5) have
ReduceWhitePoint, while most of them (4/5) have NormalContrast. In central concept
lattice (Figure 8), Concept_Systems_5 shows that 2 systems share a rather complete zoom
option set with styles and magnification values (indicated by ∃os2zoom(Concept_Zoom_1)).
Besides, Concept_Systems_5 shows more limited contrast possibilities, with high and
normal contrast, as well as reduce transparency (∃os2contrast(Concept_Contrast_3)).

5.2. Relations between Systems

Relations between systems for a specific mechanism are observed in the specific
mechanism lattices. e.g., Contrast concept lattice (Figure 7b) shows that SOi owns more
contrast features than SOcaM, being introduced in a sub-concept. The central lattice, for its
part, reveals these relations when all the mechanisms are included, e.g., (Figure 8):

• Utnubu and Swodniw are similar because they are contained in the same concept
(Concept_System_4);

• SOi and SOcaM are not comparable because they are contained in non comparable
concepts Concept_System_3 and Concept_System_2. This comes from two contra-
dictory classifications: while Contrast concept lattice (Figure 7b) shows that SOi
owns more contrast features than SOcaM, reversely Zoom concept lattice (Figure 7a)
highlights the fact that SOcaM owns more zoom features than SOi;

• SOi owns more features than Diordna, as shown by the specialization relation between
their introducer concepts: Concept_Systems_2 ≤s Concept_Systems_6.

5.3. Logical Relations between Features

We retained three types of logical relations: co-occurrences, binary implications,
and mutual exclusion (called mutex). For each logical relation, we give respectively a
definition, the extraction method, and one example. Table 6 presents the number of fea-
tures, as well as the exact and the upper bound of binary implications, co-occurrences,
and mutex number. The upper bounds are computed using the formulas in [36]. We
notice that the Brightness mechanism has the smallest values; the Contrast mechanism
has the average values; the Text style mechanism, the Zoom mechanism and the cen-
tral lattice have the largest values. We also notice that the number of binary implica-
tions and co-occurrences seems to depend from the total number of features, which is
not always the case with mutex relationships. All logical relations are available online
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(https://gite.lirmm.fr/huchard/visualaccessibilityoptionsinos, accessed on 1 September
2021). Table 7 presents the number of objects, attributes and concepts.

• A Co-occurrence is a pair of features that always appear together in configurations. A
simple method can be used to extract the co-occurrences from a conceptual structure.
The method considers the attribute introducer concept set ACK. Each concept of ACK is
analyzed: if it contains more than one feature, the introduced features are co-occurrent.
An example of co-occurrence relation from Concept_Zoom_2 in Figure 7a is FullScreen↔
Magni f icationGestures. The worst case is when all features appear together, thus any

feature pair is a co-occurence. There are at most
| A | (| A | −1)

2
co-occurrences (where A

is the feature number) [36].
• Binary implications correspond to the case where when a first feature is present,

a second one is mandatorily present too. A method to extract binary implications is
described in [36]. The method uses the set of all pairs (Ci, Cj) ∈ ACK × ACK such
that Ci≤sCj. For each feature ai introduced in Ci and each feature aj introduced
in Cj, ai → aj is a valid implication. An example of binary implication relation
is ReduceTransparency → NormalContrast because Concept_Contrast_3≤sConcept_
Contrast_5 (see Figure 7b). In a concept lattice, there are at most | A |2 binary implica-
tions (where A is the feature number) [36].

• Mutex are pairs of mutually exclusive features {a1,a2} which satisfy a1 → ¬a2 (or
equivalently a2 → ¬a1). In a concept lattice, when the extent of the bottom concept
is not empty, this means that there exists at least one configuration which owns all
the features, and that there is no mutual exclusion situation. To extract mutex in
a conceptual structure, each feature introducer concept pair (Ci, Cj) with i 6= j is
analyzed to check if their extents intersect. If they do not intersect, a feature ai intro-
duced in Ci and a feature aj introduced in Cj are mutually exclusive and correspond
to a mutex. An example of mutex relation is HighContrastText → ¬LowContrast,
because the intersection of the extents of the feature introducers is empty. This
can be seen in Figure 7b, where Concept_Contrast_4 introduces HighContrastText,
and Concept_Contrast_2 introduces LowContrast . The upper bound of the mutex

number is
| A | (| A | −1)

2
[36].

Examples of co-occurrences, implications and mutex involving relational attributes are
given and interpreted in the next section. The interpretation step is summarized as follows
(Box 5).

Table 6. Metrics on binary implications, co-occurrences and mutex for the fictitious systems.

Formal Contexts # Features # Relationships # Relationships Upper Bound

Bin. Impl. Co-Occurr. Mutex Bin. Impl. Co-Occurr. Mutex

Brightness 3 2 1 0 9 3 3

Contrast and Color 9 23 3 8 81 36 36

Text style 15 63 40 0 225 105 105

Zoom 14 35 32 0 196 91 91

Central lattice 19 129 15 25 361 171 171

Table 7. Metrics on the objects, attributes and concepts for the fictitious systems.

Concept Lattice #Objects (=#OS) #Attributes (=#Features or #Relational Attributes) #Concepts

Brightness 5 3 2

Text style 5 15 4

Contrast 5 9 7

Zoom 5 14 8

Central lattice 5 19 11

https://gite.lirmm.fr/huchard/visualaccessibilityoptionsinos
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Box 5. Interpretation step.

Interpretation step. We proceed to the interpretation of the concept lattices by ob-
serving the specialization relation, the content of the concepts and by extracting co-
occurrences, binary implications, and mutex.

6. Case Study

In this section, we conduct an exploratory case study based on our proposed method
applied to concrete operating systems. The case study is guided by four research questions
which are presented in Section 6.1. These questions are refinements of the general question
“How do accessibility options vary in practice?”. Section 6.2 presents the experimental
setup. Observations are presented and discussed in Section 6.3, and threats to validity are
discussed in Section 6.4.

6.1. Research Questions

We focus on four main research questions (RQ1, RQ2, RQ3, and RQ4). The first three
questions are related to the variability relationships between features. They correspond
to typical feature relationships that are studied in variability analyses [25]. The last one
is related to the possible relationships between operating systems regarding their offered
accessibility options (similarity, superiority, incomparability).

• RQ1: Omnipresence of options. Which (and how many) accessibility options are
present in all operating systems?

• RQ2: Binary implications and co-occurrences. What kind of (and how many) binary
implications and co-occurrences between features can we find?

• RQ3: Mutual exclusions. What kind of (and how many) mutual exclusion relationships
between features can we find?

• RQ4: System relationships. What kind of relationships between the different operating
systems can we find?

6.2. Experimental Setup and Process

As presented before, we analyze 8 operating systems: Android5.1, Android6.0, iOS5,
MacOS10.10, Ubuntu12.04, Ubuntu14.10, Windows7.0 and Windows8.1. We study zoom,
contrast/colors, text style (font size and style) and brightness. When we apply the KD
process on these systems, data preparation step produces:

• 32 feature models corresponding to the 4 mechanisms for the 8 systems;
• then we reduced the dataset to: 3 ontology parts and 3 mapping tables, for brightness,

contrast and colors, and text styles mechanisms; this reduction has been decided for
time and human effort reduction purpose; it is worth to note that we included the
largest mechanism (contrast and colors).

• using the ontology, mapping tables and feature models, we derive the formal contexts:
one central formal context lists the 8 OS; 3 formal contexts are derived for the 3 mech-
anisms. Each of them describes the implementation of the mechanism by the 8 OS on
this mechanism. Finally, 3 relational contexts link the OS of the central context to their
implementation on one mechanism.

The data mining step produces 4 concept lattices: one for each mechanism (contrast
and colors, text styles, brightness), and one for the OS (the central one). Table 8 presents
the number of objects, attributes and concepts. Then the 4 resulting lattices are analyzed at
the interpretation step.
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Table 8. Metrics on the objects, attributes and concepts for the case study.

Concept Lattice #Objects (=#OS) #Attributes (=#Features or #Relational Attributes) #Concepts

Brightness 8 6 5

Text style 8 38 21

Contrast and Color 8 88 21

Central lattice 8 47 34

Table 9 shows metrics about OS feature models, that is about variability inside each
OS, taken individually. To compute these metrics, we used the FAMILIAR tool which
provides the values of these metrics for any given feature model [27]. The feature models
in FAMILIAR format are available in the repository associated to this paper (See Data
Availability Statement and Footnote 2). FAMILIAR is a feature model editor that we
used in the data preparation step. It also provides many other operations for reasoning
about feature models. These feature models are built in the data preparation step and
are the input of the data mining step, where OS are classified. From Table 9, we know
that the description of OS by feature models has a reasonable size, having a small or
medium number of features. The number of configurations is the number of possible
user settings. It is an indicator of how difficult it will be to choose an OS in this search
space, or to move from one OS to another. We might expect it will be easy for brightness,
but tricky for contrast and color. The four columns contain respectively: the FM name,
the feature number, the valid configuration number, and the depth (edge number of a
longest path). We can make the following observations. FMs MacOS1010_Brightness and
Ubuntu1204_Brightness (resp. Android51_Brightness and Android60_Brightness) have the
highest (resp. the lowest) number of features. FM Windows81_Contrast (resp. iOS5-
_Contrast) has the maximum (resp. the minimum) number of contrast features. FM
Android51_TextSize (resp. Android60_TextSize) has the maximum (resp. the minimum)
number of size and font type features. FM Windows70_Zoom (resp. Android51_Zoom
and Android60_Zoom) has (resp. have) the maximum (resp. the minimum) number of
Zoom features.

Due to their size, input data and results cannot be entirely given in this paper. They
are available on the gitlab repository (https://gite.lirmm.fr/AccessibiliteNumerique/
osvisualaccessibilityoptions, accessed on 1 September 2021).

During this evaluation, the concept lattice building has been achieved with the tool
RCAexplore. RQ1 did not need extra tools for the analysis, as the results are easy to get
visually. RQ2 and RQ3 required the use of an additional tool for extracting implications
and mutex. We used the Java library CLEF [35]. We visually analyzed the object introducer
concepts of the central lattice for answering RQ4.

6.3. Results

In this section, we successively present results for omnipresent features (RQ1, Section 6.3.1),
binary implications and co-occurrences (RQ2, Section 6.3.2), mutex (RQ3, Section 6.3.3) and
relationships between systems (RQ4, Section 6.3.4).

6.3.1. Omnipresent Features (RQ1)

To find omnipresent features, we observe the top concept intents in the different lattices
(Figure 9), which indicate the features that are present in all systems. We consider meaningful
an attribute which is different from the root of an hypothetical feature model. For example,
the Brightness lattice top concept intent (Concept_Brightness_4 in Figure 9d) introduces
BrightnessMechanism and ManualDisplayBrightnessLevel. BrightnessMechanism would
be the root feature in a feature model for the Brightness mechanism. As the root, it is trivially
omnipresent, thus it is not considered as meaningful here.

https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions
https://gite.lirmm.fr/AccessibiliteNumerique/osvisualaccessibilityoptions
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Table 9. Metrics on the FMs.

Brightness Contrast and Colors

FM # Features # Configurations Depth # Features # Configurations Depth

Android5.1 4 1 3 41 13,200 6

Android6.0 4 1 3 42 26,400 6

iOS5 5 2 3 16 254 5

MacOS10.10 10 2 8 45 12,288 7

Ubuntu12.04 10 14 7 49 5776 7

Ubuntu14.10 9 13 6 43 13,680 6

Windows7.0 5 1 4 59 379,260 7

Windows8.1 5 1 4 83 3,580,200 7

Text Styles Zoom

FM # Features # Configurations Depth # Features # Configurations Depth
Android5.1 33 480 6 4 4 3

Android6.0 10 16 3 4 3 3

iOS5 16 76 5 16 132 5

MacOS10.10 36 216 7 38 1536 6

Ubuntu12.04 17 32 7 12 32 7

Ubuntu14.10 13 60 6 11 31 6

Windows7.0 16 2 6 39 46,764 6

Windows8.1 32 64 6 35 5859 7

The Central lattice top concept intent (Figure 9a) introduces relational attributes that
point to the top concepts of Contrast, Brightness and Text style lattices respectively. This
means that all operating systems provide options in the three mechanisms.

The extraction shows that omnipresent features are very few. We learn that all systems
propose manual setting for brightness, the possibility to set text size in various elements, a
gallery, a screen saver option and the possibility to define a contrast type. This low number
of shared features reveals a diversity in approaching the visual accessibility option design.

Concept_Systems_0

os2contrast(Concept_Contrast_20)
os2brightness(Concept_Brightness_4)
os2textSize(Concept_TextSize_20)

Concept_TextSize_20

TextSizeMechanism
ThingsAreaTextSize

HasSize

Concept_Brightness_4

BrightnessMechanism
ManualDisplayBrightnessLevel

Concept_Contrast_20

ContrastMechanism
ScreenSaver

Gallery
ContrastType

(a) Top concept of the central lattice
(b) Top concept of the Contrast mechanism lattice

(d) Top concept of the Brightness mechanism lattice(c) Top concept of the Text style mechanism lattice

Figure 9. Top concepts of the different concept lattices (redrawn from the lattices output of the tool
for the sake of explainability).

6.3.2. Binary Implications and Co-Occurrences (RQ2)

We apply here the method explained in Section 5.3 to extract binary implications and
co-occurrences. Table 10 presents the number of features, the number of binary implications
and co-occurrences and their respective upper bounds in the different lattices. We notice
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that the Brightness mechanism has the smallest values. The Text style mechanism and
central lattice have the average values. The Contrast and Color mechanism has the largest
values. We observe in the central concept lattice a number of features, corresponding
to the relational attributes, which is not so high, compared to the number of features in
the different mechanisms. This is explained by the fact that the features for systems are
groups of features from the different mechanisms. This reduction is a quality of RCA.
The features are separated along the different concerns and the central lattice gives a
global and summarized overview. Thanks to FCA, the variability of operating systems is
analyzed with regard to co-occurring feature groups. RCA helps analyzing the different
concerns (mechanisms) separately or as a whole. The number of logical relationships
increases when the feature number increases. Besides, in Text style and Contrast contexts,
the number of relationships is higher than the number of features. A high number of
co-occurrences (i.e., of pairs of co-occurring features) may hide a few number of large
groups of co-occurring features, as in the contrast mechanism case. In this case, their
analysis and use as a requirement guideline is not too heavy. For example, in the Brightness
concept lattice (see Figure 10):

• Binary implication DisplayAutoBrightness −→ IntervalValue
comes from the fact that Concept_Brightness_2≤sConcept_Brightness_3.

• Co-occurrence IncreaseBrightness←→ DecreaseBrightness
comes from the fact they are both introduced in Concept_Brightness_1.

Table 10. Metrics on the binary implications, co-occurrences and mutex.

Mechanisms # Features
# Relationships Relationships Upper Bound

Bin. Impl. Co-Occurr. Mutex Bin. Impl. Co-Occurr. Mutex

Brightness 6 9 2 4 100 45 45

Text style 38 261 75 295 1444 703 703

Contrast and Color 88 990 577 2174 7744 3828 3828

Central lattice 47 510 17 348 2209 1081 1081

Concept_Brightness_4

BrightnessMechanism
ManualDisplayBrightnessLevel

Concept_Brightness_2

DisplayAutoBrightness

iOS5_Brightness
MacOS1010_Brightness

Concept_Brightness_3

IntervalValue

Android51_Brightness
Android60_Brightness
Windows70_Brightness
Windows81_Brightness

Concept_Brightness_1

IncreaseBrightness
DecreaseBrightness

Ubuntu1204_Brightness
Ubuntu1410_Brightness

Figure 10. Excerpt of the Brightness concept lattice.

From the central concept lattice (see Figure 11), the relationships refer to the other
lattices and may involve several mechanisms, for example:

• Binary implication
∃os2contrast(Concept_Contrast_1) −→ ∃os2textSize(Concept_TextSize_5),
because Concept_Systems_2 ≤ sConcept_Systems_8.
All system mechanisms in Concept_Contrast_1 have HighContrastBlack. All systems
in Concept_TextSize_5 have HasPreviewFont. Thus we can deduce a cross-mechanism
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information between contrast and text style: Systems that provide HighContrastBlack,
also provide HasPreviewFont.

• Co-occurrence
∃os2contrast(Concept_Contrast_1)←→ ∃os2textSize(Concept_TextSize_1)
because both attributes are introduced in Concept_Systems_2.
All systems in Concept_TextSize_1 have HasPreviewCursorSize. We can deduce a
cross-mechanism information between contrast and text style: Systems that provide
HighContrastBlack, also provide HasPreviewCursorSize and reciprocally.

Co-occurrences at the system level reveal groups of features having a common purpose,
as increase versus decrease brightness in Ubuntu, which may correspond to a feature
group in a feature model at the user level. They also highlight groups of features having
different purposes, as contrast type and screen saver. From this information, the OS
manufacturers can decide if these co-occurrences are accidental or part of a relevant
requirement specification.

Concept_Systems_8

os2contrast(Concept_Contrast_6)
os2textSize(Concept_TextSize_5)

Windows70

Concept_Systems_2

os2contrast(Concept_Contrast_1)
os2textSize(Concept_TextSize_1)

Windows81

Concept_Contrast_1

HighContrastBlack

Windows81_Contrast

Concept_Contrast_6

MousePointerStyle

Windows70_Contrast

...
HighContastWhite

...

Concept_TextSize_5

HasPreviewFont

Windows70_TextSize

Concept_TextSize_1

HasPreviewCursorSize

Windows81_TextSize

...

...

Figure 11. Excerpt of several concept lattices (redrawn from the lattices output of the tool for the
sake of explainability) to illustrate co-occurrences and implications in the central lattice.

6.3.3. Mutex (RQ3)

We use the method explained in Section 5.3 to extract mutex. The fifth and the last
columns of Table 10 respectively represent the exact number and the maximal number of
mutex. There is a high and very high number of mutex respectively for Text style and for
Contrast and Color mechanisms. Again we can notice the reduction effect of RCA in the
number of mutex concerning the relational attributes (central lattice).

The Brightness concept lattice (see Figure 10) supports the mutex IntervalValue →
¬IncreaseBrightness, since: Concept_Brightness_3 (introducing IntervalValue) and Con-
cept_Brightness_1 (introducing IncreaseBrightness) have an empty intersection.

The following mutex can be extracted from the central concept lattice (see Figure 12):
∃os2brightness(Concept_Brightness_1)→ ¬∃os2textSize(Concept_TextSize_2).
They come from the empty intersection of the extents of the feature introducers Concept_Sys-
tems_9 (introducing ∃os2brightness(Concept_Brightness_1)) and Concept_Systems_5 (in-
troducing ∃os2textSize(Concept_TextSize_2)). All Systems in Concept_Brightness_1 have
IncreaseBrightness; All Systems in Concept_TextSize_2 have HasIntervalValue. Hence we
can deduce this information involving brightness and text style: Systems that provide
IncreaseBrightness, do not provide HasIntervalValue. The central lattice again highlights
cross-mechanism information, here about mutex. Mutex can be accidental, but some cor-
respond to orthogonal design choices, as the one presented for Brightness mechanism
between IntervalValue and IncreaseBrightness on one side, versus DecreaseBrightness on
the other side, and are relevant to know.
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Concept_Systems_1

exist os2contrast(Concept_Contrast_0)
exist os2brightness(Concept_Brightness_0)

exist os2textSize(Concept_TextSize_0)

Concept_Systems_5

MacOS1010

Concept_Systems_9

Concept_TextSize_2

HasIntervalValue

MacOS1010_TextSize

...

...

Concept_Brightness_1

IncreaseBrightness

Ubuntu1204_Brightness
Ubuntu1410_Brightness

...

os2textSize(Concept_TextSize_2)
os2contrast(Concept_Contrast_4)os2contrast(Concept_Contrast_7)

os2brightness(Concept_Brightness_1)

Figure 12. Excerpt of several concept lattices (redrawn from the lattices output of the tool for the
sake of explainability) to illustrate mutex in the central lattice.

6.3.4. Relationships between Operating Systems (RQ4)

For RQ4, we analyze the extents of the object introducer concepts. The concept lattice
excerpts highlight a few examples. We analyze into details the Brightness lattice. Then we
show how relationships are combined in the central lattice.

The Brightness lattice (shown Figure 10) is small, but it contains the main possible
situations. We can observe for example:

• System option set equivalence:

– iOS5_Brightness and MacOS1010_Brightness are in the same simplified extent
(Concept_Brightness_2). This means that iOS5 and MacOS1010 provide exactly
the same Brightness features.

• System option set specialization:

– Concept_Brightness_2≤sConcept_Brightness_3 highlights the fact that iOS5 and
MacOS10.10 have more Brightness features than Android5.1, Android6.0, Windows7.0
and Windows8.1.

• Incomparable option sets with shared intersection:

– As Concept_Brightness_3 is incomparable for≤s with Concept_Brightness_1, this
indicates that Android51_Brightness, Android60_Brightness, Windows70_Brigh-
tness, Windows81_Brightness, iOS5_Brightness and MacOS1010_Brightness only
share the top concept features with Ubuntu12.04 and Ubuntu14.10.

The central concept lattice (excerpt in Figure 13) allows us to analyze the different
systems taking into account all mechanisms together. Systems are respectively introduced
in separate concepts, e.g., Ubuntu12.04 is introduced in Concept_Systems_4. This means
that there are no identical systems.

For example, from the concept specialization, we obtain the following information:

• Concept_Systems_7≤sConcept_Systems_15 meaning that Android5.1 provides more
features than Android6.0, which means that the option set has been reduced during
system upgrade;

• Concept_Systems_2≤sConcept_Systems_8 meaning that Windows8.1 provides more
options than Windows7.0;

• Concept_Systems_11 is the least upper bound (and the direct cover) of Concept_Sys-
tems_4 and Concept_Systems_5 , highlighting some proximity of Ubuntu12.04 and
MacOS10.10;

• Concept_Systems_13 is the least upper bound (and the direct cover) of Concept_Sys-
tems_5 and Concept_Systems_6, revealing MacOS10.10 and iOS5 closeness.

The results of this analysis illustrate the system diversity and the needs to propose
guidance to OS manufacturers. From the analysis of the various systems, and by navigating
the concept lattices, they can overview common options (that they should implement) and
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more rare ones (that they can decide to add or not). It also informs end users about the
existing configurations in the different systems, that can guide them in the choice of a
system, or guide the migration.

The concept lattices are the search space for solving tasks, such as comparing OS,
classifying user settings, either independently in each mechanism, or considering all
mechanisms together. Tables 7 and 8 show the size of this search space for the fictitious
example and our case study, respectively. The number of concepts in a concept lattice
varies between 1 (i.e., when all OS have an identical description) and 2min(#objects,#attributes)

(i.e., when the concept lattice is isomorphic to the powerset of the OS set). This number of
concepts thus indicates a variability level between the OS, and also the size of the search
space. The figures presented in Tables 7 and 8 show that this search space is of reasonable
size (between 5 and 34 concepts for the case study) and practical for navigation purposes.
For example, for contrast and color, the concept lattice groups attributes into a structure
with 21 concepts which is far more easy to comprehend and exploit, compared to a table
with 88 columns.

Concept_Systems_15

exist os2contrast(Concept_Contrast_11)
exist os2textSize(Concept_TextSize_10)

Android60

Concept_Systems_5

exist os2contrast(Concept_Contrast_4)
exist os2textSize(Concept_TextSize_2)

MacOS1010

Concept_Systems_6

exist os2contrast(Concept_Contrast_5)
exist os2textSize(Concept_TextSize_3)

iOS5

Concept_Systems_4

exist os2contrast(Concept_Contrast_3)

Ubuntu1204

Concept_Systems_2

exist os2contrast(Concept_Contrast_1)
exist os2textSize(Concept_TextSize_1)

Windows81

Concept_Systems_7

exist os2textSize(Concept_TextSize_4)

Android51

Concept_Systems_13

exist os2contrast(Concept_Contrast_10)
exist os2brightness(Concept_Brightness_2)

exist os2textSize(Concept_TextSize_8)
Concept_Systems_11

exist os2contrast(Concept_Contrast_9)

Concept_Systems_8

exist os2contrast(Concept_Contrast_6)
exist os2textSize(Concept_TextSize_5)

Windows70

Figure 13. Excerpt of the central concept lattice (redrawn from the output of the tool for the sake of
explainability) to illustrate relationships between systems.

6.4. Threats to Validity

In this section, we discuss the threats to validity of this approach. We first analyze
internal validity through data collection and used tools reliability, in order to explore the
possible biases. Construct validity is then assessed: We examine the relevance of the used
metrics. Then we study conclusion validity to ascertain the conclusions we draw from our
results are reasonable. Finally, we approach external validity, to evaluate to what extent
our results can be generalized.

6.4.1. Internal Validity

Two persons, co-authors of this paper, were strongly involved in the data collection.
One of them is visually impaired and has a very good knowledge of operating systems
and their accessibility options. During the data collection, both had to exchange their
understanding of accessibility options and to reconcile their points of view, that were
sometimes diverging, in order to build the ontology and the mappings. One person spent
about 1 month to manually cross all access paths of accessibility options related to low
vision in the 8 systems, and report them in the feature models. Both manually checked the
feature models during about 10 days. About 10 other days were spent by the same two
persons to build the ontology and the mappings. This was time consuming, but this was
needed as a bootstrap to obtain meaningful results. We plan to use the built ontology and
mappings to feed supervised learning-based automated analyses to avoid or at least reduce
the manual work in next system analyses. Two days were spent to build the formal and
relational contexts with partially automated procedures. From these contexts, the lattices
were built with RCAexplore in a few minutes. One day was needed to analyze the lattices
by a non expert person. Manually collecting the accessibility options can be source of error,
thus having the check by two persons has been important for reliability. Another co-author
was familiar with the usage of the tools and the lattice analysis. CLEF has been used in
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previous evaluations [37]. RCAexplore is used for several years in a significant number of
experiments [38].

6.4.2. Construct Validity

We did not evaluated the ontology, and it has a subjective aspect. Its organization
in four parts can be compared to the W3C accessibility requirements for people with low
vision (https://www.w3.org/TR/low-vision-needs/#overview-of-low-vision, accessed on
1 September 2021). Our Brightness and Contrast and color mechanisms correspond to several
subsections of Brightness and color. Text styles and Zoom mechanisms correspond to different
subsections of Perceiving. The W3C wiki (https://www.w3.org/WAI/GL/low-vision-a1
1y-tf/wiki/Main_Page, accessed on 1 September 2021) present settings of a few platforms,
but there is no standardized description e.g., in Firefox (Mac) we find Colors..>Text and
Background>Background: (Default white) Choose a color from popup color pic-
ker, and in Windows 10, we find Personalization>background color. We are confident
in the proposed ontology, because it has been made with a person expert in the domain.
Ontology building methodologies have been proposed to guide humans in this task [39].
They can be assisted by automatic extraction from texts, but the human knowledge remains
the main component to ensure the quality of the result [40].

We evaluated our results through metrics that show the number of existing relation-
ships between features or between systems. The counted relationships are those that are
typically searched during variability analysis, and among the main logical relationships
that are considered during the building of variability models, such as feature models in
their most common form. It would be interesting to look for feature groups, as in [41]. We
did not perform this kind of analysis at that time, as this is time-consuming and not always
relevant: It may be unfeasible to reach a result; many accidental groups may be built.

6.4.3. Conclusion Validity

The lattices show a reasonable classification of systems, e.g., systems of the same fam-
ily provide close or similar features. The variability relationships number is not surprising,
with regard to previous evaluations we did [36]. There are likely many accidental relationships.

6.4.4. External Validity

The analysis is limited to 8 operating systems, when many exist. Besides, our study
only focuses on visual impairment, when operating systems also address other impair-
ments, such as hearing or motor disabilities. These threats are mitigated by the fact that:
low vision is a very common impairment, with many different forms; it is relevant to
study separately one deficiency; the chosen systems are representative of the mainstream
operating systems. It would be interesting to investigate the application of the method-
ology to other fields. This would help to assess whether visual accessibility features are
specific and to which extent the method can be generalized. Firstly, other disabilities could
be addressed. Let us take the example of mobility. In this case, the accessibility features
provided by the OS are divisible into separate concerns, e.g., accessibility keyboard, control
with adaptive switch hardware, or voice to navigate, as reported in [15]. By reading OS
documentations, the need for writing (or not) an ontology and mappings for these features
would appear. After this preparation step, formal and relational contexts would be built
and the remainder of the methodology would be applied. Applying the methodology and
analyzing the results would enable discussing the generalization at this level. If this is
positive, i.e., if the method has been fruitfully applied in this similar situation, we can
envision a larger application context, to any field where: variability has to be studied in a
family of products; studying this variability through different concerns or as a whole is
relevant. It can be the case for cars, where managing variation in car families is useful for
mass production and personalization. Different concerns are visible in the car configurators
of the car brands: motorization, seats, driving assistance and so on.

https://www.w3.org/TR/low-vision-needs/#overview-of-low-vision
https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Main_Page
https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Main_Page
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7. Related Work

In this section, we present papers reporting OS comparisons on visual accessibility
(Section 7.1). Then we revisit our approach with the software product lines perspective
(Section 7.2).

7.1. OS Visual Accessibility Comparisons

Earlier studies compared the main OS (Table 11), or analyzed the standards [6] and
their implementation [4]. Papers [4,6] are not recent, and indicated the needs for guide-
lines [4] or for standard dissemination [6]. Going from accessibility standards and rec-
ommendations to concrete software implementation is a recurring problem, as was again
highlighted in [11], and is still to be addressed, as shown in the recent survey on software
accessibility in [5].

Table 11. List of operating systems analyzed in the literature.

Previous Work Operating Systems

[12] Linux, MacOS, Windows

[13] iOS, Mac, Windows

[14] MacOS 7-9, MacOS X, Windows 95-2000, Windows XP

[42] Linux Ubuntu 6.10, Windows XP Service Pack 2

[15] Windows, Android, Apple Operating System

For most of the papers about OS, the context is education [12–14] as in software in
general [5]. In [13–15], the authors discuss different disabilities: visual, hearing and motor
disabilities in [13–15]; cognitive disability in [15]. Some papers study to what extent the OS
comply to these standards, in order to help administrations to choose a non-discriminatory
system. e.g., in [42], it is shown that Ubuntu 6.10 provides more accessibility features than
Windows XP Service Pack 2. In [12], authors determine the most common features in three
OS (Linux, MacOS and Windows). E.g., they show that features Display Customization and
Basic Screen Magnification Software belong to all systems. Ref. [15] analyzes the latest OS
versions of Apple, Microsoft and Google and concludes that the same high-level vision
accessibility features are implemented in these platforms. In [13,15], the versions of the
systems involved in the analysis are not explicitly specified. Their findings, restricted to the
accessibility options we are studying in this paper, are respectively presented in Tables 12–14.
These tables show that these studies are very concentrated on a few aspects, a restricted set of
systems and high-level descriptions.

Compared to these approaches that focus on a particular problematic and coarse-
grained features, we give a general framework for a more systematic analysis and compari-
son. Existing comparative tables cannot be used to make precise comparisons or help users
or manufacturers. In our work, all visual options (fine-grained features) are considered.
We also identified the problem of defining a unifying ontology and the mappings between
OS and the ontology. Some logical relationships are systematically extracted. In addition,
the concept lattices provide a space for accessibility exploration, at the level of a single
mechanism or considering the whole set of mechanisms as well.

Table 12. OS and their features from [14].

Features
Operating Systems

Mac OS 7-9 Mac OS X Windows 95-2000 Windows XP

Magnification CloseView Zoom Magnifier Magnifier

Contrast Yes Yes Yes Yes

Display Yes Yes Yes Yes
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Table 13. OS and their features from [13].

Features
Operating Systems

Windows Mac OS iOS

Magnification customizable, to 16× customizable, to 40× customizable, to 15×
visual Format invert colours, transparency invert colours, grayscale, transparency invert colours, grayscale, contrast

cursor size Yes No No

Table 14. OS and their features from [15].

Features
Operating Systems (Latest Version)

Windows Android Apple Operating System

Magnifier Yes Yes Yes

Hover Text Yes Yes Yes

Dark Mode Yes Yes Yes

Flexible Display Yes Yes Yes

7.2. Software Product Lines

Our approach was inspired by the software product line (SPL) paradigm, which
promotes the efficient development of families of similar products [25]. In this paradigm,
properly representing and managing variability analysis is a core issue, as it greatly in-
fluences all the process. This is made through variability models, which can take various
forms, including textual, graphical or hybrid (both textual and graphical) [43,44].

Metrics for analyzing variability have been proposed in the past, and collected in a
recent survey [16]. In our paper, we use some of them, such as Number of Features (NoF),
Number of Valid Configurations (NVC) and Depth of tree (DT)). From their paper, we
could use metrics in the spirit of Commonality of feature (Comm), or Variability influence
(VI). The metrics we use (1) either show the complexity of the initial FMs, i.e., variability in
individual OS (Table 9), (2) or show variability among all OS, regarding each mechanism
separately (Table 10). In this second case, we measure the logical relationships that a
classical feature model (for all OS) should include and highlight (commonalities, binary
implications, and mutex). In addition to these metrics, we build an exploration space for
variability in the form of a collection of concept lattices, with metrics presented in Table 8.

Variability models based on Formal Concept Analysis (FCA) have been investigated
for many years. FCA builds conceptual classifications that provide a support for feature
relationships analysis, variability metrics, and construction of other variability models,
e.g., feature models [37,45–47]. It also supports requirement engineering [48], feature
location [49] or software product line architecture recovery [50]. We use FCA here for
variability modeling. In previous work in the domain of software product lines, we show
that FCA provides a single structure to embed all the logical variability relationships [37,51].
We also show that any feature model can be embedded in the concept lattice. Many logical
relationships can be extracted. This is made for co-occurrences, implications and mutex.
We use this framework in a new context, namely the visual accessibility options in OS. In
addition, we extend the FCA existing approaches for variability modeling by two new
contributions, (1) the joint use of an ontology, and (2) the principle of concern separation,
which is implemented with RCA.

8. Conclusions

In this paper, we propose a methodology to build a variability model on operating
systems (OS) regarding visual accessibility. We divide the visual accessibility options into
different mechanisms, such as contrast and color, brightness, text style, or zoom. We stan-
dardize the vocabulary and organization via the building of an ontology. Using the division
into mechanisms, we build interconnected classifications. OS are classified according each
mechanism: we build one classification for contrast and color, one classification for bright-
ness, and so on. In addition, OS are classified according all mechanisms, in a structure
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that contains links to the mechanism classifications. These classifications are built with
Relational Concept Analysis (RCA). They can be analyzed visually. They also exhaustively
embed logical variability relationships, that can be derived in a textual form. We extract
some variability relationships, i.e., co-occurrences, binary implications, and mutex. An
exploratory case study is conducted on 8 representative operating systems. This allows us
to observe the way accessibility options vary in practice.

As future work, we plan to analyze more platforms, namely more OS and software
distributed on the web, such as web browsers. We also plan to automate more the analysis
process. One track will be to benefit from the manually built ontology, from external lexical
and semantical resources, and from natural processing tools, to analyze new systems,
at least semi-automatically. For this analysis, we will have to establish a mapping from new
system features to ontology concepts. We probably will have to evolve the ontology and
the mappings by integrating new concepts in the right place in the ontology. We also will
work on the ontology dissemination. We have not found other ontologies at the moment on
this precise topic. In other domains, there are initiatives to gather ontologies (e.g., Bioportal
(https://bioportal.bioontology.org/, accessed on 1 September 2021) or Agroportal (http:
//agroportal.lirmm.fr/, accessed on 1 September 2021) [52,53]). As far as we know, there is
no such initiative about technical visual accessibility. Existing ontologies deal with handicap
description from the health and skills point of view, e.g., ICF (http://bioportal.lirmm.fr/
ontologies/ICF, accessed on 1 September 2021) or [54]. Open repositories can be used for
sharing (https://ontologforum.org/index.php/WikiHomePage, accessed on 1 September
2021). Our ontology can be exported in Protege (https://protege.stanford.edu/, accessed
on 1 September 2021), making it portable, easy to distribute and reusable. We will follow
guidelines gathered in [55,56] for the delivery. A user assistance would be useful for guiding
OS manufacturers, or software developers in general, as well as end users. Proposing such
assistance requires to develop complete solutions for comprehension, system requirement
analysis, or user setting recommendation and migration. Concept lattices are built in
the same spirit as Feature models in the domain of software product lines. They can
serve to derive product (here OS) configurators in the form of structured checkboxes.
We also plan to exploit this analysis in our project EWPA (http://ewpa.lirmm.fr/en/,
accessed on 1 September 2021) to improve the proposed options in the context of web page
adaptation. Variability analysis can be refined as well. A first track could be to distinguish
mandatory features versus optional features in the OS description. A second track could
be to consider different variability levels, namely (1) intra-OS families (e.g., Ubuntu family)
versus inter-OS families and (2) variability among end user settings.
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