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ABSTRACT

For many years, complex networks have represented the main paradigm to model the dynamics of interacting systems. However,
networks are intrinsically limited to describing pairwise interactions, while higher-order interactions (HOIs), i.e. interactions
in groups of three or more units, are ubiquitous. Higher-order structures, such as hypergraphs and simplicial complexes are
therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight recent
evidence of novel collective behaviours induced by higher-order interactions, and we outline three key challenges for the new
physics of higher-order systems.

Network science allows us to understand how the highly interconnected world we live in evolves [1]. How do rumours
spread in a social network? How do large ecosystems stabilise despite competing interactions among species? What is the
origin of abrupt changes in biological oscillators? A key shared feature of all such systems is that they are characterised by a
complex relational structure, which largely governs their emergent dynamics [2, 3, 4]. In the last decades, the architecture of
social networks, ecosystems and the human brain have all been modelled as graphs, collections of nodes describing the units
of the systems – humans, animals, neurons – and links, encoding their pairwise interactions. This approach has brought new



Figure 1. Pairwise and higher-order representations. Systems composed by many interacting units have long been
represented as networks (a), with interactions restricted to pairs of nodes and represented as the network edges. However, it is
not always possible to describe group interactions as sums of pairwise interactions only. Representations allowing for genuine
group interactions include hypergraphs (b), which can encode interactions among an arbitrary number of units without further
constraints, and simplicial complexes (c), which –although more constrained than hypergraphs– provide access to powerful
mathematical formalisms [9]. In (b) shaded groups of nodes represent hyperedges, while in (c) edges (1-simplices) are shown
in black, full triangles (2-simplices) in yellow. Note that in simplicial complexes all subfaces of a simplex (e.g. edges of a
triangle) need to be included. This constraint does not hold for hypergraphs.

insights in different realms. For instance, we have discovered that a heavy-tailed distribution in the number of contacts within a
population makes us at risk of pandemics because of the vanishing of the epidemic threshold [5, 6], that small-world networks
and clustering promote synchronization [7], and that efficient communication structures are suited to reach rapid and diffused
consensus but also prone to the unwanted spreading of misinformation [8].

Graphs, however, while very convenient representations of a wide variety of systems, can only provide a limited description
of reality. Indeed, they are inherently constrained to represent systems with pairwise interactions only. Yet, in many biological,
physical and social systems, units may interact in larger groups, and such interactions cannot always be decomposed as a
linear combination of dyadic couplings [10] (Fig. 1). For example, evidence from neural systems shows, on the one hand, that
higher-order effects are present and important both statistically [11, 12, 13] and topologically [14, 15], and, on the other hand,
that such higher-order signatures might in some cases be an epiphenomenon of low-order ones [16, 17]. In ecological systems,
evidence shows clearly the existence of complex many-body interactions between multiple species [18, 19, 20], although the
effects induced by their interaction patterns have only recently started being investigated formally [21]. Other examples include
metabolic and genetic systems [22], social coordination [23], and group formation [24].

The idea of higher-order interactions (HOIs) is not new in physics, in particular in many-body physics , e.g. in strong
interactions [25, 26] or van der Waals interactions [27], as well as in statistical mechanics [28]. However, in all these cases,
the representations of HOIs are simple in the sense that they do not contribute to the emerging complexity of the problem,
which is instead what typically happens in complex systems. To take these HOIs explicitly into account, different mathematical
structures, such as hypergraphs and simplicial complexes, are better suited [10]. Several early investigations have already
shown that the presence of higher-order interactions may significantly impact the dynamics on networked systems, from
diffusion [29, 30] and synchronization [31, 32] to social [33, 34, 35] and evolutionary processes [36], possibly leading to the
emergence of abrupt (explosive) transitions between states. In addition, while most research in complex systems focuses on
the dynamical evolution of the states of the nodes, it becomes natural to consider that higher-order structures (hyperedges)
can themselves possess a dynamical state, leading to a whole new panorama of dynamical processes. Finally, while many
datasets directly come under the form of networks, very few are directly under a hypergraph representation. How to go from
the dynamics of units, and possibly information about their pairwise interactions, to a meaningful pattern of higher-order
interactions between these units, remains a largely open issue. In this Perspective, we outline the main signatures of new
physics arising in higher-order systems, and we propose three key directions for future research.

A general pathway to explosive transitions. Most processes on networks, from the dynamical evolution of coupled
oscillators to the spreading of diseases, display emerging collective behaviours. Typically, such phenomena are described by
continuous phase transitions: the order parameter describing, e.g. the emergence of synchronisation among the oscillators,
increases continuously as the control parameter crosses a critical threshold. Similar transitions are also well-known for
percolation on networks, where initially separated small clusters start merging together to span a non-vanishing fraction of
the system size at a critical point. In contrast, an explosive transition was first found a dozen years ago for particular link
selection rules [37]: the size of the largest cluster seemed to jump abruptly to a finite value at the transition. While this specific
transition was in fact later on classified as continuous, but with an anomalous scaling [38, 39], an intense activity followed in a
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Figure 2. Higher-order interactions lead to explosive phenomena. Edges and hyperedges encode pairwise and group-level
couplings among the nodes of a complex system. The latter modulate group infection and many-body feedback in higher-order
processes of contagion (a) and synchronization (b). In (a) susceptible nodes (S, blue) can be infected by infectious ones (I,
orange) in the usual way along edges, but also by groups containing a large fraction of infected nodes (e.g. orange 2-simplices).
Similarly, in (b) oscillators on nodes can be coupled along edges, or in groups via higher-order interactions. Abrupt transitions
emerge when increasing the strength of such interactions, suggesting a general pathway to explosive phenomena (c).

quest for explosive phenomena [40]. Several discontinuous phase transitions were confirmed for different processes, such as
synchronisation. However, explosive phenomena are rather difficult to obtain for systems represented as networks, i.e., with
only pairwise interactions. They are typically achieved by adding artificial elements or rules to the most natural dynamical
setups in an attempt to prevent the transition. Eventually though, these produce abrupt jumps in the order parameter once the
transition becomes inevitable. For instance, synchronisation can become explosive in heterogeneous networks by correlating
the natural frequency of oscillators to their degree [41]. Explosive phenomena however are known to exist in nature, e.g. tipping
points that lead to strong changes when crossed, and are of extreme interest as they are more difficult to handle, predict, and
potentially control than continuous ones. Reaching a better understanding of the conditions under which they can occur, and of
the mechanisms that can produce them,

constitutes thus a major challenge in complexity science.
In fact, it turns out that going beyond networks in modeling interactions and taking into account higher-order interactions

provides a framework in which explosive phenomena emerge and can be studied more easily. An abrupt transition was recently
observed in a model of social contagion on simplicial complexes [33], where individuals can assume either an infected of
susceptible state. In contrast with previous proposals, here pairwise transmission does not operate alone, but can be reinforced
by simplicial interactions associated to group pressure (Fig. 2a). The model can be solved analytically in the mean-field,
showing that a discontinuous transition from a healthy to an endemic phase (in which a significant fraction of the population
is infected) emerges when the relative weight of higher-order interactions crosses a threshold. Interestingly, the inclusion of
three-body interactions is sufficient to obtain a bistable region where endemic and non-endemic states can co-exist, even for
k-regular simplicial complexes. This result has been found to be robust and general. Explosive transitions have in fact been
observed in heterogeneous [42] and time-varying [43, 44] structures, and in the more general setup of hypergraphs [34, 45, 46],
where they can also be related to higher-order discontinuous percolation processes [47].

Explosiveness is not limited to spreading processes. Of paramount importance for biology and neuroscience are systems of
coupled oscillators, where the states of the nodes are d-dimensional continuous variables that evolve over time under mutual
influence (Fig. 2b). The most well-known setup is probably the one introduced by Kuramoto [48], where unidimensional
phase oscillators are endowed with natural frequencies, and interactions occur through sinusoidal couplings. When generalised
to account for structured higher-order interactions among oscillators, the additional non-linearity generates abrupt switches
between synchronized and incoherent states [49]. The emergence of bistability and the appearance of hysteresis cycles are
driven by the presence of higher-order interactions alone, without the need of ad-hoc coupling mechanisms between the
dynamical evolution and the local connectivity of the nodes.

In both examples, the introduction of HOIs corresponds to having the state variable of a node influenced by a non-linear
combination of the states of several other nodes. Tuning the relative importance of the strength of the higher-order and pairwise
interactions provides a way in both cases to change the nature of the transition from continuous to discontinuous (Fig. 2c). The
similarity of the mechanisms yielding a first-order transition in these two very different dynamical processes leads to conjecture
that the introduction of non-linear HOIs and the tuning of their intensity is a general ingredient sufficient to provide abrupt
transitions in a dynamical process. Despite this preliminary evidence however, a rigorous and general proof of this conjecture is
still lacking. Approximate approaches based on linearization around a fixed point of ordinary differential equations link the
stability of hypergraphs dynamics to their graph projections [50, 51, 52], suggesting general conditions for stability associated
to the different orders of the interactions. Mean-field treatment allows for an analytical solution for diffusion and spreading
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Figure 3. Higher-order systems are fully dynamical. As opposed to traditional descriptions focused on node dynamics, it
is possible to define state variables for hyperedges or simplices of arbitrary order, for example by associating oscillators to
edges (a) [57] and coupling them to each other using their higher-order adjacency. In so doing, the distinction between
dynamical units and interactions dissolves, and dependencies and feedback loops between orders become possible. For
example, it is possible to project the dynamics of hyperedges of order k (e.g. k = 1, edges or 1-simplices) onto their analogues
of larger order (e.g. k = 2, 3-hyperedges or 2-simplices) (b) or smaller order (k = 0, nodes) (c).

processes on arbitrary structures, separating stability conditions into structural and dynamical terms [53, 54]. A general
argument based on bifurcation theory shows that variations on pairwise models, such as adding higher-order interactions, can
lead to a change of critical behaviour from a continuous to a discontinuous transition for a wide class of models, including
epidemic, synchronization and percolation transitions [55]. Under some conditions, mathematicians were able to formally
prove that higher-order interactions are sufficient to induce bi-stable behaviour in the Susceptible-Infected-Susceptible (SIS)
model, while it is impossible to achieve bistability in the traditional pairwise scheme [56]. All in all, findings indicate that the
presence of higher-order interactions provides a general pathway to explosive phenomena. Yet, this marker of fragility of the
collective behavior in higher-order systems is still awaiting formal proof.

Topological dynamical processes. Most of the research on dynamical processes on networks focused on the dynamics of
node states, with interactions mediated by links. This is a natural and intuitive approach, because it describes the evolution
of the most basic units of the system, coupled through the only possible (and simplest) interactions in networks [58]. The
new framework of higher-order systems allows to transcend this approach. In fact, once we are able to represent higher-order
interactions, it becomes possible to define couplings between interactions of different orders (nodes, and hyperedges or
simplices). More importantly, we can associate state variables, not only to nodes, but also to hyperedges and simplices. For
example, the state of an edge can influence the states of its two ending nodes, while contributing to and being influenced by the
states of the higher-order interactions (e.g., a 3-hyperedge) it belongs to. In this way, higher-order dynamical systems become
fully alive: what were before static interactions (i.e. edges, hyperedges, etc) are now active agents themselves, coupled to the
rest of the system and evolving in time.

Recent results on simplicial oscillators are a particularly striking example of this phenomenon. Consider a Kuramoto model
defined on a simplicial complex composed by nodes, edges and 2-simplices (Fig. 3a). In this case, phases are defined not only
on nodes –as in the traditional description– but also on higher-order faces. Interestingly, the equations used in the classical
formalism can be directly adapted to higher-order interactions, by substituting node incidence matrices with the appropriate
higher-order analogues [7]. In simplicial complexes, these matrices correspond to boundary operators between interactions of
orders differing by one, e.g. node and edges, or edges and 2-simplices, effectively providing a canonical mapping between phase
dynamics of different orders. Interesting phenomena emerge already without adding further complications: the dynamics on
1-simplices (edges) displays a synchronization transition [57] that is only revealed when projected onto simplices of dimension
higher (2-simplices, Fig. 3b) or lower (nodes, Fig. 3c); indeed, phase transitions appear in both projected dynamics. Even more
interestingly, when the dynamics of the (n−1)- and (n+1)-simplices are coupled via the respective global order parameters,
these transitions become explosive.

The Hodge decomposition provides a rationale for this behaviour in terms of the inner structure of higher-order states [29].
In fact, these can be decomposed in three components: a harmonic, a solenoidal and an irrotational components, corresponding
respectively to the dynamics induced by the kernel of the higher-order Laplacian, and to those induced by the projection to
simplices one dimension higher and lower. In this light, higher-order systems should be considered truly as collections of
topological signals, i.e. timeseries associated to interactions at all orders, which lend themselves to analysis using tools at
the interface between algebraic topology, differential geometry and discrete calculus [29, 59]. As examples of this paradigm,
higher-order Laplacians were recently shown to improve the description of flow information on edges with respect to standard
graph Laplacians –even for simplicial complexes containing only nodes and edges– [60], and to give the first formulation for
signal processing on generic topological spaces[61].
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Figure 4. Inference of higher-order systems is still an open and challenging problem. While a few tools and concepts
have been proposed, existing methods to extract signals associated to higher-order interactions from node-level measurements
(e.g. cofluctuations of groups of brain regions or neuronal firing patterns), or to reconstruct higher-order structures from
network-level observations or noisy measurements are still lacking. Early evidence points to the effectiveness of a combination
of data-driven modeling efforts and Bayesian inference techniques, but the field is still taking its first steps.

Finally, even when states for higher-order interactions are defined, the topological structure of the system –that is, the
presence or absence of simplices and hyperedges– has typically been considered fixed in time (e.g. in neural codes [16]).
However, in many systems the organization of the interactions changes over time [62]. It remains an open question how to
define realistic models of topological co-evolution, where higher-order structure and higher-order dynamics evolve together
under the effect of mutual feedback [63].

Inferring higher-order interactions from data. A crucial ingredient in modeling real systems is the reconstruction of higher-
order interactions from data (Fig. 4). The vast majority of data available on network systems contains only records of pairwise
interactions, even if the underlying rules rely on higher-order patterns. Naively attributing every observed dense subgraph in the
pairwise network (e.g. triangles and larger cliques) to a putative higher-order interaction conflates the existence of an actual
hyperedge with the coincidental accumulation of edges, due –for example– to community structure, homophily or a geometric
embedding. Recent work [64] has demonstrated how it is possible to distinguish between hyperedges and combinations of
lower-order edges by casting the problem as a Bayesian inference task, taking into account the parsimony of the resulting
reconstruction. With such an approach, hyperedges are identified only if they are supported by statistical evidence. It remains
an open problem how to generalize such approaches to include more realistic modelling assumptions, containing a tighter
interplay with mesoscale structures and latent space embeddings [65].

Even when explicit hyperedge data are available, the same problem as with pairwise network data is still present, namely
that a certain amount of errors and incompleteness is unavoidable, requiring us to reconstruct the object of study from uncertain
observations [66, 67]. For hypergraph data, recent work [68] has proposed an approach based on comparisons with null models
that is capable of filtering out hyperedges that are not statistically significant. More work is needed to provide uncertainty
quantification on the analyses that are conditioned on the reconstruction, as well as leveraging more advanced techniques of
hyperedge prediction to improve accuracy.

In addition to the reconstruction from direct but uncertain data, an important challenge is the inference of higher-order
structures from indirect data such as time series, where no edges or hyperedges are directly measured, but only the dynamical
behavior on the nodes that result from it. This is an important issue in many biological systems such as the brain, where diseases
like Parkinson’s and schizophrenia have been associated to dysfunctional brain connectivity [69, 70, 71], but direct network
measurements are often not available. A common approach is to compute correlations [72] and measure synchronization [73]
between time series. However, these approaches yield only a very unreliable understanding of the underlying system, since
they cannot distinguish correlation from causation — i.e. two or more nodes can be highly correlated even if they do not
share an edge or hyperedge. Another set of approaches consists in exploiting temporal correlations, for example the phase
dynamics reconstruction given a set of multivariate time-series [74]. Originally devised for pairwise interactions only, the
methodology has been generalised to account for small motifs of interacting units [75]. Interestingly, the development of new
synchronization measures for triplets has made it possible to identify multi-body locking from experimental data, even when
every pair of systems taken in isolation remains asynchronous [76]. In particular, this last approach can better differentiate
between the physical connections and the effective ones, which are associated to the temporal influence of one node on another
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one: this can lead to more reliable network reconstruction methods [77, 78]. Finally, another yet-to-be-explored possibility
is that of extending information-theoretical techniques, such as Granger causality [79] and transfer entropy [80], to account
for the existence of multi-body interactions. Despite promising first steps in reconstructing higher-order interactions from
static lower-order projections [64] and in multi-body information-theoretic quantities [81], it remains an open problem how to
broaden this framework to consider fully higher-order interaction schemes. It also should be emphasized that reconstruction
methods that are based only on temporal correlations still suffer from the problem of not being able to fully distinguish between
direct and indirect causation (i.e. the existence of an actual edge/hyperedge between nodes vs. a longer path), as well as
non-causal correlation. Ultimately, this is only possible in general if, instead of only observational data, we are allowed to make
interventions [82]. Nevertheless, methods based on Bayesian inference of generative models are able to convey the uncertainty
about the causal relationships [83]. An important future direction is to generalize such methods to contain higher-order
interactions [84, 85, 86, 87, 88, 89, 90], possibly varying in time [91] and describing emergent higher-order geometry [92].

The study of networked systems with higher-order interactions is still in its infancy, posing new challenges and opportunities
for discoveries [10, 93, 94, 95]. Yet, it is also inspired by ideas from the past. For instance, earlier work had already considered
systems of coupled cells where dependencies of different orders were encoded via particular graph structures [96], clarifying
how higher-order symmetries affect synchronization [97, 98]. HOIs can also generate new insights on older problems where they
emerge as effective theories. A paradigmatic example is that of networks of phase oscillators with higher-order interactions, that
arise from the phase reduction of nonlinear oscillator systems [99, 100, 101]. As a consequence, understanding the dynamics
of the phase reduced systems with higher-order interactions can also clarify the physics of the general higher-dimensional
system [102, 103, 104, 105], in particular on the emergence of chaos [106] and metastable chimeras [107, 108]. Thus, in
addition to providing an exciting way forward for network science, HOIs can also create opportunities for a wider dialogue on
the physics of dynamical systems, preparing fertile ground for further potential crosspollination between the two fields.

From p-spin models [13, 109] to multilayer [110] and non-Markovian temporal networks [111] the past suggests that new
phenomena may occur when more realistic patterns of interactions are considered. Overcoming previous limitations, new data
and new theory are now informing our network models beyond pairwise interactions [10]. How will the physics of higher-order
interactions look like? This is an exciting question for the whole community to resolve.
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