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Abstract

In this paper, the stability analysis problem of networked linear systems with decentralized sampled-
data controllers is considered. The networks under consideration are composed of interconnected identical
systems. A dissipativity-based approach is utilized to analyze stability, grounded in an interconnection
interpretation. A structure exploiting and scalable approach is employed to derive a sufficient stability
condition for large-scale linear systems, which is independent of the number of subsystems. In the analysis,
the effects of uncertainty on the system models, which include uncertainties that render the coupled systems
non-identical, aperiodic sampling, and a switching network topology, are taken into account. Numerical
examples are presented to demonstrate the main result and simulate the sampled-data system.
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1. Introduction

Decentralized control is ubiquitous in modern control implementation schemes. This paradigm has seen an
increasing number of developments in the last few years, due to the boom of Internet of Things (IoT) and
large-scale cyber-physical systems [1, 2]. Each decentralized controller in the large scale system measures a part
of the network state and acts on the system in accordance with its limited computation and communication
capabilities. In this paper we are interested in the decentralized control problem for networks of (quasi-) identical
systems. Typical examples are encountered in power systems [3, 4] and automated vehicular platoons [5].

The decentralized control architecture provides several advantages. Generally, no centralized and syn-
chronous scheme is practical for coordinating the control actions in large scale networks. Decentralized con-
trollers are preferred for such systems due to their practicality, ease of implementation, maintenance costs, and
compatibility with various information sharing policies among the different actors involved [2, 5, 6]. However,
the design of decentralized controllers is challenging since these controllers have to meet global objectives col-
lectively while acting (and sensing) locally, without coordinating their action and using limited computational
resources. The digital implementation of such control elements is usually asynchronous [2, 7, 8, 9]. While in the
last decade a significant effort has been dedicated to the study of centralized network control schemes [10, 11, 12]
and of systems with event-triggered controllers [13, 14, 15], the main problem today is to provide methods for
the design of asynchronous sampled-data control architectures in large scale networks with decentralized con-
trollers. In this paper, this topic is addressed for networks of (quasi-) identical systems with asynchronous
(decentralized) sampled-data controllers. Two main theoretical challenges must be handled in this context.

The first challenge concerns the asynchrony in sampling among different controllers. This challenge is difficult
to address since asynchrony in sampling times may be a source of poor performance and even instability. It has
been recently shown in the literature that even for the case of simple linear time-invariant (LTI) systems, an
asynchronous (decentralized) sampled-data control implementation may lead to an unstable behavior [15, 16]
if particular attention is not payed. Unfortunately, although sampled-data control is a mature area in control
theory, the particular stability problem for systems with asynchronously sampled controllers has so far received
little attention. As far as we know, results exist only for the case of LTI systems [15, 16, 17, 18] and for linear
time-delay systems [19].

The second theoretical challenge lies in the dimensionality of the problem. A fundamental problem in the
analysis of decentralized controllers for networked systems consists of handling the large dimension, induced by
the interconnection of many subsystems and controllers. Considering the entire network as one sampled-data
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system (i.e. applying directly the sampled-data approaches form [16, 17, 20]) would lead to stability conditions
with a computational complexity that grows exponentially with the number of the subsystems, which would
not be numerically tractable. The challenge is to derive scalable stability conditions in the sense that the
computational cost to check these conditions should not depend on the number of subsystems.

Results addressing both of these theoretical challenges in the context of sampled-data networked systems
are rare [19]. In this paper, this particular problem is addressed for networks of (quasi-) identical linear
subsystems. In other words, we study the effect of asynchrony in sampling between local decentralized controllers
on the Lyapunov stability of the overall networked system. The case of linear static decentralized controllers is
considered. The main objective is to derive scalable Lyapunov stability conditions independent of the number
of subsystems, thereby reducing the critical dimension for the numerical criteria to the dimension of individual
subsystems. To the best of our knowledge, this problem setting is new in the literature.

There are a few conceptual similarities between the setting of this paper and that of other work in the
literature. The problem of how large the asynchony (i.e. the clock offset) between actuator and sensor can be
for a centralized control configuration, without compromising the stability of an LTI with linear static controller,
was addressed in [8, 7, 21]. For linear plants, the analysis of decentralized event-triggered controllers (i.e. the
case of controlled sampling) can be found in [13, 14]. In contrast, here we address the stability problem for
the case of systems with arbitrary sampled controllers. Recently in [19], we have addressed the L2 stability
problem for (time-invariant) networks of input-output time-delay subsystems with decentralized sampled-data
controllers using a frequency domain approach. In the present paper, we propose a state-space method to address
the Lyapunov stability problem. The main advantage of the state-space formulation is the fact that it easily
allows to take into account time-varying network topologies and subsystems with polytopic uncertainties. From
a technical point of view, the results presented in this paper use network structure exploiting ideas inspired by
[22]. In the literature, sampled-data systems are modelled as time-delay systems [23, 24], hybrid systems [13, 25],
discrete-time switched systems with varying parameters [12], feedback interconnections of systems [26, 27] (see
the survey [28]). In this paper, the problem under study is addressed from a feedback interconnection point of
view, building upon the results based on Dissipativity Theory and the study of the reset operator in [29, 30].

The main contributions of this paper are as follows. The major result is a dissipativity-based approach for the
analysis of decentralized sampled-data linear static controllers in networks of (quasi-) identical LTI subsystems.
We derive scalable Lyapunov stability conditions which are independent of the number of subsystems, thereby
reducing the critical dimension for the numerical criteria to the dimension of individual subsystems. The
proposed conditions are in the form of Linear Matrix Inequalities (LMI) of the order of the subsystems, which
allow to analyze the stability of large scale network. For generality, we take into account imperfections that
render the coupled subsystems non-identical, asynchronous operation of controllers, aperiodic sampling [31, 27]
and switching network topologies [32, 33, 34].

The remainder of this paper is organized as follows. First, the sampled-data control problem of LTI system
with time-invariant topology is presented in Section 2. In Section 3, the system is modelled as a feedback
interconnection between a continuous-time closed-loop system (with no sampling) and an uncertainty opera-
tor representing the sampling. In Section 4, the stability analysis approach based on the dissipativity-based
framework is presented. The results are extended to consider a switching network topology in Section 5 with a
brief discussion on other possible extensions. Numerical examples are presented in Section 6 to verify the corre-
sponding result using MATLAB (and YALMIP[35]) software. Finally, some concluding remarks are presented
in Section 7.

We use the following notations throughout the paper. N is the set of all natural numbers and zero. R
is the set of all real numbers. Rn is the n-dimensional real vector space. Z, Z+

0 , and Z− are the sets of all
integers, non-negative integers, and negative integers, respectively. Sn×n is the set of all symmetric real-valued
matrices of dimension n × n, also Sn×n ⊂ Rn×n. The Kronecker product is denoted by ⊗. L2e(a, b) is the
extended L2-space of all square integrable and Lebesgue measurable functions defined on the interval (a, b) of
appropriate dimension. We use P > 0 (P < 0) to denote that P is a positive (negative) definite matrix. A
positive (negative) definite matrix has positive (negative) real part for all its eigenvalues. blkdiag(P1, P2) is a
matrix with the matrices P1 and P2 as its diagonal blocks while all the other elements are zero.

This article fits within two widely studied research areas by Prof. Vladimir L. Kharitonov: time-delay
systems and robust stability analysis. Without Kharitonov’s pioneering contributions to the mathematical
foundations and analysis tools, this article would not have been possible. As the authors, we consider it a honor
to contribute to this special issue.
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2. Problem statement

Let us consider a system that satisfies the following nodal dynamics almost everywhere in time

ẋi(t) = Axi(t) +
∑n
j=1 aMi,jFxj(t) +Bui(t) + δAi(t)xi(t),

xi(0) = xi,0 ∈ Rnx , ∀ i ∈ N , (1)

where N := {1, ..., n} with the number of subsystems n ∈ N, xi ∈ Rnx is the state of the subsystem, ẋi is the
right-hand derivative of the subsystem state, ui ∈ Rnu is the input of the subsystem, A ∈ Rnx×nx , B ∈ Rnx×nu ,
and F ∈ Rnx×nx are constant real-valued matrices. Function δAi(t) ∈ Rnx×nx , t ∈ T(= R+

0 ), represents the
uncertainty at node i, and satisfies ||δAi(t)||2 ≤ de, ∀ i ∈ N for some de ∈ R+. Since the uncertainties are
allowed to be non-identical, we refer to systems of the form (1) as quasi-identical systems. Real number aMi,j is
the (i, j)th element of the constant (real-valued) connectivity matrix AM . We consider the following assumption
for the connectivity matrix.

Assumption 1 (Undirected Graphs) The connectivity matrix, AM , is a real-symmetric matrix, i.e. AM ∈
Sn×n. Moreover, we assume that its spectrum belong to the interval [−1, 1].

The decentralized control loops are assumed to be asynchronous in the sense that each node has its own
sampling mechanism. For each node i, we consider a monotonously increasing sampling sequence σi with
bounded intervals,

σi = {tik}k∈N with tik+1 − tik ∈ (0, h], k ∈ N, ∀ i ∈ N , (2)

where h ∈ R+. We assume that ti0 = 0, ∀ i ∈ N . The outputs (yi(t) ∈ Rny , ∀ i ∈ N ) from the system are
sampled and held as follows

yi(t) = Cxi(t
i
k), ∀ t ∈ [tik, t

i
k+1), k ∈ N, ∀ i ∈ N , (3)

where C ∈ Rny×nx . The controller is considered to be a static decentralized output feedback controller using
the known, sampled version of state,

ui(t) = Kyi(t), ∀ i ∈ N , (4)

where K ∈ Rnu×ny is the real-valued constant feedback gain matrix. Let x(t) = [x>1 (t) ... x>n (t)]>, u(t) =
[u>1 (t) ... u>n (t)]>, y(t) = [y>1 (t) ... y>n (t)]>, and δA(t) = blkdiag(δA1(t), ..., δAn(t)). The main objective of this
paper is to analyze the stability of system (1)-(4), by proposing an LMI stability criteria independent of the
(fixed) number of nodes n. Throughout this paper, scalable Lyapunov like stability conditions are derived using
LMI techniques.

3. Preliminaries

In this section, we present the preliminary concepts used in deriving scalable stability conditions. Let us first
consider a continuous-time control signal assuming that there is no sampling,

ûi(t) = KCxi(t), ∀ i ∈ N , (5)

for all t > 0. Notice that the actual control signal in (4) can be decomposed into a continuous-time signal ûi(t)
and an error term corresponding to the sampling. We denote by es,i(t) the error induced through sampling at
the input for node i, that is,

es,i(t) = ui(t)− ûi(t), (6)

where ui(t) is given in (4). In what follows, we rewrite the networked system as an input-output interconnection
of a continuous time system (without sampling or uncertainties) and an error operator representing the sam-
pling problem and uncertainties. Before re-modelling the system, we present some preliminaries on the ideal
continuous-time network.

3.1. Scalable stability condition for the continuous-time system

In this subsection, scalable stability conditions of the order of the subsystems are provided. We consider a simple
continuous-time interconnected system without any sampling process or uncertainty. That is, we consider the
following network with identical nodal dynamics

˙̃xi(t) = Ax̃i(t) +
∑n
j=1 aMi,jFx̃j(t) +Bũi(t),

ỹi(t) = Cx̃i(t),

x̃i(0) = x̃i,0 ∈ Rnx , ∀ i ∈ N ,
(7)
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where x̃i(t) is the state, ũi(t) is the continuous-time input, and ỹi(t) is the continuous-time measured output
for the node i. The continuous-time controlled input is computed using the identical static controller K for
each node, that is,

ũi(t) = Kỹi(t), ∀ i ∈ N . (8)

Then the continuous-time closed-loop system satisfies the following dynamical equation

˙̃x(t) = (I ⊗Acl +AM ⊗ Fcl)x̃(t), (9)

where x̃(t) = [x̃>1 (t) ... x̃>n (t)]>, Acl = A+BKC and Fcl = F .
Before providing scalable stability conditions, we introduce some useful notations. Throughout the paper,

we consider a polynomial matrix P̃ : [−1, 1]→ Rnx×nx , that is,

P̃ (ω) = P̃0 + ωP̃1 + · · ·+ ωna P̃na , (10)

where P̃i ∈ Rnx×nx , ∀ i = 1, ..., na, are the coefficient matrices and na is the order of the polynomial. Also, we
consider an associated matrix valued function P : Rn×n → Rn·nx×n·nx , defined through

P(Ω) = I ⊗ P̃0 + Ω⊗ P̃1 + · · ·+ Ωna ⊗ P̃na , (11)

Then, we can state the following result regarding the stability of system (7)-(8).

Theorem 3.1 If Assumption 1 holds and there exists a function P̃ (λa) = P̃ (λa)> > 0 of the form (10), such
that the following LMI is satisfied,

(Acl + λaFcl)
>P̃ (λa) + P̃ (λa)(Acl + λaFcl) < 0, ∀ λa ∈ [−1, 1], (12)

then system (7)-(8) is exponentially stable.

Proof. There exists a number α > 0 such that

P̃ (λa) ≥ αI, (Acl + λaFcl)
>P̃ (λa) + P̃ (λa)(Acl + λaFcl) ≤ −αI, ∀λa ∈ [−1, 1]. (13)

We now consider the Lyapunov function
V (x̃) = x̃>P(AM )x̃. (14)

Based on Assumption 1, there exists an orthogonal matrix, T , such that it can spectrally decompose the
connectivity matrix to a real-valued diagonal matrix Λ, that is, TAMT

> = Λ. We note that T ⊗ I is also an
orthogonal matrix and

P(AM ) = (T>T )⊗ P̃0 + (T>ΛT )⊗ P̃1 + · · ·+ (T>ΛnaT )⊗ P̃na

= (T> ⊗ I)P(Λ)(T ⊗ I),
(15)

where

P(Λ) =

P̃ (λa1)
. . .

P̃ (λan)

 . (16)

Letting z̃ = (T ⊗ I)x̃, such that ‖z̃‖2 = ‖x̃‖2, we get

V (x̃) = z̃>P(Λ)z̃ =

n∑
i=1

z̃>i P̃ (λai)z̃i ≥ αz̃T z̃ = α‖x̃‖22. (17)

The derivative of the Lyapunov function, along trajectories of the closed-loop system, satisfies

V̇ (x̃) = x̃T
(
(I ⊗Acl +AM ⊗ Fcl)>P(AM ) + P(AM )(I ⊗Acl +AM ⊗ Fcl)

)
x̃

= x̃>
(
(T> ⊗ I)(I ⊗Acl + Λ⊗ Fcl)>P(Λ)(T ⊗ I) + (T> ⊗ I)P(Λ)(I ⊗Acl + Λ⊗ Fcl)(T ⊗ I)

)
x̃

= z̃>
(
(I ⊗Acl + Λ⊗ Fcl)>P(Λ) + P(Λ)(I ⊗Acl + Λ⊗ Fcl)

)
z̃

Using (13), we obtain
V̇ (x̃) ≤ −α‖z̃‖22 = −α‖x̃‖22 (18)

and the proof is complete. ◦

Remark 1 Theorem 3.1 provides a scalable stability condition since all the information about the network
structure is contained in Assumption 1. Hence if condition (12) along with the positivity of P̃ (λa) is satisfied,
then any network of the considered subsystems satisfying Assumption 1 is exponentially stable. Furthermore,
the condition in (12) is a sufficient condition for (Acl + λaFcl) to be Hurwitz, where λa can be interpreted as a
bounded uncertainty corresponding to a possible value of an eigenvalue of the connectivity matrix AM .
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The Lyapunov function (14), on which the proof of Theorem 3.1 is based, depends on connectivity matrix
AM . By restricting it to the form V (x̃) = x̃>(I ⊗ P )x̃, we obtain the following corollary.

Corollary 3.2 If Assumption (1) holds and there exists a P = P> > 0 such that the following LMI is satisfied,

(Acl + λaFcl)
>P + P (Acl + λaFcl) < 0, ∀ λa ∈ {−1, 1}, (19)

then system (7)-(8) is exponentially stable.

Remark 2 If the number of subsystems n is prescribed, then the LMI conditions in Corollary 3.2 provide
stability conditions for any topology satisfying Assumption 1, with a Lyapunov function x̃T (I ⊗ P )x̃ that is
independent of the topology. Using this property, it can be shown that stability is preserved if AM is time-
varying or switching between network topologies whose connectivity matrices satisfy Assumption 1 for almost all
t.

Remark 3 Condition (19) can be interpreted as a sufficient condition for matrix (Acl + λaFcl), λa ∈ [−1, 1],
to be Hurwitz with common Lyapunov function xTPx, x ∈ Rns , in contrast to the parameterized Lyapunov
function xT P̃ (λa)x for (12). The consequence is that a polynomially parameter-dependent LMI is replaced by
two standard LMIs, which are computationally more tractable, possibly at the price of increased conservatism.

3.2. Sampled-data system remodelling

In this subsection, we provide a simpler model of the closed-loop system with asynchronous sampled-data control,
(1)-(4), that can be used for the stability analysis. The main idea is to rewrite (1)-(4) as an interconnection of a
nominal continuous-time system and an uncertainty operator representing the effect of sampling and parametric
perturbations.

First, we recall the techniques used to handle the sampling induced error and norm-bounded uncertainty in
the input-output framework. Then, we provide a new model of the closed loop system which can be handled
easily in the dissipativity-based framework. The principle of the input-output interconnection method is to
characterize the sampling and uncertainty induced perturbation by a single operator.

Recall the sampled-data control input in (4), ui, and the ideal, continuous-time version in (5), ûi. The
operator has as argument the derivative of the continuous-time input without sampled-data control (KCẋi(t),
to describe the sampling error) and the state (xi(t), to describe the norm-bounded uncertainty). Let us consider
es,i(t) as the error induced due to sampling at node i. Notice that

ui(t) = ûi(t
i
k), ∀ t ∈ [tik, t

i
k+1), (20)

leading to
es,i(t) = ûi(t

i
k)− ûi(t), ∀ t ∈ [tik, t

i
k+1), (21)

that is,

es,i(t) = −
∫ t

tik

zs,i(t), ∀ t ∈ [tik, t
i
k+1), (22)

where ûi(t) = KCxi(t), ∀ i ∈ N and zs,i(t) = ˙̂ui(t), ∀ t ∈ [tik, t
i
k+1), k ∈ N, ∀ i = 1, ..., n. Then the sampling

induced perturbation can be written as es,i(t) = (∆s,izs,i)(t), where the operator ∆s,i : L2e → L2e is defined as
a reset integrator, i.e.

∆s,i :


ẇi(t) = zs,i(t), ∀ t ∈ [tik, t

i
k+1),

wi(t
i
k) = 0, ∀ k ∈ N,

es,i(t) = −wi(t), ∀ t ≥ 0, ∀ i ∈ N .
(23)

The operator has d
dt ûi(t) as an argument. Similarly, the error due to uncertainties can be written as

eu,i(t) = δAi(t)xi(t), ∀ i ∈ N . (24)

Then, the uncertainty induced perturbation can be written as eu,i(t) = (∆u,izu,i)(t), where zu,i(t) is the state
xi(t) and the operator ∆u,i : L2e → L2e is defined as

eu,i(t) = (∆u,izu,i)(t) := δAi(t)zu,i(t), ∀ t ≥ 0, ∀ i ∈ N . (25)

Consider z(t) = [z>1 (t) ... z>n (t)]>, zi(t) = [z>s,i(t) z
>
u,i(t)]

>, e(t) = [e>1 (t) ... e>n (t)]>, and ei(t) = [e>s,i(t) e
>
u,i(t)]

>, ∀ i ∈
N , now we define the uncertainty operator ∆ : z → e by

e(t) = (∆z)(t) :=

(∆1z1)(t)
...

(∆nzn)(t)

 , where ei(t) = (∆izi)(t) :=

[
(∆s,izs,i)(t)
(∆u,izu,i)(t)

]
. (26)
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Now we introduce the following proposition to recast the closed-loop system as a feedback interconnection of a
nominal continuous-time system and the uncertainty operator defined above.

Proposition 3.3 Consider system (1)-(4) and the operator introduced by (20)-(26). In an input-output inter-
connection form, the closed-loop system (1)-(4) can be rewritten as a feedback interconnection of the continuous-
time system

G :


ẋ(t) = (I ⊗Acl +AM ⊗ Fcl)x(t) + (I ⊗Bcl)e(t)

z(t) =

(
I ⊗

[
KCAcl

I

]
︸ ︷︷ ︸

Ccl1

+AM ⊗

[
KCFcl

0

]
︸ ︷︷ ︸

Ccl2

)
x(t) +

(
I ⊗

[
KCBcl

0

]
︸ ︷︷ ︸

Dcl

)
e(t), (27)

where Acl = A+BKC, Bcl = [B I], Fcl = F, and the sampling and uncertainty induced operator ∆ is given by
(26).

Proof. Since the controlled inputs are piecewise constant and there is no feed-through, the state xi(t) is piece-

wise continuously differentiable. That is, for any t2 > t1 ≥ 0, we can express xi(t2)−xi(t1) =
∫ t2
t1
ẋi(θ)dθ, ∀ i ∈

N . Then, we can rewrite (6) as

es,i(t) = −
∫ t

tik

KCẋi(θ)dθ, ∀ t ∈ [tik, t
i
k+1), k ∈ N, ∀ i ∈ N . (28)

Notice that the system in (1), represented using nodal dynamics, can be re-written as an interconnected system
of the form

ẋ(t) = (I ⊗A)x(t) + (AM ⊗ F )x(t) + (I ⊗B)u(t) + δA(t)x(t), (29)

where u(t) = [u>1 (t) ... u>n (t)]>, x(t) = [x>1 (t) ... x>n (t)]>, and δA(t) := blkdiag(δA1(t), ...., δAn(t)). Further-
more, (29) and (3)-(4) can be expressed as

ẋ(t) = (I ⊗A)x(t) + (AM ⊗ F )x(t) + (I ⊗B)


û1(t)

...
ûn(t)

+

es,1(t)
...

es,n(t)


+

eu,1(t)
...

eu,n(t)


= (I ⊗A)x(t) + (AM ⊗ F )x(t) + (I ⊗BKC)x(t) + (I ⊗B)

es,1(t)
...

es,n(t)

+

eu,1(t)
...

eu,n(t)

 ,
(30)

with output variables zu,1(t)
...

zu,n(t)

 =

x1(t)
...

xn(t)

 ,
zs,1(t)

...
zs,n(t)

 = (I ⊗KC)

ẋ1(t)
...

ẋn(t)

 , (31)

and with input variableseu,1(t)
...

eu,n(t)

 =

(∆u,1zu,1)(t)
...

(∆u,nzu,n)(t)

 ,
es,1(t)

...
es,n(t)

 =

(∆s,1zs,1)(t)
...

(∆s,nzs,n)(t)

 . (32)

Also, we havezs,1(t)
...

zs,n(t)

 = (I ⊗KC)

ẋ1(t)
...

ẋn(t)


= (I ⊗KC)

(I ⊗ (A+BKC))x(t) + (AM ⊗ F )x(t) + (I ⊗B)

es,1(t)
...

es,n(t)

+

eu,1(t)
...

eu,n(t)


 .

(33)

Hence, the proof is complete. ◦

Remark 4 Proposition 3.3 remodels system (1)-(4) as an interconnection of an augmented continuous-time
system and an uncertainty operator. This is an essential step to derive the scalable stability LMI conditions
that are independent of the number of subsystems (n).
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4. Dissipativity-based framework for sampled-data control

In this section, we propose an approach to analyze stability of the interconnected system using dissipativity
theory (see [36, 37, 38] and the references therein). We put the sampling sequences in chronological order:

γ = {ts}s∈N, t0 = 0, ts+1 = min
∀ i∈N , k∈N

{tik
∣∣ tik > ts }, ∀ s ∈ N. (34)

Additionally, the coefficient
ki,s = max{k ∈ N

∣∣ tik ≤ ts }, (35)

represents the index of the last sample sent to the controller by sensor i before time ts. Then, tiki,s represents the
last time instance at which the sensor i sent a measurement before time ts. For a detailed explanation on the
notation and sequence, we refer to [17]. Now we introduce the dissipativity function to include the uncertainty
and sampling aspect, presented in previous sections, as follows.

Lemma 4.1 Consider ∆i in (26), let R̃> = R̃ > 0, Ỹ > = Ỹ > 0, and

J(zi(t), ei(t)) = ei(t)
>
[
R̃ 0
0 I

]
ei(t)− zi(t)>

[
h2R̃ 0

0 d2eI

]
zi(t)

+ ei(t)
>
[
Ỹ 0
0 0

]
zi(t) + zi(t)

>
[
Ỹ 0
0 0

]
ei(t),

(36)

∀ i ∈ N , where h and de bound the sampling interval and additive uncertainty, see Section 2. Then we have the
following inequality, ∫ t

tik

J(zi(θ), (∆izi)(θ))dθ ≤ 0, ∀ t ∈ [tik, t
i
k+1), k ∈ N, ∀ i ∈ N . (37)

Proof. The proof is presented in the appendix. ◦

The goal of Lemma 4.1 is to characterize L2 bound properties of the sampling and uncertainty errors which
are characterized by ∆ in (26). This will be used for the scalable stability criteria. The following proposition
presents a generic stability condition for system (1)-(4).

Proposition 4.2 Consider sequence γ in (34), sampled-data system (1)-(4), and the feedback interconnection of
(27) and (26). Furthermore, consider a continuous function J(zi(θ), ei(θ)) of the form (36), with R̃> = R̃ > 0,
Ỹ > = Ỹ > 0.
Assume that

1. Along the solution of (27) and (26), there exists a differentiable positive definite storage function V :
Rn·nx → R and class K functions β1 and β2 satisfying

β1(|x(t)|2) ≤ V (x(t)) ≤ β2(|x(t)|2), ∀ x ∈ Rn·nx , ∀ i ∈ N , ∀ t ≥ 0. (38)

2. The following condition is satisfied for the interconnection of (27) and (26)

V̇ (x(t)) <
∑n
i=1 J(zi(t), ei(t)), ∀ t ∈ [ts, ts+1). (39)

Then the closed-loop system of (1)-(4) is Lyapunov stable.

Proof. The proof is presented in the appendix. ◦

Proposition 4.2 is a generic result with storage function V (x(t)) which considers the entire system. In the
following theorem, we use Proposition 4.2 to derive scalable conditions for the stability of system (1)-(4) using
feedback interconnection model (26)-(27).

Theorem 4.3 Consider the feedback interconnection of (27) and (26) satisfying Assumption 1, notations (10)-
(11),

Ãcl(λa) = Acl + λaFcl, C̃cl(λa) = Ccl1 + λaCcl2,

L =

[
h2R̃ 0

0 d2eI

]
, R =

[
R̃ 0
0 I

]
, Y =

[
Ỹ 0
0 0

]
,

(40)
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where h and de in L are associated with the sampling and the parametric uncertainty, respectively. If there exist
R̃ = R̃> > 0, P̃ (λa) = P̃ (λa)> > 0, Ỹ = Ỹ > > 0, such that the LMI[
Ãcl(λa)>P̃ (λa) + P̃ (λa)Ãcl(λa) P̃ (λa)Bcl

∗ 0

]
+

[
C̃cl(λa)>LC̃cl(λa) C̃cl(λa)>LDcl − C̃cl(λa)>Y

∗ D>clLDcl − Y Dcl −D>clY

]
+

[
0 0
∗ −R

]
< 0

(41)

is feasible ∀ λa ∈ [−1, 1], then the closed-loop system of (1)-(4) is (Lyapunov) stable, with V (x) = xTP(AM )x
as storage function.

Proof. The proof is presented in the appendix. ◦

Remark 5 Theorem 4.3 provides a scalable stability condition for the interconnected sampled-data system (1)-
(4). The information on the network structure satisfying Assumption 1 is captured in the (eigenvalue) parameter
λa. The stability condition in (41) is of the order of the subsystem. It relies on the storage function containing
the matrix polynomial defined in (11).

The presence of cross terms with parameters, such as Ãcl(λa)>P̃ (λa) and C̃cl(λa)>LC̃cl(λa) in (41), increases
the order of the LMIs with respect to the parameter λa, which is a disadvantage in case standard approaches
would be used to turn the parameter-dependent LMIs into sufficient standard LMIs (such as Pólya’s relaxation
and sum-of-squares based techniques). This can be avoided by using the descriptor method [23], leading to the
following corollary from Thoerem 4.3.

Corollary 4.4 Consider the feedback interconnection of (27) and (26), Assumption 1, and notations (10)-(11)
and (42). If there exist R̃ = R̃> > 0, P̃ (λa) = P̃ (λa)> > 0, Ỹ = Ỹ > > 0, P2 ∈ Rnx×nx , and P3 ∈ Rnx×nx ,
such that the LMIÃcl(λa)>P2 + P>2 Ãcl(λa) + d2eI P̃ (λa)− P>2 + Ãcl(λa)>P3 P>2 Bcl

∗ −P3 − P>3 + h2(KC)>R̃KC P>3 Bcl − (KC)>[Ỹ 0]
∗ ∗ −R

 < 0 (42)

is satisfied ∀ λa ∈ [−1, 1]. Then the closed-loop system of (1)-(4) is (Lyapunov) stable, with V (x) = xTP(AM )x
as storage function.

Proof. The proof is presented in the appendix. ◦

5. Additional structure on the storage function

As mentioned earlier, the results presented in this paper are not restricted to LTI systems with a time-invariant
topology. This is also evident from Corollary 3.2, where the candidate matrix for the storage function has
additional structure. Suppose the topology is switching, then the nodal dynamics of the system changes from
(1) to {

ẋi(t) = Axi(t) +
∑n
j=1 aMi,j(t)Fxj(t) +Bui(t) + δAi(t)xi(t),

xi(0) = xi,0 ∈ Rnx , ∀ i ∈ N , n ∈ N,
(43)

where aMi,j(t) is the (i, j)th element of the time-varying connectivity matrix AM (t) ∈ Sn×n and AM (t) is piece-
wise constant. As before, δAi(t) denotes the non-identical uncertainty at node i, and ||δAi(t)||2 ≤ de, ∀ i ∈ N .
Let us consider a finite set of connectivity matrices A := {AM,1, ..., AM,q},A ⊂ Sn×n, where the connectivity
matrix AM,j satisfies Assumption 1 ∀ j = 1, ..., q. We consider the following assumption for AM (t).

Assumption 2 The connectivity matrix, AM : T→ A, arbitrarily switches between real-symmetric connectivity
matrices in A, with a monotonously increasing switching sequence σ := {κm}m∈N, that is,

AM (t) = Aκm

M , ∀ t ∈ [κm, κm+1), Aκm

M ∈ A, ∀ m ∈ N, κ0 = 0. (44)

Considering the same sampling methodology and uncertainty as in the previous sections (see (6) and (24)),
the closed-loop system of (43) and (2)-(4) can be rewritten as a feedback interconnection of the continuous-time
system

Ĝ :


ẋ(t) = (I ⊗Acl +AM (t)⊗ Fcl)x(t) + (I ⊗Bcl)e(t),

z(t) =

(
I ⊗

[
KCAcl

I

]
︸ ︷︷ ︸

Ccl1

+AM (t)⊗

[
KCFcl

0

]
︸ ︷︷ ︸

Ccl2

)
x(t) +

(
I ⊗

[
KCBcl

0

]
︸ ︷︷ ︸

Dcl

)
e(t), (45)
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and the sampling and uncertainty induced operator ∆ : z → e defined in (26). Notice that Theorem 4.3 can
be modified to provide results for the switching system (43) and (2)-(4), provided that V (x) = x(I ⊗ P )x is
chosen as a common storage function. Using the descriptor method[23], we arrive at the following theorem by
adapting Corollary 4.4 to systems with switching topologies.

Theorem 5.1 Consider system (43) and (2)-(4), its feedback interconnection model (45) and (26), Assumption
2, and

Ãcl(λa) = Acl + λaFcl, R =

[
R̃ 0
0 I

]
. (46)

If there exist R̃ = R̃> > 0, P = P> > 0, Ỹ = Ỹ > > 0, P2 ∈ Rnx×nx , and P3 ∈ Rnx×nx , such that the LMIÃcl(λa)>P2 + P>2 Ãcl(λa) + d2eI P − P>2 + Ãcl(λa)>P3 P>2 Bcl
∗ −P3 − P>3 + h2(KC)>R̃KC P>3 Bcl − (KC)>[Ỹ 0]
∗ ∗ −R

 < 0 (47)

is satisfied ∀ λa ∈ {−1, 1}, where h and de are associated with the sampling interval and the parametric
uncertainty, respectively, then the closed loop system of (43) and (2)-(4) is Lyapunov stable.

Proof. The proof follows the same steps as the one of Corollary 4.4 (see the Appendix). ◦
The stability condition in (47) is independent of both the number of subsystems (n) and the number of

(switching) network topologies (q). Also, notice that the matrices Acl and Fcl appear in an affine way in (47).
Therefore, the conditions can also be adapted to consider systems of the form (43) where system matrices A
and B are subjected to polytopic uncertainties.

Further generalizations concern networks of quasi-identical Linear Parameter-Varying (LPV) systems. Here
the system model takes the form of a linear system, but the matrices may depend on so-called scheduling
parameters, which can typically be measured. LPV systems may be used to model various practical applications
such as multi-source electric vehicles [39], wafer stages [40], servo systems [41], active noise and vibration control
[42], active suspension systems [43], and overhead cranes [44]. In the adopted network setting, the LMIs for
stability would not only be dependent on eigenvalue parameter λa, but also on the scheduling parameters, whose
values and possibly variation are bounded. It is possible to let the Lyapunov matrix depend on the scheduling
parameter, which may reduce conservatism. Additionally, it is possible to include scheduling parameter in
the controller resulting in a gain-scheduled control law. However, including gain-scheduling parameter in this
manner typically results in a higher-order dependence of the LMI on the parameters. As already noted, different
techniques exist to provide sufficient conditions for the feasibility of a polynomially parameter-dependent LMI
in terms of (a finite number of) standard LMIs. See [45, 46, 47] for an application to LPV systems.

6. Numerical examples

Figure 1: Two clusters of nodes with communication constraints requiring to switch communication links to
save energy.

Example 1: Consider the following numerical example for (43) with the following coefficient matrices

A =

[
−3 −1
2.8 4

]
, B =

[
2
−2

]
, C =

[
1 2

]
, K =

[
3
]
, F =

[
1 0
0 0.5

]
, (48)

and the connectivity matrices considered are

AM,1 =


0 0.5 0.5 0 0 0

0.5 0 0 0 0 0
0.5 0 0 0 0 0
0 0 0 0 0.5 0.5
0 0 0 0.5 0 0
0 0 0 0.5 0 0

 , AM,2 =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (49)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5
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1.5
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k
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)

Figure 2: The topology was made to switch according to the above piecewise constant switching signal k(t)
such that AM (t) = AM,k(t) based on the information from (49).

whose spectrum belong to [−1, 1]. Also, we consider the values for upper-bounds as de = 0.1 (corresponding
to the parametric uncertainty) and h = 0.12 (corresponding to the sampling intervals). The LMI (47) from
Theorem 5.1 is feasible ∀ λa ∈ [−1, 1] with the matrices

P =

[
0.1441 0.2119
0.2119 0.3557

]
, P2 =

[
0.0948 0.0249
0.1476 0.0758

]
, P3 =

[
0.0552 0.0669
0.0970 0.1311

]
, (50)

Ỹ = 0.0014 and R̃ = 0.1897. Therefore, system (43), whose matrices are defined by (48), is stable for any
switching network topology (whose connectivity matrices have their spectrum in [−1, 1]) with a sampled-data
controller implementation (that respects the upper-bounds) for any number of nodes. To illustrate this, we
consider two network topologies with 6 nodes switching between the configurations displayed in Figure 1. A
simulation-based study was performed for the corresponding system with information on the topology switching
given in Figure 2. The study was performed for x(0+) = 0.1 · 1̄, where 1̄ is used to represent a vector of
appropriate dimension with all its elements equal to 1. The corresponding state x(t) and sampled output y(t)
for the switching networked system was obtained as shown in Figures 3-4. Let us now consider a scenario

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−0.4

−0.2

0

0.2

0.4

Time (s)

x
(t

)

Figure 3: The above figure illustrates the stability of the networked system with switching topology (with
connectivity matrices in (49), k(t) in Figure 2, and n = 6) by means of the trajectory of the system state x(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

Time (s)

y
(t

)

Figure 4: The above figure shows the sampled output signal y(t) (with connectivity matrices in (49), k(t) in
Figure 2, and n = 6) that is used for generating the controlled input, which results in the trajectory for the
system state x(t) shown in Figure 3. The aperiodic sampling at asynchronous sensors used for this simulation
respects the upper-bound limit of h (≤ 0.12).

representing large-scale systems, with the number of systems much larger than 6. System (43), with numerical
data (48), is used to model a large-scale interconnected system with the total number of subsystems n = 10000.
Recall that the stability condition from Theorem 5.1 is independent of the number of subsystems, the number
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−0.4

−0.2

0

0.2

0.4

Time (s)

x
(t

)

x1(t)

x20(t)

x100(t)

x1000(t)

x10000(t)

Figure 5: The above figure illustrates the stability of the networked system with switching topology (with
connectivity matrices in (51), k(t) in Figure 2, and n = 10000) by means of the trajectory of the system state
x(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

Time (s)

y
(t

)

y1(t)

y20(t)

y100(t)

y1000(t)

y10000(t)

Figure 6: The above figure shows the sampled output signal y(t) (with connectivity matrices in (51), k(t) in
Figure 2, and n = 10000) that is used for generating the controlled input, which results in the trajectory for the
system state x(t) shown in Figure 5. The aperiodic sampling at asynchronous sensors used for this simulation
respects the upper-bound limit of h (≤ 0.12).

of (switching) network topologies, and the switching sequence. For this scenario, we consider the system to be
switching between a bi-directional ring topology and a series topology. That is, the communication link between
the first system and the last system is switching on and off. Then the connectivity matrices of dimension 10000
are

AM,1 =



0 0.5 0 . . . 0 0
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0.5 0
0 0 0 . . . 0 0.5
0 0 0 . . . 0.5 0


, AM,2 =



0 0.5 0 . . . 0 0.5
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0.5 0
0 0 0 . . . 0 0.5

0.5 0 0 . . . 0.5 0


. (51)

Recall that the eigenvalues of both connectivity matrices in (51) lie in the real interval [−1, 1]. Once again, the
switching signal is assumed to be the function k(t) displayed in Figure 2 for the simplicity of representation.
The study was performed for x(0+) = 0.1 · 1̄. The corresponding state x(t) and sampled output y(t) for the
switching networked system (large-scale system with n = 10000) was obtained as shown in Figures 5-6.

Example 2: Let us consider a network of friction-less carts that each balance an inverted pendulum, and
are interconnected via identical springs to each other[48, 49, 50, 51]. Additionally, they are confined to a fixed
space wherein the first and the last carts are connected to the wall using the same spring (see Figure 7). By
linearizing the equations of motions around the equilibrium at the origin (see [48, 49, 50, 51] for more details),
we obtain a linear state-space model of form (43) with coefficient matrices as follows.

A =


0 1 0 0

− 2kE
ME

0 −mEgE
ME

0

0 0 1 0
2kE
MElE

0 (mE+ME)gE
MElE

0

 , B =


0
1
ME

0
− 1
MElE

 , C = I4×4, F =


0 0 0 0

2kE
ME

0 0 0

0 0 0 0

− 2kE
MElE

0 0 0

 , (52)

where ME = 1 kg is the mass of the individual cart, mE = 0.05 kg is the mass of the pendulum’s bob which
is connected to the cart using a mass-less rod of length l = 1 m, k = 1 N/m is the spring constant, and the

acceleration due to gravity is assumed to be g = 9.8 m/s
2
. We consider identical local state-feedback controllers

characterized by
K =

[
23.7007 16.3009 82.4139 25.9097

]
. (53)
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kE

mE

θEn
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θE2

ME
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u2

kE
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θE1

ME

xE1

u1

kE

Figure 7: Schematic representation of interconnected pendula for a series type network with a large number of
carts (n).

Moreover, we consider the values for upper-bounds as de = 0.04 (corresponding to the parametric uncertainty)
and h = 0.04 (corresponding to the sampling intervals). Again, we use the LMI (47) from Theorem 5.1 to
assess the stability of the system and the LMI is feasible ∀ λa ∈ [−1, 1] with the matrices

P =


0.6731 0.3101 1.3040 0.4017
0.3101 0.2490 0.7314 0.3282
1.3040 0.7314 3.0685 0.9722
0.4017 0.3282 0.9722 0.4436

 , P2 =


0.0007 −0.9996 0.0011 0.0011
−0.1190 −0.0884 −5.3171 −0.1406
0.0011 0.0007 0.0020 −0.9983
0.1181 0.0876 −4.4866 0.1396

 , (54)

P3 =


1.0001 0.0001 −0.0003 0.0001
0.0012 0.5035 0.0044 0.4986
0.0001 0.0002 0.9996 0.0002
−0.0011 0.4966 −0.0043 0.5015

 , (55)

Ỹ = 0.0001, and R̃ = 0.0152. Note that the stability condition from Theorem 5.1 is independent of the number
of subsystems, the number of (switching) network topologies, and the switching sequence. That is, the set up
described in this example is stable for any switching network topology (whose connectivity matrices have their
spectrum in [−1, 1]), any number of subsystems n, and sampled-data controller implementation (that respects
the upper-bounds). Let us consider n = 5000, and the network adjacency matrix corresponding to the series
network (AM,1) in (51). The networked system was simulated in MATLAB. The angles for a few selected carts
are shown in Figure 8, where θEi (t) is the angle from the verticle line for the mass-less rod of cart i at time t.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

Time (s)

A
n

gl
e
θE i

(t
)

θE1 (t)

θE5 (t)

θE100(t)

θE1000(t)

θE5000(t)

Figure 8: The above figure shows the angle θEi (t) of the interconnected inverted pendula (with connectivity
matrices in (51), k(t) in Figure 2, and n = 5000). The aperiodic sampling at asynchronous sensors used for this
simulation respects the upper-bound limit of h (≤ 0.12).
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7. Conclusion

In this paper, a structure exploiting and scalable approach was presented to conclude about the stability of
large-scale linear systems. These systems may be composed of quasi-identical subsystems with sampled-data
control and (switching) network topologies. The underlying principle relied on decoupling the sufficient criterion
for Lyapunov stability of the entire system in the dissipativity-based framework, resulting in a stability criterion
involving (only) a parameterised LMI whose size corresponds to the dimension of one subsystem. Additionally,
the effectiveness of the presented method was illustrated using numerical examples.
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APPENDIX

A. Proof of Lemma 1

First we adapt a lemma from [17] and [52] which are prerequisites to prove Lemma 4.1.

Lemma A.1 Consider the notations of operators (6)-(26), R̃> = R̃ > 0. We have the following inequality∫ t

tik

(∆izi)(θ)
>(∆izi)(θ)− zi(θ)>

[
h2I 0
0 d2eI

]
zi(θ)dθ ≤ 0, ∀ t ∈ [tik, t

i
k+1), k ∈ N, ∀ i ∈ N . (56)

It follows that there exist a function J1 such that

J1(zi(t), ei(t) = ei(t)
>
[
R̃ 0
0 I

]
ei(t)− zi(t)>

[
h2R̃ 0

0 d2eI

]
zi(t), (57)

which satisfies assumption (37), where ei(t) = (∆izi)(t) ∀ i ∈ N defined in (26).

Proof. Consider ∆s,i in (23), zs,i ∈ L2e, and t ∈ [tik, t
i
k+1), k ∈ N, ∀ i ∈ N . From Lemma 3 in [17], for the

uncertainty operators corresponding to the sampling error, we have∫ t

tik

(∆s,izs,i)(θ)
>Ri(∆s,izs,i)(θ)− h2zs,i(θ)>Rizs,i(θ) dθ ≤ 0, (58)

with Ri > 0. Here, we can fix Ri = R̃, ∀ i ∈ N . Consider ∆u,i in (25) and zu,i ∈ L2e. By definition,
||δAi(t)||2 ≤ de, ∀ t ≥ 0. Hence, for the uncertainty operators corresponding to the norm-bounded uncertainty,
we have ∫ t

tik

(∆u,izu,i)(θ)
>(∆u,izu,i)(θ)− d2ezu,i(θ)>zu,i(θ) dθ ≤ 0, ∀ t ∈ [tik, t

i
k+1), k ∈ N, ∀ i ∈ N . (59)

Then from (58) and (59), we have∫ t

tik

(∆izi)(θ)
>(∆izi)(θ)− zi(θ)>

[
h2R̃ 0

0 d2eI

]
zi(θ)dθ ≤ 0, ∀ t ∈ [tik, t

i
k+1), k ∈ N, ∀ i ∈ N . (60)

Hence, the lemma has been proved. ◦

Now, we recall Lemma 5.3 from [52], which corresponds to the anti-passivity property, and then we present the
proof for Lemma 4.1.

Lemma A.2 Consider the reset integrator in (23), then, we have the following inequality for any Ỹ > 0∫ t

tik

ei(t)
>
[
Ỹ 0
0 0

]
zi(t) + zi(t)

>
[
Ỹ 0
0 0

]
ei(t)dθ ≤ 0, ∀ t ∈ [tik, t

i
k+1), k ∈ N, ∀ i ∈ N . (61)

Proof of Lemma 4.1. Using the results from Lemmas A.1-A.2, it follows that there exists a functions J,

J(zi(t), ei(t)) = ei(t)
>
[
R̃ 0
0 I

]
ei(t)− zi(t)>

[
h2R̃ 0

0 d2eI

]
zi(t)

+ ei(t)
>
[
Ỹ 0
0 0

]
zi(t) + zi(t)

>
[
Ỹ 0
0 0

]
ei(t)

(62)

that satisfies (37). Hence, the proof is complete. ◦

B. Proof of Proposition 2

To prove the proposition, we adapt the main result from [17]. Consider s ∈ N and t ∈ [ts, ts+1). Integrating
(39) over time, we have

V (x(t))− V (x(ts)) <
∫ t
ts

∑n
i=1 J(zi(θ), ei(θ))dθ, (63)

which leads to
V (x(t)) < V (x(ts)) +

∑n
i=1

∫ t
ts
J(zi(θ), ei(θ))dθ. (64)
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Also, we have

V (x(ts)) < V (x(ts−1)) +
∑n
i=1

∫ ts
ts−1

J(zi(θ), ei(θ))dθ, (65)

∀ s ∈ N. By recursive substitution of (65) in (64), we get

V (x(t)) < V (x(t0)) +
∑n
i=1

∑s
j=1

∫ tj
tj−1

J(zi(θ), ei(θ))dθ +
∑n
i=1

∫ t
ts
J(zi(θ), ei(θ))dθ. (66)

By construction of the sequences, we can rewrite the above inequality as

V (x(t)) < V (x(t0)) +
∑n
i=1

∑ki,s−1
k=0

∫ tik+1

tik
J(zi(θ), ei(θ))dθ +

∑n
i=1

∫ t
ki,s

J(zi(θ), ei(θ))dθ, (67)

that is, using (37) we have
V (x(t)) < V (x(t0)). (68)

Finally, assumption (38) leads to

|x(t)| < β−11 (V (x(t0))

< β−11 (β2(|x(t0)|))
:= β(|x(t0)|), ∀ t > t0,

(69)

which concludes the proof. ◦

C. Proof of Theoreom 2

We know that (41) is feasible ∀ λa ∈ [−1, 1]. First, we prove the following preliminary lemma.

Lemma C.1 The feasibility of the LMI condition in (41) is sufficient for the feasibility of the following in-
equality

2x(t)>(P(AM ))((I ⊗Acl +AM ⊗ Fcl)x(t) + (I ⊗Bcl)e(t))
< e(t)>(I ⊗R)e(t)− ζ(t, AM )>(I ⊗ L)ζ(t, AM )

+ e(t)>(I ⊗ Y ))ζ(t, AM ) + ζ(t, AM )>(I ⊗ Y )e(t),

ζ(t, AM ) = (I × Ccl1 +AM ⊗ Ccl2)x(t) + (I ⊗Dcl)e(t).

(70)

Proof. Recall that AM satisfies Assumption 1. From (41), we have[
(I ⊗Acl + Λ⊗ Fcl)>P(Λ) + P(Λ)(I ⊗Acl + Λ⊗ Fcl) P(Λ)(I ⊗Bcl)

∗ 0

]
+

[
C̃cl(Λ)>(I ⊗ L)C̃cl(Λ) C̃cl(Λ)>(I ⊗ L)(I ⊗Dcl)− C̃cl(Λ)>(I ⊗ Y )

∗ (I ⊗Dcl)
>(I ⊗ L)(I ⊗Dcl)− (I ⊗ Y )(I ⊗Dcl)− (I ⊗Dcl)

>(I ⊗ Y )

]
+

[
0 0
∗ −I ⊗R

]
< 0,

(71)

where
C̃cl(Λ) = (I ⊗ Ccl1 + Λ⊗ Ccl2).

This is because the diagonal matrix Λ has elements belonging to the interval [−1, 1]. By multiplying left with
blkdiag(T> ⊗ I, T> ⊗ I) and right with its transpose1, we get[

(I ⊗Acl +AM ⊗ Fcl)>P(AM ) + P(AM )(I ⊗Acl +AM ⊗ Fcl) P(AM )(I ⊗Bcl)
∗ 0

]
+

[
C̃cl(AM )>(I ⊗ L)C̃cl(AM ) C̃cl(AM )>(I ⊗ L)(I ⊗Dcl)− C̃cl(AM )>(I ⊗ Y )

∗ (I ⊗Dcl)
>(I ⊗ L)(I ⊗Dcl)− (I ⊗ Y )(I ⊗Dcl)− (I ⊗Dcl)

>(I ⊗ Y )

]
+

[
0 0
∗ −I ⊗R

]
< 0,

(72)

Recall that (T> ⊗ I)P(Λ)(T ⊗ I) = P(AM ). Consider the quadratic function V (x(t)) = x>(t)(P(AM ))x(t),
which is dependent on the topology. By multiplying (72) from the left hand side with [x>(t) e>(t)]> and the

1see Theorem 3.1 for more detailed explanation on the transformation.
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right hand side with its transpose, we get (70) and, hence, the proof is complete. ◦

Proof of Theorem 4.3. Using the result from Lemma C.1, we can write for the interval [tik, t
i
k+1) that

V̇ (x(t)) < e(t)>(I ⊗R)e(t)− z(t)>(I ⊗ L)z(t) + e(t)>(I ⊗ Y )z(t)

+ z(t)>(I ⊗ Y )e(t)

<

n∑
i=1

(ei(t)
>Rei(t)− zi(t)>Lzi(t) + ei(t)

>Y zi(t) + zi(t)
>Y ei(t))

<

n∑
i=1

J(zi(t), ei(t)).

(73)

Rewriting the above equation and integrating over the time intervals, we obtain (25). The quadratic func-
tion V (x(t)) = x(t)>(P(AM ))x(t) satisfies (23) with the functions β1(|x|) = λmin(P(AM ))|x|2 and β2(|x|) =
λmax(P(AM ))|x|2. Hence, using the result of Proposition 4.2, the proof is complete. ◦

D. Proof of Corollary 2

Both Theorem 4.3 and Corollary 4.4 rely on using the final result of Proposition 4.2 to show that their respective
numerical criteria are sufficient for Lyapunov stability of the closed-loop system (1)-(4). First, we derive the
following lemma and then we present the proof of the corollary.

Lemma D.1 The feasibility of the LMI condition in (42) is sufficient for the feasibility of the following set of
conditions

x(t)>(P(AM ))ẋ(t) + ẋ(t)>(P(AM ))x(t)
+ 2(x(t)>(I ⊗ P2)> + ẋ(t)>(I ⊗ P3)>)((I ⊗Acl +AM ⊗ Fcl)x(t) + I ⊗Bcle(t)− ẋ(t))
< e(t)>(I ⊗R)e(t)− z(t)>(I ⊗ L)z(t) + e(t)>(I ⊗ Y )z(t)

+ z(t)>(I ⊗ Y )e(t).

(74)

Proof. Due to convexity, the LMI condition in (42) is also feasible ∀ λa ∈ [−1, 1]. Then, from (42) we haveΞ1(Λ) Ξ2(Λ) Ξ3

∗ Ξ4 Ξ5

∗ Ξ6

 < 0, (75)

where
Ξ1(Λ) = (I ⊗Acl + Λ⊗ Fcl)>(I ⊗ P2) + (I ⊗ P2)>(I ⊗Acl + Λ⊗ Fcl)

+ I ⊗ d2eI,
Ξ2(Λ) = P(Λ)− (I ⊗ P2)> + (I ⊗Acl + Λ⊗ Fcl)>(I ⊗ P3),
Ξ3 = (I ⊗ P>2 )(I ⊗Bcl),
Ξ4 = −I ⊗ P3 − I ⊗ P>3 + (I ⊗ (KC)>)(I ⊗ h2R̃)(I ⊗KC),

Ξ5 = (I ⊗ P>3 )(I ⊗Bcl)− (I ⊗KC)(I ⊗ [Ỹ 0]),
Ξ6 = (I ⊗−R),

(76)

since the diagonal matrices Λ have elements belonging to the interval [−1, 1]. By multiplying left with
blkdiag(T> ⊗ I, T> ⊗ I, I) and right with its transpose (using the idea from the proof of Corollary 3.2) we
get, Ξ1(AM ) Ξ2(AM ) Ξ3

∗ Ξ4 Ξ5

∗ Ξ6

 < 0. (77)

Recall that (T>⊗I)P(Λ)(T⊗I) = P(AM ). Also, (T>⊗I)Ξk(Λ)(T⊗I) = Ξk(AM ), whereas (T>⊗I)Ξl(T⊗I) =
Ξl, k = 1, 2, and l = 3, ..., 6. Consider the quadratic function V (x(t)) = x>(t)(P(AM ))x(t). Multiplying (77)
from left with [x(t)>ẋ(t)> e(t)>]> and right with its transpose, we obtain (74) and hence the proof is complete.
◦

Proof of Corollary 4.4. We recall the notations in (34)-(35), then using the descriptor method we know

0 = 2(x(t)>(I ⊗ P2)> + ẋ(t)>P>3 )((I ⊗Acl +AM ⊗ Fcl)x(t) + I ⊗Bcle(t)− ẋ(t)), (78)
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∀ t ∈ [ts, ts+1), s ∈ N (see definition of the sequence in (34)). From Lemma D.1 and (78), we have

V̇ (x(t)) < e(t)>(I ⊗R)e(t)− z(t)>(I ⊗ L)z(t) + e(t)>(I ⊗ Y )z(t)

+ z(t)>(I ⊗ Y )e(t)

<

n∑
i=1

J(yi(t), ei(t)),

(79)

∀ t ∈ [ts, ts+1), s ∈ N. The above equation is same as (73). Hence, using the result of Proposition 4.2, the
proof is complete. ◦

E. Proof of Theorem 3

The feasibility of (47) provides a stability condition for any connectivity matrix in A and I ⊗P is the common
storage function candidate matrix. From Assumption 2, we know that all connectivity matrices in the finite set
A satisfy Assumption 1. That is, there exist orthogonal matrices (T1T

>
1 = I, ..., TqT

>
q = I) such that they can

spectrally decompose the connectivity matrices to real-valued diagonal matrices (Λ1, ...,Λq), respectively, that
is,

T1AM,1T
>
1 = Λ1,

...
TqAM,qT

>
q = Λq.

(80)

Also, consider the following notation

L =

[
h2R̃ 0

0 d2eI

]
, R =

[
R̃ 0
0 I

]
, Y =

[
Ỹ 0
0 0

]
. (81)

Now we derive the following lemma.

Lemma E.1 The feasibility of the LMI condition in (47) is sufficient for the feasibility of the following set of
inequalities

x(t)>(I ⊗ P )ẋ(t) + ẋ(t)>(I ⊗ P )x(t)
+ 2(x(t)>(I ⊗ P2)> + ẋ(t)>(I ⊗ P3)>)((I ⊗Acl +AM,j ⊗ Fcl)x(t) + I ⊗Bcle(t)− ẋ(t))
< e(t)>(I ⊗R)e(t)− z(t)>(I ⊗ L)z(t) + e(t)>(I ⊗ Y )z(t)

+ z(t)>(I ⊗ Y )e(t), j = 1, ...., q.

(82)

Proof. Due to convexity, the LMI condition in (42) is also feasible ∀ λa ∈ [−1, 1]. Then, from (47) we haveΞ1(Λj) Ξ2(Λj) Ξ3

∗ Ξ4 Ξ5

∗ Ξ6

 < 0, j = 1, ...., q, (83)

where,
Ξ1(Λj) = (I ⊗Acl + Λj ⊗ Fcl)>(I ⊗ P2) + (I ⊗ P2)>(I ⊗Acl + Λj ⊗ Fcl)

+ I ⊗ αP + I ⊗ d2eI,
Ξ2(Λj) = I ⊗ P − (I ⊗ P2)> + (I ⊗Acl + Λj ⊗ Fcl)>(I ⊗ P3),
Ξ3 = (I ⊗ P>2 )(I ⊗Bcl),
Ξ4 = −I ⊗ P3 − I ⊗ P>3 + (I ⊗ C>K)(I ⊗ h2R̃)(I ⊗ CK),

Ξ5 = (I ⊗ P>3 )(I ⊗Bcl)− (I ⊗ CK)(I ⊗ [Ỹ 0]),
Ξ6 = (I ⊗−R),

(84)

since the diagonal matrices Λj , j = 1, ..., q, have elements belonging to the interval [−1, 1]. By multiplying left
with blkdiag(T>j ⊗ I, T>j ⊗ I, I) and right with its transpose (using the idea from the proof of Theorem 3.1) we
get, Ξ1(AM,j) Ξ2(AM,j) Ξ3

∗ Ξ4 Ξ5

∗ Ξ6

 < 0, j = 1, ...., q. (85)

Consider the quadratic function V (x(t)) = x>(t)(I⊗P )x(t). Multiplying (77) from left with [x(t)>ẋ(t)> e(t)>]>

and right with its transpose, we obtain (74) and hence the proof is complete. ◦

Proof of Theorem 5.1. The proof uses the result of Lemma E.1 and then follows the same steps as the proof
of Corollary 4.4. ◦
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