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SPURIOUS VALLEYS, SPURIOUS MINIMA AND NP-HARDNESS
OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT

QUOC-TUNG LE∗, ELISA RICCIETTI∗, AND REMI GRIBONVAL∗

Abstract. The problem of approximating a dense matrix by a product of sparse factors is a
fundamental problem for many signal processing and machine learning tasks. It can be decomposed
into two subproblems: finding the position of the non-zero coefficients in the sparse factors, and
determining their values. While the first step is usually seen as the most challenging one due to its
combinatorial nature, this paper focuses on the second step, referred to as sparse matrix approximation
with fixed support. First, we show its NP-hardness, while also presenting a nontrivial family of
supports making the problem practically tractable with a dedicated algorithm. Then, we investigate
the landscape of its natural optimization formulation, proving the absence of spurious local valleys
and spurious local minima, whose presence could prevent local optimization methods to achieve global
optimality. The advantages of the proposed algorithm over state-of-the-art first-order optimization
methods are discussed.
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1. Introduction. Matrix factorization with sparsity constraints is the problem of
approximating a (possibly dense) matrix as the product of two or more sparse factors.
This is playing an important role in many domains and applications such as dictionary
learning and signal processing [21, 19, 18], linear operator acceleration [13, 12], deep
learning [2], to mention only a few.

In this work, we consider a particular instance of the matrix factorization problem
with sparsity constraints, in which just two factors are considered and they have
prescribed supports. We call this problem fixed support (sparse) matrix factorization
(FSMF). In details, given a matrix A ∈ Rm×n, we look for two sparse factors X,Y
that solve the following problem:

(FSMF)
Minimize

X∈Rm×r,Y ∈Rn×r
L(X,Y ) = ‖A−XY >‖2

Subject to: supp(X) ⊆ I and supp(Y ) ⊆ J

where ‖ · ‖ is the Frobenius norm, I ⊆ JmK × JrK, J ⊆ JnK × JrK1 are given support
constraints, i.e., supp(X) ⊆ I implies that ∀(i, j) /∈ I,Xij = 0.

The main aim of this work is to investigate the theoretical properties of (FSMF).
To the best of our knowledge the analysis of matrix factorization problems with
fixed supports has never been addressed in the literature. This analysis is however
interesting, for at least two reasons.

Firstly, there are many practical applications in which the solution of this problem
is required. Indeed, there are matrices that can be written as the product of factors
whose support is known in advance. This is the case for instance of many fast transforms
such as the Discrete Fourier Transform (DFT) or the the Hadamard Transform (HT),
in which the fixed supports of the factors have the butterfly structure [12, 2].

Moreover, (FSMF) can be seen as a subproblem of a more general matrix factor-
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ization problem with structured sparsity constraints:

(1.1)
Minimize

X∈Rm×r,Y ∈Rn×r
L(X,Y ) = ‖A−XY >‖2

Subject to: X ∈ ΣX and Y ∈ ΣY

where ΣX ⊆ Rm×r, ΣY ⊆ Rn×r are some sets of structured sparse matrices. Relevant
examples of such sets are for instance the sets of matrices with:
• at most k non-zero coefficients Σtotal

k = {X ∈ Rm×r | ‖X‖0 ≤ k};
• at most k non-zero coefficients per column (resp. per row) Σcol

k = {X ∈ Rm×r |
‖X•,i‖0 ≤ k,∀i = 1, . . . , r} (resp. Σrow

k = {X ∈ Rm×r | ‖Xi,•‖0 ≤ k, ∀i =
1, . . . ,m}),

where for a vector or matrix X, ‖X‖0 counts the number of nonzero entries in X.
Any heuristic algorithm for the solution of (1.1) will eventually need to deal with

a subproblem of the form (FSMF), one way or another. Indeed, matrix factorization
with sparsity constraints somehow generalizes the sparse recovery problem [4], in which
we want to recover a sparse vector x ∈ Rn from the knowledge of its measurement
vector (possibly corrupted by noise) y = Ax ∈ Rm with known measurement matrix
A ∈ Rm×n. Mimicking the decomposition of the classical sparse recovery problem into
a support recovery step and a coefficient recovery step, Problem (1.1) can also be split
into two subproblems:
1) Determine the supports of X and Y , i.e. the set of indices supp(X), supp(Y )

whose coefficients are different from zero. For instance, if ΣX = ΣY = Σtotal
k , we

need to identify the position of (at most) k non-zero coefficients of X and Y .
2) Determine the value of the coefficients in the supports of X and Y .

The solution of a problem in the form of (FSMF) will be needed both for one-step
algorithms that jointly estimate the supports and coefficients, and for the two-step
algorithms that solve the two problems successively. Also, as it happens in sparse
linear regresssion, many common post-processing methods consist in "debiasing" the
solution by a two-step approach [2].

Our aim is to then study the theoretical properties of (FSMF) and in particular
to assess its difficulty. Assessing the difficulty of this subproblem is crucial to have a
good understanding also of the difficulty of the full problem (1.1).

In particular, we consider three complementary aspects related to (FSMF).
First, we show the NP-hardness of (FSMF). While this result contrasts with the

theory established for coefficient recovery with a fixed support in the classical sparse
recovery problem (that can be trivially addressed by least squares), it is in line with the
known hardness of related matrix factorization with additional constraints or different
losses. Indeed, famous variants of matrix factorization such as non-negative matrix
factorization (NMF) [23, 20], weighted low rank [5] and matrix completion [5] were
all proved to be NP-hard. We prove the NP-hardness by reduction from the Matrix
Completion problem with noise. To our knowledge this proof is new and cannot be
trivially deduced from any existing result on the more classical full support case (i.e.,
the case in which I = JmK× JrK, J = JnK× JrK, which is equivalent to low rank matrix
approximation [3]).

Second, we show that despite the hardness of (FSMF) in the general case, many
pairs of support constraints (I, J) make the problem solvable by an effective direct
algorithm based on the block singular value decomposition (SVD). The investigation
of those supports is also covered in this work and a dedicated polynomial algorithm is
proposed to deal with this family of supports. This includes for example the full support
case. Our analysis of tractable instances of (FSMF) actually includes and substantially
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generalizes the analysis of the instances that can be classically handled with the
SVD decomposition. In fact, the presence of the constraints on the support makes it
impossible to directly use the SVD to solve the problem, because coefficients outside
the support have to be zero. However, the presented family of support constraints
allows for an iterative decomposition of the problem into "blocks" that can be exploited
to build up an optimal solution using blockwise SVDs. This technique can also be seen
in many sparse representations of matrices (for example, H-matrices or hierarchical
matrices [7, 8]) to allow fast matrix-vector and matrix-matrix multiplication. In fact,
matrices admitting hierarchical and related structures as in [7, 8] can in many cases
be written as the product of sparse matrices with known supports. Our consideration
of (FSMF) can be viewed as a generalization of this approach.

The third contribution of this paper is the study of the landscape of function
L of (FSMF). Notably, we investigate the existence of spurious local minima and
spurious local valleys, which will be collectively referred to as spurious objects. They
will be formally introduced in Section 4, but intuitively these objects may represent a
challenge for the convergence of local optimization methods.

The landscape of the loss functions for neural networks in general, and for linear
neural networks in particular, has been a popular subject of study recently. In
particular, great attention has been devoted to the investigation of the properties
of critical points (i.e., points where the gradient vanishes) and global optima of the
training problem with quadratic loss [9, 25, 14]. These works have direct link to ours
since matrix factorization (without any constraint) can be seen as a specific case of
neural network (with two layers, no bias and linear activation function).

Notably it has been proved [25] that for linear neural networks, every local
minimum is a global minimum and if the network is shallow (i.e., there is only one
hidden layer), critical points are either global minima or strict saddle points (i.e., their
Hessian have at least one –strictly– negative eigenvalue). However, there is still a tricky
type of landscape that could represent a challenge for local optimization methods and
has not been covered until recently: spurious local valleys [15, 24].

To the best of our knowledge, existing analyses of spurious local valleys are
proposed for matrix factorization problems without support constraints, cf. [25, 24, 9],
while the study of the landscape of (FSMF) remains untouched in the literature and
our work can be considered as a generalization of such previous results.

To summarize, our main contributions in this paper are:
1) We prove that (FSMF) is NP-hard in Theorem 2.4.
2) We introduce families of support constraints (I, J) making (FSMF) tractable

(Theorem 3.3 and Theorem 3.8) and provide dedicated polynomial algorithms for
those families.

3) We show that the landscape of (FSMF) corresponding to the support pairs (I, J)
in these families are free of spurious local valleys, regardless of the factorized
matrix A (Theorem 4.12, Theorem 4.13). We also investigate the presence of
spurious local minima for such families (Theorem 4.12, Theorem 4.19).

4) These results might suggest a conjecture that holds true for the full support case:
an instance of (FSMF) is tractable if and only if their corresponding landscape is
benign, i.e. free of spurious objects. We give a counter-example to this conjecture
(Example 4.22) and show experimentally that first-order methods for the fixed
support matrix factorization problem can fail despite a benign landscape and that
a good initialization is really important.
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1.1. Notations. For n ∈ N, define JnK := {1, . . . , n}. The notation 0 (resp. 1)
stands for a matrix with all zeros (resp. all ones) coefficients. The identity matrix of
size n× n is denoted by In. Given a matrix A ∈ Rm×n and T ⊆ JnK, A•,T ∈ Rm×|T |
is the submatrix of A restrained to the columns indexed in T while AT ∈ Rm×n is
the matrix that has the same columns as A for indexes in T and is zero elsewhere.
If T = {k} is a singleton, A•,T is simplified as A•,k (the kth column of A). For
(i, j) ∈ JmK× JnK, Ai,j is the coefficient of A at index (i, j). If S ⊆ JmK, T ⊆ JnK, then
AS,T ∈ R|S|×|T | is the submatrix of A restrained to rows and columns indexed in S
and T respectively.

A support constraint I on a matrix X ∈ Rm×r can be interpreted either as a
subset I ⊆ JmK× JrK or as its indicator matrix 1I ∈ {0, 1}m×r defined as: (1I)i,j = 1
if (i, j) ∈ I and 0 otherwise. Both representations will be used interchangeably and
the meaning should be clear from the context. For T ⊆ JrK, we use the notation
IT := I ∩ (JmK× T ) (this is coherent with the notation AT introduced earlier).

The notation supp(A) is used for both vectors and matrices: if A ∈ Rm is a vector,
then supp(A) = {i | Ai 6= 0} ⊆ JmK; if A ∈ Rm×n is a matrix, then supp(A) = {(i, j) |
Ai,j 6= 0} ⊆ JmK × JnK. Given two matrices A,B ∈ Rm×n, the Hadamard product
A�B between A and B is defined as (A�B)i,j = Ai,jBi,j ,∀(i, j) ∈ JmK× JnK. Since
a support constraint I of a matrix X can be thought of as a binary matrix of the same
size, we define X � I := X � 1I analogously (it is a matrix whose coefficients in I are
unchanged while the others are set to zero).

2. Matrix factorization with fixed support is NP-hard. To show that
(FSMF) is NP-hard we use the classical technique to prove NP-hardness: reduction.
Our choice of reducible problem is matrix completion with noise [5].

Definition 2.1 (Matrix completion with noise [5]). Let W ∈ {0, 1}m×n be a
binary matrix. Given A ∈ Rm×n, s ∈ N, the matrix completion problem (MCP) is:

(MCP) Minimize
X∈Rm×s,Y ∈Rn×s

‖A−XY >‖2W = ‖(A−XY >)�W‖2.

This problem is NP-hard even when s = 1 [5] by its reducibility from Maximum-Edge
Biclique Problem, which is NP-complete [17]. This is given in the following theorem:

Theorem 2.2 (NP-hardness of matrix completion with noise [5]). Given a binary
weighting matrix W ∈ {0, 1}m×n and A ∈ [0, 1]m×n, the optimization problem

(MCPO) Minimize
x∈Rm,y∈Rn

‖A− xy>‖2W .

is called rank-one matrix completion problem (MCPO). Denote p∗ the infimum of
(MCPO) and let ε = 2−12(mn)−7. It is NP-hard to find an approximate solution with
objective function accuracy less than ε, i.e. with objective value p ≤ p∗ + ε.

The following lemma gives a reduction from (MCPO) to (FSMF).

Lemma 2.3. For any binary matrix W ∈ {0, 1}m×n, there exist an integer r and
two sets I and J such that for all A ∈ Rm×n, (MCPO) and (FSMF) share the same
infimum. I and J can be constructed in polynomial time. Moreover, if one of the
problems has a known solution that provides objective function accuracy ε, we can find
a solution with the same accuracy for the other one in polynomial time.

Proof sketch. Up to a transposition, we can assume without loss of generality
that m ≥ n. Let r = n + 1 = min(m,n) + 1. We define I ∈ {0, 1}m×(n+1) and
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J ∈ {0, 1}n×(n+1) as follows:

Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1
, Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise

This construction can clearly be made in polynomial time. We show in Appendix A
that the two problems share the same infimum.

Using Lemma 2.3, we obtain a result of NP-hardness for (FSMF) as follows.

Theorem 2.4. When A ∈ [0, 1]m×n, it is NP-hard to solve (FSMF) with arbitrary
index sets I, J and objective function accuracy less than ε = 2−12(mn)−7.

Proof. Given any instance of (MCPO) (i.e., two matrices A ∈ [0, 1]m×n and
W ∈ {0, 1}m×n), we can produce an instance of (FSMF) (the same matrix A and
I ∈ {0, 1}m×r, J ∈ {0, 1}n×r) such that both have the same infimum (Lemma 2.3).
Moreover, for any given objective function accuracy, we can use the procedure of
Lemma 2.3 to make sure the solutions of both problems share the same accuracy.

Since all procedures are polynomial, this defines a polynomial reduction from
(MCPO) to (FSMF). Because (MCPO) is NP-hard to obtain a solution with objective
function accuracy less than ε (Theorem 2.2), so is (FSMF).

We point out that, while the result is interesting on its own, for some applications,
such as those arising in machine learning, the accuracy bound O((mn)−7) may not be
really appealing. We thus keep as an interesting open research direction to determine
if some precision threshold exists that make the general problem easy.

3. Tractable instances of matrix factorization with fixed support. Even
though (FSMF) is generally NP-hard, when we consider the full support case I =
JmK × JrK, J = JnK × JrK (i.e., no coefficients of X,Y are set to zero, they are all
optimized), the problem is equivalent to low rank matrix approximation (LRMA) [3],
which can be solved using the Singular Value Decomposition (SVD) [6] 2. This section
is devoted to enlarge the family of supports for which (FSMF) can be solved by an
effective direct algorithm. We start with an important definition:

Definition 3.1 (Support of rank-one contribution). Given two support con-
straints I ∈ {0, 1}m×r and J ∈ {0, 1}n×r of (FSMF) and k ∈ JrK, we define the
kth rank-one contribution support Sk(I, J) (or in short, Sk) as: Sk(I, J) = I•,kJ

>
•,k.

This can be seen either as: a tensor product: Sk ∈ {0, 1}m×n is a binary matrix or a
Cartesian product: Sk is a set of matrix indices defined as supp(I•,k)× supp(J•,k).

Given a pair of support constraints I, J , if supp(X) ⊆ I, supp(Y ) ⊆ J , we
have: supp(X•,kY

>
•,k) ⊆ Sk, ∀k ∈ JrK. Since XY > =

∑r
k=1X•,kY

>
•,k the notion of

contribution support Sk captures the constraint on the support of the kth rank-one
contribution, X•,kY >•,k, of the matrix product XY > (illustrated in Figure 1). We can
partition JrK in terms of equivalence classes of rank-one supports:

Definition 3.2 (Equivalence classes of rank-one supports, representative rank-
one supports). Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, define an equivalence relation
on JrK as: i ∼ j if and only if Si = Sj (or equivalently (I•,i, J•,i) = (I•,j , J•,j)). This
yields a partition of JrK into equivalence classes.

2Exact SVD is not polynomially tractable, yet it can be practically computed to machine precision
in O(mn2) [10], see also [22, Lecture 31, page 236]. It is thus convenient to think of LRMA as
polynomially solvable.
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Fig. 1. Illustration the idea of support of rank-one contribution. Colored rectangles indicate the
support constraints (I, J) and the support constraints Sk on each component matrix X•,kY >•,k.

Fig. 2. An instance of support constraints (I, J) satisfying Theorem 3.3. We use colored
rectangles to indicate the support constraints (I, J). The indices belonging to the same equivalence
class share the same color.

Denote P the collection of equivalence classes. For each class P ∈ P denote SP a
representative rank-one support, RP ⊆ JmK and CP ⊆ JnK the supports of rows and
columns in SP , respectively. For every k ∈ P we have Sk = SP and supp(I•,k) = RP ,
supp(J•,k) = CP .

For every P ′ ⊆ P denote SP′ = ∪P∈P′SP ⊆ JmK×JnK and S̄P′ = (JmK×JnK)\SP′ .

For instance, in the example in Figure 1 we have three distinct equivalent classes. A
first simple sufficient condition ensuring the tractability of an instance of (FSMF) is
as follows.

Theorem 3.3. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, and P the collection of
equivalence classes of Definition 3.2. If the representative rank-one supports are pair-
wise disjoint, i.e., SP ∩ SP ′ = ∅ for each distinct P, P ′ ∈ P, then matrix factorization
with fixed support is tractable for any A ∈ Rm×n.

Proof. In this proof, for each equivalent class P ∈ P (Definition 3.2) we use the
notations XP ∈ Rm×r, YP ∈ Rn×r (introduced in Subsection 1.1). We also use the
notations RP , CP (Definition 3.2). For each equivalent class P , we have:

(3.1) (XPY
>
P )RP ,CP = XRP ,PY

>
CP ,P

and the product XY > can be decomposed as: XY > =
∑
P∈P XPY

>
P . Due to the

hypothesis of this theorem, with P, P ′ ∈ P, P ′ 6= P , we further have:

(3.2) XP ′Y
>
P ′ � SP = 0
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Algorithm 3.1 Fixed support matrix factorization (under Theorem 3.3 assumptions)
1: procedure SVD_FSMF(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Initialize X = 0, Y = 0.
3: Partition JrK into P (Definition 3.2).
4: for P ∈ P do
5: Compute the truncated SVD of ARP ,CP to find a pair (X?, Y ?), X? ∈

R|RP |×|P |, Y ? ∈ R|CP |×|P | that minimizes ‖ARP ,CP −X?(Y ?)>‖2.
6: Assign XRP ,P = X?, YCP ,P = Y ?.
7: end for
8: return (X,Y )
9: end procedure

The objective function L(X,Y ) is:

‖A−XY >‖2 =

(∑
P∈P
‖(A−XY >)� SP ‖2

)
+ ‖(A−XY >)� S̄P‖2

=

(∑
P∈P
‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� SP ‖2

)
+ ‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� S̄P‖2

(3.2)
=

(∑
P∈P
‖(A−XPY

>
P )� SP ‖2

)
+ ‖A� S̄P‖2

=

(∑
P∈P
‖ARP ,CP − (XPY

>
P )RP ,CP ‖2

)
+ ‖A� S̄P‖2

(3.1)
=

(∑
P∈P
‖ARP ,CP −XRP ,PY

>
CP ,P ‖

2

)
+ ‖A� S̄P‖2

(3.3)

Therefore, if we ignore the constant term ‖A � S̄P‖2, the function L(X,Y ) is de-
composed into a sum of functions ‖ARP ,CP − XRP ,PY

>
CP ,P

‖2, which are LRMA
instances. Since all the optimized parameters are {(XRP ,P , YCP ,P )}P∈P , an opti-
mal solution of L is {(X?

RP ,P
, Y ?CP ,P )}P∈P , where (X?

RP ,P
, Y ?CP ,P ) is a minimizer of

‖ARP ,CP − XRP ,PY
>
CP ,P

‖2. Since (X?
RP ,P

, Y ?CP ,P ) can be calculated by SVD, the
problem can be solved efficiently.

For these easy instances, we can therefore recover the factors in polynomial time
with the procedure described in Algorithm 3.1. Given a target matrix A ∈ Rm×n
and support constraints I ∈ {0, 1}m×r, J ∈ {0, 1}n×r satisfying the condition in
Theorem 3.3, Algorithm 3.1 returns two factors (X,Y ) solution of (FSMF).

Theorem 3.3 requires all the rank-one contribution supports of different equivalence
classes to be disjoint (as illustrated on Figure 2). Although this assumption appears
restrictive, it is verified for certain interesting support constraints in practice. In [11], we
show such an example. We also propose in [11] a hierarchical extension of our method,
designed to handle multi-layer matrix factorization (the case in which the matrix is
approximated as the product of more than two factors) and demonstrate the superior
performance of Algorithm 3.3 in comparison to first-order optimization approaches
commonly used for the solution of such problems, in terms both of computational time
and accuracy.
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In the next result, we explore the tractability of (FSMF) while allowing partial
intersection between two representative rank-one contribution supports.

Definition 3.4 (Complete equivalence classes of rank-one supports - CEC).
P ∈ P is a complete equivalence class (or CEC) if |P | ≥ min{|CP |, |RP |} with
CP , RP as in Definition 3.2. Denote P? ⊆ P the family of all complete equivalence
classes, T = ∪P∈P?P ⊆ JrK, T̄ = JrK\T , and the shorthand ST = SP? .

The interest of complete equivalence classes is that their expressivity is powerful
enough to represent any matrix whose support is included in ST , as illustrated by the
following lemma associated to Algorithm 3.2.

Lemma 3.5. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T , ST as in Defi-
nition 3.4. For any matrix A ∈ Rm×n such that supp(A) ⊆ ST , there exist X ∈
Rm×r, Y ∈ Rn×r such that A = XY > and supp(X) ⊆ IT , supp(Y ) ⊆ JT . Such a pair
can be computed using Algorithm 3.2 with input A, I, J .

Algorithm 3.2 Find (X,Y ) satisfying Lemma 3.5’s assumptions
1: procedure FILL_CEC(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Initialize X = 0, Y = 0.
3: Compute P? from (I, J) (Definition 3.4).
4: for P ∈ P? := {P1, . . . , P`} do
5: Let A′ = A−XY >
6: if |P | ≥ |RP | then
7: Choose an arbitrary matrix X ′ ∈ R|RP |×|P | with full row rank.
8: Assign XRP ,P = X ′, YCP ,P = (X ′>(X ′X ′>)−1A′RP ,CP )>.
9: else . Here necessarily |P | ≥ |CP |, since|P | ≥ min{|CP |, |RP |}

10: Choose an arbitrary matrix Y ′ ∈ R|CP |×|P | with full row rank.
11: Assign XRP ,P = A′RP ,CP (Y ′Y ′>)−1Y ′, YCP ,P = Y ′.
12: end if
13: end for
14: return (X,Y )
15: end procedure

The proof of Lemma 3.5 is deferred to the supplementary material (Appendix B.1).
The next definition introduces the key properties that the indices k ∈ JrK which are
not in any CEC need to satisfy in order to make (FSMF) overall tractable.

Definition 3.6 (Rectangular support outside CECs of rank-one supports). Given
I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T and ST as in Definition 3.4 and T̄ = JrK \T .
For k ∈ T̄ define the support outside CECs of the kth rank-one support. as: S ′k =
Sk \ ST . If S ′k = Rk × Ck for some Rk ⊆ JmK, Ck ⊆ JnK, (or equivalently S ′k is of
rank at most one), we say the support outside CECs of the kth rank-one support S ′k is
rectangular.

To state our tractability result, we further categorize the indices in I and J as follows:

Definition 3.7 (Taxonomy of indices of I and J). With the notations of Defini-
tion 3.6, assume that S ′k is rectangular for all k ∈ T̄ . We decompose the indices of I
(resp J) into three sets as follows:
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Fig. 3. An instance of support constraints (I, J) satisfying the assumptions of Theorem 3.8.
We have T = {2, 3}. The supports outside CEC S′1 and S′4 are disjoint.

Classification for I Classification for J

1 IT = {(i, k) | k ∈ T, i ∈ JmK} ∩ I JT = {(j, k) | k ∈ T, j ∈ JnK} ∩ J
2 I1

T̄
= {(i, k) | k /∈ T, i ∈ Rk} ∩ I J1

T̄
= {(j, k) | k /∈ T, j ∈ Ck} ∩ J

3 I2
T̄

= {(i, k) | k /∈ T, i /∈ Rk} ∩ I J2
T̄

= {(j, k) | k /∈ T, j /∈ Ck} ∩ J

The following theorem generalizes Theorem 3.3.

Theorem 3.8. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r. Assume that for all k ∈ T̄ ,
S ′k is rectangular and that for all k, l ∈ T̄ we have S ′k = S ′l or S ′k ∩ S ′l = ∅. Then,
(I1
T̄
, J1
T̄

) satisfy the assumptions of Theorem 3.3. Moreover, for any matrix A ∈ Rm×n,
two instances of (FSMF) with data (A, I, J) and (A� S̄T , I1

T̄
, J1
T̄

) respectively, share
the same infimum. Given an optimal solution of one instance, we can construct the
optimal solution of the other in polynomial time.

Theorem 3.8 is proved in Appendix B.2. It implies that solving the problem
with support constraints (I, J) can be achieved by reducing to another problem, with
support constraints satisfying the assumptions of Theorem 3.3. The latter problem
can thus be efficiently solved by Algorithm 3.1. In particular, Theorem 3.3 is a special
case of Theorem 3.8 when all the equivalent classes (including CECs) have disjoint
representative rank-one supports.

Figure 3 shows an instance of (I, J) satisfying the assumptions of Theorem 3.8.
An algorithm for instances satisfying the assumptions of Theorem 3.8 is given in Algo-
rithm 3.3 (more details can be found in Corollary B.3 and Remark B.4 in Appendix B).
In Algorithm 3.3, Algorithm 3.1 is used at Line 3, and Algorithm 3.2 at Line 4.

Algorithm 3.3 Fixed support matrix factorization (under Theorem 3.8’s assumptions)
1: procedure SVD_FSMF2(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Partition the indices of I, J into IT , I1

T̄
, I2
T̄
(and JT , J1

T̄
, J2
T̄
) (Definition 3.6).

3: (X1
T̄
, Y 1
T̄

) = SVD_FSMF(A� S̄T , I1
T̄
, J1
T̄

) (T,ST as in Definition 3.4).
4: (XT , YT ) = FILL_CEC(A� ST , I, J).
5: return (XT +X1

T̄
, YT + Y 1

T̄
)

6: end procedure

4. Landscape of matrix factorization with fixed support. In this section,
we first recall the definition of spurious local valleys and spurious local minima, which
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are undesirable objects in the landscape of a function, as they may prevent local
optimization methods to converge to globally optimal solutions. Previous works
[24, 25, 9] showed that the landscape of the optimization problem associated to low
rank approximation is free of such spurious objects, which potentially gives the intuition
for its tractability.

We prove that similar results hold for the much richer family of tractable support
constraints for (FSMF) that we introduced in Theorem 3.3. The landscape with the
assumptions of Theorem 3.8 is also analyzed. These results might suggest a natural
conjecture: an instance of (FSMF) is tractable if and only if the landscape is benign.
However, this is not true. We show an example that contradicts this conjecture: we
show an instance of (FSMF) that can be solved efficiently, despite the fact that its
corresponding landscape contains spurious objects. We will see in the next section
that the opposite direction is not so evident either: we propose a numerical illustration
of the fact that even when the landscape is benign, the solution of (FSMF) may not
be so straightforward with standard iterative methods.

4.1. Spurious local minima and spurious local valleys. We start by recalling
the classical definitions of global and local minima of a real-valued function.

Definition 4.1 (Spurious local minimum [25, 16]). Consider L : Rd → R. A
vector x∗ ∈ Rd is a:
• global minimum (of L) if L(x∗) ≤ L(x),∀x.
• local minimum if there is a neighborhood N of x∗ such that L(x∗) ≤ L(x),∀x ∈ N .
• strict local minimum if there is a neighborhood N of x∗ such that L(x∗) <
L(x),∀x ∈ N , x 6= x∗.

• (strict) spurious local minimum if x∗ is a (strict) local minimum but it is not
a global minimum.

The presence of spurious local minima is undesirable because local optimization
methods can get stuck in one of them and never reach the global optimum.

Remark 4.2. With the loss functions L(X,Y ) considered in this paper, strict local
minima do not exist since for every invertible diagonal matrix D, possibly arbitrarily
close to the identity, we have L(XD,Y D−1) = L(X,Y ).

However, this is not the only undesirable landscape in an optimization problem:
spurious local valleys, as defined next, are also challenging.

Definition 4.3 (Sublevel Set [1]). Consider L : Rd → R. For every α ∈ R, the
α-level set of L is the set Eα = {x ∈ Rd | L(x) ≤ α}.

Definition 4.4 (Path-Connected Set and Path-Connected Component). A subset
S ⊆ Rd is path-connected if for every x, y ∈ S, there is a continuous function r :
[0, 1] → S such that r(0) = x, r(1) = y. A path-connected component of E ⊆ Rd
is a maximal path-connected subset: S ⊆ E is path-connected, and if S′ ⊆ E is
path-connected with S ⊆ S′ then S = S′.

Definition 4.5 (Spurious Local Valley [24, 15]). Consider L : Rd → R and a set
S ⊂ Rd.
• S is a local valley of L if it is a non-empty path-connected component of some
sublevel set.
• S is a spurious local valley of L if it is a local valley of L and does not contain
a global minimum.

The notion of spurious local valley is inspired by the definition of a strict spurious
local minimum. If x∗ is a strict spurious local minimum, then {x∗} is a spurious local
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valley. However, the notion of spurious local valley has a wider meaning than just
a neighborhood of a strict spurious local minimum. Figure 4 illustrates some other
scenarios: as shown on Figure 4a, the segment (approximately) [10,+∞) creates a

Fig. 4. Examples of functions with spurious objects.

spurious local valley, and this function has only one local (and global) minimizer,
at zero; in Figure 4b, there are spurious local minima that are not strict, but form
a spurious local valley anyway. It is worth noticing that the concept of a spurious
local valley does not cover that of a spurious local minimum. Functions can have
spurious (non-strict) local minima even if they do not possess any spurious local valley
(Figure 4c). Therefore, in this paper, we treat the existence of spurious local valleys
and spurious local minima independently. The common point is that if the landscape
possesses either of them, local optimization methods need to have proper initialization
to have guarantees of convergence to a global minimum.

4.2. Previous results on the landscape. Previous works [9, 25] studied the
non-existence of spurious local minima of (FSMF) in the classical case of “low rank
matrix approximation” (or full support matrix factorization)3. To prove that a critical
point is never a spurious local minimum, previous work used the notion of strict saddle
point (i.e a point where the Hessian is not positive semi-definite, or equivalently has
at least one –strictly – negative eigenvalue), see Definition 4.10 below. To prove the
non-existence of spurious local valleys, the following lemma was employed in previous
works [24, 15]:

Lemma 4.6 (Sufficient condition for the non-existence of any spurious local valley
[24, Lemma 2]). Consider a continuous function L : Rd → R. Assume that, for any
initial parameter x̃ ∈ Rd, there exists a continuous path f : t ∈ [0, 1]→ Rd such that:

a) f(0) = x̃.
b) f(1) ∈ arg minx∈Rd L(x).
c) The function L ◦ f : t ∈ [0, 1]→ R is non-increasing.

Then there is no spurious local valley in the landscape of function L.

The result is intuitive and a formal proof can be found in [24]. The theorem claims
that given any initial point, if one can find a continuous path connecting the initial
point to a global minimizer and the loss function is non-increasing on the path, then
there does not exist any spurious local valley. We remark that although (FSMF) is a
constrained optimization problem, Lemma 4.6 is still applicable because one can think
of the objective function as defined on a subspace: L : R|I|+|J| → R. In this work, to
apply Lemma 4.6, the constructed function f has to be a feasible path, defined as:

3Since previous works also considered the case r ≥ m,n, low rank approximation might be
misleading sometimes. That is why we occasionally use the name full support matrix factorization to
emphasize this fact., where no support constraints are imposed (I = JmK× JrK, J = JnK× JrK)
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Definition 4.7 (Feasible path). A feasible path w.r.t the support constraints
(I, J) (or simply a feasible path) is a continuous function f(t) = (Xf (t), Yf (t)) :
[0, 1]→ Rm×r × Rn×r satisfying supp(Xf (t)) ⊆ I, supp(Yf (t)) ⊆ J, ∀t ∈ [0, 1].

Conversely, we generalize and formalize an idea from [24] into the following lemma,
which gives a sufficient condition for the existence of a spurious local valley:

Lemma 4.8 (Sufficient condition for the existence of a spurious local valley).
Consider a continuous function L : Rd → R whose global minimum is attained. Assume
we know three subsets S1, S2, S3 ⊂ Rd such that:

1) The global minima of L are in S1.
2) Every continuous path from S3 to S1 passes through S2.
3) inf

x∈S2

L(x) > inf
x∈S3

L(x) > inf
x∈S1

L(x).

Then L has a spurious local valley.

Proof. Denote Σ = {x | L(x) = infx∈Rd L(θ)} the set of global minimizers of L. Σ
is not empty due to the assumption that the global minimum is attained, and Σ ⊆ S1

by the first assumption.
Since infx∈S2

L(x) > infx∈S3
L(x), there exists τ ∈ S3, L(τ) < infx∈S2

L(x). Con-
sider Φ the path-connected component of the sublevel set {x | L(x) ≤ L(τ)} that
contains τ . Since Φ is a non-empty path-connected component of a level set, it is a
local valley. It is thus sufficient to prove that Φ ∩ Σ = ∅ to obtain that it matches the
very definition of a spurious local valley.

Indeed, by contradiction, let’s assume that there exists τ ′ ∈ Φ∩Σ. Since τ, τ ′ ∈ Φ
and Φ is path-connected, by definition of path-connectedness there exists a continuous
function f : [0, 1] → Φ such that f(0) = τ ∈ S3, f(1) = τ ′ ∈ Σ ⊆ S1. Due to the
assumption that every continuous path from S3 to S1 has to pass through a point
in S2, there must exist t ∈ (0, 1) such that f(t) ∈ S2 ∩ Φ. Therefore, L(f(t)) ≤ L(τ)
(since f(t) ∈ Φ) and L(f(t)) > L(τ) (since f(t) ∈ S2), which is a contradiction.

To finish this section, we formally recall previous results which are related to
(FSMF) and will be used in our subsequent proofs. The questions of the existence of
spurious local valleys and spurious local minima were addressed in previous works for
full support matrix factorization and deep linear neural networks [24, 15, 25, 9]. We
present only results related to our problem of interest.

Theorem 4.9 (No spurious local valleys in linear networks [24, Theorem 11]).
Consider linear neural networks of any depth K ≥ 1 and of any layer widths pk ≥ 1 and
any input - output dimension n,m ≥ 1 with the following form: Φ(b, θ) = WK . . .W1b
where θ = (Wi)

K
i=1, and b ∈ Rn is a training input sample. With the squared loss

function, there is no spurious local valley. More specifically, the function L(θ) =
‖A− Φ(B, θ)‖2 satisfies the condition of Lemma 4.6 for any matrices A ∈ Rm×N and
B ∈ Rn×N (A and B are the whole sets of training output and input respectively).

Definition 4.10 (Strict saddle point property [25, Definition 3]). Consider a
twice differentiable function f : Rd → R. If each critical point of f is either a global
minimum or a strict saddle point then f is said to have the strict saddle point property.
When this property holds, f has no spurious local minimum.

Even if f has the strict saddle point property, it may have no global minimum, consider
e.g. the function f(x) = −‖x‖22.

Theorem 4.11 (No spurious local minima in shallow linear networks [25, Theorem
3]). Let B ∈ Rd0×N , A ∈ Rd2×N be input and output training examples. Consider the
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problem:

Minimize
X∈Rd0×d1 ,Y ∈Rd1×d2

L(X,Y ) = ‖A−XY B‖2

If B is full row rank, f has the strict saddle point property (see Definition 4.10) hence
f has no spurious local minimum.

Both theorems are valid for a particular case of matrix factorization with fixed
support: full support matrix factorization. Indeed, given a factorized matrix A ∈
Rm×n, in Theorem 4.9, if K = 2, B = In (n = N), then the considered function is
L = ‖A−W2W1‖2. This is (FSMF) without support constraints I and J (and without
a transpose on W1, which does not change the nature of the problem). Theorem 4.9
guarantees that L satisfies the conditions of Lemma 4.6, thus has no spurious local
valley.

Similarly, in Theorem 4.11, if B = Id0
(d0 = N , therefore B is full row rank), we

return to the same situation of Theorem 4.9. In general, Theorem 4.11 claims that
the landscape of the full support matrix factorization problem has the strict saddle
point property and thus, does not have spurious local minima.

However, once we turn to (FSMF) with arbitrary I and J , such benign landscape
is not guaranteed anymore, as we will show in Example 4.22. Our work in the next
subsections studies conditions on the support constraints I and J ensuring the absence
/ allowing the presence of spurious objects, and can be considered as a generalization
of previous results with full supports. [25, 24, 9].

4.3. Landscape of matrix factorization with fixed support constraints.
We start with the first result on the landscape in the simple setting of Theorem 3.3.

Theorem 4.12. Under the assumption of Theorem 3.3, the function L(X,Y ) in
(FSMF) does not admit any spurious local valley for any matrix A. In addition, L has
the strict saddle point property.

Proof. Recall that under the assumption of Theorem 3.3, all the variables to
be optimized are decoupled into “blocks” {(XRP ,P , YCP ,P )}P∈P (P,P are defined
in Definition 3.2). We denote P = {P1, P2, . . . , P`}, Pi ⊆ JrK, 1 ≤ i ≤ `. From
Equation (3.3), we have:

(4.1) ‖A−XY >‖2 =

(∑
P∈P
‖ARP ,CP −XRP ,PY

>
CP ,P ‖

2

)
+ ‖A� S̄P‖2

Therefore, the function L(X,Y ) is a sum of functions LP (XRP ,P , YCP ,P ) := ‖ARP ,CP −
XRP ,PY

>
CP ,P

‖2, which do not share parameters and are instances of the full sup-
port matrix factorization problem restricted to the corresponding blocks in A. The
global minimizers of L are {(X?

RP ,P
, Y ?CP ,P )}P∈P , where for each P ∈ P the pair

(X?
RP ,P

, Y ?CP ,P ) is any global minimizer of ‖ARP ,CP −XRP ,PY
>
CP ,P

‖2.
1) Non-existence of any spurious local valley: By Theorem 4.9, from any initial

point (X0
RP ,P

, Y 0
CP ,P

), there exists a continuous function fP (t) = (X̃P (t), ỸP (t)) :

[0, 1] 7→ R|RP |×|P | × R|CP |×|P | satisfying the conditions in Lemma 4.6, which are:
i) fP (0) = (X0

RP ,P
, Y 0
CP ,P

).
ii) fP (1) = (X?

RP ,P
, Y ?CP ,P ).

iii) LP ◦ fP : [0, 1]→ R is non-increasing.
Consider a feasible path (Definition 4.7) f(t) = (X̃(t), Ỹ (t)) : [0, 1] 7→ Rm×r×Rr×n
defined in such a way that X̃(t)RP ,P = X̃P (t) for each P ∈ P and similarly for
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Ỹ (t). Since L ◦ f =
∑
P∈P LP ◦ fP + ‖A � S̄P‖2, f satisfies the assumptions of

Lemma 4.6, which shows the non-existence of any spurious local valley.
2) Non-existence of any spurious local minimum: Due to the decomposition in

Equation (4.1), the gradient and Hessian of L(X,Y ) have the following form:

∂L

∂XRP ,P
=

∂LP
∂XRP ,P

,
∂L

∂YCP ,P
=

∂LP
∂YCP ,P

, ∀P ∈ P

H(L)|(X,Y )


H(LP1)|(XRP1

,P1
,YCP1

,P1
)) . . . 0

...
. . .

...
0 . . . H(LP`)|(XRP` ,P` ,YCP` ,P` ))


Consider a critical point (X,Y ) of L(X,Y ) that is not a global minimizer. Since
(X,Y ) is a critical point of L(X,Y ), (XRP ,P , YCPP ) is a critical point of the function
LP for all P ∈ P. Since (X,Y ) is not a global minimizer of L(X,Y ), there exists
P ∈ P such that (XRP ,P , YCP ,P ) is not a global minimizer of LP . By Theorem 4.11,
H(LP )|(XRP ,P ,YCP ,P ) is not positive semi-definite. Hence, H(L)|(X,Y ) is not positive
semi-definite either (since H(L)|(X,Y ) has block diagonal form). This implies that
(X,Y ) it is a strict saddle point as well (hence, not a spurious local minimum).

For spurious local valleys, we have the same results for the setting in Theorem 3.8.
The proof is, however, less straightforward.

Theorem 4.13. If I, J satisfy the assumptions of Theorem 3.8, then for each
matrix A the landscape of L(X,Y ) in (FSMF) has no spurious local valley.

The following is a concept which will be convenient for the proof of Theorem 4.13.

Definition 4.14 (CEC-full-rank). A feasible point (X,Y ) is said CEC-full-rank
if ∀P ∈ P?, either XRP ,P or YCP ,P is full row rank.

We need three following lemmas to prove Theorem 4.13:

Lemma 4.15. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T and ST as in
Definition 3.2 and a feasible point (X,Y ). There exists a feasible path f : [0, 1] →
Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:
1) f connects (X,Y ) with a CEC-full-rank point: f(0) = (X,Y ), and f(1) is CEC-

full-rank.
2) Xf (t)(Yf (t))> = XY >,∀t ∈ [0, 1].

Lemma 4.16. Under the assumption of Theorem 3.8, for any CEC-full-rank fea-
sible point (X,Y ), there exists feasible path f : [0, 1] → Rm×r × Rn×r : f(t) =
(Xf (t), Yf (t)) such that:
1) f(0) = (X,Y ).
2) L ◦ f is non-increasing.
3) (A−Xf (1)(Yf (1))>)� ST = 0.

Lemma 4.17. Under the assumption of Theorem 3.8, for any CEC-full-rank fea-
sible point (X,Y ) verifying: (A − XY >) � ST = 0, there exists a feasible path
f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:
1) f(0) = (X,Y ).
2) L ◦ f is non-increasing.
3) f(1) is an optimal solution of L.

The proofs of Lemma 4.15, Lemma 4.16 and Lemma 4.17 can be found in Appendix D.1,
Appendix D.2 and Appendix D.3.
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Proof of Theorem 4.13. Given any initial point (X0, Y 0), Lemma 4.15 shows the
existence of a continuous path along which the product of XY > = X0(Y 0)> does not
change (thus, L(X,Y ) is constant) and ending at a CEC-full-rank point. Therefore
it is sufficient to prove the theorem under the additional assumption that (X0, Y 0)
is CEC-full-rank. With this additional assumption, one can employ Lemma 4.16
to build a continuous path f1(t) = (X1(t), Y1(t)), such that t 7→ L(X1(t), Y1(t)) is
non-increasing, that connects (X0, Y 0) to a point (X1, Y 1) satisfying:

(A−X1(Y 1)>)� ST = 0.

Again, one can assume that (X1, Y 1) is CEC-full-rank (one can invoke Lemma 4.15
one more time). Therefore, (X1, Y 1) satisfies the conditions of Lemma 4.17 . Hence,
there exists a continuous path f2(t) = (X2(t), Y2(t)) that makes L(X2(t), Y2(t)) non-
increasing and that connects (X1, Y 1) to (X∗, Y ∗), a global minimizer.

Finally, since the concatenation of f1 and f2 satisfies the assumptions of Lemma 4.6,
we can conclude that there is no spurious local valley in the landscape of ‖A−XY >‖2.
The next natural question is whether spurious local minima exist in the setting of
Theorem 3.8. While in the setting of Theorem 3.3, all critical points which are not
global minima are saddle points, the setting of Theorem 3.8 allows second order critical
points (point whose gradient is zero and Hessian is positive semi-definite), which are
not global minima.

Example 4.18. Consider the following pair of support contraints I, J and factorized
matrix I =

[
1 1
0 1

]
, J =

[
1 1
1 1

]
, A =

[
10 0
0 1

]
. With the notations of Definition 3.4 we

have T = {1} and one can check that this choice of I and J satisfies the assumptions
of Theorem 3.8. The infimum of L(X,Y ) = ‖A − XY >‖2 is zero, and attained,
for example at X∗ = I2, Y

∗ = A. Consider the following feasible point (X0, Y0):
X0 =

[
0 1
0 0

]
, Y0 =

[
0 10
0 0

]
. Since X0Y

>
0 =

[
10 0
0 0

]
6= A, (X0, Y0) is not a global optimal

solution. Calculating the gradient of L verifes that (X0, Y0) is a critical point:

∇L(X0, Y0) = ((A−X0Y
>
0 )Y0, (A

> − Y0X
>
0 )X0) = (0,0)

Nevertheless, the Hessian of the function L at (X0, Y0) is positive semi-definite. Direct
calculation can be found in Appendix D.5.

This example shows that if we want to prove the non-existence of spurious local minima
in the new setting, one cannot rely on the Hessian. This is challenging since the second
order derivatives computation is already tedious. Nevertheless, with Definition 4.14,
we can still say something about spurious local minima in the new setting.

Theorem 4.19. Under the assumptions of Theorem 3.8, if a feasible point (X,Y )
is CEC-full-rank, then (X,Y ) is not a spurious local minimum of (FSMF). Otherwise
there is a feasible path, along which L(·, ·) is constant, that joins (X,Y ) to some (X̃, Ỹ )
which is not a spurious local minimum.

When (X,Y ) is not CEC-full-rank, the theorem guarantees that it is not a strict
local minimum, since there is path starting from (X,Y ) with constant loss. This should
however not be a surprise in light of Remark 4.2: indeed, the considered loss function
admits no strict local minimum at all. Yet, the path with “flat” loss constructed in the
theorem is fundamentally different from the ones naturally due to scale invariances of
the problem and captured by Remark 4.2. Further work would be needed to investigate
whether this can be used to get a stronger result.
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Proof sketch. To prove this theorem, we proceed through two main steps:
1) First, we show that any local minimum satisfies:

(4.2) (A−XY >)� ST = 0

2) Second, we show that if a point (X,Y ) is CEC-full-rank and satisfies Equation (4.2),
it cannot be a spurious local minimum.

Combining the above to steps, we obtain as claimed that if a feasible pair (X,Y ) is
CEC-full-rank, then it is not a spurious local minimum. Finally, if a feasible pair (X,Y )
is not CEC-full-rank, Lemma 4.15 yields a feasible path along which L is constant
that joins (X,Y ) to some feasible (X̃, Ỹ ) which is CEC-full-rank, hence (as we have
just shown) not a spurious local mimimum.

A complete proof is presented in Appendix D.4.

Although Theorem 4.19 does not exclude completely the existence of spurious
local minima, together with Theorem 4.12, we eliminate a large number of such points.

4.4. Absence of correlation between tractability and benign landscape.
So far, we have witnessed that the instances of (FSMF) satisfying the assumptions
of Theorem 3.8 are not only efficiently solvable using Algorithm 3.3: they also have
a landscape with no spurious local valleys and favorable in terms of spurious local
minima Theorem 4.19. The question of interest is: Is there a link between such
benign landscape and the tractability of the problem? Even if the natural answer
could intuitively seem to be positive, as it is the case for the full support case, we
prove that this conjecture is not true. We first provide a counter example showing
that tractability does not imply a benign landscape. Then, in Section 5 we provide
numerical illustration of the fact that even with a benign landscape the convergence
of the gradient descent method may not be straightforward.

First, we provide a sufficient condition for the existence of a spurious local valley
in (FSMF).

Theorem 4.20. Consider function L(X,Y ) = ‖A−XY >‖2 in (FSMF). Given
two support constraints I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, if there exist i1 6= i2 ∈ JmK, j1 6=
j2 ∈ JnK and k ∈ JrK such that (i1, j1) belongs to at least 2 rank-one supports, one of
which is Sk, and if (i1, j2), (i2, j1), (i2, j2) belong only to Sk, then:
1) There exists A such that: L(X,Y ) has a spurious local valley.
2) There exists A such that: L(X,Y ) has a spurious local minimum.

In both cases, A can be chosen such that Ai2,j2 6= 0.

Remark 4.21. The property Ai2,j2 6= 0 is important, as it allows to build a counter-
example to the mentioned conjecture, cf. Example 4.22 below.

Proof. Let l 6= k be another rank-one contribution support Sl that contains (i1, j1).
Without loss of generality, we can assume i1 = j1 = 1, i2 = j2 = 2 and k = 1, l = 2. In
particular, let I ′ = J ′ := {(1, 1), (1, 2), (2, 1)}, then I ′ ⊆ I, J ′ ⊆ J .
1) We define the matrix A by block matrices as:

A =

(
A′ 0
0 0

)
, where A′ =

(
0 1
1 1

)
∈ R2×2.

Thus, Ai2,j2 = A2,2 6= 0. The minimum of L(X,Y ) := ‖A−XY >‖2 over feasible
pairs is zero and it is attained at X =

[
X′ 0
0 0

]
, Y =

[
Y ′ 0
0 0

]
where X ′ =

[
1 1
1 0

]
, Y ′ =[

1 −1
1 0

]
. (X,Y ) is feasible since supp(X) = supp(X ′) = I ′ ⊆ I, supp(Y ) =
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supp(Y ′) = J ′ ⊆ J . Moreover,

(4.3) XY > =

(
X ′Y ′> 0

0 0

)
=

(
A′ 0
0 0

)
= A.

Using Lemma 4.8 we now prove that this matrix A produces spurious local valleys
for L(X,Y ) with any support constraints (I, J) satisfying the assumptions. In
fact, since (1, 2), (2, 1), (2, 2) are only in S1 and in no other support S`, ` 6= 1, one
can easily check that for every feasible pair (X,Y ) we have:

(4.4) (XY >)i,j = Xi,1Yj,1, ∀(i, j) ∈ {(1, 2), (2, 1), (2, 2)}.

Thus, every feasible pair (X?, Y ?) reaching the global optimum ‖A−X?(Y ?)>‖ = 0
must satisfy X?

2,1Y
?
1,1 = X?

1,1Y
?
2,1 = X?

2,1Y
?
2,1 = 1. This implies X?

1,1Y
?
1,1 =

(X?
2,1Y

?
1,1)(X?

1,1Y
?
2,1)/(X?

2,1Y
?
2,1) = 1. Moreover, such an optimum feasible pair

must also satisfy A11 = (X?(Y ?)>)1,1 =
∑
pX

?
1,pY

?
1,p, hence

∑
p 6=1X

?
1,pY

?
1,p =

A1,1 −X?
1,1Y

?
1,1 = −1.

To show the existence of a spurious local valley we use Lemma 4.8 and consider
the set S̃σ = {(X,Y ) | supp(X) ⊆ I, supp(Y ) ⊆ J,

∑
p 6=1X1,pY1,p = σ}. We will

show that S1 := S̃−1, S2 := S̃1, S3 := S̃5 satisfy the assumptions of Lemma 4.8.
To compute inf(X,Y )∈Si L(X,Y ), we study g(σ) := inf(X,Y )∈S̃σ L(X,Y ). Denoting
Z =

[
I2 0
0 0

]
∈ {0, 1}m×n we have:

g(σ) = inf
(X,Y )∈S̃σ

‖A−XY >‖2

≥ inf
(X,Y )∈S̃σ

‖(A−XY >)� Z‖2

(4.4)
= inf

(X,Y )∈S̃σ

∥∥∥∥(A1,1 − σ −X1,1Y1,1 A1,2 −X11Y21

A2,1 −X2,1Y1,1 A2,2 −X2,1Y2,1

)∥∥∥∥2

= inf
X1,1,X2,1,Y1,1,Y2,1

∥∥∥∥(−σ −X1,1Y1,1 1−X11Y21

1−X2,1Y1,1 1−X2,1Y2,1

)∥∥∥∥2

Besides Equation (4.4), the third equality exploits the fact that (XY >)1,1 =∑
pX1,pY1,p = X1,1Y1,1 + σ. The last quantity is the loss of the best rank-one

approximation of Ã =
[−σ 1

1 1

]
∈ R2×2. Since this is a 2 × 2 symmetric matrix,

its eigenvalues can be computed as the solutions of a second degree polynomial,
leading to an analytic expression of this last quantity as: 2(σ+1)2

(σ2+3)+
√

(σ2+3)2−4(σ+1)2
.

Moreover, this infimum can be attained if
[
X1,1, X2,1

]
=
[
Y1,1, Y2,1

]
is the first

eigenvector of Ã and the other coefficients of X,Y are set to zero. Therefore,

g(σ) =
2(σ + 1)2

(σ2 + 3) +
√

(σ2 + 3)2 − 4(σ + 1)2
.

We can now verify that S1, S2, S3 satisfy all the conditions of Lemma 4.8.
1) The minimum value of L is zero. As shown above, it is only attained with∑

p 6=1X
?
1,pY

?
1,p = −1 as shown. Thus, the global minima belong to S1 = S̃−1.

2) For any feasible path r : [0, 1] → Rm×r × Rn×r : t → (X(t), Y (t)) we have
σr(t) =

∑
p 6=1X(t)1,pY (t)1,p is also continuous. If (X(0), Y (0)) ∈ S3 = S̃5

and (X(1), Y (1)) ∈ S1 = S̃−1 then σr(0) = 5 and σr(1) = −1), hence by the
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Mean Value Theorem, there must exist t ∈ (0, 1) such that σr(t) = 1, which
means (X(t), Y (t)) ∈ S2 = S̃1.

3) Since one can check numerically that g(1) > g(5) > g(−1), we have

inf
(X,Y )∈S2

L(X,Y ) > inf
(X,Y )∈S3

L(X,Y ) > inf
(X,Y )∈S1

L(X,Y ).

The proof is concluded with the application of Lemma 4.8.
2) We define the matrix A by block matrices as:

A =

(
A′ 0
0 0

)
, where A′ =

(
a 0
0 b

)
∈ R2×2.

where a > b > 0. Thus, Ai2,j2 = A2,2 6= 0. It is again evident that infX,Y ‖A−
XY >‖2 = 0 (taking X =

[
X′ 0
0 0

]
, Y =

[
Y ′ 0
0 0

]
where X ′ =

[
0 a
b 0

]
, Y ′ =

[
0 1
1 0

]
and

with the same proof as in Equation (4.3), we have XY > = A.)
Now, we will consider X̃ =

[
a 0
0 0

]
, Ỹ =

[
1 0
0 0

]
. Since L(X̃, Ỹ ) = b2 > 0 it cannot

be a global minimum. We will show that (X̃, Ỹ ) is indeed a local minimum, which
will thus imply that (X̃, Ỹ ) is a spurious local minimum. For each feasible pair
(X,Y ) we have:

‖A−XY >‖2 =
∑
i,j

(Ai,j − (XY >)i,j)
2

≥ (A2,1 − (XY >)2,1)2 + (A1,2 − (XY >)1,2)2 + (A2,2 − (XY >)2,2)2

(4.4)
= (X2,1Y1,1)2 + (X1,1Y2,1)2 + (b−X2,1Y2,1)2

≥ 2(X1,1Y1,1)|X2,1Y2,1|+ (X2,1Y2,1)2 − 2bX2,1Y2,1 + b2

≥ 2(X1,1Y1,1 − b)|X2,1Y2,1|+ b2.

where in the third line we used that for u = |X2,1|Y11, v = X11|Y2,1|, since (u−
v)2 ≥ 0 we have u2+v2 ≥ 2uv. Since X̃1,1Ỹ1,1 = a > b, there exists a neighborhood
of (X̃, Ỹ ) such that X1,1Y1,1 − b > 0 for all (X,Y ) in that neighbourhood. Since
|X2,1Y2,1| ≥ 0 in this neighborhood it follows that ‖A−XY ‖2 ≥ b2 = L(X̃, Ỹ ) > 0
in that neighborhood. This concludes the proof.

We can now exhibit the announced counter-example to the mentioned conjecture:

Example 4.22. Consider an instance of (FSMF) with I = J =
[

1 1
0 1

]
. This pair

(I, J) satisfies the assumptions of Theorem 4.20 with i1 = 1, i2 = 2, j1 = 1, j2 = 2.
Thus, with well chosen A ∈ R2×2, A = (Ai,j), 1 ≤ i, j ≤ 2 such that A2,2 6= 0, the
landscape admits spurious objects. On the other hand, the problem is tractable
for every A ∈ R2×2 with A2,2 6= 0. Indeed, infsupp(X)⊆I,supp(Y )⊆J L(X,Y ) = 0 with
optimal factors analytically given by: X =

[
1 A1,2/A2,2

0 1

]
, Y =

[A1,1−A1,2A2,1/A2,2 A2,1

0 A2,2

]
.

When A2,2 = 0, the infimum of L(X,Y ) might not be achievable, see Remark A.1.

The existence of spurious local valleys shown in Theorem 4.20 highlights the
importance of initialization: if an initial point is already inside a spurious valley,
first-order methods cannot escape this suboptimal area. An optimist may wonder if
there nevertheless exist a smart initialization that avoids all spurious local valleys
initially. The answer is positive, as shown in the following theorem.

Theorem 4.23. Given any I, J,A such that the infimum of (FSMF) is attained,
every initialization (X,0), supp(X) ⊆ I (or symmetrically (0, Y ), supp(Y ) ⊆ J) is not
in any spurious local valley. In particular, (0,0) is never in any spurious local valley.
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Proof. Let (X∗, Y ∗) be a minimizer of (FSMF), which exists due to our assump-
tions. We only prove the result for the initialization (X,0), supp(X) ⊆ I. The case of
the initialization (0, Y ), supp(Y ) ⊆ J can be dealt with similarly.

To prove the theorem, it is sufficient to construct f(t) = (Xf (t), Yf (t)) : [0, 1]→
Rm×r × Rn×r a feasible path such that:
1) f(0) = (X,0).
2) f(1) = (X∗, Y ∗).
3) L ◦ f is non-increasing w.r.t t.

Indeed, if such f exists, the sublevel set corresponding to L(X,0) has both (X,0) and
(X∗, Y ∗) in the same path-connected components (since L ◦ f is non-increasing).

We will construct such a function feasible path f as a concatenation of two
functions feasible paths f1 : [0, 1/2] → Rm×r × Rn×r, f2 : [1/2, 1] → Rm×r × Rn×r,
defined as follows:
1) f1(t) = ((1− 2t)X + 2tX∗,0).
2) f2(t) = (X∗, (2t− 1)Y ∗).

It is obvious that f(0) = f1(0) = (X,0) and f(1) = f2(1) = (X∗, Y ∗). Moreover f is
continuous since f1(1/2) = f2(1/2) = (X∗,0). Also, L ◦ f is non-increasing on [0, 1]
since:
1) L(f1(t)) = ‖A− ((1− 2t)X + 2tX∗)0>‖2 = ‖A‖2 is constant for t ∈ [0, 1/2].
2) L(f2(t)) = ‖A− (2t− 1)X∗Y ∗‖2 is convex w.r.t t. Moreover, it attains a global

minimum at t = 1 (since we assume that (X∗, Y ∗) is a global minimizer of
(FSMF)). As a result, t 7→ L(f2(t)) is non-increasing on [1/2, 1].

Yet, such an initialization does not guarantee that first-order methods converge to
a global minimum. Indeed, while in the proof of this result we do show that there
exists a feasible path joining this “smart” initialization to an optimal solution without
increasing the loss function, the value of the objective function is “flat” in the first
part of this feasible path. Thus, even if such initialization is completely outside any
spurious local valley, it is not clear whether local information at the initialization allow
to “guide” optimization algorithms towards the global optimum to blindly find such a
path. Indeed, first-order methods are not bound to follow our constructive continuous
path. In the next section we further elaborate on the importance of the starting guess
for local optimization methods.

5. Numerical illustration: landscape’s properties and convergence of
gradient descent. As shown in Subsection 4.3, (FSMF) has a “good” landscape under
the assumptions of Theorem 3.8. This might suggest that, from a random initialization
(or from a “smart” one as suggested by Theorem 4.23), popular optimization methods
such as gradient descent might easily be able to return the globally optimal solution.
The situation is in fact more tricky. Actually, the effectiveness of those methods in this
specific case has never been shown in practice. Thus, this section shows the empirical
performance of gradient descent in tackling the problem of matrix factorization with
fixed support.

Consider the following minimalistic instance of (FSMF): A =
[

0 1
]
, I =

[
1
]
, J =[

1 1
]
. This instance can easily be checked to satisfy the assumptions of Theorem 3.3,

thus its landscape is free of spurious objects by Theorem 4.12. The infimum of this
instance is zero, attained by solutions of the form X∗ =

[
a
]
, Y ∗ =

[
0 b
]
with ab = 1.

We perform gradient descent for this instance. We denote X =
[
x
]
, Y =

[
y1 y2

]
and we define g(Y ) := g(y1, y2) = minX L(X,Y ) = minx(xy1)2 +(1−xy2)2. Empirical
experiments show that the application of gradient descent to L(X,Y ) is very well
approximated by the application of gradient descent to g(y1, y2). We consider then
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this procedure, that allows us for instance to have a 3D visualization as in Figure 5
(this is not possible for the original problem that has 3 parameters in total). Figure 5b
(the loss surface of function g(y1, y2)) also shows visual proof of the fact that the
landscape has no spurious local object, as proved in Theorem 4.12.

With fixed y1, y2, g is a simple quadratic function w.r.t x. Solving the quadratic
minimization problem, we have g(y1, y2) = y2

1/(y
2
1 + y2

2) and it is attained with
x = y2/(y

2
1 + y2

2). We consider two initializations where X is already the optimum
given Y : X0 =

[
1/170

]
, Y0 =

[
40 10

]
and X1 =

[
0.2
]
, Y1 =

[
2 1
]
, which both satisfy

the condition x = y2/(y
2
1 + y2

2). The learning rate α is chosen by backtracking line
search, satisfying the Armijo condition [16]4.

From Figure 5a it is clear that the performance of the gradient descent is deeply
affected by the choice of the initial guess, despite the absence of spurious objects in the
landscape. Indeed, Figure 5c presents the surface of the gradient of g(y1, y2) and shows
that the sequence generated starting from (X0, Y0) (blue line on the right) resides
completely inside an area with very small gradient. In addition, the landscape around
(X0, Y0) is very flat (Figure 5b). Therefore, gradient descent has a lot of difficulties to
converge to the optimum. In contrast, (X1, Y1) lies in an area with larger gradient
and without any flat surrounding area. As a consequence, its corresponding sequence
achieves optimality much faster. Initializing with X ′0 = 0 and Y0 (resp. with X ′1 = 0
and Y1) yields the same behavior.

(a) (b) (c)

Fig. 5. (a) Evolution of the logarithm of L(X,Y ) with two different initializations. (b) The
surface of g(y1, y2) = minX L(X,Y ) (c) The surface of log ‖∇g(y1, y2)‖. Trajectories of gradient
descent from (X0, Y0) after 105 iterations (blue) and from (X1, Y1) after 103 iterations (black).
Figure (c) contains the projections of the gradient norms of two trajectories.

The example shows that the effectiveness of gradient descent for (FSMF) heavily
depends on initialization, which is not evident to choose. In contrast, our Algorithm 3.1
does not require to tune any hyper-parameter.

6. Conclusion. In this paper, we studied the problem of two-layer matrix fac-
torization with fixed support. We showed that this problem is NP-hard in general.
Nevertheless, certain structured supports allow for an efficient solution algorithm.
Furthermore, we also showed the non-existence of spurious objects in the landscape of
function L(X,Y ) of (FSMF) with these support constraints. Although it would have

4For the problem minx f(x) Armijo condition requires α to satisfy f(x − α∇f(x)) ≤ f(x) −
αc‖∇f(x)‖2, we set c = 10−4.
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seemed natural to assume an equivalence between tractability and benign landscape
of (FSMF), we also show a counter-example that contradicts this conjecture. That
shows that there is still room for improvement of the current tools (spurious objects)
to characterize the tractability of an instance. We have also shown numerically the
limitations of state-of-the-art first-order optimization methods in this context. In
particular the convergence is highly affected from the choice of the hyper-parameters,
even in the absence of spurious objects, while the proposed method does not need
to tune anything. We refer the reader to [11] where we propose an extension of
Algorithm 3.1 to fixed-support multilayer sparse factorization and show the superiority
of the resulting method in terms of both accuracy and speed compared to the state of
the art [2].
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Appendix A. Proof of Lemma 2.3. Up to a transposition, we can assume
WLOG that m ≥ n. We will show that with r = n+ 1 = min(m,n) + 1, we can find
two supports I and J satisfying the conclusion of Lemma 2.3.

To create an instance of (FSMF) (i.e., two supports I, J) that is equivalent to
(MCPO), we define I ∈ {0, 1}m×(n+1) and J ∈ {0, 1}n×(n+1) as follows:

(A.1) Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1
, Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise

Figure 6 illustrates an example of support constraints built from W .

Fig. 6. Factor supports I and J constructed from the weighted matrix W ∈ {0, 1}4×3. Colored
squares in I and J are positions in the supports.

We consider the (FSMF) with the same matrix A and I, J defined as in Equation
(A.1). This construction (of I and J) can clearly be made in polynomial time. Consider
the coefficients (XY >)i,j :
1) If Wi,j = 0: (XY >)i,j =

∑n+1
k=1 Xi,kYj,k = Xi,jYj,j + Xi,n+1Yj,n+1 (except for

k = n+ 1, only Yj,j can be different from zero due to our choice of J).
2) If Wi,j = 1: (XY >)i,j =

∑n+1
k=1 Xi,kYj,k = Xi,n+1Yj,n+1 (same reason as in the

previous case, in addition to the fact that Ii,j = 1−Wi,j = 0).
Therefore, the following equation holds:

(A.2) (XY >)�W = (X•,n+1Y
>
n+1,•)�W

We will prove that (FSMF) and (MCPO) share the same infimum5. Let µ1 =
infx∈Rm,y∈Rn ‖A − xy>‖2W and µ2 = infsupp(X)⊆I,supp(Y )⊆J ‖A − XY >‖2. It is clear
that µi ≥ 0 > −∞, i = 1, 2. Our objective is to prove µ1 ≤ µ2 and µ2 ≤ µ1.
1) Proof of µ1 ≤ µ2: By definition of an infimum, for all µ > µ1, there exist x, y such

that ‖A−xy>‖2W ≤ µ. We can choose X and Y (with supp(X) ⊆ I, supp(Y ) ⊆ J)
as follows: we take the last columns of X and Y equal to x and y (X•,n+1 =
x, Y•,n+1 = y). For the remaining columns of X and Y , we choose:

Xi,j = Ai,j − xiyj if Ii,j = 1, j ≤ n
Yi,j = 1 if Ji,j = 1, j ≤ n

This choice of X and Y will make ‖A−XY >‖2 = ‖A− xy>‖2W ≤ µ. Indeed, for
all (i, j) such that Wi,j = 0, we have:

(A−XY >)i,j = Ai,j −Xi,jYj,j −Xi,n+1Yj,n+1 = Ai,j −Ai,j + xiyj − xiyj = 0

5We focus on the infimum instead of minimum since there are cases where the infimum is not
attained, as shown in Remark A.1
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Therefore, it is clear that: (A−XY >)� (1−W ) = 0.

‖A−XY >‖2 = ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W )‖2

= ‖(A−XY >)�W‖2

(A.2)
= ‖(A−X•,n+1Y

>
•,n+1)�W‖2

= ‖(A− xy>)�W‖2

= ‖A− xy>‖2W

Therefore, µ2 ≤ µ1.
2) Proof of µ1 ≤ µ2 : Inversely, for all µ > µ2, there exists X,Y satisfying supp(X) ⊆

I, supp(Y ) ⊆ J such that ‖A−XY >‖2 ≤ µ. We choose x = X•,n+1, y = Y•,n+1.
It is immediate that:

‖A− xy>‖2W = ‖(A− xy>)�W‖2

= ‖(A−X•,n+1Y
>
•,n+1)�W‖2

(A.2)
= ‖(A−XY >)�W‖2

≤ ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W )‖2

= ‖A−XY >‖2

Thus, ‖A− xy>‖2W ≤ ‖A−XY >‖2 ≤ µ. We have µ1 ≤ µ2.
This shows that µ1 = µ2. Moreover, the proofs of µ1 ≤ µ2 and µ2 ≤ µ1 also show
the procedures to obtain an optimal solution of one problem with a given accuracy ε
provided that we know an optimal solution of the other with the same accuracy.

Remark A.1. In the proof of Lemma 2.3, we focus on the infimum instead of
minimum since there are cases where the infimum is not attained. Indeed, consider the
following instance of (FSMF) with: A =

[
0 1
1 0

]
, I =

[
1 1
0 1

]
, J =

[
1 1
0 1

]
. The infimum of

this problem is zero, which can be shown by choosing: Xk =
[−k k

0 1
k

]
, Yk =

[ k k
0 1
k

]
. In

the limit, when k goes to infinity, we have:

lim
k→∞

‖A−XkY
>
k ‖2 = lim

k→∞

1

k2
= 0.

Yet, there does not exist any couple (X,Y ) such that ‖A−XY ‖2 = 0. Indeed, any
such couple would need to satisfy: X1,2Y2,2 = 1, X2,2Y1,2 = 1, X2,2Y2,2 = 0. However,
the third equation implies that either X2,2 = 0 or Y2,2 = 0, which makes either
X2,2Y1,2 = 0 or X1,2Y2,2 = 0. This leads to a contradiction.

In fact, I and J are constructed from the weight binary matrix W =
[

0 1
1 1

]
(the

construction is similar to one in the proof of Lemma 2.3). Problem (MCPO) with
(A,W ) has unattainable infimum as well.

Appendix B. Proofs for section 3.

B.1. Proof of Lemma 3.5. Denote Pk = {P1, . . . , Pk}, SPk = ∪1≤i≤kSPi for
1 ≤ k ≤ ` and SP0

= ∅. In Algorithm 3.2, we only assign value for XRP ,P and
YCP ,P for P ∈ P?, thus supp(X) ⊆ IT , supp(Y ) ⊆ JT . To prove the correctness of
Algorithm 3.2, we show that:

(B.1) XPkY
>
Pk

= A� (SPk \ SPk−1
)
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Thus, we have: XY > =
∑
P∈P? XPY

>
P =

∑`
k=1A � (SPk \ SPk−1

) = A � S` =
A� ST = A (since we assume supp(A) = ST ). We prove Equation (B.1) by induction.
To ease the reading, in this proof, we denote CPk , RPk (Definition 3.4) by Ck, Rk
respectively.

For k = 1, we have SP1 \SP0 = C1×R1. By Line 8 and Line 11 of Algorithm 3.2, we
have XC1,P1

Y >R1,P1
= A′C1,R1

= AC1,R1
(since (X,Y ) is initialized at (0,0)). Therefore,

XP1Y
>
P1

= A� (SP1 \ SP0).
Assume that Equation (B.1) holds for all k ≤ p−1, p > 1. We prove its correctness

with k. At the iteration kth, we have: A′ = A − XY > = A −
∑
l<kXPlY

>
Pl

=

A − A � SPk−1
= A � S̄Pk−1

. Therefore, A′Ck,Rk = ACk,Rk � (Ck × Rk \ SPk−1
) =

ACk,Rk � (SPk \ SPk). Again, by Line 8 and Line 11 of Algorithm 3.2, we have
XCk,PkY

>
Rk,Pk

= A′Ck,Rk = ACk,Rk � (SPk \ SPk). Thus, XPkY
>
Pk

= A� (SPk \ SPk−1
).

That implies Equation (B.1) is correct for all k.

B.2. Proof of Theorem 3.8. First, we decompose the factors X and Y using
the taxonomy of indices from Definition 3.7.

Definition B.1. Given IT , JT and Ii
T̄
, J i
T̄
, i = 1, 2 as in Definition 3.7, consider

(X,Y ) a feasible point of (FSMF), we denote:
1) XT = X � IT , Xi

T̄
= X � Ii

T̄
, for i = 1, 2.

2) YT = Y � IT , Y iT̄ = Y � Ii
T̄
, for i = 1, 2.

with � the Hadamard product between a matrix and a support constraint (introduced
in subsection 1.1).

The following is a technical result.

Lemma B.2. Given I, J support constraints of (FSMF), consider T,ST ,SP as in
Definition 3.2, XT , X

i
T̄
, YT , Y

i
T̄
as in Definition 3.6 and assume that for all k ∈ T̄ , S ′k

is rectangular. It holds:
C1 supp(XTY

>
T ) ⊆ ST .

C2 supp(X1
T̄

(Y 1
T̄

)>) ⊆ SP \ ST .
C3 supp(Xi

T̄
(Y j
T̄

)>) ⊆ ST ,∀1 ≤ i, j ≤ 2, (i, j) 6= (1, 1).

Proof. We justify (C1)-(C3) as follow:
• C1: Since XTY

>
T =

∑
i∈T X•,iY

>
•,i, supp(XTY

>
T ) ⊆ ∪i∈TSk = ST .

• C2: Consider the coefficient (i, j) of (X1
T̄

)(Y 1
T̄

)>

((X1
T̄ )(Y 1

T̄ )>)i,j =
∑
k

(X1
T̄ )i,k(Y 1

T̄ )j,k =
∑

(i,k)∈I1
T̄
,(j,k)∈J1

T̄

Xi,kYj,k

By the definition of I1
T̄
, J1
T̄
, (X1

T̄
)(Y 1

T̄
)>i,j 6= 0 iff (i, j) ∈ ∪`∈T̄R` × C` = SP \ ST .

• C3: We prove for the case of (X1
T̄

)(Y 2
T̄

)>. Others can be proved similarly.

(B.2) ((X1
T̄ )(Y 2

T̄ )>)i,j =
∑
k

(X1
T̄ )i,k(Y 2

T̄ )j,k =
∑

(i,k)∈I1
T̄
,(j,k)∈J2

T̄

Xi,kYj,k

Since ∀` ∈ T̄ ,S ′` is rectangular, SP \ ST = ∪`∈T̄S ′` = ∪`∈T̄R` × C`. If (i, j) ∈
SP \ ST , Equation (B.2) shows that ((X1

T̄
)(Y 2

T̄
)>)i,j = 0 since there is no k

such that (i, k) ∈ I2
T̄
, (j, k) ∈ J2

T̄
due to the definition of I1

T̄
, J2
T̄
). Moreover,

supp((X1
T̄

)(Y 2
T̄

)>) ⊆ SP (since supp(X1
T̄

) ⊆ I, supp(Y 2
T̄

) ⊆ J). Thus, it shows
that supp((X1

T̄
)(Y 2

T̄
)>) ⊆ SP \ (SP \ ST ) = ST .

Here, we present the proof of Theorem 3.8.
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Proof of Theorem 3.8. Given X,Y feasible point of the input (A, I, J), consider
XT , YT , X

i
T̄
, Y i
T̄
, i = 1, 2 defined as in Definition B.1. Let µ1 and µ2 be the infimum

value of (FSMF) with (A, I, J) and with (A′, I1
T̄
, J1
T̄

) (A′ = A� S̄T ) respectively.
First, we remark that I1

T̄
and J1

T̄
satisfy the assumptions of Theorem 3.3. Indeed,

it holds Sk(I1
T̄
, J1
T̄

) = Sk(I, J) \ ST = S ′k by construction. For any two indices k, l ∈ T̄ ,
the representative rank-one supports are either equal (S ′k = S ′l) or disjoint (S ′k∩S ′l = ∅)
by assumption. That shows why I1

T̄
and J1

T̄
satisfy the assumptions of Theorem 3.3.

Next, we prove that µ1 = µ2. Since (ST ,SP \ST , S̄P) form a partition of JmK×JnK,
we have C �D = 0, C 6= D,C,D ∈ {ST ,SP \ ST , S̄P}. From the definition of A′ it
holds A′�S̄P = A�S̄P and A′�ST = 0. Moreover, it holds (X1

T̄
)(Y 1

T̄
)>�ST ∪ S̄P = 0

due to C2.
Since supp(XT ) ⊆ IT , supp(Xi

T̄
) ⊆ IT̄ , supp(YT ) ⊆ JT , supp(Y i

T̄
) ⊆ JT̄ , i = 1, 2,

the product XY > can be decomposed as:

(B.3) XY > = XTY
>
T +

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>.

Consider the loss function of (FSMF) with input (A′, I1
T̄
, J1
T̄

) and solution (X1
T̄
, Y 1
T̄

):

(B.4)

‖A′ −X1
T̄ (Y 1

T̄ )>‖2

= ‖(A′ −X1
T̄ (Y 1

T̄ )>)� ST ‖2 + ‖(A′ −X1
T̄ (Y 1

T̄ )>)� (SP \ ST )‖2

+ ‖(A′ −X1
T̄ (Y 1

T̄ )>)� S̄P‖2

C2
= ‖(A′ − (X1

T̄ )(Y 1
T̄ )>)� SP \ ST ‖2 + ‖A′ � S̄P‖2

C1+C3
= ‖(A−XTY

>
T −

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� (SP \ ST )‖2 + ‖A� S̄P‖2

(B.3)
= ‖(A−XY >)� (SP \ ST )‖2 + ‖A� S̄P‖2

Perform the same calculation with (A, I, J) and solution (X,Y ):
(B.5)
‖(A−XY >)‖2

= ‖(A−XY >)� ST ‖2 + ‖(A−XY >)� (SP \ ST )‖2 + ‖(A−XY >)� S̄P‖2

= ‖(A−XY >)� ST ‖2 + ‖(A−XY >)� (SP \ ST )‖2 + ‖A� S̄P‖2

where the last equality holds since supp(XY >) ⊆ SP . Therefore, for any feasible
point (X,Y ) of instance (A, I, J), we can choose X̃ = X1

T̄
, Ỹ = Y 1

T̄
feasible point of

(A′, I1
T̄
, J1
T̄

) such that ‖A−XY >‖ ≥ ‖A′−X̃Ỹ >‖ (Equation (B.4) and Equation (B.5)).
This shows µ1 ≥ µ2.

On the other hand, given any feasible point (X̃, Ỹ ) of instance (A′, I1
T̄
, J1
T̄

), we
can construct a feasible point (X,Y ) for instance (A, I, J) such that ‖A−XY >‖2 =
‖A′ −X ′Y ′>‖2. We construct (X,Y ) = (XT +X1

T̄
+X2

T̄
, YT + Y 1

T̄
+ Y 2

T̄
) where:

1) X1
T̄

= X̃, Y 1
T̄

= Ỹ ,
2) X2

T̄
, Y 2
T̄

can be chosen arbitrarily such that supp(X2
T̄

) ⊆ I2
T̄
, supp(Y 2

T̄
) ⊆ J2

T̄
3) XT and YT such that supp(XT ) ⊆ IT , supp(YT ) ⊆ JT and:

XTY
>
T = (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST
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(XT , YT ) exists due to Lemma 3.5. By Lemma B.2, with this choice we have:

(A−XY >)� ST
(B.3)
= (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )> −XTY

>
T )� ST

C1
= (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST )−XTY

>
T = 0

(B.6)

Therefore ‖A−XY >‖2 = ‖A′ − X̃Ỹ >‖2 (Equation (B.4) and Equation (B.5)). Thus,
µ2 ≥ µ1. We obtain µ1 = µ2. In addition, given (X,Y ) an optimal solution of (FSMF)
with instance (A, I, J), we have shown how to construct an optimal solution (X̃, Ỹ )
with instance (A� S̄T , I1

T̄
, J1
T̄

) and vice versa. That completes our proof.

The following Corollary is a direct consequence of the proof of Theorem 3.8.

Corollary B.3. With the same assumptions and notations as in Theorem 3.8, a
feasible point (X,Y ) (i.e., such that supp(X) ⊆ I, supp(Y ) ⊆ J) is an optimal solution
of (FSMF) if and only if:
1) (X � I1

T̄
, Y � J1

T̄
) is an optimal solution of (FSMF) with (A� S̄T , I1

T̄
, J1
T̄

).
2) The following equation holds: (A−XY >)� ST = 0

Remark B.4. In the proof of Theorem 3.8, one can choose X2
T̄
, Y 2
T̄
arbitrarily. If

we choose X2
T̄

= 0, Y 2
T̄

= 0, thanks to (B.6), XT and YT has to satisfy:

XTY
>
T = (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST = (A−X1

T̄ (Y 1
T̄ )>)� ST

C2
= A� ST

Appendix C. Proofs for a key lemma. In this section, we will introduce an
important technical lemma. It is used extensively for the proof of the tractability and
the landscape of (FSMF) under the assumptions of Theorem 3.8, cf. Appendix D.4.

Lemma C.1. Consider I, J support constraints of (FSMF) such that P? = P.
For any CEC-full-rank feasible point (X,Y ) and continuous function g : [0, 1]→ Rm×n
satisfying supp(g(t)) ⊆ ST (Definition 3.4) and g(0) = XY >, there exists a feasible
continuous function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:

A1 f(0) = (XT , YT ).
A2 g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].
A3 ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2,∀t, z ∈ [0, 1].

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)) (D† and |||D||| denote the pseudo-

inverse and operator norm of a matrix D respectively ).

Lemma C.1 consider the case where P only contains CECs. Later in other proofs,
we will control the factors (X,Y ) by decomposing X = XT +XT̄ (and Y = YT +XT̄ )
(T, T̄ defined in Definition 3.4) and manipulate (XT , YT ) and (XT̄ , YT̄ ) separately.
Since the supports of (XT , YT ) satisfy Lemma C.1, it provides us a tool to work with
(XT , YT ).

The proof of Lemma C.1 is carried out by induction. We firstly introduce and
prove two other lemmas: Lemma C.2 and Lemma C.3. While Lemma C.2 is Lemma C.1
without support constraints, Lemma C.3 is Lemma C.1 where |P?| = 1.

Lemma C.2. Let X ∈ Rm×r, Y ∈ Rn×r,min(m,n) ≤ r and assume that X or
Y has full row rank. Given any continuous function g : [0, 1] → Rm×n in which
g(0) = XY >, there exists a continuous function f : [0, 1] → Rm×r × Rn×r : f(t) =
(Xf (t), Yf (t)) such that:
1) f(0) = (X,Y ).
2) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].



28 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

3) ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2,∀t, z ∈ [0, 1].
where C = max

(∣∣∣∣∣∣X†∣∣∣∣∣∣2, ∣∣∣∣∣∣Y †∣∣∣∣∣∣2).
Proof. WLOG, we can assume that X has full row rank. We define f as:

(C.1)
Xf (t) = X

Yf (t) = Y + (g(t)− g(0))>(XX>)−1X = Y + (X†(g(t)− g(0)))>

where X† = X>(XX>)−1 the pseudo-inverse of X. The function Yf is well-defined
due to the assumption of X being full row rank. It is immediate for the first two
constraints. Since ‖f(z)− f(t)‖2 = ‖Yf (z)− Yf (t)‖2 = ‖X†(g(z)− g(t))‖2, the third
one is also satisfied as:

‖f(z)− f(t)‖2 = ‖X†(g(z)− g(t))‖2 ≤
∣∣∣∣∣∣X†∣∣∣∣∣∣2‖g(z)− g(t)‖2 ≤ C‖g(z)− g(t)‖2

Lemma C.3. Consider I, J support of (FSMF) where P? = P = {P}, for any fea-
sible CEC-full-rank point (X,Y ) and continuous function g : [0, 1]→ Rm×n satisfying
supp(g(t)) ⊆ SP (Definition 3.2) and g(0) = XY >, there exists a feasible continuous
function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:

B1 f(0) = (X,Y ).
B2 g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].
B3 ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2.

where C = max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2).
Proof. WLOG, we assume that P = J|P |K, RP = J|RP |K, CP = J|CP |K. Further-

more, we can assume |P | ≥ |RP | and XRP ,P is full row rank (due to the hypothesis
and the fact that P is complete).

Since P? = P = {P}, a continuous feasible function f(t) must have the form:
Xf (t) =

[
X̃f (t) 0

0 0

]
and Yf (t) =

[
Ỹf 0
0 0

]
where X̃f : [0, 1] → R|RP |×|P |, Ỹf : [0, 1] →

R|CP |×|P | are continuous functions. f is fully determined by (X̃f (t), Ỹf (t)).
Moreover, if g : [0, 1]→ Rm×n satisfying supp(g(t)) ⊆ ST , then g has to have the

form: g(t) =
[
g̃ 0
0 0

]
where g̃ : [0, 1]→ R|RP |×|CP | is a continuous function.

Since g(0) = XY >, g̃(0) = (XRP ,P )(YCP ,P )>. Thus, to satisfy each constraint
B1-B3, it is sufficient to find X̃f and Ỹf such that:

B1: X̃f (0) = XRP ,P , Ỹf (0) = YCP ,P .
B2: g̃(t) = X̃f (t)Ỹf (t)>,∀t ∈ [0, 1] because:

Xf (t)Yf (t)> =

(
X̃f (t)Ỹf (t)> 0

0 0

)
=

(
g̃(t) 0
0 0

)
= g(t)

B3: ‖X ′(z) − X ′(t)‖2 + ‖Y ′(z) − Y ′(t)‖2 ≤ C‖A′(z) − A′(t)‖2 since ‖X ′f (z) −
Xf (t)‖2 + ‖Y ′f (z)− Yf (t)‖2 = ‖f(z)− f(t)‖2 and ‖A′(z)−A′(t)‖=‖g(z)− g(t)‖2.

Such function exists thanks Lemma C.2 (since we assume XRP ,P has full rank).

Proof of Lemma C.1. We prove by induction on the size P. By Lemma C.3 the
result is true if |P| = 1. Assume the result is true if |P| ≤ p. We consider the case
where |P| = p + 1. Let P ∈ P and partition P into P ′ = P \ {P} and {P}. Let
T ′ = ∪P ′∈P′P ′ = T \ P . Since |P ′| = p, we can use induction hypothesis. Define:

h1(t) = (g(t)−XPY
>
P )� SP′ , h2(t) = XPY

>
P � SP′ + g(t)� SP \ SP′
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We verify that the function h1(t) satisfying the hypotheses to use induction step:
h1 continuous, supp(h1(t)) ⊆ SP′ and finally h1(0) = (g(0) − XPY

>
P ) � SP′ =

XT ′Y
>
T ′ � SP′ = XT ′Y

>
T ′ . Using the induction hypothesis with P ′, there exists a

function f1 : [0, 1]→ Rm×r × Rn×r : f1(t) = (X1
f (t), Y 1

f (t)) such that:
1) supp(X1

f (t)) ⊆ IT ′ , supp(Y 1
f (t)) ⊆ JT ′ .

2) f1(0) = (XT ′ , YT ′).
3) h1(t) = X1

f (t)Y 1
f (t)>,∀t ∈ [0, 1].

4) ‖f1(z)− f1(t)‖2 ≤ C′‖h1(z)− h1(t)‖2.

where C′ = max
P ′∈P′

(
max

(∣∣∣∣∣∣∣∣∣X†RP ′ ,P ′∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2
))

.

On the other hand, h2(t) satisfies the assumptions of Lemma C.3: h2(t) is con-
tinuous and supp(h2(t)) = supp(XPY

>
P � SP′ + g(t) � SP \ SP′) ⊆ supp(XPY

>
P ) ∪

(SP \ SP′) = SP .
In addition, since g(0) � SP \ SP′ = (XY >) � SP \ SP′ = (XT ′Y

>
T ′ + XPY

>
P ) �

SP \ SP′ = XPY
>
P � SP \ SP′ , we have h2(0) = XPY

>
P � SP′ + g(0) � SP \ SP′ =

XPY
>
P � (SP′ + SP \ SP′) = XPY

>
P . Invoking Lemma C.3 with the singleton {P},

there exists a function (X2
f (t), Y 2

f (t)) such that:
1) supp(X2

f (t)) ⊆ IP , supp(Y 2
f (t)) ⊆ JP .

2) f2(0) = (XP , YP ).
3) h2(t) = X2

f (t)Y 2
f (t)>,∀t ∈ [0, 1].

4) ‖f2(z)− f2(t)‖2 ≤ max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2) ‖h2(z)− h2(t)‖2.

We construct the functions f(t) = (Xf (t), Yf (t)) as:

Xf (t) = X1
f (t) +X2

f (t), Yf (t) = Y 1
f (t) + Y 2

f (t)

We verify the validity of this construction. f is clearly feasible due to the supports of
Xi
f (t), Y if (t), i = 1, 2. The remaining conditions are:

A1:

Xf (0) = X1
f (0) +X2

f (0) = XT ′ +XP = X

Yf (0) = Y 1
f (0) + Y 2

f (0) = YT ′ + YP = Y

A2:

Xf (t)Yf (t)> = X1
f (t)Y 1

f (t)> +X2
f (t)Y 2

f (t)>

= h1(t) + h2(t)

= (g(t)−XPY
>
P )� SP′ +XPY

>
P � SP′ + g(t)� SP \ SP′

= g(t)� (SP′ + SP \ SP′) = g(t)

A3:

‖f(z)− f(t)‖2

= ‖f1(z)− f1(t)‖2 + ‖f2(z)− f2(t)‖2

≤ C′‖h1(z)− h1(t)‖2 + max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2) ‖h2(z)− h2(t)‖2

≤ C(‖h1(z)− h1(t)‖2 + ‖h2(z)− h2(t)‖2)

= C(‖(g(z)− g(t))� SP′‖2 + ‖(g(z)− g(t))� SP \ SP′‖2)

= C‖g(z)− g(t)‖2
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Appendix D. Proofs for section 4.

D.1. Proof of Lemma 4.15. The proof relies on two intermediate results that
we state first: Lemma D.1 and Corollary D.2. The idea of Lemma D.1 can be found
in [24]. Since it is not formally proved as a lemma or theorem, we reprove it here
for self-containedness. In fact, Lemma D.1 and Corollary D.2 are special cases of
Lemma 4.15 with no support contraints and P? = P = {P} respectively.

Lemma D.1. Let X ∈ RR×p, Y ∈ RC×p,min(R,C) ≤ p. There exists a continuous
function f(t) = (Xf (t), Yf (t)) on [0, 1] such that:
• f(0 = (X,Y ).
• XY > = Xf (t)(Yf (t))>,∀t ∈ [0, 1].
• Xf (1) or Yf (1) has full row rank.

Proof. WLOG, we assume that m ≤ r. If X has full row rank, then one can choose
constant function f(t) = (X,Y ) to satisfy the conditions of the lemma. Therefore, we
can focus on the case where rank(X) = q < m. WLOG, we can assume that the first
q columns of X (X1, . . . , Xq) are linearly independent. The remaining columns of X
can be expressed as:

Xk =

q∑
i=1

αkiXi,∀q < k ≤ r

We define a matrix Ỹ by their columns as follow:

Ỹi =

{
Yi +

∑r
k=q+1 α

k
i Yk if i ≤ q

0 otherwise

By construction, we have XY > = XỸ >. We define the function f1 : [0, 1] →
Rm×r × Rn×r as:

f1(t) = (X, (1− t)Y + tỸ )

This function will not change the value of f since we have:

X((1− t)Y > + tỸ >) = (1− t)XY > + tXỸ > = XY >.

Let X̃ be a matrix whose first q columns are identical to that of X and rank(X̃) = m.
The second function f2 defined as:

f2(t) = ((1− t)X + tX̃, Ỹ )

also has their product unchanged (since first q columns of (1− t)X + tX̃ are constant
and last r − q rows of Ỹ are zero). Moreover, f2(0) = (X̃, Ỹ ) where X̃ has full row
rank. Therefore, the concatenation of two functions f1 and f2 (and shrink t by a factor
of 2) are the desired function f .

Corollary D.2. Consider I, J support constraints of (FSMF) with P? = P =
{P}. There is a feasible continuous function f : [0, 1] 7→ Rm×r × Rn×r : f(t) =
(Xf (t), Yf (t)) such that:

1. f(0) = (X,Y );
2. Xf (t)(Yf (t))> = XY >,∀t ∈ [0, 1];
3. (Xf (1))RP ,P or (Yf (1))CP ,P has full row rank.
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Proof of Corollary D.2. WLOG, up to permuting columns, we can assume P =
J|P |K, RP = J|RP |K and CP = J|CP |K (RP and CP are defined in Definition Defini-
tion 3.2). A feasible function f = (Xf (t), Yf (t)) has the form:

Xf (t) =

(
X̃f (t) 0
0 0

)
, Yf (t) =

(
Ỹf (t) 0
0 0

)
where X̃f : [0, 1] 7→ RRP×P , Ỹf : [0, 1] 7→ RCP×P .

Since P is a CEC, we have p ≥ min(RP , CP ). Hence we can use Lemma D.1 to
build (X̃f (t), Ỹf (t)) satisfying all conditions of Lemma D.1. Such (X̃f (t), Ỹf (t)) fully
determines f and make f our desirable function.

Proof of Lemma 4.15. First, we decompose X and Y as:

X = XT̄ +
∑
P∈P?

XP , Y = YT̄ +
∑
P∈P?

YP

Since T̄ and P ∈ P? form a partition of JrK, the product XY > can be written as:

XY > = XT̄Y
>
T̄ +

∑
P∈P?

XPY
>
P .

For each P ∈ P?, (IP , JP ) contains one CEC. By applying Corollary D.2, we can build
continuous functions (XP

f (t), Y Pf (t)), supp(XP
f (t)) ⊆ IP , supp(Y Pf (t)) ⊆ JP ,∀t ∈ [0, 1]

such that:
1. (XP

f (0), Y Pf (0)) = (XP , YP ).
2. XP

f (t)(Y Pf (t))> = XPY
>
P ,∀t ∈ [0, 1].

3. (XP
f (1))RP ,P or (Y Pf (1))CP ,P has full row rank.

Our desirable f(t) = (Xf (t), Yf (t)) is defined as:

Xf (t) = XT̄ +
∑
P∈P?

XP
f (t), Y (t) = YT̄ +

∑
P∈P?

Y Pf (t)

To conclude, it is immediate to check that f = (Xf (t), Yf (t)) is feasible, f(0) = (X,Y ),
f(1) is CEC-full-rank and Xf (t)Yf (t)> = XY >,∀t ∈ [0, 1].

D.2. Proof of Lemma 4.16. Denote Z = XY >, we construct f such that
Xf (t)Yf (t)> = B(t), where B(t) = Z � S̄T + (At+ Z(1− t))� ST . Such function f
makes L(Xf (t), Yf (t)) non-increasing since:

‖A−Xf (t)Yf (t)>‖2 = ‖A−B(t)‖2

= ‖(A− Z)� S̄T ‖2 + (1− t)2‖(A− Z)� ST ‖2
(D.1)

Thus, the rest of the proof is devoted to show that such a function f exists by using
Lemma C.1. Consider the function g(t) = B(t) − XT̄ (YT̄ )>. We have that g(t) is
continuous, g(0) = B(0)−XT̄ (YT̄ )> = Z −XT̄ (YT̄ )> = XT (YT )> and:

g(t)� S̄T = (B(t)−XT̄ (YT̄ )>)� S̄T
= (Z −XT̄ (YT̄ )>)� S̄T
= (XTY

>
T )� S̄T = 0

which shows supp(g(t)) ⊆ ST . Since (XT , YT ) is CEC-full-rank (by our assumption,
(X,Y ) is CEC-full-rank), invoking Lemma C.1 with (IT , JT ), there exists fT (t) =
(XT

f (t), Y Tf (t)) such that:
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D1 supp(XT
f (t)) ⊆ IT , supp(Y Cf (t)) ⊆ JT .

D2 fT (0) = (XT , YT ).
D3 g(t) = XT

f (t)(Y Tf (t))>,∀t ∈ [0, 1].
We can define our desired function f(t) = (Xf (t), Yf (t)) as:

Xf (t) = XT̄ +XT
f (t), Y = YT̄ + Y Tf (t)

f is clearly feasible due to (D1). The remaining condition to be checked is:
• First condition:

Xf (0) = XT
f (0) +XT̄ = XT +XT̄ = X, Yf (0) = Y Tf (0) + YT̄ = YT + YT̄ = Y

• Second condition: holds thanks to Equation (D.1) and:

Xf (t)(Yf (t))> = XT̄Y
>
T̄ +XC

f (t)(Y Cf (t))> = XT̄Y
>
T̄ + g(t) = B(t)

• Third condition:

(A−Xf (1)(Yf (1))>)� ST = (A−B(1))� ST
= (A− Z � S̄T −A� ST )� ST = 0

D.3. Proof of Lemma 4.17. Consider XT , X
i
T̄
, YT , Y

i
T̄
, i = 1, 2 as in Defini-

tion B.1. We redefine A′ = A� S̄T , I ′ = I1
T̄
, J ′ = J1

T̄
as in Theorem 3.8.

In light of Corollary B.3, an optimal solution (X̃, Ỹ ) has the following form:
1) X̃1

T̄
= X̃ � I1

T̄
, Ỹ 1
T̄

= Ỹ � J1
T̄
is an optimal solution of (FSMF) with (A′, I ′, J ′).

2) X̃2
T̄

= X̃ � I2
T̄
, Ỹ 2
T̄

= Ỹ � J2
T̄
can be arbitrary.

3) X̃T = X̃ � IT , ỸT = Ỹ � JT satisfy:

X̃T Ỹ
>
T = (A−

∑
(i,j) 6=(1,1)

X̃i
T̄ Ỹ

j

T̄
)> � ST

Since (I ′, J ′) has its support constraints satisfying Theorem 3.3 assumptions as shown
in Theorem 3.8, by Theorem 4.12, there exists a function (X T̄

f (t), Y T̄f (t)) such that:
1) supp(X T̄

f (t)) ⊆ I1
T̄
, supp(Y T̄f (t)) ⊆ J1

T̄
.

2) X T̄
f (0) = X1

T̄
, Y T̄f (0) = Y 1

T̄
.

3) L′(X T̄
f (t), Y T̄f (t)) = ‖A′ −X T̄

f (t)Y T̄f (t)>‖2 is non-increasing.
4) (X T̄

f (1), Y T̄f (1)) is an optimal solution of the instance of (FSMF) with (A′, I ′, J ′).

Consider the function g(t) =
(
A− (X T̄

f (t) +X2
T̄

)(Y T̄f (t) + Y 2
T̄

)>
)
� ST . This con-

struction makes g(0) = XTY
>
T . Indeed,

g(0) =
(
A− (X T̄

f (0) +X2
T̄ )(Y T̄f (0) + Y 2

T̄ )>
)
� ST

=
(
A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>

)
� ST

(1)
=
(
XY > − (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>

)
� ST

(2)
= XTY

>
T

where (1) holds by the hypothesis (A−XY >)�ST = 0, and (2) holds by Equation (B.3)
and supp(XTY

>
T ) ⊆ ST . Due to our hypothesis (X,Y ) is CEC-full-rank, (XT , YT )

is CEC-full-rank. In addition, g(t) continuous, supp(g(t)) ⊆ ST and g(0) = XTY
>
T .

Invoking Lemma C.1 with (IT , JT ), there exist functions (XC
f (t), Y Cf (t)) satisfying:
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1) supp(XT
f (t)) ⊆ IT , supp(Y Tf (t)) ⊆ JT .

2) fT (0) = (XT , YT ).
3) g(t) = XT

f (t)Y Tf (t)>,∀t ∈ [0, 1].
Finally, one can define the function Xf (t), Yf (t) satisfying Lemma 4.17 as:

Xf (t) = X T̄
f (t) +XC

f (t) +X2
T̄ , Yf (t) = Y T̄f (t) + Y Cf (t) + Y 2

T̄

f is feasible due to the supports of XP
f (t), Y Pf (t), P ∈ {T̄ , C} and X2

T̄
, Y 2
T̄
. The

remaining conditions are satisfied as:
• First condition:

Xf (0) = X T̄
f (0) +XC

f (0) +X2
T̄ = X1

T̄ +XT +X2
T̄ = X

Yf (0) = Y T̄f (0) + Y Cf (0) + Y 2
T̄ = Y 1

T̄ + YT + Y 2
T̄ = Y

• Second condition:

‖A−Xf (t)Yf (t)>‖2 = ‖A−XT
f (t)(Y Tf (t))> − (X T̄

f (t) +X2
T̄ )(Y T̄f (t) + Y 2

T̄ )>‖2

= ‖g(t)−XT
f (t)Y Tf (t)>‖2 + ‖(A−X T̄

f (t)(Y T̄f (t))>)� SP \ ST ‖2 + ‖A� S̄P‖2

= ‖(A′ −X T̄
f (t)(Y T̄f (t))>)� SP \ ST ‖2 + ‖A� S̄P‖2

(B.4)
= ‖A′ −X T̄

f (t)(Y T̄f (t))>‖2

Since ‖A′ −X T̄
f (t)(Y T̄f (t))>‖2 is non-increasing, so is ‖A−Xf (t)Yf (t)>‖2.

• Third condition: By Theorem 3.8, (Xf (1), Yf (1)) is a global minimizer since
‖A − Xf (1)Yf (1)>‖2 = ‖A′ − X T̄

f (1)(Y T̄f (1))>‖2 where (X T̄
f (1), Y T̄f (1)) is an

optimal solution of the instance of (FSMF) with (A′, I ′, J ′).

D.4. Proof of Theorem 4.19. The following corollary is necessary for the proof
of Theorem 4.19.

Corollary D.3. Consider I, J support constraints of (FSMF), such that P? = P.
Given any feasible CEC-full-rank point (X,Y ) and any B satisfying supp(B) ⊆ SP ,
there exists (X̃, Ỹ ) such that:

E1 supp(X̃) ⊆ I, supp(Ỹ ) ⊆ J
E2 X̃Ỹ > = B.
E3 ‖X − X̃‖2 + ‖Y − Ỹ ‖2 ≤ C‖XY > −B‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)).
Proof. Corollary D.3 is an application of Lemma C.1. Consider the function

g(t) = (1 − t)XY > + tB. By construction, g(t) is continuous, g(0) = XY > and
supp(g(t)) ⊆ supp(XY >)∪supp(B) = SP . Since (X,Y ) is CEC-full-rank, there exists
a feasible function f(t) = (Xf (t), Yf (t)) satisfying A1 - A3 by using Lemma C.1.

We choose (X̃, Ỹ ) = (Xf (1), Yf (1)). The verification of constraints is as follow:
E1: f is feasible.
E2: X̃Ỹ > = Xf (1)Yf (1)>

A2
= g(1) = B.

E3: ‖X−X̃‖2+‖Y −Ỹ ‖2 A1
= ‖f(1)−f(0)‖2

A3
≤ C‖g(0)−g(1)‖2 ≤ C‖XY >−B‖2.

Proof of Theorem 4.19. As mentioned in the sketch of the proof, given any (X,Y )
not CEC-full-rank, Lemma 4.15 shows the existence of a path f along which L is
constant and f connects (X,Y ) to some CEC-full-rank (X̃, Ỹ ). Therefore, this proof
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will be entirely devoted to show that a feasible CEC-full-rank solution (X,Y ) cannot
be a spurious local minimum. This fact will be shown by the two following steps:
FIRST STEP: Consider the function L(X,Y ), we have:

L(X,Y ) = ‖A−XY >‖2 = ‖A−
∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄ ‖

2

If (X,Y ) is truly a local minimum, then ∀P ∈ P?, (XP , YP ) is also the local minimum
of the following function:

L′(XP , YP ) = ‖(A−
∑
P ′ 6=P

XP ′Y
>
P ′ −XT̄Y

>
T̄ )−XPY

>
P ‖2

where L′ is equal to L but we optimize only w.r.t (XP , YP ) while fixing the other
coefficients. In other words, (XP , YP ) is a local minimum of the problem:

Minimize
X′∈Rm×r,Y ′∈Rn×r

L′(X ′, Y ′) = ‖B −X ′Y ′>‖2

Subject to: supp(X ′) ⊆ IP and supp(Y ′) ⊆ JP

where B = A −
∑
P ′ 6=P XP ′Y

>
P ′ − XT̄YT̄ . Since all columns of IP (resp. of JP )

are identical, all rank-one contribution supports are totally overlapping. Thus, all
local minima are global minima (Theorem 4.12). Global minima are attained when
XPY

>
P = B � SP due to the expressivity of a CEC (Lemma 3.5). Thus, for any

P ∈ P?, ∀(i, j) ∈ SP , we have:

0 = (B −XPY
>
P )i,j = (A−

∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄ )i,j = (A−XY >)i,j

which implies Equation (4.2).
SECOND STEP: In this step, we assume that Equation (4.2) holds. Consider
XT , X

i
T̄
, YT , Y

i
T̄
, i = 1, 2 as in Definition 3.7. Let A′ = A� S̄T , I ′ = I1

T̄
, J ′ = J1

T̄
.

We consider two possibilities. First, if (X1
T̄
, Y 1
T̄

) is an optimal solution of the instance
of (FSMF) with (A′, I ′, J ′), by Corollary B.3, (X,Y ) is an optimal solution of (FSMF)
with (A, I, J) (since Equation (4.2) holds). Hence it cannot be a spurious local
minimum. We now focus on the second case, where (X1

T̄
, Y 1
T̄

) is not the optimal
solution of the instance of (FSMF) with (A′, I ′, J ′). We show that in this case, in
any neighborhood of (X,Y ), there exists a point (X ′, Y ′) such that supp(X ′) ⊆ I,
supp(Y ′) ⊆ J ′ and L(X,Y ) > L(X ′, Y ′). Thus (X,Y ) cannot be a local minimum.
Since (I1

T̄
, J1
T̄

) satisfies Theorem 3.3 assumptions, (FSMF) has no spurious local
minima (Theorem 4.12). As (X1

T̄
, Y 1
T̄

) is not an optimal solution, it cannot be a
local minimum either, i.e., in any neighborhood of (X1

T̄
, Y 1
T̄

), there exists (Ẋ, Ẏ ) with
supp(X̃1

T̄
) ⊆ I ′, supp(Ỹ 1

T̄
) ⊆ J ′ and

(D.2) ‖A′ −X1
T̄ (Y 1

T̄ )>‖2 > ‖A′ − X̃1
T̄ (Ỹ 1

T̄ )>‖2

By Equation (B.4), we have:

(D.3)
‖A′ − (X1

T̄ )(Y 1
T̄ )>‖2 = ‖(A− (X1

T̄ )(Y 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

‖A′ − (X̃1
T̄ )(Ỹ 1

T̄ )>‖2 = ‖(A− (X̃1
T̄ )(Ỹ 1

T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

By Equation (D.2) and Equation (D.3) we have:

(D.4) ‖(A− (X1
T̄ )(Y 1

T̄ )>)� SP \ ST ‖2 > ‖(A− X̃1
T̄ (Ỹ 1

T̄ )>)� SP \ ST ‖2
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Consider the matrix: B :=
(
A− (X̃1

T̄
+X2

T̄
)(Ỹ 1

T̄
+ Y 2

T̄
)>
)
� ST . Since supp(B) ⊆ ST

and (XT , YT ) is CEC-full-rank (we assume (X,Y ) is CEC-full-rank), by Corollary D.3,
there exists (X̃T , ỸT ) such that:
1) supp(X̃T ) ⊆ IT , supp(ỸT ) ⊆ JT .
2) X̃T Ỹ

>
T = B.

3) ‖XT − X̃T ‖2 + ‖YT − ỸT ‖2 ≤ C‖XTY
>
T −B‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)). We define the point(X̃, Ỹ ) as:

X̃ = X̃T + X̃1
T̄ +X2

T̄ , Ỹ = ỸT + Ỹ 1
T̄ + Y 2

T̄

The point (X̃, Ỹ ) still satisfies Equation (4.2). Indeed,

(A− X̃Ỹ >)� ST =
(
A− X̃T Ỹ

>
T − (X̃1

T̄ +X2
T̄ )(Ỹ 1

T̄ + Y 2
T̄ )>

)
� ST

= (B − X̃T Ỹ
>
T )� ST = 0.

(D.5)

It is clear that (X̃, Ỹ ) satisfies supp(X̃) ⊆ I, supp(Ỹ ) ⊆ J due to the support of its
components (X̃T , ỸT ), (X̃1

T̄
, Ỹ 1
T̄

), (X2
T̄
, Y 2
T̄

). Moreover, we have:

‖A− X̃Ỹ >‖2 = ‖(A− X̃Ỹ >)� ST ‖2 + ‖(A− X̃Ỹ >)� SP \ ST ‖2 + ‖A� S̄P‖2

(D.5)
= ‖(A− X̃1

T̄ (Ỹ 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

(D.4)
< ‖(A−X1

T̄ (Y 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

= ‖A−XY >‖2.

Lastly, we show that (X̃, Ỹ ) can be chosen arbitrarily close to (X,Y ) by choosing
(X̃1

T̄
, Ỹ 1
T̄

) close enough to (X1
T̄
, Y 1
T̄

). For this, denoting ε := ‖X1
T̄
− X̃‖2 + ‖Y 1

T̄
− Ỹ ‖2,

we first compute:

‖X − X̃‖2 + ‖Y − Ỹ ‖2 = ‖XT − X̃T ‖2 + ‖YT − ỸT ‖2 + ‖X1
T̄ − X̃

1
T̄ ‖

2 + ‖Y 1
T̄ − Ỹ

1
T̄ ‖

2

≤ C‖XTY
>
T −B‖2 + ε

We will bound the value ‖XTY
>
T −B‖2. By using Equation (4.2), we have:

(A−
∑

1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� ST −XTY

>
T = (A−XTY

>
T −

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� ST

= (A−XY >)� ST
(4.2)
= 0

Therefore, XTY
>
T = [A− (X1

T̄
+X2

T̄
)(Y 1

T̄
+ Y 2

T̄
)>]� ST . We have:

‖XTY
>
T −B‖2 = ‖[A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>]� ST −B‖2

= ‖[(X̃1
T̄ +X2

T̄ )(Ỹ 1
T̄ + Y 2

T̄ )> − (X1
T̄ +X2

T̄ )(Y 1
T̄ + Y 2

T̄ )>]� ST ‖2

≤ ‖(X̃1
T̄ +X2

T̄ )(Ỹ 1
T̄ + Y 2

T̄ )> − (X1
T̄ +X2

T̄ )(Y 1
T̄ + Y 2

T̄ )>‖2

When ε→ 0, we have ‖(X̃1
T̄

+X2
T̄

)(Ỹ 1
T̄

+Y 2
T̄

)>−(X1
T̄

+X2
T̄

)(Y 1
T̄

+Y 2
T̄

)>‖ → 0. Therefore,
with ε small enough, one have ‖X −X ′‖2 + ‖Y − Y ′‖2 can be arbitrarily small. This
concludes the proof.



36 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

D.5. Proof for Example 4.22. Direct calculation of the Hessian of L at point
(X0, Y0) is given by:

H(L)|(X0,Y0) =



0 0 0 0 0 0 0
0 100 0 0 0 10 0
0 0 100 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 10 0 0 0 1 0
0 0 −1 0 0 0 1


which is indeed positive semi-definite.
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