
HAL Id: hal-03364668
https://hal.science/hal-03364668v2

Preprint submitted on 8 Oct 2021 (v2), last revised 16 Nov 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spurious Valleys, Spurious Minima and NP-hardness of
Sparse Matrix Factorization With Fixed Support

Quoc-Tung Le, Elisa Riccietti, Rémi Gribonval

To cite this version:
Quoc-Tung Le, Elisa Riccietti, Rémi Gribonval. Spurious Valleys, Spurious Minima and NP-hardness
of Sparse Matrix Factorization With Fixed Support. 2021. �hal-03364668v2�

https://hal.science/hal-03364668v2
https://hal.archives-ouvertes.fr

Spurious Valleys, Spurious Minima and NP-hardness
of Sparse Matrix Factorization With Fixed Support

Quoc-Tung Le Elisa Riccietti Rémi Gribonval
Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

Abstract

The problem of approximating a dense matrix by a product of sparse factors is a
fundamental problem for many signal processing and machine learning tasks. It
can be decomposed into two subproblems: finding the position of the non-zero
coefficients in the sparse factors, and determining their values. While the first step is
usually seen as the most challenging one due to its combinatorial nature, this paper
focuses on the second step, referred to as sparse matrix approximation with fixed
support. First, we show its NP-hardness, while also presenting a nontrivial family of
supports making the problem practically tractable with a dedicated algorithm. Then,
we investigate the landscape of its natural optimization formulation, proving the
absence of spurious local valleys and spurious local minima, whose presence could
prevent local optimization methods to achieve global optimality. The advantages
of the proposed algorithm over state-of-the-art first-order optimization methods are
discussed.

1 Introduction

Matrix factorization with sparsity constraints is the problem of approximating a (possibly dense)
matrix as a product of two or more sparse factors. This is playing an important role in many domains
and applications such as dictionary learning and signal processing [19, 17, 16], linear operator
acceleration [11, 10], deep learning [2], to mention only a few.

In this work, we consider a particular instance of the matrix factorization problem with sparsity
constraints, the case in which just two factors are considered, which have a prescribed support. In
details, given a matrix A ∈ Rm×n, we look for two sparse factors X,Y such that:

Minimize
X∈Rm×r,Y ∈Rn×r

L(X,Y) = ‖A−XY >‖2

Subject to: supp(X) ⊆ I and supp(Y) ⊆ J
(1)

where ‖ · ‖ is the Frobenius norm, I ⊆ JmK× JrK, J ⊆ JnK× JrK1 are given support constraints, i.e.,
supp(X) ⊆ I implies that ∀(i, j) /∈ I,Xij = 0. We call Problem (1) sparse matrix factorization
with fixed support.

The main aim of this work is to investigate the theoretical properties of Problem (1). To the best
of our knowledge the analysis of matrix factorization problems with fixed supports has never been
addressed in the literature. This analysis is however interesting, for at least two reasons.

First of all, there are many practical applications in which the solution of this problem is required.
Indeed, there are matrices that can be written as the product of factors whose support is known in
advance. This is the case for instance of many fast transforms such as the Discrete Fourier Transform
(DFT) or the the Hadamard Transform (HT), in which the fixed supports of the factors have the
butterfly structure [10, 2].

1JmK := {1, . . . ,m}

Preprint. Under review.

Moreover, Problem (1) can be seen as a subproblem of a more general matrix factorization problem
with structured sparsity constraints:

Minimize
X∈Rm×r,Y ∈Rn×r

L(X,Y) = ‖A−XY >‖2

Subject to: X ∈ ΣX and Y ∈ ΣY
(2)

where ΣX ⊆ Rm×r, ΣY ⊆ Rn×r are some sets of structured sparse matrices. Relevant examples of
such sets are for instance the sets of matrices with:

• at most k non-zero coefficients Σtotal
k = {X ∈ Rm×r | ‖X‖0 ≤ k};

• at most k non-zero coefficients per column Σcol
k = {X ∈ Rm×r | ‖X•,i‖0 ≤ k, ∀i =

1, . . . , r};
• at most k non-zero coefficients per row Σrow

k = {X ∈ Rm×r | ‖Xi,•‖0 ≤ k,∀i =
1, . . . ,m};

where for a vector or matrix X , ‖X‖0 counts the number of nonzero entries in X .

Any heuristic algorithm for the solution of (2) will eventually need to deal with a subproblem of
the form (1), one way or another. Indeed, matrix factorization with sparsity constraints somehow
generalizes the sparse recovery problem [4], in which we want to recover a sparse vector x ∈ Rn from
the knowledge of its measurement vector (possibly corrupted by noise) y = Ax ∈ Rm with known
measurement matrix A ∈ Rm×n. Mimicking the decomposition of the classical sparse recovery
problem into a support recovery step and a coefficient recovery step, Problem (2) can also be split
into two subproblems:

1) Determine the support of the factors X and Y , i.e. the set of indices supp(X), supp(Y)
whose coefficients are different from zero. For instance, if ΣX = ΣY = Σtotal

k , we need to
identify the position of (at most) k non-zero coefficients of X and Y .

2) Determine the value of the coefficients in the supports of X and Y .

The solution of a problem in the form of (1) will be needed both for one-step algorithms that jointly
estimate the supports and coefficients, and for the two-step algorithms that solve the two problems
successively. Also, as it happens in sparse linear regresssion, many common post-processing methods
consist in "debiasing" the solution by a two-step approach [2].

Our aim is to then study the theoretical properties of Problem (1) and in particular to assess its
difficulty. Assessing the difficulty of this subproblem is crucial to have a good understanding also of
the difficulty of the full problem (2).

In particular, we consider three complementary aspects related to Problem (1).

First, we show the NP-hardness of Problem (1). While this result contrasts with the theory established
for coefficient recovery with a fixed support in the classical sparse recovery problem (that can be
trivially addressed by least squares), it is in line with the known hardness of related matrix factorization
with additional constraints or different losses. Indeed, famous variants of matrix factorization such
as non-negative matrix factorization (NMF) [21, 18], weighted low rank [5] and matrix completion
[5] were all proved to be NP-hard. We prove the NP-hardness by reduction from the Low Rank
Matrix Completion problem with noise. To our knowledge this proof is new and cannot be trivially
deduced from any existing result on the more classical full support case (i.e., the case in which
I = JmK× JrK, J = JnK× JrK, which is equivalent to low rank matrix approximation [3]).

Second, we show that despite the hardness of Problem (1) in the general case, many pairs of support
constraints (I, J) make the problem solvable by an effective direct algorithm based on the singular
value decomposition (SVD). The investigation of those supports is also covered in this work and a
dedicated polynomial algorithm is proposed to deal with this family of supports. This includes for
example the full support case. Our analysis of tractable instances of Problem (1) actually includes
and substantially generalizes the analysis of the instances that can be classically handled with the
SVD decomposition. In fact, the presence of the constraints on the support makes it impossible to
directly use the SVD to solve the problem, because coefficients outside the support have to be zero.
However, the presented family of support constraints allows for an iterative decomposition of the
problem into "blocks" that can be exploited to build up a solution of the corresponding instances of
Problem (2) using blockwise SVDs.

2

The third contribution of this paper is the study of the landscape of function L of Problem (1),
notably we investigate the existence of spurious local minima and spurious local valleys, which will
be collectively referred to as spurious objects. They will be formally introduced in Section 4, but
intuitively these objects may represent a challenge for the convergence of local optimization methods.

The landscape of the loss functions for neural networks in general, and for linear neural networks in
particular, has been a popular subject of study recently. In particular, great attention has been devoted
to the investigation of the properties of critical points and global optima of the training problem
with quadratic loss [7, 23, 12]. These works have direct link to ours since matrix factorization
(without any constraint) can be seen as a specific case of neural network (with two layers, no bias
and linear activation function). Notably it has been proved [23] that for linear neural networks, every
local minimum is a global minimum and if the network is shallow (i.e., there is only one hidden
layer), critical points are either global minima or strict saddle points (i.e., their Hessian have at least
one negative eigenvalue). However, there is still a tricky type of landscape that could represent a
challenge for local optimization methods and has not been covered until recently: spurious local
valleys [13, 22].

To the best of our knowledge, existing analyses of spurious local valleys are proposed for matrix
factorization problems without support constraints, cf. [23, 22, 7], while the study of the landscape of
Problem (1) remains untouched in the literature and our work can be considered as a generalization
of such previous results.

To summarize, our main contributions in this paper are:

1. We prove that Problem (1) is NP-hard in Theorem 2.3.

2. We introduce families of support constraints (I, J) making Problem (1) tractable (Theorem
3.1 and Theorem 3.3).

3. We show that the landscape of Problem (1) corresponding to the support pairs (I, J) in these
families are free of spurious local valleys, regardless of the factorized matrixA (Theorem 4.1,
Theorem 4.2). We also investigate the presence of spurious local minima for such families
(Theorem 4.1, Theorem 4.3).

4. These results might suggest a conjecture, that holds true for the full support case: that an
instance of Problem (1) is tractable if and only if their corresponding landscape is benign, i.e.
free of spurious objects. We give a counter-example to this conjecture (Example 4.2) and
show experimentally that first-order methods for fixed support matrix factorization problem
can fail despite a benign landscape and that a good initialization is really important.

5. We propose an algorithm to solve these tractable instances of Problem (1), and discuss the
advantages of our approach over state-of-the-art first order optimization methods.

In the paper we report only the main results, all the proofs can be found in the supplementary material.

1.1 Notations

For n ∈ N, the set {1, . . . , n} is denoted by JnK. The notations 0 and 1 stand for the matrices whose
coefficients are all zeros and ones respectively. The identity matrix of size n× n is denoted by In.
Given a matrix A ∈ Rm×n and T ⊆ JnK, A•,T ∈ Rm×|T | is the submatrix of A restrained to the
columns indexed in T . If T = {k} is a singleton, A•,T is simplified as A•,k (the kth column of A).
For (i, j) ∈ JmK× JnK, Ai,j is the coefficient of A at index (i, j).

A support constraint I on a matrix X ∈ Rm×r can be interpreted either as a subset I ⊆ JmK× JrK
or as its indicator matrix 1I ∈ {0, 1}m×r defined as: (1I)i,j = 1 if (i, j) ∈ I , 0 otherwise. Both
representations will be used interchangeably and the meaning should be clear from the context.

The notation supp(A) is used for both vector and matrix: if A ∈ Rm is a vector, then supp(A) =
{i | Ai 6= 0} ⊆ JmK; if A ∈ Rm×n is a matrix, then supp(A) = {(i, j) | Ai,j 6= 0} ⊆ JmK× JnK.
Given two matrices A,B ∈ Rm×n, the Hadamard product A � B between A and B is defined as
(A � B)i,j = Ai,jBi,j ,∀(i, j) ∈ JmK × JnK. Since a support constraint I of a matrix X can be
thought of as a binary matrix of the same size, we define X � I := X � 1I analogously (it is a matrix
whose coefficients in I are unchanged while the others are set to zero).

3

2 Matrix factorization with fixed support is NP-hard

To show that Problem (1) is NP-hard we use the classical technique to prove NP-hardness: reduction.
Our choice of reducible problem is Low Rank Matrix Completion with noise [5].
Definition 2.1 (Low rank matrix completion with noise [5]). Let W ∈ {0, 1}m×n be a binary matrix.
Given A ∈ Rm×n and s ∈ N, the matrix completion problem (MCP) is:

Minimize
X∈Rm×s,Y ∈Rn×s

‖A−XY >‖2W = ‖(A−XY >)�W‖2. (3)

This problem is proved to be NP-hard when s = 1 [5] by its reducibility from Maximum-Edge
Biclique Problem, which is NP-complete [15]. This is expressed in the following theorem:
Theorem 2.1 (NP-hardness of matrix completion with noise [5]). Given a binary weighing matrix
W ∈ {0, 1}m×n and A ∈ [0, 1]m×n, the rank-one matrix completion problem is:

Minimize
x∈Rm,y∈Rn

‖A− xy>‖2W . (4)

Denote p∗ the infimum of Problem (4) and ε = 2−12(mn)−7. It is NP-hard to find an approximate
solution to (4) with objective function accuracy less than ε, i.e. with objective value p ≤ p∗ + ε.

To prove that the problem of fixed support factorization is NP-hard, it is sufficient to construct an
instance of Problem (1) which is equivalent to the MCP problem (3) with s = 1. The following
lemma gives a reduction from MCP to fixed support matrix factorization.
Lemma 2.2. For any binary matrix W ∈ {0, 1}m×n, there exist an integer r and two sets I and J
such that for all A ∈ Rm×n, Problem (4) and Problem (1) share the same infimum. I and J can be
constructed in polynomial time. Moreover, if one problem has a known solution of accuracy ε, we
can find a solution with the same accuracy for the other in polynomial time.

Sketch of the proof . Up to a transposition, we can assume without loss of generality that m ≥ n. Let
r = n+ 1 = min(m,n) + 1. We define I ∈ {0, 1}m×(n+1) and J ∈ {0, 1}n×(n+1) as follows:

Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1
, Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise

This construction can clearly be made in polynomial time. We show in Appendix A that the two
problems share the same infimum.

Using Lemma 2.2, we obtain a result of NP-hardness for the problem of fixed support matrix
factorization as follows.
Theorem 2.3. WhenA ∈ [0, 1]m×n, it is NP-hard to solve infX,Y,supp(X)⊆I,supp(Y)⊆J ‖A−XY >‖2
with arbitrary index sets I, J and objective function accuracy less than 2−12(mn)−7.

We point out that, while the result is interesting on its own, for some applications, such as those
arising in machine learning, the accuracy bound O((mn)−7) may not be really appealing. We thus
keep as an interesting open research direction to determine if some precision threshold exists that
make the general problem easy.

3 Tractable instances of matrix factorization with fixed support

Even though matrix factorization with fixed support is generally NP-hard, when we consider the full
support case I = JmK × JrK, J = JnK × JrK (i.e., no coefficients of X ,Y are set to zero, they are
all optimized), it is equivalent to low rank matrix approximation (LRMA) [3], which can be solved
using the Singular Value Decomposition (SVD) [6] 2. This section is devoted to enlarging the family
of supports for which Problem (1) can be solved by an effective direct algorithm. We start with an
important definition:

2Exact SVD is not polynomially tractable, yet it can be practically computed to machine precision inO(mn2)
[8], see also [20, Lecture 31, page 236]. It is thus convenient to think of LRMA as polynomially solvable.

4

Definition 3.1 (Support of rank-one contribution). Given two support constraints I ∈ {0, 1}m×r
and J ∈ {0, 1}n×r in the fixed support matrix factorization problem and k ∈ JrK, we define the kth
rank-one contribution support Sk(I, J) (or in short, Sk) as:

Sk(I, J) = I•,kJ
>
•,k, (5)

This can be seen either as: a tensor product: Sk ∈ {0, 1}m×n is a binary matrix; or a Cartesian
product: Sk is a set of matrix indices defined as supp(I•,k)× supp(J•,k).

Given a pair of support constraints I, J , if supp(X) ⊆ I, supp(Y) ⊆ J , we have:

supp(X•,kY
>
•,k) ⊆ Sk, ∀k ∈ JrK.

Since XY > =
∑r
k=1X•,kY

>
•,k the notion of contribution support Sk captures the constraint on the

support of the kth rank-one contribution, X•,kY >•,k, of the matrix product XY >.

We can partition JrK in terms of equivalence classes of rank-one supports:
Definition 3.2 (Equivalence classes of rank-one supports, representative rank-one supports). Given
I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, define an equivalence relation on JrK as: i ∼ j if and only if Si = Sj
(or equivalently (I•,i, J•,i) = (I•,j , J•,j)). This yields a partition of JrK into equivalence classes.

Denote P the collection of equivalence classes. For each class P ∈ P denote SP a representative
rank-one support, RP ⊆ JmK and CP ⊆ JnK the supports of rows and columns in SP , respectively.
For every k ∈ P we have Sk = SP and I•,k = RP , J•,k = CP .

For every P ′ ⊆ P denote SP′ = ∪P∈P′SP ⊆ JmK× JnK and S̄P′ = (JmK× JnK)\SP′ .

A first simple sufficient condition ensuring the tractability of an instance of Problem (1) is as follows.
Theorem 3.1. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, and P the collection of equivalence classes
of Definition 3.2. If the representative rank-one supports are pairwise disjoint, i.e., SP ∩ SP ′ = ∅ for
each distinct P, P ′ ∈ P , then matrix factorization with fixed support is tractable for any A ∈ Rm×n.

The proof of this theorem shows that, if the condition in Theorem 3.1 is satisfied, the function
L(X,Y) can be decomposed into a sum of functions which are instances of the LRMA problem. In
this case we can reduce Problem (1) to the problem of finding low rank approximations of submatrices
of the target matrix A and thus solve such instances in polynomial time, as we show in Algorithm 1.
Given the target matrix A ∈ Rm×n and the supports constraints I ∈ {0, 1}m×r, J ∈ {0, 1}n×r that
satisfy the condition in Theorem 3.1, Algorithm 1 returns two factors X,Y that solve Problem (1).

Algorithm 1 SVD for fixed support matrix factorization (under assumptions of Theorem 3.1)

1: procedure SVD_FSMF(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Initialize X = 0, Y = 0.
3: Partition JrK into P , the set of equivalent classes of rank-one supports (cf. Definition 3.2).
4: for P ∈ P do
5: Compute the SVD ofARP ,CP

to find a pair (X?, Y ?), X? ∈ R|RP |×|P |, Y ? ∈ R|CP |×|P |

with minimum ‖ARP ,CP
−X?(Y ?)>‖2.

6: Assign XRP ,P = X?, YCP ,P = Y ?.
7: end for
8: return (X,Y)
9: end procedure

Theorem 3.1 requires all the rank-one contribution supports of different classes to be disjoint.
Nevertheless, this condition is quite restrictive. The next result allows partial intersection between
two representative rank-one contribution supports.
Definition 3.3 (Complete equivalence classes of rank-one supports - CEC). P ∈ P is a complete
equivalence class (or CEC) if |P | ≥ min{|CP |, |RP |}. Denote P? ⊆ P the family of all complete
equivalence classes, T = ∪P∈P?P ⊆ JrK, T̄ = JrK\T , and the shorthand ST = SP? .

The interest of complete equivalence classes is that their expressivity is powerful enough to represent
any matrix whose support is included in ST , as illustrated by the following lemma:

5

Lemma 3.2. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T , ST as in Definition 3.3. For
any matrix A ∈ Rm×n such that supp(A) ⊆ ST , there exist X ∈ Rm×r, Y ∈ Rn×r such that
A = XY > and supp(X) ⊆ (JmK× T) ∩ I , supp(Y) ⊆ (JnK× T) ∩ J .

Algorithm 2 shows a procedure to find X,Y satisfying Lemma 3.2.

Algorithm 2 Fixed support matrix factorization under the assumptions of Lemma 3.2

1: procedure FILL_CEC(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, T ⊆ JrK)
2: Partition T into P?, the family of all CECs.
3: Initialize X = 0, Y = 0.
4: for P ∈ P? do
5: Let A′ = A−XY >
6: if |P | ≥ |CP | then
7: Choose a matrix X ′ ∈ R|RP |×|P | full row rank.
8: Assign XRP ,P = X ′, YCP ,P = (X ′(X ′X ′>)−1A′RP ,CP

)>.
9: else

10: Choose a matrix Y ′ ∈ R|CP |×|P | full row rank.
11: Assign XRP ,P = A′RP ,CP

(Y ′Y ′>)−1Y ′, YCP ,P = Y ′.
12: end if
13: return (X,Y)
14: end for
15: end procedure

The next definition introduces the key properties that the indices k which are not in any CEC need to
satisfy in order to make the matrix factorization with fixed support overall tractable.
Definition 3.4 (Rectangular support outside CECs of rank-one supports). Given I ∈ {0, 1}m×r,
J ∈ {0, 1}n×r, consider T and ST as in Definition 3.3 and T̄ = JrK \ T . For k ∈ T̄ define the
support outside CECs of the kth rank-one support as:

S ′k = Sk \ ST .
If S ′k = Rk × Ck for some Rk ⊆ JmK, Ck ⊆ JnK, (or equivalently S ′k is of rank at most one), we say
the support outside CECs of the kth rank-one support S ′k is rectangular.

To state our tractability result, we further categorize the indices in I and J as follows:
Definition 3.5 (Taxonomy of indices of I and J). With the notations of Definition 3.4, assume that
S ′k is rectangular for all k ∈ T̄ . We decompose the indices of I (resp J) into three sets as follows:

Classification for I Classification for J

1 IT = {(i, k) | k ∈ T, i ∈ JmK} ∩ I JT = {(j, k) | k ∈ T, j ∈ JnK} ∩ J
2 I1

T̄
= {(i, k) | k /∈ T, i ∈ Rk} ∩ I J1

T̄
= {(j, k) | k /∈ T, j ∈ Ck} ∩ J

3 I2
T̄

= {(i, k) | k /∈ T, i /∈ Rk} ∩ I J2
T̄

= {(j, k) | k /∈ T, j /∈ Ck} ∩ J

The following theorem states a more general result than that in Theorem 3.1.
Theorem 3.3. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r. Assume that for all k ∈ T̄ , S ′k is rectangular
and that for all k 6= l, k, l ∈ T̄ , we have S ′k = S ′l or S ′k ∩ S ′l = ∅. Then, (I1

T̄
, J1
T̄

) satisfy the
assumptions of Theorem 3.1. Moreover, for any matrix A ∈ Rm×n, two instances of Problem (1)
with data (A, I, J) and (A� 1S̄T , I

1
T̄
, J1
T̄

) respectively, share the same infimum. Given an optimal
solution of one instance, we can construct the optimal solution of the other in polynomial time.

Theorem 3.3 implies that instead of solving the problem with support constraints (I, J), we can
deal with other support constraints satisfying Theorem 3.1, which allow for an efficient solution by
Algorithm 1. In particular, Theorem 3.1 is a special case of Theorem 3.3 when all the equivalent
classes (including CECs) have disjoint representative rank-one supports.

6

An algorithm for instances satisfying Theorem 3.3 is given in Algorithm 3 (cf. Corollary B.1 in
Appendix B).

Interestingly, the condition of Theorem 3.3 also ensures nice properties to Problem (1): if a solution
is locally optimal, it is also globally optimal, despite the non-convexity of the objective function, cf.
proof of Theorem 3.3 in (B.3). Such condition is verified for certain interesting support constraints
in practice. In [9], we show such an example. We propose a hierarchical extension of our method,
designed to handle multi-layer matrix factorization (the case in which the matrix is approximated
as the product of more than two factors) and demonstrate the superior performance of Algorithm 3
in comparison to other first-order optimization approaches in terms both of computational time and
accuracy.

Algorithm 3 SVD for fixed support matrix factorization (under assumptions of Theorem 3.3)

1: procedure SVD_FSMF2(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Partition the indices of I, J into IT , I1

T̄
, I2
T̄

(and JT , J1
T̄
, J2
T̄

) (Definition 3.4).
3: (X1

T̄
, Y 1
T̄

) = SVD_FSMF(A� 1S̄T , I
1
T̄
, J1
T̄

) (T,ST in Definition 3.3).
4: (XT , YT) = FILL_CEC(A� 1ST , I, J, T).
5: return (XT +X1

T̄
, YT + Y 1

T̄
)

6: end procedure

4 Landscape of matrix factorization with fixed support

In this section, we first recall the definition of spurious local valleys and spurious local minima,
which are undesirable objects in the landscape of a function preventing local optimization methods to
converge to globally optimal solutions. Previous works [22, 23, 7] showed that the landscape of the
optimization problem associated to low rank approximation is free of such spurious objects, which
potentially gives the intuition for its tractability.

We prove that similar results hold for the family of tractable support constraints for Problem (1)
that we introduced in Theorem 3.3. These results might suggest a natural conjecture: an instance
of Problem (1) is tractable if and only if the landscape is benign. However, this is not true. We
show an example that contradicts this conjecture: we show an instance of Problem (1) that can be
solved efficiently, despite the fact that its corresponding landscape contains spurious objects. We will
see in the next section that the opposite direction is not so evident either: we propose a numerical
illustration of the fact that even when the landscape is benign, the solution of Problem (1) may not be
so straightforward with standard iterative methods.

4.1 Spurious local minima and spurious local valleys

We start by recalling the classical definitions of global and local minima of a real-valued function.
Definition 4.1 (Spurious local minimum [23, 14]). Consider L : Rd → R. A vector x∗ ∈ Rd is:

a global minimum (of L) if L(x∗) ≤ L(x),∀x.

a local minimum if there is a neighborhood N of x∗ such that L(x∗) ≤ L(x),∀x ∈ N .

a strict local minimum if there is a neighborhoodN of x∗ such that L(x∗) < L(x),∀x ∈ N , x 6= x∗.

a spurious local minimum if x∗ is a local minimum but it is not a global minimum.

The presence of spurious local minima is undesirable because local optimization methods can get
stuck in one of them and never reach the global optimum. However, this is not the only undesirable
landscape in an optimization problem: spurious local valleys, as defined next, are also challenging.
Definition 4.2 (Sublevel Set [1]). Consider L : Rd → R. For every α ∈ R, the α-level set of L is
the set Eα = {x ∈ Rd | L(x) ≤ α}.
Definition 4.3 (Path-Connected Set and Path-Connected Component). A subset S ⊆ Rd is path-
connected if for every x, y ∈ S, there is a continuous function r : [0, 1] → S such that r(0) =
x, r(1) = y. A path-connected component of E ⊆ Rd is a maximal path-connected subset: S ⊆ E is
path-connected, and if S′ ⊆ E is path-connected with S ⊆ S′ then S = S′.

7

Definition 4.4 (Spurious Local Valley [22, 13]). Consider L : Rd → R and a set S ⊂ Rd.

S is a local valley of L if it is a non-empty path-connected component of some sublevel set.

S is a spurious local valley of L if it is a local valley of L and does not contain a global minimum.

The notion of spurious local valley is inspired by the definition of a strict spurious local minimum (a
strict local minimum that is also spurious). If x∗ is a strict spurious local minimum, then {x∗} is a
spurious local valley. However, the notion of spurious local valley has a wider meaning than just a
neighborhood of a strict spurious local minimum. Figure 1 illustrates some other scenarios. As shown

(a) (b) (c)

Figure 1: Examples of functions with spurious objects.

on Figure 1a, the segment (approximately) [10,+∞) creates a spurious local valley, and this function
has only one local (and global) minimizer, at zero. In Figure 1b, there are spurious local minima
that are not strict, but form a spurious local valley anyway. It is worth noticing that the concept of a
spurious local valley does not cover that of a spurious local minimum. Functions can have spurious
(non-strict) local minima even if they do not possess any spurious local valley (Figure 1c).

Therefore, in this paper, we treat the existence of spurious local valleys and spurious local minima
independently. The common point is that if the landscape possesses either of them, local optimization
methods need to have proper initialization to have guarantees of convergence to a global minimum.

4.2 Landscape of matrix factorization with support constraints

We start with the first result on the landscape in the simple setting of Theorem 3.1.
Theorem 4.1. Under the assumption of Theorem 3.1, the function L(X,Y) = ‖A−XY >‖2 with
supp(X) ⊆ I, supp(Y) ⊆ J does not admit any spurious local valley for any matrix A. In addition,
any critical point of L which is not a global minimizer is a strict saddle point.

Since a strict saddle point cannot be a local minimum, L does not have spurious local minima either.
The proof of Theorem 4.1 in Appendix C is based on results [22, 23] on the landscape of low rank
matrix factorization. On the other hand, results on the landscape for the setting in Theorem 3.3 are
less straightforward. We introduce first the result on the non-existence of spurious local valleys.
Theorem 4.2. Under the assumptions of Theorem 3.3, the landscape of the function L(X,Y) =
‖A−XY >‖2 with supp(X) ⊆ I, supp(Y) ⊆ J has no spurious local valley for any matrix A.

The next natural question is whether spurious local minima exist in the setting of Theorem 3.3. While
in the setting of Theorem 3.1, all critical points which are not global minima are saddle points, the
setting of Theorem 3.3 allows second order critical points, which are not global minima.
Example 4.1. Consider the following pair of support contraints I, J and factorized matrix A:

I =

(
1 1
0 1

)
, J =

(
1 1
1 1

)
, A =

(
10 0
0 1

)
.

With the notations of Definition 3.3, T = {1}. This choice of I and J satisfies the setting of Theorem
3.3. The infimum ofL(X,Y) = ‖A−XY >‖2 is zero, and attained, for example atX∗ = I2, Y

∗ = A.
Consider the following critical point (X0, Y0) satisfying the support constraints I, J:

X0 =

(
0 1
0 0

)
, Y0 =

(
0 10
0 0

)
, X0Y

>
0 =

(
10 0
0 0

)
6= A

The Hessian of the function L at (X0, Y0) is positive semi-definite.

8

This example shows that if we want to prove the non-existence of spurious local minima in the new
setting, one cannot rely only on the Hessian. This is quite challenging since the computation of the
second order derivatives is already tedious. Nevertheless, with proper additional assumptions, we can
still say something about spurious local minima in the new setting.
Theorem 4.3. Consider (X,Y) such that supp(X) ⊆ I, supp(Y) ⊆ J . With the assumptions of
Theorem 3.3 and notations of Definition 3.3: if XRP ,P or YCP ,P has full row rank for each P ∈ P?,
then (X,Y) is not a spurious local minimum of Problem (1). Otherwise there is a feasible path, along
which L(·, ·) is constant, that joins (X,Y) to some (X ′, Y ′) which is not a spurious local minimum.

4.3 Absence of correlation between tractability and benign landscape

So far, we have witnessed that the instances of Problem (1) satisfying the assumptions of Theorem
3.3 are not only efficiently solvable using Algorithm 3: they also have a landscape with no spurious
local valleys. Although Theorem 4.3 does not exclude completely the existence of spurious local
minima, together with Theorem 4.1, we eliminate a large number of such points. The question of
interest is: Is there a link between such benign landscape and the tractability of the problem? Even
if the natural answer seems to be yes, as it is the case for the full support case, we prove that this
conjecture is not true. We first provide a counter example showing that tractability does not imply a
benign landscape. Then, in Section 5 we provide numerical illustration of the fact that even with a
benign landscape the convergence of the gradient descent method may not be straightforward.

First, we provide a sufficient condition for the existence of a spurious local valley in matrix factoriza-
tion problem with fixed support.
Theorem 4.4. Given two support constraints I, J of Problem (1), if there exist i1, i2, j1, j2 such that
i1 6= i2, j1 6= j2 and (i1, j1) belongs to at least 2 rank-one contribution supports, one of which is Sk,
and if (i1, j2), (i2, j1), (i2, j2) belong only to Sk, then:

1) There exists A such that: L(X,Y) = ‖A−XY >‖2 has a spurious local valley.

2) There exists A such that: L(X,Y) = ‖A−XY >‖2 has a spurious local minimum.

In both cases, A can be chosen such that Ai2,j2 6= 0.

The property Ai2,j2 6= 0 allows to build a counter-example to the conjecture mentioned above:
Example 4.2. Consider an instance of Problem (1) with the following I, J:

I =

(
1 1
0 1

)
, J =

(
1 1
0 1

)
This pair I, J satisfies the assumptions of Theorem 4.4 with i1 = 1, i2 = 2, j1 = 1, j2 = 2. Thus,
with well chosen A ∈ R2×2, A = (Ai,j), 1 ≤ i, j ≤ 2 such that A2,2 6= 0, the landscape admits
spurious objects. On the other hand, the problem is tractable for every A ∈ R2×2 with A2,2 6= 0.
Indeed, infsupp(X)⊆I,supp(Y)⊆J L(X,Y) = 0 with optimal factors analytically given by:

X =

(
1 A1,2/A2,2

0 1

)
, Y =

(
A1,1 −A1,2A2,1/A2,2 A2,1

0 A2,2

)
, XY > =

(
A1,1 A1,2

A2,1 A2,2

)
When A2,2 = 0, the infimum of L(X,Y) might not be achievable, see Remark A.1 in Appendix A.

The existence of spurious local valleys shown in Theorem 4.4 highlights the importance of initial-
ization: if an initial point is already inside a spurious valley, first-order methods cannot escape this
suboptimal area. An optimist may wonder if there nevertheless exist a smart initialization that avoids
all spurious local valleys. As proved in Appendix C.6, the answer is positive.
Theorem 4.5. Given any I, J,A such that the infimum of Problem (1) is attained, the initialization
(X,0), supp(X) ⊆ I (or symmetrically (0, Y), supp(Y) ⊆ J) is not in any spurious local valley.

Yet, such an initialization does not guarantee that first-order methods converge to a global minimum.
In the proof of this result we indeed show that there exists a continuous path joining this smart
initialization to an optimal solution without increasing the loss function. Thus, such initialization
is completely outside any spurious local valley. Nevertheless, first-order methods are not bound to
follow our constructive continuous path. In the next section we further elaborate on the importance
of the starting guess for local optimization methods.

9

5 Numerical illustration: landscape’s properties and convergence of the
gradient descent

As shown in Section 4.2, Problem (1) has a good landscape under the assumptions of Theorem 3.3.
This might suggest that, from a random initialization, popular optimization methods such as gradient
descent might easily be able to return the globally optimal solution. Nevertheless, the situation is
more tricky. Actually, the effectiveness of those methods in this specific case has never been shown
in practice. Thus, this section shows the empirical performance of gradient descent in tackling the
problem of matrix factorization with fixed support.

Consider the following minimalistic instance of Problem (1):

A = (0, 1) I = (1) J = (1, 1)
>

This instance satisfies the assumptions of Theorem 3.1, thus its landscape is free of spurious objects
by Theorem 4.1. The infimum of this instance is zero, attained by solutions of the form X∗ =
(a) , Y ∗ = (0, b) with ab = 1.

We perform gradient descent for this instance. We denote X = (x) , Y = (y1, y2) and we define
g(Y) := g(y1, y2) = minX L(X,Y) = minx(xy1)2 + (1 − xy2)2. Empirical experiments show
that the application of gradient descent to L(X,Y) is very well approximated by the application of
gradient descent to g(y1, y2). We consider then this procedure, that allows us for instance to have a
3D visualization as in Figure 2 (this is not possible for the original problem that has 3 parameters in
total). Figure 2b (the loss surface of function g(y1, y2)) also shows visual proof of the fact that the
landscape has no spurious local object, as proved in Theorem 4.1.

With fixed y1, y2, g is a simple quadratic function w.r.t x. Solving the quadratic minimization
problem, we have g(y1, y2) = y2

1/(y
2
1 + y2

2) and it is attained with x = y2/(y
2
1 + y2

2). We consider
two initializations: X0 = (0.02) , Y0 = (20, 10) and X1 = (0.2) , Y1 = (2, 1), which both satisfy
the condition x = y2/(y

2
1 + y2

2). The learning rate α is chosen by backtracking line search, satisfying
the Armijo condition [14]3.

From Figure 2a it is clear that the performance of the gradient descent is deeply affected by the
choice of the initial guess, despite the absence of spurious objects in the landscape. Indeed, Figure 2c
presents the surface of the gradient of g(y1, y2) and shows that the sequence generated starting from
(X0, Y0) (blue line on the right) resides completely inside an area with very small gradient (of order
10−5), despite the fact this area is not close to any optimal solution, and thus the method has a lot of
difficulties to converge to the optimum. In contrast, (X1, Y1) lies in an area with large gradient and
its corresponding sequence of solutions achieves optimality much faster.

(a)

(b) (c)

Figure 2: (a) Evolution of the logarithm of L(X,Y) with two different initializations. (b) The surface
of g(y1, y2) = minX L(X,Y) (c) The surface of log ‖∇g(y1, y2)‖. Trajectories of gradient descent
from (X0, Y0) after 105 iterations (blue) and from (X1, Y1) after 103 iterations (black).

3For the problem minx f(x) Armijo condition requires α to satisfy f(x−α∇f(x)) ≤ f(x)−αc‖∇f(x)‖2,
we set c = 10−4.

10

The example shows that the effectiveness of gradient descent for Problem (1) heavily depends on
initialization, which is not evident to choose. In contrast, our Algorithm 3.3 does not require to tune
any hyper-parameter.

6 Conclusion

In this paper, we studied the problem of two-layer matrix factorization with fixed support. We
showed that sparse matrix factorization with prior knowledge of the support is still NP-hard in general.
Nevertheless, certain structured supports allow for an efficient solution algorithm. Furthermore, we
also showed the non-existence of spurious objects in the landscape of function L(X,Y) of Problem
(1) with these support constraints. Although it would have seemed natural to assume an equivalence
between tractability and benign landscape of Problem (1), we also show a counter-example that
contradicts this conjecture. That shows that there is still room for improvement of the current tools
(spurious objects) to characterize the tractability of an instance. We have also shown numerically
the advantages of our approach compared to state-of-the-art first-order optimization methods. We
refer the reader to [9] for a deeper comparison. We propose there an extension of the approach to
fixed-support multilayer sparse factorization and show the superiority of our method in terms of
accuracy and speed.

References
[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, USA, 2004.

[2] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Re. Learning fast algorithms for linear transforms
using butterfly factorizations. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pages 1517–1527, 2019.

[3] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

[4] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Springer,
2013.

[5] N. Gillis and F. Glineur. Low-rank matrix approximation with weights or missing data is
NP-hard. SIAM Journal on Matrix Analysis and Applications, 32, 2010.

[6] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis,
2(2):205–224, 1965.

[7] K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems 29, pages 586–594. 2016.

[8] N. Kishore Kumar and J. Shneider. Literature survey on low rank approximation of matrices.
ArXiv preprint 1606.06511, 2016.

[9] Q.T Le, L. Zheng, E. Riccietti, and R. Gribonval. Fast learning of fast transforms, with
guarantees. Technical report, 2021.

[10] L. Le Magoarou and R. Gribonval. Chasing butterflies: In search of efficient dictionaries. In
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3287–3291, 2015.

[11] L. Le Magoarou and R. Gribonval. Flexible Multi-layer Sparse Approximations of Matrices
and Applications. IEEE Journal of Selected Topics in Signal Processing, 10(4):688–700, 2016.

[12] X. Li, J. Lu, R. Arora, J. Haupt, H. Liu, Z. Wang, and T. Zhao. Symmetry, saddle points,
and global optimization landscape of nonconvex matrix factorization. IEEE Transactions on
Information Theory, 65(6):3489–3514, 2019.

[13] Q. Nguyen. On connected sublevel sets in deep learning. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages 4790–4799, 2019.

11

[14] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition, 2006.

[15] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Appl Math, 131,
2000.

[16] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling.
Proceedings of the IEEE, 98:1045 – 1057, 07 2010.

[17] R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity: Learning sparse dictionaries for
sparse signal approximation. IEEE Transactions on Signal Processing, 58:1553 – 1564, 2010.

[18] Y. Shitov. A short proof that NMF is NP-hard. Arxiv preprint 1605.04000, 2016.

[19] I. Tošić and P. Frossard. Dictionary learning. IEEE Signal Processing Magazine, 28(2):27–38,
2011.

[20] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

[21] S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on
Optimization, 20(3):1364–1377, 2010.

[22] L. Venturi, A. S. Bandeira, and J. Bruna. Spurious valleys in one-hidden-layer neural network
optimization landscapes. Journal of Machine Learning Research, 20(133):1–34, 2019.

[23] Z. Zhu, D. Soudry, Y. C. Eldar, and M. Wakin. The global optimization geometry of shallow
linear neural networks. Journal of Mathematical Imaging and Vision, 62:279–292, 2019.

12

Supplementary material

Supplementary material for the paper: "Spurious Valleys, Spurious Minima and NP-hardness of
Sparse Matrix Factorization With Fixed Support". This appendix is organized as follows:

• Appendix A: Proofs for Section 2: Matrix factorization with fixed support is NP-hard
• Appendix B: Proofs for Section 3: Tractable instances of Matrix factorization with fixed

support
• Appendix C: Proofs for Section 4: Landscape of Matrix Factorization with Fixed Support
• Appendix D: Proofs for other intermediate and minor technical results.

Aside from standard notations, we introduce additional necessary ones in the main proofs:

Additional notations for proofs

Given a matrix A ∈ Rm×n, if S ⊆ JmK, T ⊆ JnK, then AS,T ∈ R|S|×|T | is the submatrix of A
restrained to rows and columns indexed in S and T respectively. Given T ⊆ JnK, AT ∈ Rm×n is the
matrix that has the same columns as A for indexes in T and is zero elsewhere (while the notation
A•,T ∈ Rm×|T | introduced in the main text is a submatrix of A). If I ∈ {0, 1}m×n is the matrix
support constraint, IT is equivalent to a new support constraint I ∩ {(i, j) | j ∈ T}. Notice that this
notation for the support constraints I and J will not cause any confusion with Definition 3.5.

Operator norm of a matrix A is denoted by |||A|||, while ‖A‖ is the Frobenius norm.

A Proofs for Section 2

A.1 Proof of Lemma 2.2

Up to a transposition, we can assume WLOG that m ≥ n. We will show that with r = n + 1 =
min(m,n) + 1, we can find two supports I and J satisfying the conclusion of Lemma 2.2.

To create an instance of fixed support matrix factorization (i.e., two supports I, J) that is equivalent
to Problem (4), we define I ∈ {0, 1}m×(n+1) and J ∈ {0, 1}n×(n+1) as follows:

Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1

Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise

(6)

Figure 3 illustrates an example of support constraints built from W .

Figure 3: Factor supports I and J constructed from the weighted matrix W ∈ {0, 1}4×3. Colored
squares in I and J are positions in the supports.

We consider the following problem:

Minimize
supp(X)⊆I,supp(Y)⊆J

‖A−XY >‖2

13

where I and J are defined in Equation (6). This construction (of I and J) can clearly be made in
polynomial time.

Consider the coefficients (XY >)i,j :

1) If Wi,j = 0: (XY >)i,j =
∑n+1
k=1 Xi,kYj,k = Xi,jYj,j + Xi,n+1Yj,n+1 (except for k =

n+ 1, only Yj,j can be different from zero due to our choice of J).

2) IfWi,j = 1: (XY >)i,j =
∑n+1
k=1 Xi,kYj,k = Xi,n+1Yj,n+1 (same reason as in the previous

case, in addition to the fact that Ii,j = 1−Wi,j = 0).

Therefore, the following equation holds:

(XY >)�W = (X•,n+1Y
>
n+1,•)�W (7)

We will prove that Problem (1) and Problem (4) share the same infimum4. Let µ1 =
infx∈Rm,y∈Rn ‖A − xy>‖2W and µ2 = infsupp(X)⊆I,supp(Y)⊆J ‖A − XY >‖2. It is clear that
µi ≥ 0 > −∞, i = 1, 2. Our objective is to prove µ1 ≤ µ2 and µ2 ≤ µ1.

1) Proof of µ1 ≤ µ2: By definition of an infimum, for all µ > µ1, there exist x, y such that
‖A − xy>‖2W ≤ µ. We can choose X and Y (with supp(X) ⊆ I, supp(Y) ⊆ J) as
follows: we take the last columns of X and Y equal to x and y (X•,n+1 = x, Y•,n+1 = y).
For the remaining columns of X and Y , we choose:

Xi,j = Ai,j − xiyj if Ii,j = 1, j ≤ n
Yi,j = 1 if Ji,j = 1, j ≤ n

This choice of X and Y will make ‖A − XY >‖2 = ‖A − xy>‖2W ≤ µ. Indeed, for all
(i, j) such that Wi,j = 0, we have:

(A−XY >)i,j = Ai,j −Xi,jYj,j −Xi,n+1Yj,n+1

= Ai,j − (Ai,j − xiyj)− xiyj
= 0

Therefore, it is clear that: (A−XY >)� (1−W) = 0.

‖A−XY >‖2 = ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W)‖2

= ‖(A−XY >)�W‖2

(7)
= ‖(A−X•,n+1Y

>
•,n+1)�W‖2

= ‖(A− xy>)�W‖2

= ‖A− xy>‖2W
Therefore, µ2 ≤ µ1.

2) Proof of µ1 ≤ µ2 : Inversely, for all µ > µ2, there exists X,Y satisfying supp(X) ⊆
I, supp(Y) ⊆ J such that ‖A−XY >‖2 ≤ µ. We choose x = X•,n+1, y = Y•,n+1. It is
immediate that:

‖A− xy>‖2W = ‖(A− xy>)�W‖2

= ‖(A−X•,n+1Y
>
•,n+1)�W‖2

(7)
= ‖(A−XY >)�W‖2

≤ ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W)‖2

= ‖A−XY >‖2

Thus, ‖A− xy>‖2W ≤ ‖A−XY >‖2 ≤ µ. We have µ1 ≤ µ2.

4We focus on the infimum instead of minimum since there are cases where the infimum is not attained, as
shown in Remark A.1

14

This shows that µ1 = µ2. Moreover, the proofs of µ1 ≤ µ2 and µ2 ≤ µ1 also show the procedures to
obtain an optimal solution of one problem with a given accuracy ε provided that we know an optimal
solution of the other with the same accuracy.
Remark A.1. In the proof of Lemma 2.2, we focus on the infimum instead of minimum since there
are cases where the infimum is not attained. Indeed, consider the following matrix and binary matrix
in Problem (1):

A =

(
0 1
1 0

)
, I =

(
1 1
0 1

)
, J =

(
1 1
0 1

)
. (8)

The infimum of this problem is zero, which can be shown by choosing:

X =

(
−k k
0 1

k

)
, Y =

(
k k
0 1

k

)
so that XY > =

(
0 1
1 1

k2

)
.

In the limit, when k goes to infinity, we have:

lim
k→∞

‖A−XY >‖2 = lim
k→∞

1

k2
= 0.

Yet, there does not exist any couple (x, y) such that ‖A−XY ‖2 = 0. Indeed, any such couple would
need to satisfy:

X1,2Y2,2 = 1

X2,2Y1,2 = 1

X2,2Y2,2 = 0

However, the third equation implies that either X2,2 = 0 or Y2,2 = 0, which makes either X2,2Y1,2 =
0 or X1,2Y2,2 = 0. This leads to a contradiction.

In fact, I and J are constructed from the following weight binary matrix W (the construction is
similar to one in the proof of Lemma 2.2).

W =

(
0 1
1 1

)
(9)

Problem (4) with A,W defined in Equations (8) and (9) has unattainable infimum as well.

A.2 Proof of Theorem 2.3

The proof uses Lemma 2.2. Given any instance of Problem (4) (i.e., a matrix A ∈ [0, 1]m×n,W ∈
{0, 1}m×n), we can produce an instance of Problem (1) (the same matrix A and I ∈ {0, 1}m×r, J ∈
{0, 1}n×r) such that both problems have the same infimum. Moreover, for any given objective
function accuracy, we can use the procedure of Lemma 2.2 to make sure the solutions of both
problems share the same accuracy.

Last but not least, all the procedures are polynomial. This defines a polynomial reduction from
Problem (4) to Problem (1). That shows the NP-hardness of Problem (1).

B Proofs for Section 3

B.1 Proof of Theorem 3.1

In this proof, for each equivalent class P ∈ P (Definition 3.2) we use the notations XP ∈
Rm×r, YP ∈ Rn×r (introduced in Additional notations for proofs) since P ⊂ JrK. We also
use RP , CP (Definition 3.2). We notice that for each equivalent class P ∈ P , we have:

(XPY
>
P)RP ,CP

= XRP ,PY
>
CP ,P (10)

and the product XY > can be decomposed as:

XY > =
∑
P∈P

XPY
>
P . (11)

Due to the hypothesis of this theorem, with P, P ′ ∈ P, P ′ 6= P , we further have:

XP ′Y
>
P ′ � SP = 0 (12)

15

The objective function L(X,Y) is:

‖A−XY >‖2 (11)
= ‖A−

∑
P ′∈P

XP ′Y
>
P ′‖2

=

(∑
P∈P
‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� SP ‖2

)
+ ‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� S̄P‖2

(12)
=

(∑
P∈P
‖(A−XPY

>
P)� SP ‖2

)
+ ‖A� S̄P‖2

=

(∑
P∈P
‖ARP ,CP

− (XPY
>
P)RP ,CP

‖2
)

+ ‖A� S̄P‖2

(10)
=

(∑
P∈P
‖ARP ,CP

−XRP ,PY
>
CP ,P ‖

2

)
+ ‖A� S̄P‖2

(13)

Therefore, if we ignore the constant ‖A � S̄P‖2, the function L(X,Y) is decomposed into a
sum of functions ‖ARP ,CP

− XRP ,PY
>
CP ,P

‖2, which are instances of a low rank approximation
problem. Since all the optimized parameters are {(XRP ,P , YCP ,P)}P∈P , the optimal solution
of L is {(X?

RP ,P
, Y ?CP ,P

)}P∈P , where (X?
RP ,P

, Y ?CP ,P
) is the optimal solution of the function

‖ARP ,CP
−XRP ,PY

>
CP ,P

‖2. Since (X?
RP ,P

, Y ?CP ,P
) can be calculated by SVD, the problem can be

solved efficiently.

B.2 Proof of Lemma 3.2

Before proving Lemma 3.2, we prove an intermediate lemma. This lemma can be thought as a special
case of Lemma 3.2, where there is only one complete equivalent class (CEC).
Lemma B.1. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, and P ∈ P , SP as in Definition 3.2. Assume
that P is complete as in Definition 3.3. Then, for any matrix A ∈ Rm×n such that supp(A) ⊆ SP ,
one can construct two matrices X ∈ Rm×r, Y ∈ Rn×r such that A = XY > and supp(X) ⊆
IP , supp(Y) ⊆ JP (the notations IP , JP are introduced in Additional notations for proofs).

Proof. WLOG, up to permuting rows and columns, we can assume P = J|P |K, RP = J|RP |K
and CP = J|CP |K (RP and CP are defined in Definition 3.2). To have supp(X) ⊆ IP and
supp(Y) ⊆ JP , X and Y must have the following form:

X =

(
X ′ 0
0 0

)
, Y =

(
Y ′ 0
0 0

)
where X ′ ∈ R|RP |×|P |, Y ′ ∈ R|CP |×|P |.

Since supp(A) ⊆ SP = J|RP |K× J|CP |K, then the matrix A must have the form:

A =

(
A′ 0
0 0

)
where A′ ∈ R|RP |×|CP |.

To conclude the proof, it is thus sufficient to find two matrices X ′, Y ′ such that X ′Y ′> = A′. Indeed,
if such X ′ and Y ′ can be constructed, we have:

XY > =

(
X ′Y ′> 0

0 0

)
=

(
A′ 0
0 0

)
= A

Due to the definition of CEC, we have |P | ≥ min(|RP |, |CP |). WLOG, up to transposing the
problem, we assume |P | ≥ |RP |. Let X ′ be a matrix with full row rank, Y ′ = A′>(X ′X ′>)−1X ′

(both are well defined due to |P | ≥ |RP |). It is evident that:

X ′Y ′> = X ′X ′>(X ′X ′>)−1A′ = A′

which is our desired property for X ′ and Y ′.

16

Proof of lemma 3.2. With the introduction of the notation IT and JT , the support constraints of X,Y
can be simply re-written as: supp(X) ⊆ IT , supp(Y) ⊆ JT .

We prove by induction on the size of a subset P ′ ⊆ P? that: for each matrix A ∈ Rm×n such that
supp(A) ⊆ SP′ , there exist X ∈ Rm×r, Y ∈ Rn×r such that A = XY > and supp(X) ⊆ IT ′ ,
supp(Y) ⊆ JT ′ where T ′ = ∪P∈P′P . Applying the result to P ′ = P? will give the conclusion
since T = ∪P∈P?P and ST = SP? .

By Lemma B.1 the result is true if |P ′| = 1. Assume the result is true if |P ′| = p, where 1 ≤ p < |P?|,
and consider the case where |P ′| = p+ 1.

Pick an arbitrary class P ∈ P ′ and partition P ′ into P ′′ = P ′\{P} and {P}. Consider a matrix A
such that supp(A) ⊆ SP′ and let B = A�SP . Since supp(B) ⊂ SP , by Lemma B.1 there are XP ,
YP such that B = XPY

>
P , supp(XP) ⊂ IP , supp(YP) ⊂ JP .

Define A′ = A−B. Since supp(A) ⊆ SP′ and supp(B) ⊆ SP ⊆ SP′ we have supp(A′) ⊆ SP′ .
Moreover by definition A′SP = 0, hence supp(A′) ⊆ SP′′ . By the induction hypothesis on p
there are XP′′ , YP′′ such that A′ = XP′′Y

>
P′′ , supp(XP′′) ⊂ IT ′′ , supp(YP′′) ⊂ JT ′′ where

T ′′ = ∪P ′∈P′′P ′.
Defining X = XP +XP′′ and Y = YP + YP′′ we obtain supp(X) ⊂ IT ′′ ∪ IP = IT ′ , supp(Y) ⊂
JT ′′ ∪ JP = JT ′ . Moreover, we have:

XY > = XPY
>
P +XP′′Y

>
P′′ = B +A′ = A

B.3 Proof of Theorem 3.3

First, we decompose the factors X and Y using the taxonomy of indices from Definition 3.5.
Definition B.1. Given IT , JT and Ii

T̄
, J i
T̄
, i = 1, 2 as in Definition 3.5, consider (X,Y) a feasible

solution of matrix factorization with fixed support (i.e., supp(X) ∈ I, supp(Y) ∈ J), we denote:

1) XT = X � IT , Xi
T̄

= X � Ii
T̄

, for i = 1, 2.

2) YT = Y � IT , Y iT̄ = Y � Ii
T̄

, for i = 1, 2.

with � the Hadamard product between a matrix and a support constraint (introduced in Section 1.1).

The following is a technical result.
Lemma B.2. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider I, J, T,ST ,SP as in Definition 3.2,
XT , X

i
T̄
, YT , Y

i
T̄

as in Definition 3.4 and assume that for all k ∈ T̄ , S ′k is rectangular.

It holds:

XY > � 1ST = XY > − (X1
T̄)(Y 1

T̄)> = XTY
>
T +

∑
(i,j)6=(1,1)

(Xi
T̄)(Y j

T̄
)>, (14)

XY > � 1SP\ST = (X1
T̄)(Y 1

T̄)>, (15)

XY > � 1S̄P = 0. (16)

Proof. Since IT , I1
T̄
, I2
T̄

form a partition of I (and similarly JT , J1
T̄
, J2
T̄

form a partition of J), one
can write X and Y as:

X = XT +X1
T̄ +X2

T̄ , Y = YT + Y 1
T̄ + Y 2

T̄ .

Since supp(XT) ⊆ IT , supp(Xi
T̄

) ⊆ IT̄ , supp(YT) ⊆ JT , supp(Y i
T̄

) ⊆ JT̄ , i = 1, 2, the product
XY > can be decomposed as:

XY > = XTY
>
T +

∑
1≤i,j≤2

(Xi
T̄)(Y j

T̄
)>. (17)

To prove all the three points of the lemma, it is sufficient to show that:

17

a) supp((X1
T̄

)(Y 1
T̄

)>) ⊆ SP \ ST .

b) All the remaining components in Equation (17) (namely XTY
>
T and (Xi

T̄
)(Y j

T̄
)>, (i, j) 6=

(1, 1)) have their supports included in ST .

With these properties, the proof of the three points of the lemma is immediate since:

1) XY > � 1ST = (XTY
>
T +

∑
1≤i,j≤2(Xi

T̄
)(Y j

T̄
)>)� 1ST = XTY

>
T +

∑
(i,j)6=(1,1)(X

i
T̄

)(Y j
T̄

)>.

2) XY > � 1SP\ST = (XTY
>
T +

∑
1≤i,j≤2(Xi

T̄
)(Y j

T̄
)>)� 1SP\ST = (X1

T̄
)(Y 1

T̄
)>.

3) XY > � 1S̄P = (XTY
>
T +

∑
1≤i,j≤2(Xi

T̄
)(Y j

T̄
)>)� 1S̄P = 0.

To be able to see why a) and b) are true, we first remark that supp(XTY
>
T) ⊆ ST (definition of ST

in Definition 3.2). In addition, considering a matrix index (i, j), we have:

((X1
T̄)(Y 2

T̄)>)i,j =

r∑
k=1

(X1
T̄)i,k(Y 2

T̄)j,k =
∑

k|(j,k)∈J2
T̄

Xi,kYj,k (18)

Due to the hypothesis of rectangular support outside CEC (Definition 3.4), we have: SP \ ST =
∪`∈T̄R` × C`. If (i, j) ∈ SP \ ST , Equation (18) shows that ((X1

T̄
)(Y 2

T̄
)>)i,j = 0 since there

is no such k ∈ J2
T̄

due to the definition of J2
T̄

). Moreover, supp((X1
T̄

)(Y 2
T̄

)>) ⊆ SP (since
supp(X1

T̄
) ⊆ I, supp(Y 2

T̄
) ⊆ J). Thus, it shows that supp((X1

T̄
)(Y 2

T̄
)>) ⊆ SP \ (SP \ ST) = ST .

We can proceed similarly to prove supp((X2
T̄

)(Y 2
T̄

)>), supp((X2
T̄

)(Y 1
T̄

)>) ⊆ ST .

Finally, we rewrite Equation (18) for (i, j) ∈ supp((X1
T̄

)(Y 1
T̄

)>):

((X1
T̄)(Y 1

T̄)>)i,j =
∑

k|(j,k)∈J1
T̄

(i,k)∈I1
T̄

Xi,kYj,k

Therefore, (i, j) ∈ ∪`∈T̄R` × C` (by definition of I1
T̄
, J1
T̄

). This shows that supp((X1
T̄

)(Y 1
T̄

)>) ⊆
SP \ ST .

Here, we present the proof of Theorem 3.3.

Proof of Theorem 3.3. Consider XT , YT , X
i
T̄
, Y i
T̄
, i = 1, 2 defined as in Definition B.1. Let µ1 and

µ2 be the infimum value of Problem (1) with the first instance (A, I, J) and with the second instance
(A′, I1

T̄
, J1
T̄

) (with A′ = A� 1S̄T) respectively.

First, we remark that I1
T̄

and J1
T̄

satisfy the assumptions of Theorem 3.1. Indeed, it holds
Sk(I1

T̄
, J1
T̄

) = Sk(I, J) \ ST = S ′k by construction. For any two indices k, l ∈ T̄ , the repre-
sentative rank-one supports are either equal (S ′k = S ′l) or disjoint (S ′k ∩ S ′l = ∅) by assumption. That
shows why I1

T̄
and J1

T̄
satisfy the assumptions of Theorem 3.1.

Next, we prove that µ1 = µ2. Since (ST ,SP \ ST , S̄P) form a partition of JmK × JnK, we have
1C � 1D = 0, C 6= D,C,D ∈ {ST ,SP \ ST , S̄P}. From the definition of A′ it holds A′ � 1S̄P =

A � 1S̄P and A′ � 1ST = 0. Moreover, from Lemma B.2 it holds (X1
T̄

)(Y 1
T̄

)> � 1ST∪S̄P =

XY > � 1SP\ST � 1ST∪S̄P = 0.

18

We then obtain:

‖A′ −X1
T̄ (Y 1

T̄)>‖2

= ‖(A′ −X1
T̄ (Y 1

T̄)>)� 1ST ‖2 + ‖(A′ −X1
T̄ (Y 1

T̄)>)� 1SP\ST ‖
2 + ‖(A′ −X1

T̄ (Y 1
T̄)>)� 1S̄P‖

2

= ‖(A′ − (X1
T̄)(Y 1

T̄)>)� 1SP\ST ‖
2 + ‖A′ � 1S̄P‖

2

(15)
= ‖(A−XY >)� 1SP\ST ‖

2 + ‖A� 1S̄P‖
2

(14)
= ‖(A−XY >)� 1SP\ST ‖

2 + ‖(A−XY >)� 1S̄P‖
2

≤ ‖(A−XY >)� 1ST ‖2 + ‖(A−XY >)� 1SP\ST ‖
2 + ‖(A−XY >)� 1S̄P‖

2

= ‖(A−XY >)‖2
(19)

Therefore, for any solution (X,Y) satisfying supp(X) ⊆ I, supp(Y) ⊆ J , we can choose X ′ =
X1
T̄
, Y ′ = Y 1

T̄
(having supp(X ′) ⊆ I1

T̄
, supp(Y ′) ⊆ J1

T̄
) such that ‖A−XY >‖ ≥ ‖A′ −X ′Y ′>‖.

This shows µ1 ≥ µ2.

On the other hand, given any solution (X ′, Y ′) satisfying supp(X ′) ⊆ I1
T̄
, supp(Y ′) ⊆ J1

T̄
, we

can construct a solution (X,Y) in which supp(X) ⊆ I, supp(Y) ⊆ J such that the equality
‖A−XY >‖2 = ‖A′ −X ′Y ′>‖2 holds. To do that, we construct (X,Y) to have an equality in the
second last line of Equation (19). Since X = XT +X1

T̄
+X2

T̄
, Y = YT + Y 1

T̄
+ Y 2

T̄
, we choose:

1) X1
T̄

= X ′, Y 1
T̄

= Y ′,

2) X2
T̄
, Y 2
T̄

arbitrarily,

3) XT and YT such that:

XTY
>
T = (A−

∑
(i,j)6=(1,1)

(Xi
T̄)(Y j

T̄
)>)� 1ST

which is possible due to Lemma 3.2.

By Lemma B.2, with this choice we have:

(A−XY >)� 1ST = (A� 1ST)− (XY > � 1ST)

= A� 1ST −
∑

(i,j) 6=(1,1)

(Xi
T̄)(Y j

T̄
)> −XTY

>
T

= (A−
∑

(i,j)6=(1,1)

(Xi
T̄)(Y j

T̄
)>)� 1ST −XTY

>
T = 0

(20)

Therefore ‖A − XY >‖2 = ‖A′ − X ′Y ′>‖2 and so µ2 ≥ µ1. We have successfully proved that
µ1 = µ2. In addition, given (X,Y) an optimal solution of Problem (1) with instance (A, I, J), we
have shown how to construct an optimal solution (X ′, Y ′) with instance (A� 1S̄T , I

1
T̄
, J1
T̄

) and vice
versa. That completes our proof.

The following Corollary is a direct consequence of the proof of Theorem 3.3.

Corollary B.1. With the same assumptions and notations as in Theorem 3.3, a feasible point (X,Y)
(i.e., such that supp(X) ⊆ I, supp(Y) ⊆ J) is an optimal solution of Problem (1) if and only if:

1) (X � I1
T̄
, Y � J1

T̄
) is an optimal solution of Problem (1) with data (A� 1S̄T , I

1
T̄
, J1
T̄

).

2) The following equation holds: (A−XY >)� 1ST = 0

19

In the proof of Theorem 3.3, one can choose X2
T̄
, Y 2
T̄

arbitrarily. If we choose X2
T̄

= 0, Y 2
T̄

= 0,
thanks to Equation 20, XT and YT has to satisfy:

XTY
>
T = (A−

∑
(i,j)6=(1,1)

(Xi
T̄)(Y j

T̄
)>)� 1ST

= (A− (X1
T̄)(Y 1

T̄)>)� 1ST
= A� 1ST

Last equation is due to Lemma B.2, Equation 15 implying supp((X1
T̄

)(Y 1
T̄

)>) ⊆ SP \ ST .

C Proofs for Section 4

This section contains the proofs of the most technical results of the paper. Our results rely on the
classical ones on the landscape of the function L(X,Y) = ‖A − XY >‖2 where X,Y have no
support constraints (low rank matrix approximation case). Those results will be introduced below.

C.1 Previous results on the landscape

For the non-existence of spurious local minima in the classical case, previous works [7, 23] used the
fact that the Hessian is not positive semi-definite (PSD) to prove that a critical point (but not a global
minimizer) is a saddle point. To prove the non-existence of spurious local valleys, the following
lemma was employed in previous works:
Lemma C.1 (Sufficient condition for the non-existence of any spurious local valley [22, Lemma 2]).
Consider a continuous function L : Rd → R. Assume that, for any initial parameter x̃ ∈ Rd, there
exists a continuous path f : t ∈ [0, 1]→ Rd such that:

a) f(0) = x̃.

b) f(1) ∈ arg minx∈Rd L(x).

c) The function L ◦ f : t ∈ [0, 1]→ R is non-increasing.

Then there is no spurious local valley in the landscape of function L.

The proof can be found in [22]. The main idea of the proof is: given any initial point, if one can
find a continuous path connecting the initial point to a global minimizer and the loss function is
non-increasing on the path, then there does not exist any spurious local valley.

Conversely, we generalize an idea from [22] into the following lemma, which gives a sufficient
condition for the existence of a spurious local valley:
Lemma C.2 (Sufficient condition for the existence of a spurious local valley). Consider a continuous
function L : Rd → R whose global minimum is attained. Assume we know three subsets S1, S2, S3 ⊂
Rd such that:

1) The global minima of L are in S1.

2) Every continuous path from S3 to S1 passes through S2.

3) inf
x∈S2

L(x) > inf
x∈S3

L(x) > inf
x∈S1

L(x).

Then L has a spurious local valley.

Proof. Denote Σ = {x | L(x) = infx∈Rd L(θ)} the set of global minimizers of L. Σ is not empty
due to the assumption that the global minimum is attained.

Since infx∈S2
L(x) > infx∈S3

L(x), there exists τ ∈ S3 such that L(τ) < infx∈S2
L(x). Consider

Φ the path-connected component of the sublevel set {x | L(x) ≤ L(τ)} that contains τ . It is sufficient
to prove that Φ ∩ Σ = ∅.
Indeed, by contradiction, let’s assume that there exists τ ′ ∈ Φ ∩ Σ. By definition, there exists a
continuous function f : [0, 1]→ Φ such that f(0) = τ ∈ S3, f(1) = τ ′ ∈ S1. Due to the assumption

20

that every continuous path from S3 to S1 has to pass through a point in S2, there must exist t ∈ (0, 1)
such that f(t) ∈ S2 ∩ Φ. Therefore, L(f(t)) ≤ L(τ) (since f(t) ∈ Φ) and L(f(t)) > L(τ) (since
f(t) ∈ S2), which is a contradiction.

To finish this section, we formally recall previous results which are related to Problem (1) and will be
used in our subsequent proofs. Previous works focused on low rank matrix approximation (or full
support matrix factorization) 5. The questions of the existence of spurious local valleys and spurious
local minima were addressed for full support matrix factorization and deep linear neural networks
[22, 13, 23, 7]. We present only results related to our problem of interest.

Theorem C.3 (No spurious local valleys in linear networks [22]). Consider linear neural networks
of any depth K ≥ 1 and of any layer widths pk ≥ 1 and any input - output dimension n,m ≥ 1 with
the following form:

Φ(b, θ) = WK . . .W1b

where θ = (Wi)
K
i=1, and b ∈ Rn is a training input sample. With the squared loss function, there

is no spurious local valley. More specifically, the function L(θ) = ‖Φ(B, θ) − A‖2 satisfies the
condition of Lemma C.1 for any matrices A ∈ Rm×N and B ∈ Rn×N (A and B are the whole sets
of training output and input respectively).

Theorem C.4 (No spurious local minima in shallow linear networks [23]). Let B ∈ Rd0×N , A ∈
Rd2×N be input and output training examples. Consider the optimization problem:

Minimize
X∈Rd0×d1 ,

Y ∈Rd1×d2

L(X,Y) = ‖XY B −A‖2

IfB is full row rank, then function f has no spurious local minimum. More specifically, a critical point
of f which is not global minimizer is a saddle point (i.e., its Hessian is not positive semi-definite).

Both theorems are valid for a particular case of matrix factorization with fixed support: full support
matrix factorization. Indeed, given a factorized matrix A ∈ Rm×n, in Theorem C.3, if K = 2, B =
In(n = N), then the considered function is L = ‖A − W2W1‖2. This is Problem (1) without
support constraints I and J (and without a transpose on W1, which does not change the nature of
the problem). Theorem C.3 guarantees that L satisfies the conditions of Lemma C.1, thus has no
spurious local valley.

Similarly, in Theorem C.4, if B = Id0(d0 = N) (therefore, B is full row rank), we return to the
same situation of Theorem C.3. In general, Theorem C.4 claims that the landscape of the full support
matrix factorization problem has the strict saddle point property and thus, does not have spurious
local minima.

However, once we turn to Problem (1) with arbitrary I and J , such benign landscape is not guaranteed
anymore, as we will show in Example 4.2. Our work can be considered as a generalization of previous
results [23, 22, 7].

C.2 Proof of Theorem 4.1

Recall that under the assumption of Theorem 3.1, all the variables to be optimized are
{(XRP ,P , YCP ,P)}P∈P (P,P are defined in Definition 3.2).

We assume P = {P1, P2, . . . , P`}, Pi ⊆ JrK, i ≤ `. From Equation (13), we have:

‖A−XY >‖2 =

(∑
P∈P
‖ARP ,CP

−XRP ,PY
>
CP ,P ‖

2

)
+ ‖A� S̄P‖2 (21)

Therefore, the function L(X,Y) is a sum of functions LP (XRP ,P , YCP ,P) := ‖ARP ,CP
−

XRP ,PY
>
CP ,P

‖2, which do not share parameters and are instances of the full support matrix factor-
ization problem. The global minimizers of L are {(X?

RP ,P
, Y ?CP ,P

)}P∈P , where (X?
RP ,P

, Y ?CP ,P
) is

any global minimizer of ‖ARP ,CP
−XRP ,PY

>
CP ,P

‖2.

5Since previous works also considered the case r ≥ m,n, low rank approximation might be misleading
sometimes. That is why we occasionally use the name full support matrix factorization to emphasize this fact.

21

1) Non-existence of any spurious local valley: By Theorem C.3, from any initial solution
(X0

RP ,P
, Y 0
CP ,P

), there exists a continuous function fP that satisfies the conditions in Lemma
C.1, which are:

i) fP (0) = (X0
RP ,P

, Y 0
CP ,P

).
ii) fP (1) = (X?

RP ,P
, Y ?CP ,P

).
iii) LP ◦ fP : [0, 1]→ R is non-increasing.

Consider the continuous function f = (fP1 , . . . , fP`
). It satisfies the assumptions of Lemma C.1,

which shows the non-existence of any spurious local valley.

2) Non-existence of any spurious local minimum: Due to the decomposition in Equation (21), the
gradient and Hessian of L(X,Y) have the following form:

∂L

∂XRP ,P
=

∂LP
∂XRP ,P

,
∂L

∂YCP ,P
=

∂LP
∂YCP ,P

, ∀P ∈ P

H(L(X,Y)) =

H(LP1
(XRP1

,P1
, YCP1

,P1
)) . . . 0

...
. . .

...
0 . . . H(LP`

(XRP`
,P`
, YCP`

,P`
))

If (X,Y) is a critical point of L(X,Y), (XRP ,P , YCPP) has to be a critical point of the func-
tion LP for all P ∈ P . Provided that (X,Y) is not a global minimizer of L(X,Y), there
exists P ∈ P such that (XRP ,P , YCP ,P) is not a global minimizer of LP . By Theorem C.4,
H(LP)|(XRP ,P ,YCP ,P) is not positive semi-definite. Hence, H(L)|(X,Y) is not positive semi-
definite either, which implies that (X,Y) it is not a spurious local minimum as well.

C.3 Proof of Theorem 4.2

Sketch of the proof of Theorem 4.2. The proof of the non-existence of any spurious local valley is
based on Lemma C.1 (i.e., from any initial solution (X0, Y 0), there is a continuous non-increasing
path that leads to the optimal solution). The continuous path is constructed by concatenating:

1) A continuous path f1, with non-increasing cost L ◦ f1, that connects (X0, Y 0) to some pair
(X1, Y 1) satisfying:

(A−X1(Y 1)>)� 1ST = 0.

The function f1 is built in Lemma C.8.

2) A continuous path f2, with non-increasing cost L ◦ f2, that connects (X1, Y 1) to a global
minimizer (X∗, Y ∗). The function f2 is built in Lemma C.9.

Before jumping to the construction of f1, f2, we justify in Lemma C.5 an assumption that will
simplify the proof: we assume that for all P ∈ P?, either X0

RP ,P
or Y 0

CP ,P
has full row rank.

Lemma C.5. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r consider T and ST as in Definition 3.2 and a
feasible point (X,Y). There exists a continuous function f(t) = (Xf (t), Yf (t)), t ∈ [0, 1] such that

I) (Xf (0), Yf (0)) = (X,Y);

II) supp(Xf (t)) ⊆ I, supp(Yf (t)) ⊆ J, ∀t ∈ [0, 1];

III) Xf (t)(Yf (t))> = XY >,∀t ∈ [0, 1];

IV) for each P ∈ P?, (Xf (1))RP ,P or (Yf (1))CP ,P has full row rank.

The proof relies on two intermediate results that we state first. The idea of Lemma C.6 can be found in
[22]. Since it is not formally proved as a lemma or theorem, we reprove it here for self-containedness.
Lemma C.6. Let X ∈ RR×p, Y ∈ RC×p,min(R,C) ≤ p. Then there exists a continuous function
f(t) = (Xf (t), Yf (t)) on [0, 1] such that:

• (Xf (0), Yf (0)) = (X,Y).

22

• XY > = Xf (t)(Yf (t))>,∀t ∈ [0, 1].

• Xf (1) or Yf (1) has full row rank.

The proof of Lemma C.6 is postponed to Section D.1.
Corollary C.1. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, a feasible point (X,Y), and P ∈ P? as in
Definition 3.2, there is a continuous function f(t) = (Xf (t), Yf (t)), t ∈ [0, 1] such that

• (Xf (0), Yf (0)) = (XP , YP);

• supp(Xf (t)) ⊆ IP , supp(Yf (t)) ⊆ JP .

• Xf (t)(Yf (t))> = XP (YP)>,∀t ∈ [0, 1];

• (Xf (1))RP ,P or (Yf (1))CP ,P has full row rank.

Proof of Corollary C.1. WLOG, up to permuting columns, we can assume P = J|P |K, R := RP =
J|RP |K and C := CP = J|CP |K (RP and CP are defined in Definition 3.2), and the second condition
will be satisfied if we build functions Xf (t) and Yf (t) of the form:

Xf (t) =

(
X ′f (t) 0
0 0

)
, Yf (t) =

(
Y ′f (t) 0
0 0

)
with X ′f (t) ∈ RR×P , Y ′f (t) ∈ RC×P . Since P is a CEC, we have p ≥ min(R,C) hence we can use
Lemma C.6 to build X ′f (t), Y ′f (t) such that the other conditions are satisfied.

Proof of Lemma C.5. First, we decompose X and Y as:

X = XT̄ +
∑
P∈P?

XP , Y = YT̄ +
∑
P∈P?

YP

and observe that, since T̄ and P ∈ P? form a partition of JrK, the product XY > can be written as:

XY > = XT̄Y
>
T̄ +

∑
P∈P?

XPY
>
P .

For each P ∈ P? we use Corollary C.1 to build continuous functions (XP
f (t), Y Pf (t)) such that:

1. (XP
f (0), Y Pf (0)) = (XP , YP).

2. supp(XP
f (t)) ⊆ IP , supp(Y Pf (t)) ⊆ JP ,∀t ∈ [0, 1].

3. XP
f (t)(Y Pf (t))> = XPY

>
P ,∀t ∈ [0, 1].

4. (XP
f (1))RP ,P or (Y Pf (1))CP ,P has full row rank.

and we define (Xf (t), Yf (t)) as:

Xf (t) = XT̄ +
∑
P∈P?

XP
f (t), Y (t) = YT̄ +

∑
P∈P?

Y Pf (t)

To conclude, it is immediate to check that (Xf (t), Yf (t)) satisfies all the conditions I)− IV).

We are now almost equiped to proceed to the construction of the two continuous paths f1 and f2

announced in the sketch of the proof of Theorem 4.2. The last ingredient is the following technical
lemma, which proof is postponed to Section D.2
Lemma C.7. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T , ST as in Definition 3.2. For any
feasible point (X,Y) in which ∀P ∈ P?, XRP ,P or YCP ,P has full row rank and any continuous
function g : [0, 1]→ Rm×n satisfying supp(g(t)) ⊆ ST and g(0) = XTYT , there exists a continuous
function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) (Xf and Yf are also functions) such
that:

23

1) supp(Xf (t)) ⊆ IT , supp(Yf (t)) ⊆ JT .

2) Xf (0) = XT , Yf (0) = YT .

3) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].

4) ‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2 ≤ C‖g(z)− g(t)‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2)).

The continuous path f1 is built in the following lemma.
Lemma C.8. Under the assumption of Theorem 3.3, for any feasible point (X,Y) in which ∀P ∈
P?, XRP ,P or YCP ,P has full row rank, there exists a continuous function f : [0, 1]→ Rm×r×Rn×r :
f(t) = (Xf (t), Yf (t)) such that:

1) supp(Xf (t)) ⊆ I, supp(Yf (t)) ⊆ J .

2) Xf (0) = X,Yf (0) = Y .

3) L(Xf (t), Yf (t)) = ‖A−Xf (t)Yf (t)>‖2 is non-increasing.

4) (A−Xf (1)(Yf (1))>)� 1ST = 0.

Proof. We use the notations XT = X � IT , XT̄ = X � IT̄ (YT , YT̄ are defined analogously).
Denoting Z = XY >, we construct f such that Xf (t)Yf (t)> = B(t), where B(t) is defined as:

B(t) = Z � 1S̄T + (At+ Z(1− t))� 1ST

Indeed, such a function f makes L(Xf (t), Yf (t)) non-increasing:

‖A−Xf (t)Yf (t)>‖2 = ‖A−B(t)‖2

= ‖(A− Z)� 1S̄T ‖
2 + (1− t)2‖(A− Z)� 1ST ‖2

(22)

Thus, the rest of the proof is devoted to show that such a function f exists by using Lemma
C.7. Consider the function g(t) = B(t) − XT̄ (YT̄)>. We have that g(t) is continuous, g(0) =
B(0)−XT̄ (YT̄)> = Z −XT̄ (YT̄)> = XT (YT)> and:

g(t)� 1S̄T = (B(t)−XT̄ (YT̄)>)� 1S̄T

= (Z −XT̄ (YT̄)>)� 1S̄T

= (XTY
>
T)� 1S̄T = 0

which shows supp(g(t)) ⊆ ST . In addition to the hypotheses of full row rank of either XRP ,P or
YCP ,P , by invoking Lemma C.7, there exists a function (XC

f (t), Y Cf (t)) such that:

1) supp(XC
f (t)) ⊆ IT , supp(Y Cf (t)) ⊆ JT .

2) XC
f (0) = XT , Y

C
f (0) = YT .

3) g(t) = XC
f (t)(Y Cf (t))>,∀t ∈ [0, 1].

We can define our desired function (Xf (t), Yf (t)) as:

Xf (t) = XT̄ +XC
f (t), Y = YT̄ + Y Cf (t)

and show that it satisfies all the conditions. The first condition is easily verified due to the constraint
on the support of XC

f (t), Y Cf (t) and X,Y . The second condition is satisfied since:

Xf (0) = XT̄ +XC
f (0) = XT̄ +XT = X

Yf (0) = YT̄ + Y Cf (0) = YT̄ + YT = Y

24

The third condition results from Equation (22) and the following equation:

Xf (t)(Yf (t))> = XT̄Y
>
T̄ +XC

f (t)(Y Cf (t))> = XT̄Y
>
T̄ + g(t) = B(t)

The last condition is due to the definition of B(t):

(A−Xf (1)(Yf (1))>)� 1ST = (A−B(1))� 1ST
= (A− Z � 1S̄T −A� 1ST)� 1ST = 0

The second continuous path, f2, is built in the following lemma.
Lemma C.9. Under the assumption of Theorem 3.3, for any feasible point (X,Y) in which ∀P ∈
P?, XRP ,P or YCP ,P has full row rank and verify: (A−XY >)�1ST = 0, there exists a continuous
function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:

1) supp(Xf (t)) ⊆ I, supp(Yf (t)) ⊆ J .

2) Xf (0) = X1, Yf (0) = Y 1.

3) L(X(t), Y (t)) = ‖A−X(t)Y (t)>‖2 is non-increasing.

4) (Xf (1), Yf (1)) is an optimal solution of L(X,Y).

Proof. Consider XT , X
i
T̄
, YT , Y

i
T̄
, i = 1, 2 as in Definition B.1. We redefine A′ = A � 1S̄T , I

′ =

I1
T̄
, J ′ = J1

T̄
as introduced in Theorem 3.3.

In light of Corollary B.1, an optimal solution (X∗, Y ∗) has the following form:

1) (X∗)1
T̄

= X∗ � I1
T̄
, (Y ∗)1

T̄
= Y ∗ � J1

T̄
is an optimal solution of the instance of Problem

(1) with (A′, I ′, J ′).

2) (X∗)2
T̄

= X∗ � I2
T̄
, (Y ∗)2

T̄
= Y ∗ � J2

T̄
can be arbitrary.

3) (X∗)T = X∗ � IT , (Y ∗)T = Y ∗ � JT satisfy:

X∗T (Y ∗T)> = (A−
∑

(i,j)6=(1,1)

(X∗)iT̄ ((Y ∗)j
T̄

)>)� 1ST

Since (I ′, J ′) has its support constraints satisfying the assumptions of Theorem 3.1 as shown in
Theorem 3.3, by Theorem 4.1, there exists a function (X T̄

f (t), Y T̄f (t)) such that:

1) supp(X T̄
f (t)) ⊆ I1

T̄
, supp(Y T̄f (t)) ⊆ J1

T̄
.

2) X T̄
f (0) = X1

T̄
, Y T̄f (0) = Y 1

T̄
.

3) L′(X T̄
f (t), Y T̄f (t)) = ‖A′ −X T̄

f (t)Y T̄f (t)>‖2 is non-increasing.

4) (X T̄
f (1), Y T̄f (1)) is an optimal solution of the instance of Problem (1) with (A′, I ′, J ′).

Consider the function g(t) =
(
A− (X T̄

f (t) +X2
T̄

)(Y T̄f (t) + Y 2
T̄

)>
)
� 1ST . This construction

makes g(0) = XTY
>
T . Indeed,

g(0) =
(
A− (X T̄

f (0) +X2
T̄)(Y T̄f (0) + Y 2

T̄)>
)
� 1ST

=
(
A− (X1

T̄ +X2
T̄)(Y 1

T̄ + Y 2
T̄)>

)
� 1ST

= A� 1ST − (
∑

1≤i,j≤2

Xi
T̄ (Y j

T̄
)>)� 1ST

(1)
= (XY > −

∑
1≤i,j≤2

Xi
T̄ (Y j

T̄
)>)� 1ST

(2)
= XTY

>
T

25

where (1) holds by the hypothesis of the lemma (A−XY >)� 1ST = 0, and (2) holds by Equation
(17) and the fact that supp(XTY

>
T) ⊆ ST . With the assumption that ∀P ∈ P?, XRP ,P or YCP ,P

has full row rank of this lemma, that g(t) continuous, supp(g(t)) ⊆ ST and g(0) = XTY
>
T , there

exist functions (XC
f (t), Y Cf (t)) satisfying the assumptions of Lemma C.7:

1) supp(XC
f (t)) ⊆ IT , supp(Y Cf (t)) ⊆ JT .

2) XC
f (0) = XT , Y

C
f (0) = YT .

3) g(t) = XC
f (t)Y Cf (t)>,∀t ∈ [0, 1].

Finally, one can define the function Xf (t), Yf (t) as:

Xf (t) = X T̄
f (t) +XC

f (t) +X2
T̄ , Yf (t) = Y T̄f (t) + Y Cf (t) + Y 2

T̄

Here is the verification of conditions: The first condition is valid due to the supports of
XP
f (t), Y Pf (t), P ∈ {T̄ , C} and X2

T̄
, Y 2
T̄

. The second condition is satisfied since:

Xf (0) = X T̄
f (0) +XC

f (0) +X2
T̄ = X1

T̄ +XT +X2
T̄ = X

Yf (0) = Y T̄f (0) + Y Cf (0) + Y 2
T̄ = Y 1

T̄ + YT + Y 2
T̄ = Y

The third condition is valid since:

‖A−Xf (t)Yf (t)>‖2 = ‖A−XC
f (t)(Y Cf (t))> − (X T̄

f (t) +X2
T̄)(Y T̄f (t) + Y 2

T̄)>‖2

= ‖g(t)−XC
f (t)Y Cf (t)>‖2 + ‖(A−X T̄

f (t)(Y T̄f (t))>)� 1SP\ST ‖
2 + ‖A� 1S̄P‖

2

= ‖(A′ −X T̄
f (t)(Y T̄f (t))>)� 1SP\ST ‖

2 + ‖A′ � 1S̄P‖
2

(19)
= ‖A′ −X T̄

f (t)(Y T̄f (t))>‖2

Since ‖A′−X T̄
f (t)(Y T̄f (t))>‖2 is non-increasing, the function ‖A−Xf (t)Yf (t)>‖2 is non-increasing

as well. Last but not least, (Xf (1), Yf (1)) is indeed a global minimizer since it satisfies all the
optimality condition in Corollary B.1 by definition of XP

f (t), Y Pf (t), P ∈ {T̄ , C}.

We now have all the elements to present the proof of the main result.

Proof of Theorem 4.2. Given any initial point (X0, Y 0), we make the assumption that for all P ∈ P?,
either X0

RP ,P
or Y 0

CP ,P
has full row rank. Indeed, if there exists P ∈ P? that does not have this

property, we can employ Lemma C.5 to follow a continuous path along which the product of
XY > = X0(Y 0)> does not change (thus, the function L(X,Y) is constant) and arrive at a point
satisfying this additional assumption.

With this additional assumption, one can employ Lemma C.8 to build a continuous path f1(t) =
(X1(t), Y1(t)), such that t 7→ L(X1(t), Y1(t)) is non-increasing, that connects (X0, Y 0) to a point
(X1, Y 1) satisfying:

(A−X1(Y 1)>)� 1ST = 0.

Again, one can assume that ∀P ∈ P?, X1
RP ,P

or Y 1
CP ,P

has full row rank (one can invoke Lemma
C.5 one more time). Therefore, (X1, Y 1) satisfies the conditions of Lemma C.9 . Hence, there
exists a continuous path f2(t) = (X2(t), Y2(t)) that makes L(X2(t), Y2(t)) non-increasing and that
connects (X1, Y 1) to (X∗, Y ∗), a global minimizer.

Finally, since the concatenation of f1 and f2 satisfies the assumptions of Lemma C.1, we can conclude
that there is no spurious local valley in the landscape of ‖A−XY >‖2.

26

C.4 Proof of Theorem 4.3

The following corollary is necessary for the proof of Theorem 4.3 (it will be proved in Section D.3).

Corollary C.2. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T , ST as in Definition 3.2. Given
any feasible point (X,Y) in which ∀P ∈ P?, XRP ,P or YCP ,P has full row rank.

For any B satisfying supp(B) ⊆ ST , there exists (X∗, Y ∗) such that:

1) supp(X∗) ⊆ IT , supp(Y ∗) ⊆ JT .

2) X∗(Y ∗)> = B.

3) ‖XT −X∗‖2 + ‖YT − Y ∗‖2 ≤ C‖XTY
>
T −B‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2)).

Sketch of the proof of Theorem 4.3. To prove this theorem, we proceed through two main steps:

1) First, we show that any local minimum satisfies:

(A−XY >)� 1ST = 0 (23)

2) Second, we show that if a point (X,Y) satisfies the full-rank condition of the theorem and
Equation (23), then it cannot be a spurious local minimum.

Finally, if (X,Y) does not satisfy the full-rank conditions, Lemma C.5 yields a path along which L
is constant that joins (X,Y) to some (X ′, Y ′) which satisfies the full-rank conditions.

Proof. As mentioned in the sketch of the proof, given any (X,Y) that does not satisfy the full-rank
conditions, Lemma C.5 shows the existence of a path f along which L is constant and f connects
(X,Y) to some (X ′, Y ′) which satisfies the full-rank conditions. Therefore, this proof will be entirely
devoted to show that if the full-rank conditions are satisfied with a feasible solution (X,Y), then
(X,Y) cannot be a spurious local minimum. This fact will be shown by the two following steps:

FIRST STEP: Consider the function L(X,Y), we have:

L(X,Y) = ‖A−XY >‖2

= ‖A−
∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄ ‖

2

If (X,Y) is truly a local minimum, then (XP , YP) is also the local minimum of the following
function:

L′(XP , YP) = ‖(A−
∑
P ′ 6=P

XP ′Y
>
P ′ −XT̄Y

>
T̄)−XPY

>
P ‖2

where L′ is simply L but we optimize only with respect to (XP , YP) and we keep fixed all the
remaining coefficients. In other words, (XP , YP) is a local minimum of the problem:

Minimize
X′∈Rm×r,Y ′∈Rn×r

L′(X ′, Y ′) = ‖B −X ′Y ′>‖2

Subject to: supp(X ′) ⊆ IP
supp(Y ′) ⊆ JP

where B = A−
∑
P ′ 6=P XP ′Y

>
P ′ −XT̄YT̄ . Since all columns of IP (resp. of JP) are identical, all

rank-one contribution supports are totally overlapping. Thus, all local minima are global minima
(Theorem 4.1). Global minima are attained when:

XPY
>
P = B � 1SP

27

due to the expressivity of a CEC in Lemma B.1. Thus, for any P ∈ P?, ∀(i, j) ∈ SP , we have:

0 = (B −XPY
>
P)i,j = (A−

∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄)i,j = (A−XY >)i,j

which implies Equation (23).

SECOND STEP: In this step, we assume that Equation (23) holds. Consider XT , X
i
T̄
, YT , Y

i
T̄
, i =

1, 2 as in Definition 3.5. Let A′ = A� 1S̄T , I
′ = I1

T̄
, J ′ = J1

T̄
.

We distinguish two cases. In the first case, (X1
T̄
, Y 1
T̄

) is an optimal solution of the instance of Problem
(1) with (A′, I ′, J ′). Then, by Corollary B.1, (X,Y) is an optimal solution of Problem (1), hence it
cannot be a spurious local minimum. We now focus on the second case, where (X1

T̄
, Y 1
T̄

) is not the
optimal solution of the instance of Problem (1) with (A′, I ′, J ′). We show that in this case, in any
neighborhood of (X,Y), there exists a point (X ′, Y ′) such that supp(X ′) ⊆ I , supp(Y ′) ⊆ J ′ and
L(X,Y) > L(X ′, Y ′). Thus (X,Y) cannot be a local minimum.

Since I1
T̄
, J1
T̄

satisfy the assumptions of Theorem 3.1, Problem (1) has no spurious local minima
(Theorem 4.1). As (X1

T̄
, Y 1
T̄

) is not an optimal solution, it cannot be a local minimum either, i.e., by
definition, in any neighborhood of (X1

T̄
, Y 1
T̄

), there exists a feasible solution X̃, Ỹ , supp(X̃) ⊆ I ′,
such that supp(Ỹ) ⊆ J ′ and

‖A′ −X1
T̄ (Y 1

T̄)>‖2 > ‖A′ − X̃Ỹ >‖2 (24)

By Equation (19), we have:

‖A′ − (X1
T̄)(Y 1

T̄)>‖2 = ‖(A′ − (X1
T̄)(Y 1

T̄)>)� 1SP\ST ‖
2 + ‖A′ � 1S̄P‖

2

= ‖(A− (X1
T̄)(Y 1

T̄)>)� 1SP\ST ‖
2 + ‖A� 1S̄P‖

2
(25)

Similarly, we have:

‖A′ − X̃Ỹ >‖2 = ‖(A− X̃Ỹ >)� 1SP\ST ‖
2 + ‖A� 1S̄P‖

2 (26)

Thanks to Equations(24), (25) and (26), we have:

‖(A− (X1
T̄)(Y 1

T̄)>)� 1SP\ST ‖
2 > ‖(A−X̃Ỹ >)� 1SP\ST ‖

2 (27)

Consider the matrix:
B :=

(
A− (X̃ +X2

T̄)(Ỹ + Y 2
T̄)>

)
� 1ST

Since supp(B) ⊆ ST and ∀P ∈ P?, XRP ,P or YCP ,P has full row rank by assumption, by Corol-
lary C.2, there exists (X?, Y ?) such that:

1) supp(X?) ⊆ IT , supp(Y ?) ⊆ JT .

2) X?(Y ?)> = B.

3) ‖XT −X?‖2 + ‖YT − Y ?‖2 ≤ C‖XTY
>
T −B‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2)). We define the point(X ′, Y ′) as:

X ′ = X ′T + (X ′)1
T̄ +X2

T̄ , Y ′ = Y ′T + (Y ′)1
T̄ + Y 2

T̄

with X ′T := X?, Y ′T := Y ?, (X ′)1
T̄

:= X̃, (Y ′)1
T̄

:= Ỹ . The point (X ′, Y ′) still satisfies Equation
(23). Indeed,

(A−X ′(Y ′)>)� 1ST =
(
A−X ′T (Y ′T)> − ((X ′)1

T̄ +X2
T̄)((Y ′)1

T̄ + Y 2
T̄)>

)
� 1ST

= (B −X ′T (Y ′T)>)� 1ST = 0.
(28)

28

It is clear that (X ′, Y ′) satisfies supp(X ′) ⊆ I , supp(Y ′) ⊆ J due to the support of its components
(X ′T , Y

′
T), ((X ′)i

T̄
, (Y ′)i

T̄
), i = 1, 2. Moreover, we have:

‖A−X ′(Y ′)>‖2

= ‖(A−X ′(Y ′)>)� 1ST ‖2 + ‖(A−X ′(Y ′)>)� 1SP\ST ‖
2 + ‖(A−X ′(Y ′)>)� 1S̄P‖

2

(28)
= 0 + ‖(A− (X ′)1

T̄ ((Y ′)1
T̄)>)� 1SP\ST ‖

2 + ‖A� 1S̄P‖
2

(27)
< 0 + ‖(A−X1

T̄ (Y 1
T̄)>)� 1SP\ST ‖

2 + ‖A� 1S̄P‖
2

= ‖A−XY >‖2.

Lastly, we show that (X ′, Y ′) can be chosen arbitrarily close to (X,Y) by choosing (X̃, Ỹ) close
enough to (X1

T̄
, Y 1
T̄

). For this, denoting ε := ‖X1
T̄
− X̃‖2 + ‖Y 1

T̄
− Ỹ ‖2, we first compute

‖X −X ′‖2 + ‖Y − Y ′‖2

= ‖XT −X ′T ‖2 + ‖YT − Y ′T ‖2 + ‖X1
T̄ − (X ′)1

T̄ ‖
2 + ‖Y 1

T̄ − (Y ′)1
T̄ ‖

2

≤ C‖XTY
>
T −B‖2 + ε

Moreover, due to Equation (23), we have:

0 = (A−XY >)� 1ST
(17)
= (A−XTY

>
T −

∑
1≤i,j≤2

(Xi
T̄)(Y j

T̄
)>)� 1ST

= (A−
∑

1≤i,j≤2

(Xi
T̄)(Y j

T̄
)>)� 1ST −XTY

>
T

Therefore, XTY
>
T = [A− (X1

T̄
+X2

T̄
)(Y 1

T̄
+ Y 2

T̄
)>]� 1ST . We have:

‖XTY
>
T −B‖2 = ‖[A− (X1

T̄ +X2
T̄)(Y 1

T̄ + Y 2
T̄)>]� 1ST −B‖2

= ‖[(X̃ +X2
T̄)(Ỹ + Y 2

T̄)> − (X1
T̄ +X2

T̄)(Y 1
T̄ + Y 2

T̄)>]� 1ST ‖2

≤ ‖(X̃ +X2
T̄)(Ỹ + Y 2

T̄)> − (X1
T̄ +X2

T̄)(Y 1
T̄ + Y 2

T̄)>‖2

When ε→ 0, we have ‖(X̃ +X2
T̄

)(Ỹ + Y 2
T̄

)> − (X1
T̄

+X2
T̄

)(Y 1
T̄

+ Y 2
T̄

)>‖ → 0. Therefore, with
ε small enough, one have ‖X − X ′‖2 + ‖Y − Y ′‖2 can be arbitrarily small. This concludes the
proof.

C.5 Proof of Theorem 4.4

Let l 6= k be another rank-one contribution support Sl that contains (i1, j1). WLOG, we can assume
i1 = j1 = 1, i2 = j2 = 2 and k = 1, l = 2.

1) We define the matrix A as:

Ai,j =

{
1 if (i, j) ∈ {(1, 2), (2, 1), (2, 2)}
0 otherwise

Thus, Ai2,j2 = A2,2 6= 0. We have infX,Y ‖A −XY >‖ = 0 and this can be obtained setting
X∗1,1 = X∗2,1 = 1, Y ∗1,1 = Y ∗1,2 = 1, X∗1,2 = 1, Y ∗2,1 = −1 and the other coefficients equal to
zero:

A =

0 1 0 . . . 0
1 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , X∗ =

1 1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , Y ∗ =

1 −1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 .

Moreover, the infimum of ‖A −XY >‖ can be attained if and only if X2,1Y1,1 = X1,1Y2,1 =
X2,1Y2,1 = 1 (since (1, 2), (2, 1), (2, 2) are only in S1). This implies X1,1Y1,1 =

29

(X2,1Y1,1)(X1,1Y2,1)/(X2,1Y2,1) = 1. Therefore, σ1 :=
∑
p 6=1X1,pY1,p = −X1,1Y1,1 = −1

at the minimum solution.
To show the existence of a spurious local valley, it is sufficient to choose S1, S2, S3 as follows:

i) S1 = {(X,Y) | σ1 = −1}.
ii) S2 = {(X,Y) | σ1 = 1}.

iii) S3 = {(X,Y) | σ1 = 5}.
Similarly to what we have seen in the previous section, we are interested in the function:

g(α) = inf
supp(X)⊆I,supp(Y)⊆J,

σ1=α

‖A−XY ‖2

= inf
supp(X)⊆I,supp(Y)⊆J,

σ1=α

∑
i,j

(Ai,j −
∑
p

Xi,pYj,p)
2

≥ inf
supp(X)⊆I,supp(Y)⊆J,

σ1=α

∑
i∈{1,2},
j∈{1,2}

(Ai,j −
∑
p

Xi,pYj,p)
2

= inf
X1,1,X2,1,Y1,1,Y2,1

(−α−X1,1Y1,1)2 + (1−X1,1Y2,1)2

+ (1−X2,1Y1,1)2 + (1−X2,1Y2,1)2.

The last quantity is the best rank-one approximation of the following 2× 2 matrix:

A′ =

(
−α 1
1 1

)
which is given by:

2(α+ 1)2

(α2 + 3) +
√

(α2 + 3)2 − 4(α+ 1)2
.

Moreover, this infimum can be attained if Xi1,k, Xi2,k, Yj1,k, Yj2,k are the first eigenvectors of
A′ and the other remaining coefficients are zero. Therefore, we have:

g(α) =
2(α+ 1)2

(α2 + 3) +
√

(α2 + 3)2 − 4(α+ 1)2
.

Figure 4: Graph of function g(α) and three considered σ1.

We verify that the our choice satisfies all the conditions of Lemma C.2.
1) The minimum value of L is zero. It is only attained with σ1 = −1 as shown. Thus, the

global minimum belongs to S1.
2) For any continuous function r : [0, 1] → Rm×r × Rn×r : t → (X(t), Y (t)) we have

σ1(t) =
∑
p 6=1X(t)1,pY (t)1,p is also continuous. If (X(0), Y (0)) ∈ S3, (X(1), Y (1)) ∈

S1 (i.e., σ1(0) = 5, σ1(1) = −1), then by the Mean Value Theorem, there must exist
t ∈ (0, 1) such that σ1(t) = 1, which means (X(t), Y (t)) ∈ S2.

30

3) Since g(1) > g(5) > g(−1) (Figure 4), we have infθ∈S2 L(θ) > infθ∈S3 L(θ) >
infθ∈S1 L(θ).

The proof is concluded with the application of Lemma C.2.
2) To show that a spurious local minimum exists, we choose A ∈ Rm×n as follows:

Ai,j =

a if i = 1, j = 1

b if i = 2, j = 2

0 otherwise

where a > b > 0. Thus, Ai2,j2 = A2,2 6= 0. It is again evident that infX,Y f(X,Y) =
infX,Y ‖A−XY ‖2 = 0. It can be attained by setting X∗2,1 = X∗1,2 = 1, Y ∗2,1 = b, Y ∗1,2 = a and
all the other coefficients equal to zero:

A =

a 0 0 . . . 0
0 b 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , X∗ =

0 1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , Y ∗ =

0 a 0 . . . 0
b 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

Now, we will consider the following (X ′, Y ′) such thatX ′1,1Y

′
1,1 = a and all the other coefficients

equal to zero:

X ′ =

X ′1,1 0 0 . . . 0

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , Y ′ =

Y ′1,1 0 0 . . . 0

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 .

We will prove that (X ′, Y ′) is a spurious local minimum. As it holds L(X ′, Y ′) = b2 > 0 it
cannot be a global minimum. We will then show that (X ′, Y ′) is indeed a local minimum. We
have:

‖A−XY ‖2 =
∑
i,j

(Ai,j −
r∑
p=1

Xi,pYj,p)
2

≥ (A2,1 −
r∑
p=1

X2,pY1,p)
2 + (A1,2 −

r∑
p=1

X1,pY2,p)
2 + (A2,2 −

r∑
p=1

X2,pY2,p)
2

= (X2,1Y1,1)2 + (X1,1Y2,1)2 + (b−X2,1Y2,1)2

≥ 2(X1,1Y1,1)|X2,1Y2,1|+ (X2,1Y2,1)2 − 2bX2,1Y2,1 + b2 (Cauchy-Schwarz inequality)

≥ 2(X1,1Y1,1 − b)|X2,1Y2,1|+ b2.

Thus, there exists a neighborhood of (X ′, Y ′) such that X1,1Y1,1 − b > 0 for all (X,Y) in that
neighbourhood, since X ′1,1Y

′
1,2 = a > b. Therefore, ‖A−XY ‖2 ≥ b2 = L(X ′, Y ′) > 0 in that

neighborhood. This concludes the proof.

C.6 Proof for Theorem 4.5

Consider a minimizer (X∗, Y ∗) of Problem (1) with supp(X∗) ⊆ I, supp(Y ∗) ⊆ J . Such a solution
exists due to the assumption of our theorem.

We only prove the result the initialization (X,0), supp(X) ⊆ I . The case of the initialization (0, Y),
supp(Y) ⊆ J can be dealt with similarly.

To prove the theorem, it is sufficient to construct a continuous function f(t) = (Xf (t), Yf (t)) :
[0, 1]→ Rm×r × Rn×r such that:

1) f(0) = (X,0).
2) f(1) = (X∗, Y ∗).

31

3) L(f(t)) is non-increasing w.r.t t.

Indeed, if such a function f exists, the sublevel set corresponding to L(X,0) has both (X,0) and
(X∗, Y ∗) in the same path-connected components (since L(f(t)) is non-increasing).

The function f is a concatenation of two functions f1 : [0, 1/2]→ Rm×r × Rn×r, f2 : [1/2, 1]→
Rm×r × Rn×r, defined as follows:

1) f1(t) = ((1− 2t)X + 2tX∗,0).

2) f2(t) = (X∗, (2t− 1)Y ∗).

It is obvious that f(0) = f1(0) = (X,0) and f(1) = f2(1) = (X∗, Y ∗). Moreover f is continuous
since f1(1/2) = f2(1/2) = (X∗,0). The fact that L ◦ f is non-increasing can be verified as:

1) Consider L(f1(t)) = ‖A− ((1− t)X + tX∗)0>‖2 = ‖A‖2 is constant for t ∈ [0, 1/2].

2) Consider G(t) := L(f2(t)) = ‖A − (2t − 1)X∗Y ∗‖2. This function is convex w.r.t t.
Moreover, it attains a global minimum at t = 1 (since we assume that (X∗, Y ∗) is a global
minimizer of Problem 1). As a result, t 7→ G(t) is non-increasing on [1/2, 1].

The function L ◦ f is thus, non-increasing on [0, 1].

Remark C.1. Theorem 4.5 confirms that the initialization at (X,0) and (0, Y) always keeps the
solution out of any spurious local valley for Problem (1) (as long as the infimum is attained).
Nevertheless, whether this initial point allows first-order methods to converge to global minimum is
not guaranteed. This phenomenon is illustrated with a scalar function in Figure 1b with the maximal
point separating two valleys. Intuitively, the points (X,0) and (0, Y) stand high enough (like the top
of the mountain) to avoid being trapped in a local valley.

D Proofs for other intermediate lemmas

D.1 Proof of Lemma C.6

Proof of Lemma C.6. WLOG, we assume that m ≤ r. If X has full row rank, then one can choose
constant function f(t) = (X,Y) to satisfy the conditions of the lemma. Therefore, we can focus
on the case where rank(X) = q < m. WLOG, we can assume that the first q columns of X
(X1, . . . , Xq) are linearly independent. The remaining columns of X can be expressed as:

Xk =

q∑
i=1

αkiXi,∀q < k ≤ r

We define Y ′ by their columns as follow:

Y ′i =

{
Yi +

∑r
k=q+1 α

k
i Yk if i ≤ q

0 otherwise

By construction, we have XY > = XY ′>. We define the function f1 : [0, 1]→ Rm×r × Rn×r as:

f1(t) = (X, (1− t)Y + tY ′)

This function will not change the value of f since we have:

X((1− t)Y > + tY ′>) = (1− t)XY > + tXY ′> = XY >.

Let X ′ be a matrix whose first q columns are identical to that of X and rank(X ′) = m. The second
function f2 defined as:

f2(t) = ((1− t)X + tX ′, Y ′)

also has the product XY > unchanged (since first q columns of X(t) are constant and last r − q
rows of Y ′ are zero). Moreover, f2(0) = (X ′, Y ′) where X ′ has full row rank. Therefore, the
concatenation of two functions f1 and f2 (and shrink t by a factor of 2) are the desired function
f .

32

D.2 Proof of Lemma C.7

To prove this lemma, we introduce and prove two other lemmas first.

Lemma D.1. Let X ∈ Rm×r, Y ∈ Rn×r,min(m,n) ≤ r and assume that X or Y has full row
rank. Given any continuous function g : [0, 1] → Rm×n in which g(0) = XY >, there exists a
continuous function f : [0, 1]→ Rm×r ×Rn×r : f(t) = (Xf (t), Yf (t)) (Xf , Yf are also functions)
such that:

1) Xf (0) = X,Yf (0) = Y .

2) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].

3) ‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2 ≤ C‖g(z)− g(t)‖2

where C = max
P∈P?

(
max

(∣∣∣∣∣∣X†∣∣∣∣∣∣2, ∣∣∣∣∣∣Y †∣∣∣∣∣∣2)).

Proof. WLOG, we can assume that X has full row rank. The desired function can be defined as:

Xf (t) = X

Yf (t) = Y + (g(t)− g(0))>(XX>)−1X = Y + (X†(g(t)− g(0)))>
(29)

where X† = X>(XX>)−1 the pseudo-inverse of X . The function Yf is well-defined due to the
assumption of X being full row rank. It is immediate for the first two constraints. The third one is
satisfied since:

‖Xf (t1)−Xf (t2)‖2 + ‖Yf (t1)− Yf (t2)‖2 = ‖Yf (t1)− Yf (t2)‖2

= ‖(X†(g(t1)− g(t2)))>‖2

≤
∣∣∣∣∣∣X†∣∣∣∣∣∣2‖g(t1)− g(t2)‖2

≤ C‖g(t1)− g(t2)‖2

Lemma D.2. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}r×n and P ∈ P , SP as in Definition 3.2.
Assume that P is complete. For any feasible point (X,Y) whose XRP ,P or YCP ,P (RP , CP are
defined Definition 3.2) has full rank and any continuous function g : [0, 1] → Rm×n satisfying
supp(g(t)) ⊂ SP and g(0) = XPY

>
P , there exists a continuous function f : [0, 1]→ Rm×r×Rn×r :

f(t) = (Xf (t), Yf (t)) such that:

1) supp(Xf (t)) ⊆ IP , supp(Yf (t)) ⊆ JP .

2) Xf (0) = XP , Yf (0) = YP .

3) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].

4) ‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2 ≤ C‖g(z)− g(t)‖2.

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2)).

Proof. WLOG, we assume that P = J|P |K, RP = J|RP |K, CP = J|CP |K. WLOG, we can assume
|P | ≥ |RP | and XRP ,P is full row rank (due to the hypothesis and the fact that P is complete).

A continuous function f(t) that satisfies the first constrain must have the form:

Xf (t) =

(
X ′(t) 0
0 0

)
, Yf (t) =

(
Y ′(t) 0
0 0

)
where X ′ : [0, 1]→ R|RP |×|P | and Y ′ : [0, 1]→ R|CP |×|P | are continuous functions.

33

Moreover, if g : [0, 1]→ Rm×n satisfying supp(g(t)) ⊆ ST , then g has to have the form:

g(t) =

(
A′(t) 0
0 0

)
where A′(t) : [0, 1] → R|RP |×|CP | is a continuous function. Since g(0) = XPY

>
P , A′(0) =

(XRP ,P)(YCP ,P)>. Thus, it is sufficient to find X ′(t) and Y ′(t) such that:

i) X ′(0) = XRP ,P , Y
′(0) = YCP ,P (to satisfy the second condition).

ii) A′(t) = X ′(t)Y ′(t) to satisfy the third condition because:

Xf (t)Yf (t)> =

(
X ′(t) 0
0 0

)(
Y ′(t)> 0

0 0

)
=

(
X ′(t)Y ′(t)> 0

0 0

)
=

(
A′(t) 0
0 0

)
= g(t)

iii) ‖X ′(z)−X ′(t)‖2 + ‖Y ′(z)−Y ′(t)‖2 ≤ C‖A′(z)−A′(t)‖2 = C‖g(z)− g(t)‖2 to satisfy
the last condition since:

‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2 = ‖X ′(z)−X ′(t)‖2 + ‖Y ′(z)− Y ′(t)‖2

Such functions exist thanks Lemma D.1 (since we assume XRP ,P has full rank).

Proof of Lemma C.7. We prove by induction on the size of subset P ′ ⊆ P? that: let T ′ = ∪P∈P′P ,
for any continuous function g : [0, 1] → Rm×n satisfying supp(g(t)) ⊂ SP′ and g(0) = XT ′Y

>
T ′ ,

there exists a continuous function fP′ : [0, 1]→ Rm×r ×Rn×r : fP′ = (XP
′

f (t), Y P
′

f (t)) such that:

1) supp(XP
′

f (t)) ⊆ IT ′ , supp(Y P
′

f (t)) ⊆ JT ′ .

2) XP
′

f (0) = XT ′ , Y
P′
f (0) = YT ′ .

3) g(t) = XP
′

f (t)Y P
′

f (t)>,∀t ∈ [0, 1].

4) ‖XP′f (z)−XP′f (t)‖2 + ‖Y P′f (z)− Y P′f (t)‖2 ≤ C′‖g(z)− g(t)‖2.

where C′ = max
P∈P′

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2)). Applying this result with P ′ = P? will

yield the proof of this lemma.

By Lemma D.2 the result is true if |P ′| = 1 (due to the hypothesis ∀P ∈ P?, XRP ,P or YCP ,P has
full row rank). Assume the result is true if |P ′| = p, where 1 ≤ p < |P?|, and consider the case
where |P ′| = p+ 1.

Consider P ∈ P ′ and partition P ′ into P ′′ = P ′ \ {P} and P . Let T ′′ = T ′ \ P , consider

h1(t) = (g(t)−XPY
>
P)� 1ST ′′ , h2(t) = XPY

>
P � 1ST ′′ + g(t)� 1SP \ST ′′

We verify that the function h1(t) satisfying the hypotheses to use induction step: h1 continuous,
supp(h1(t)) ⊆ ST ′′ and finally h1(0) = (g(0)−XPY

>
P)� 1ST ′′ = XT ′′Y

>
T ′′ � 1ST ′′ = XT ′′Y

>
T ′′ .

Therefore, there exists a function (X1
f (t), Y 1

f (t)) such that:

1) supp(X1
f (t)) ⊆ IT ′′ , supp(Y 1

f (t)) ⊆ JT ′′ .

2) X1
f (0) = XT ′′ , Y

1
f (0) = YT ′′ .

3) h1(t) = X1
f (t)Y 1

f (t)>,∀t ∈ [0, 1].

34

4) ‖X1
f (z)−X1

f (t)‖2 + ‖Y 1
f (z)− Y 1

f (t)‖2 ≤ C′′‖h1(z)− h1(t)‖2.

where C′′ = max
P ′∈P′′

(
max

(∣∣∣∣∣∣∣∣∣X†RP ′ ,P
′

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ′ ,P
′

∣∣∣∣∣∣∣∣∣2)).

On the other hand, h2(t) satisfies the assumptions of Lemma D.2: h2(t) is continuous and
supp(h2(t)) = supp(XPY

>
P � 1ST ′′ + g(t)� 1SP \ST ′′) ⊆ supp(XPY

>
P) ∪ (SP \ ST ′′) = SP .

In addition, since g(0)� 1SP \ST ′′ = (XT ′Y
>
T ′)� 1SP \ST ′′ = (XT ′′Y

>
T ′′ +XPY

>
P)� 1SP \ST ′′ =

XPY
>
P � 1SP \ST ′′ , we have h2(0) = XPY

>
P � 1ST ′′ + g(t) � 1SP \ST ′′ = XPY

>
P � (1ST ′′ +

1SP \ST ′′) = XPY
>
P . Therefore, there exists a function (X2

f (t), Y 2
f (t)) such that:

1) supp(X2
f (t)) ⊆ IP , supp(Y 2

f (t)) ⊆ JP .

2) X2
f (0) = XP , Y

2
f (0) = YP .

3) h2(t) = X2
f (t)Y 2

f (t)>,∀t ∈ [0, 1].

4) ‖X2
f (z) − X2

f (t)‖2 + ‖Y 2
f (z) − Y 2

f (t)‖2 ≤ max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2) ‖h2(z) −

h2(t)‖2.

Lastly, the functions (XP
′

f (t), Y P
′

f (t)) can be constructed as:

XP
′

f (t) = X1
f (t) +X2

f (t), Y P
′

f (t) = Y 1
f (t) + Y 2

f (t)

We verify the validity of this construction. The first condition is clear thanks to the construction of
Xi
f (t), Y if (t), i = 1, 2. The second condition is satisfied as well since:

XP
′

f (0) = X1
f (0) +X2

f (0) = XT ′′ +XP = XT ′

Y P
′

f (0) = Y 1
f (0) + Y 2

f (0) = YT ′′ + YP = YT ′

The third condition is satisfied as well due to the definition of hi(t), i = 1, 2:

XP
′

f (t)Y P
′

f (t)> = X1
f (t)Y 1

f (t)> +X2
f (t)Y 2

f (t)>

= h1(t) + h2(t)

= (g(t)−XPY
>
P)� 1ST ′′ +XPY

>
P � 1ST ′′ + g(t)� 1SP \ST ′′

= g(t)� (1ST ′′ + 1SP \ST ′′) = g(t)

Finally, the fourth condition holds since:

‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2

= ‖X1
f (z)−X1

f (t)‖2 + ‖Y 1
f (z)− Y 1

f (t)‖2 + ‖X2
f (z)−X2

f (t)‖2 + ‖Y 2
f (z)− Y 2

f (t)‖2

≤ C′′‖h1(z)− h1(t)‖2 + max

(∣∣∣∣∣∣∣∣∣X†RP ,P

∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P

∣∣∣∣∣∣∣∣∣2) ‖h2(z)− h2(t)‖2

≤ C′(‖h1(z)− h1(t)‖2 + ‖h2(z)− h2(t)‖2)

= C′(‖(g(z)− g(t))� 1ST ′′‖
2 + ‖(g(z)− g(t))� 1SP \ST ′′ ‖

2)

= C′‖g(z)− g(t)‖2

D.3 Proof of Corollary C.2

Corollary C.2 is a direct result of Lemma C.7.

35

Proof. Consider the function g(t) = (1 − t)XTY
>
T + tB. We have g(t) is continuous, g(0) =

XTY
>
T and supp(g(t)) ⊆ supp(XTY

>
T)∪ ⊂ (B) = ST . Together with the hypothesis that

∀P ∈ P?, XRP ,P or YCP ,P has full row rank, there exists a function (Xf (t), Yf (t)) such that:

1) supp(Xf (t)) ⊆ IT , supp(Yf (t)) ⊆ JT .

2) Xf (0) = XT , Yf (0) = YT .

3) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].

4) ‖Xf (z)−Xf (t)‖2 + ‖Yf (z)− Yf (t)‖2 ≤ C‖g(z)− g(t)‖2.

by using Lemma C.7. We can choose X∗ = Xf (1), Y ∗ = Yf (1). The first condition is immediately
satisfied. The second condition holds since: X∗(Y ∗)> = Xf (1)Yf (1)> = g(1) = B. The last
condition results from:

‖XT −X∗‖2 + ‖YT − Y ∗‖2 = ‖Xf (1)−Xf (0)‖2 + ‖Yf (1)− Yf (0)‖2

≤ C‖g(0)− g(1)‖2

= C‖XTY
>
T −B‖2

This concludes the proof.

36

	Introduction
	Notations

	Matrix factorization with fixed support is NP-hard
	Tractable instances of matrix factorization with fixed support
	Landscape of matrix factorization with fixed support
	Spurious local minima and spurious local valleys
	Landscape of matrix factorization with support constraints
	Absence of correlation between tractability and benign landscape

	Numerical illustration: landscape's properties and convergence of the gradient descent
	Conclusion
	Proofs for Section 2
	Proof of Lemma 2.2
	Proof of Theorem 2.3

	Proofs for Section 3
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.3

	Proofs for Section 4
	Previous results on the landscape
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof for Theorem 4.5

	Proofs for other intermediate lemmas
	Proof of Lemma C.6
	Proof of Lemma C.7
	Proof of Corollary C.2

