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Abstract

We present a new multistage method to study the N-Methyl-D-Aspartate (NMDA) neuroreceptor

starting from the reconstruction of its crystallographic structure. Thanks to the combination of

Homology Modelling, Molecular Dynamics and Lattice Boltzmann simulations, we analyse the

allosteric transition of NDMA upon ligand binding and compute the receptor response to ionic

passage across the membrane.
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I. INTRODUCTION

Modern biological sciences are in a relentless search to unveil the molecular mechanisms

of biological activity, their dis-functionalities and the ensuing diseases, so as to propose and

develop possible remedies. Computer models have a crucial say in this endeavour, as they can

often access regions of parameter space which are beyond reach of direct experimentation.

In particular, molecular dynamics simulations have a long and time-honoured history in

the study of biomolecular assemblies culminating with the 2013 Nobel Prize in Chemistry

Karplus et al. [1].

The field shows no sign of flagging; quite on the contrary it is witnessing burgeoning

progress in multiple directions, particularly in terms of capabilities to tackle larger systems

over longer temporal scales. Remarkable examples in point are the recent simulations of

biological systems is the 100-million atom-scale model of an entire cell organelle, a photo-

synthetic chromatophore vesicle from a purple bacterium Rochaix [2] or the study of the

N-Methyl-D-Aspartate (NMDA) neuroreceptor by the DE Shaw research group Song et al.

[3]. These outstanding achievements were obtained by leveraging the method of Molecular

Dynamics (MD), whereby all atoms in the simulation are taken into account, with a massive

computational effort, often undertaken on special hardware.

Such achievements unquestionably push the frontiers of simulation further ahead and

pave the way to disruptive progress in many areas of biology and medicine. In particular,

the possibility of simulating large systems is key to neuroscience, where the response of

neuroreceptors to binding with natural or synthetic ligands can reveal the allosteric transi-

tions in the membrane protein and how the channel pore function, with the modulation of

the ionic passage. NMDA receptors, in particular, play a critical role in brain development

and function, including learning and memory formation Trimble [4], Burnell et al. [5]. Dys-

functional NMDA is involved in various neurological disorders, such as Alzheimer’s disease,

depression, stroke, epilepsy and schizophrenia. Therefore, the computational capability to

tackle large-scale protein transitions and ion passage, has major potential to study many

neurological diseases and design new drugs through medicinal chemistry methods. Some

initial studies have indeed tackled the study of NMDA by a brute force MD simulations

that, while showing some degree of success, have also highlighted the difficulty of covering

the complete times scale of the allosteric and functional response Song et al. [3], Dai and
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Zhou [6], Zheng et al. [7], Palmai et al. [8].

Under physiological conditions, the opening of the receptor ion channel involves the con-

current binding of glycine and glutamate and relief of magnesium block at the ion channel

pore by membrane depolarisation. The resulting calcium flux triggers a cascade of signal

transduction that is necessary for synaptic plasticity.

Multiscale methods offer a strategic advantage in simulating such receptors that lay at

the basis of many basic neurological phenomena. The reasons is that neuroreceptors are

large molecular assemblies with large stretches of membranes separating intra and extracel-

lular regions and receptors (proteins) as gates. Binding small molecules (neurotransmitters)

triggers spatially small but functionally very important structural changes (allosteric tran-

sitions) that open/close the gates to the passage of ions.

From the neurological viewpoint, it is key to quantify the allosteric response to the

binding of nanomolar quantities of neurotransmitters. These can be natural or artificial,

with important applications to medicinal chemistry. Once the allostery is measured and

quantified, one can then measure passage of ions in the receptor pore. To this purpose,

electrokinetics raises a significant challenge, as it implies the presence of blocking elements

(Magnesium for NMDA), since the process is an activated one. To accomplish such an

ambitious program, all-atoms simulations fall short of covering the wide stretch of spatial

and temporal scales involved, ranging from picoseconds to minutes and with a number of

atomic degrees of freedom in excess of millions. In essence, reproducing binding affinity

(thermodynamics), allosteric transitions (large-scale, fine and coarse atomic motion) and

electro-kinetics, is a task that involves too widely disparate scales to be amenable to a single

level of representation and simulation.

For these reasons, we have devised a three-stage multiscale pipeline to study neurorecep-

tors, starting from the reconstruction of the protein structure, as obtained from incomplete

crystallographic data, to analyse the binding affinity of NMDA to its ligands, followed by

the quantification of the allosteric motion, and finally to assess the modulation of the ionic

passage.

Our approach begins by using homology modelling techniques to reconstruct the NMDA

configuration in the phospholipidic environment, the simulation of the allosteric events by

means of MD and finally by the study of the electrokinetic ion transport by means of a

Lattice Boltzmann approach. The main novelty of our approach relies on the use of LB
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electrokinetics to analyse the flow of ions in a probabilistic way. While other strategies

can be powerful to study the passage of single or multiple charges in ion channels via the

potential of mean force method Roux et al. [9] or in a statistical sense, by solving the

Poisson-Nernst-Planck equation Kurnikova et al. [10], our approach takes into account the

complete hydrodynamic modes of the saline solution flowing through the receptor matrix.

This permits a direct assessment of the effect of electrostatic forces and convection on the

three-component solution made of neutral, cationic and anionic species. The approach thus

allows selecting a large set of protein configurations so that the prediction of flux based

on configuration allows direct comparative analysis with purely steric approaches Smart

et al. [11]. Finally, the proposed method can be enriched by combining the sampling of

configurational space with adequate simulations of all atoms or coarse grained models, in

order to follow the flow in different conditions.

The present three-stage approach is entirely novel in concept and application and demon-

strates, for the first time to the best of our knowledge, the possibility to tackle complex

biological processes occurring in neuroscience can be tackled, thus providing a whole wealth

of microscopic, dynamic and functional information, otherwise unaccessible to current ex-

perimental techniques.

II. COMPUTATIONAL APPROACH

As shown in Fig 1, our computational approach involves a highly orchestrated network of

computational methods and software tools, which can broadly classified within three basic

steps:

1. Structure modelling (Homology Methods);

2. Mechanical stability (Molecular Dynamics and Molecular Mechanics);

3. Ionic transport (Lattice Boltzmann).

The whole three-stage procedure is genuinely multiscale, as it spans about six decades in

time, from nanoseconds up to milliseconds, thus reaching up to timescales of physiological

relevance. The ultimate outcome of clinical relevance is the dose response relationship,

namely the current flowing across the neurotransmitter as a function of the dose of ligand.
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To complete the three stages of the flowchart, we used three different software pack-

ages: Modeller Eswar et al. [12] for Homology Modeling and Gromacs Abraham et al. [13]

for All-Atoms MD. Most of simulations are based on the software Moebius from Lexma

Technology, as it allows multiphysics simulations of multicomponent fluids and particles.

Therefore, Moebius was then used for the Coarse-Grained MD and for the Lattice Boltz-

mann simulations. We utilised both the CPU and GPU architectures to accomplish the

computing-intensive runs, as available on both the Gromacs and Moebius softwares.

A. Structure Modelling

The first stage of the flowchart pertains to characterising the molecular structure of the

neuroreceptor, consisting of the protein embedded in the cellular membrane. Homology mod-

elling allows to construct the atomic-resolution model of NMDA GluN1A/GluN2B starting

from its amino acid sequence and the available crystallographic three-dimensional structure

(PDB id: 4PE5) Karakas and Furukawa [14]. For crystallographic data from membrane pro-

teins with a large amount of missing structures, such as for NMDA, poses a major challenge

to homology modelling.

Reconstructing the missing loops is accomplished by the high precision DOPE-HR mod-

elling protocol Shen and Sali [15], whereby the atomic-resolution model of the target pro-

tein from its amino acid sequence is constructed on the basis of the experimental three-

dimensional structure of a template homologous protein at 3.96 Å resolution (PDB id: 4PE5

in this specific case) Karakas and Furukawa [14] The reconstruction relies on the identifi-

cation of known portions of the structure from homologous receptors, acting as templates

that resemble the structure of the query sequence and on an alignment that maps residues

to residues in the template sequence. The identification of one or more known structures

resembling the one of the query sequence and the alignment of residues in the query sequence

to residues in the template sequence, benefits from the fact that NMDA structure is con-

served amongst homologues as well as on the loop reconstruction algorithm (as quantified

by DOPE-HR). Such a method provides the slowest but most accurate available refinement

method to obtain better quality loops (i.e. by selecting the refine.slow large or refine.very

slow options depending on the length of the missing loops).
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B. Mechanical Stability and Allostery

The second stage of the flowchart consists of assessing the stability of the aforementioned

molecular complex, including its interactions with the water solvent, and assessing the al-

losteric transition. Once ligands bind to the specific receptor sites, NMDA changes its shape,

and altering the affinity for a ligand at a second site (e.g., either a receptor or a binding

site); the ability of an effector molecule (ligand) to change the conformation and activity of

a protein.

In allostery, the function of a receptor is modified by the interaction with its ligands,

not only at the active site but also at a spatially distinct site of different specificity. In

allostery, the interaction of the functional sites results in an altered affinity of ligand binding,

thus depending on the dynamic interaction with the substrate. Ideally the conformational

changes induced by the binding of the allosteric effector can be finely followed by brute force

MD simulations at atomistic resolution. For instance, if the allosteric response path is of

interest, starting from the substrate free equilibrated structure it is possible to introduce the

effector and follow in time its conformational changes and fluctuations. This is the strategy

used in our approach. In other situations, where both the APO and HOLO states are

available, the thermal fluctuations in each state, and possible state interconversion can be

simulated with brute force MD or by enhanced sampling techniques (e.g. parallel tempering,

thermodynamic integration, metadynamics, etc.).

In our approach based on the all atoms mode, we simulated both the APO (ligand free)

and the HOLO (ligand bound) versions of NMDA. For the HOLO version, we positioned

two Glutamate (GLU) and two Glycine (GLY) neurotransmitters molecules in the NMDA

pockets of the relaxed model. This was obtained by docking them by means of the Chimera

software chain-by-chain superimposition to achieve suboptimal overlap of the protein do-

mains.

Insertion of the in vacuum minimised NMDA model in a lipid bilayer in order to create the

protein/membrane system was done by using the Charmm-Gui membrane builder generator

Jo et al. [16], Wu et al. [17]. Embedding in the phospholipid membrane was done by

accurately determining at first the NMDA transmembrane portion on Orientation of Proteins

in Membranes database (http://opm.phar.umich.edu/server) Lomize et al. [18] in order to

take advantage of this selection during the Charmm-Gui procedure. The membrane of
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homogenous phospholipids (i.e. POPC) was constructed along the xy plane (x=y=14 nm)

placing NMDA major axis along the z direction (20.5 nm with a water buffer layer of 1.75

nm on top and bottom of the system) of the rectangular box at the proper z-height to cover

the membrane-spanning segments of the protein according to OPM result. The final system

is composed of 376782 atoms: 50574 for NMDA, 506 POPC lipids, 85962 TIP3P molecules,

286 potassium ions and 232 chlorine ions, thus resulting in a 0.15 M ionic concentration.

Using the Charmm-Gui suggested standard protocol Lee et al. [19], the system has been

minimised (5000 steep descent steps) and equilibrated with Gromacs 2018 Abraham et al.

[13] and CHARMM36m force field Huang and MacKerell Jr [20] with the following protocol:

five MD simulations of variable length (25000, 25000, 25000, 50000 and 50000 steps) with

lipid position restraints of decreasing strength (1000 to 200 kJ mol−1nm−2) and similarly

for dihedral (400 to 100 kJ mol−1rad−2) and protein backbone restraints (2000 to 200 kJ

mol−1nm−2). The first two simulations were done at constant temperature and volume, the

remaining three simulations at constant temperature and pressure. A sixth MD simulation

of 50000 steps for equilibration was performed without restraints.

However, the high resolution of the full atomistic approach is often limiting for very

large systems. It is convenient therefore to use a simplified coarse-grained model. This is

particularly challenging for membrane proteins that, for a proper treatment of allosteric

process, an adequate level of controlled flexibility of the protein scaffold is required. In our

approach we tested the capability of the OPEP CG force field Chebaro et al. [21], Sterpone

et al. [22, 23] to reproduce the main fluctuations and conformational changes associated to

the allosteric transition by comparing the results with atomistic modelling.

The OPEP force field has been designed to model peptide and protein folding and ag-

gregation in solution. It is a multi-scale model that reserves an atomistic description to

the backbone atoms and reduces the side chain amino acid to a unique bead. OPEP was

designed, and progressively improved, for modelling soluble proteins Chebaro et al. [21], Ster-

pone et al. [22, 23] but its coupling with an explicit membrane environment is under way.

For the purpose of the present application this is not a limitation. In fact, the conforma-

tional changes induced by the allosteric effector are localised in the extra-membrane part

of the protein, and in order to assure the stability of the trans-membrane region several

constrained were applied so to mimic the spatial embedding of the membrane without its
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explicit representation.

The test was performed on two models. In the first one the protein motion is fully flexible

and its motion is controlled by the OPEP hamiltonian. The flexibility is key for monitoring

the loops motions in the extra-membrane regions that control the allosteric response. The

second model uses a more radical simplification, and is based on a floppy elastic network

of the protein. On top of the elastic network, non-bonded sites interact via the OPEP

non-bonded potential. To be noted that in several previous works the characterisation of

protein allosteric paths are modelled by considering elastic networks Rocks et al. [24]. In the

CG approach for the allosteric effectors (GLN and GLY amino acids) instead we used the

same OPEP model but their location in the binding site was restrained. It is worth noting

that the OPEP force field was already successfully coupled to the hydrodynamic description

based on LB Sterpone et al. [25], allowing the investigation of complex processes like amyloid

aggregation Chiricotto et al. [26], Chiriccotto et al. [27], protein crowding Sterpone et al.

[22], Timr et al. [28] and unfolding under shear flow Sterpone et al. [29], Languin-Cattoen

et al. [30].

Finally, and relevant, for the present application where different resolutions are compared,

it is worth mentioning that the behaviour of the OPEP force field has been already contrasted

to all atoms simulations in several contexts, from protein folding and aggregation, to thermal

and mechanical unfolding Sterpone et al. [22, 23], Languin-Cattoen et al. [30].

C. Ionic Currents

Finally, the third stage pertains to the simulation of the ionic currents within the neurore-

ceptor, which is in charge of computing the conductivity of the neuroreceptor as a function

of the applied voltage or salinity and for varying configurations of the receptor.

The Poisson–Nernst–Planck (PNP) equation describes the drift-diffusion of ions in liquid

solutions under the influence of an electric driving field. The method can handle channel

inhomogeneities such as narrowings and/or non uniformities in the chemical nature of the

confining surface Kurnikova et al. [10]. The PNP model uses two diffusion equations for the

species densities and the self-consistent electric potential, being the solution of a Poisson

problem. The PNP equation is highly non local and requires a numerical solution. At its

core, the approach neglects advection of the solution and the resulting electro-osmotic effects,
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whose intensity is unknown a priori in highly confined electrobiochemical processes. While

the effects of hydrodynamic modes in saline solution effect in ion channels cannot be ruled

out from the start for a given neuroreceptor under study, it is safe to avoid using uncontrolled

approximations in the numerical method. For isntance, the effect of hydrodynamics on highly

confined electrokinetic flows has been observed in experiments and confirmed by simulations

Fyta et al. [31]. The Lattice Boltzmann (LB) method provides a particularly useful approach

to investigate the ionic response since it is rooted in the mesoscopic description of matter

which perfectly maps the current representation of the receptor and its environment Succi

[32].

LB is a very convenient computational approach, since it is based on a over a Cartesian

grid, namely a uniform mesh based on cubic voxels. It is highly adaptable to reproduce the

flow structure of single and multi-component system under the action of external or internal

forces. In particular, LB has been shown in the past to be capable of reproducing the

electro-kinetics of saline solutions in model devices with non-trivial geometries and locally

charged surfaces Marconi and Melchionna [33], Melchionna and Marconi [34].

While the all-atom and potential of mean force approaches automatically include all

electrostatics from atomistic pairwise interactions, when utilising a field-based description

numerical accuracy should be treated with care. The reason stems from the fact that

the electrostatic Poisson equation is defined in the biomolecules and in the solvent, while

the fluid flow equation are defined only in the solvent. On the other hand, if the fluid

equations are solved in the entire simulation domains singularities arise from the source

charges inside biomolecules. A natural approach is to remove the singular component of

the electrostatic potential induced by the permanent charges, so that well-posed numerical

equations are handled. Recently, a method was devised for the time integration for the

unsteady PNP equations that alleviates the problem stemming from the stiff matrices in

the finite element approximations. The results are both accurate and stable Lu et al. [35].

A different approach applies to the LB scheme. Here, at variance with the PNP method,

electrostatic forces act directly on the solvent via a direct forcing. Therefore, electrostatic

accuracy depends on the mesh resolution that can be shown to ameliorate with the mesh

spacing as ∼ ∆x2. Electrokinetic simulations on synthetic nanopores and on silica channels

have been shown that the spacing usually employed in LB simulations are sufficient to

provide highly accurate results under various conditions of electro-osmotic flows Marconi
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and Melchionna [33], Melchionna and Succi [36], Marini Bettolo Marconi and Melchionna

[37]. Therefore, we compared the characteristic curve obtained with the LB method to

experimental data Cui et al. [38], as reported in Fig. 6, showing a close quantitative match

for such a complex biomolecular system.

The case of the NMDA receptor, however, presents a fairly non trivial geometry within

the pore region and highly localised forces F (x) at position x stemming from charged or

neutral atomic groups. In addition, the local electrostatic forces can be locally intense, often

exhibiting rapid spatial modulations of the electrolytic densities due to the formation of dis-

ordered double layers. Such scenario poses several challenges to the computational scheme,

particularly by endangering numerical stability as dictated by the Courant-Friedrich-Lewy

stability condition F (x) <∼ m∆x/∆t2. It is well-known that the presence of unit charges in

simulation cannot be simulated by a direct LB approach Raafatnia et al. [39] without proper

treatment to enhance its stability.

To circumvent such limitations, we employed a multi-component Entropic Lattice Boltz-

mann Method, a powerful variant of the basic Lattice Boltzmann method based on a self-

consistent tuning of the relaxation parameter so as to ensure compliance with local entropy

growth (H-theorem).

The LB approach to simulating the saline solution is based on tracking the evolution of

each fluid component, with the index α = 0, 1, 2 labelling the neutral aqueous medium (0),

and the positively (1) and negatively charged components (2), via the discretised form of

the density distribution function, named populations fαp (x, t). Here, t denotes the temporal

coordinate and subscript p labels a set of discrete speeds cp connecting the mesh points to its

neighbours. The two ionic components are monovalent and characterised by charges density

nα and velocity uα and, given the barycentric velocity u =
∑

α
nαuα∑
α
nα

, the relative velocity

being denoted δuα = (uα − u). The neuroreceptor and the membrane are described by the

collection of particles at position ~ri being neutral or partially charged with charge qn valence

zn provided by the force field.

In standard multicomponent LB the dynamics of each component then follows its own

evolution equation:

fαp (r + cp, t+ 1) = fαp (r, t) + ω(fα,eqp − fαp ) + Sαp (1)
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where ω is a relaxation frequency related to the kinematic viscosity as ν = c2
(
1
ω
− 1

2

)
,

c = 1/
√

3 the lattice speed of sound, and the Maxwellian equilibrium given by Marconi and

Melchionna [33, 40],

fα,eqp = wpn
α

[
1 +

δuα · cp
c2

+
(δuα · cp)2 − c2(δuα)2)

2c4

]
(2)

and wp is a set of normalised weights. The force term is Sαp =

wpn
α
[
Fα·cp
c2

+ (cp·u)(cp·Fα)−c2Fα·u)
c4

]
and the local force Fα = −ezα∇ψ − ωαdrag

∑
β
nβ(uα−uβ)

n
+

γuαδ̃(rn − x), being the sum of the self-consistent electrostatic forces, the inter-specie drag

force characterised by the cross-diffusion coefficient Dα = c2/ωαdrag, and the frictional force

exerted by the receptor and membrane atoms on the fluid species, being proportional to

the coefficient γ. In addition, δ̃(x) is a function used to smear the particle charge on the

LB grid, as used in Immersed Boundary method Peskin [41].

The electrostatic potential ψ is the solution of the Poisson equation, ∇2ψ = −1
ε
[en+(x)−

en−(x) +
∑
n znqnδ̃(rn − x)] in the aqueous medium of dielectric permittivity ε, e being

the unit electronic charge. In this study the LB solution is obtained on a cartesian grid of

spacing 0.01 nm, by employing the D3Q19 set of discrete speeds and associated weights, and

by smearing particle charges over 2× 2× 2 grid points. We chose a ionic cross-diffusivity of

2 nm−2/ns and a frictional coefficient γ = 0.5 ns−1.

The complete multicomponent Entropic LB evolution is obtained by solving eq. 1 com-

plemented by the minimisation of the lattice H-function Hα[fα] =
∑
p f

α
p log(fαp /wp), which

additionally provides a small local adjustment to the relaxation frequency ω to enforce stabil-

ity. Under operating conditions we found that applying a filtering approach to populations

to remove non-hydrodynamic modes Krämer et al. [42] significantly enhances numerical sta-

bility Montessori et al. [43], providing the final conditions to simulate saline solutions in

presence of unit charges.

III. RESULTS

In the following, we provide a summary of the main results of our analysis.
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A. Homology Modelling

We first considered the tetrameric NMDA GluN1A/GluN2B structure from Rattus

Norvegicus reconstructed by Homology Modelling at atomic-resolution model starting from

the three-dimensional crystallographic structure Karakas and Furukawa [14].

The structure lacks several loops in the linker region between the ligand-binding domain

and the missing loops were reconstructed chain-by-chain using the high precision DOPE-HR

modelling protocol Shen and Sali [15], resulting in the most accurate available refinement

method to obtain high quality structural stretches.

Subsequently, the receptor was relaxed using an energy minimisation scheme first in

vacuum by means of MD via a steepest descent algorithm to overcome/solve bad contacts

and improve the overall quality of the structure quality.

Validation of both post-homology model and equilibrated structures was obtained by

using MolProbity Williams et al. [44] that provided sterics and geometrical scores (all-

atom contacts, Ramachandran plot, rotamer outliers, no structural aberrations, intra e

inter-molecular knots) for both the modelled structure and the equilibrated system that we

have used to initialize the three different sets of simulations. Once relaxed, the receptor

was embedded in a phospholipidic membrane and prepared for simulation by surrounding

the entire system in water molecules at ambient temperature (303.15 K) and as density

corresponding to 1000 Kg/m3 (as detailed above in the Methods).

B. Molecular Dynamics and Molecular Mechanics simulations

Once the system was validated, we performed MD simulations at three increasing levels

of coarse graining, namely i) All-atom resolution based on CHARMM36m force field, ii)

Coarse-grained MD based on OPEP force field, iii) elastic network representation. We

simulated both the APO (ligand free) and the HOLO (ligand bound) versions of NMDA.

The atomistic simulations (stable in terms of RMSD, see Fig.4) successfully model the

allosteric effect, since upon the binding of the effector (GLN or GLY) we observe the opening

of the channel associated to the specific reorganisation of the extra-membrane region. This

opening is observed in the timescale of 300 ns thus resulting in a quite different conformation

when comparing the HOLO and APO final structure (see Fig. 4 insets).
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A first-level coarse-grained model was utilised by employing the OPEP force field Sterpone

et al. [45] to represent amino acids fully explicitly for the peptidic backbone, inclusive of

hydrogen atoms, while the lateral groups are represented by an effective particle. Such

representation is particularly accurate for the backbone as it includes stretching, angular

and torsional movements together with non-covalent and hydrogen bonds. The pseudo-

particles for the lateral groups take into account the sterical and non-covalent interactions,

together with explicit representations of the saline bridges.

The CG simulations were performed starting from the minimised, pressurised and equi-

librated all-atom conformation and contrasted against the atomistic one taken as reference.

We observed a comparable opening of the channel. The result supports the use of this less

time consuming model to generate a valid ensemble of configurations for further electroki-

netic analysis, as it is confirmed analysing both the HOLO and APO trajectory RMSD (Fig.

4). A detailed description of the trajectories and the conformational motions associated to

the allosteric transition is reserved to a further work. The obtained results represent an

extra validation of the OPEP force field and potentially extend its applicability and further

tests to allosteric and transmembrane systems.

A further level of coarse graining was employed by using an elastic network representation.

Here all intramolecular bonding and non-covalent forces were substituted with harmonic

interactions that allow for a certain level of protein deformability. Intermolecular forces

are still accounted for by means of the OPEP force field. Also in this latter case both

simulations, with and without the ligands, resulted stable on the microsecond timescale.

All three models showed to undergo the allosteric transition once the ligands have been

positioned in the corresponding pockets.

The transition took place on the 100 ns timescale and several attempts were observed

before NMDA finally reached its stable configuration, which is supposed to be an open

pore configuration (see Fig. 4). Importantly, the consensus of the three models to repro-

duce the transition lends a significant degree of confidence to the overall homology-based

reconstruction and simulation models.

With the three representations of the neuroreceptor in place, we were able not only to

generate a large number of configurations with the all-atom method, but also to harvest the

relaxed structures by replacing the membrane and receptor by order two different levels of

coarse graining, the OPEP and elastic network models.
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C. Ionic passage

A purely steric analysis of the pore geometry is initially performed by finding the best

route for a sphere with variable radius to squeeze through the channel. The method HOLE

allows the analysis of the dimensions of the pore running through a structural model of an

ion channel Smart et al. [11] where the algorithm uses a Monte Carlo simulated annealing

procedure. The method predicts conductance by using a simple empirically corrected ohmic

model. However, ion permeation cannot be simply identified from the physical dimensions

of the pore. For example, water within narrow hydrophobic pores can modulate permeation

without even requiring steric occlusion of the pathway. Better methods have been proposed

to account for hydrophobic gating, such as in the CHAP method Klesse et al. [46].

The effective passage of ions can take place in any of the small apertures and crevices

present within the receptor matrix, that can be seen as an effective porous medium. Fig. 3

illustrates the steric passage within NMDA for a given receptor conformation. The available

volume is rather funnel shaped and the receptor bottleneck is very narrow, with a lateral

aperture being smaller than one Angstrom. By analysing the time evolution of the bottleneck

distance, along the all-atom simulations computed as the distance between the two GluN1A

subunits considering the CoM of Val632 and Val2244, and between the GluN2B subunits

Ile1426 and Ile3039, as reported in Fig. 5, we observe a differentiated behaviour between

the APO and HOLO states, suggesting that the allosteric transition has taken place. In

accordance with the all-atom simulations, a similar behaviour has been observed analysing

the bottleneck distances in the CG and Elastic Network simulations (data not shown);

thus resulting in a coherent representation of the system allosteric movement under the

influence of the ligands, for the three difference models. However, such narrow space renders

a quantification of the total ionic resistance highly dependent on the multiple bottlenecks

and conduction channels along the pathway.

The presence of small fluctuations and the presence of several charged groups along

the pathway, renders the purely steric analysis qualitative and even hard to justify. Upon

binding of the receptor with the ligands, the allosteric modification alters ionic resistance

in several ways: the variations in the electrostatic environment along the pore extension,

the fluctuating motion of the protein matrix in the channel, the presence of water that is

advected and that alters the hydrophobic content of the pore, the sub-Angstrom modification
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of the pore bottlenecks. These conditions can result in modifications of the barrier crossing

rates by orders of magnitude. Once again, the complex interplay of these conditions and

their associated timescales rules out a computational approach based on a direct atomistic

approach since it would require hundreds of nanoseconds of observation time for monitoring a

single ion passage. Consequently, gathering sufficient statistics is out of reach. The proposed

scheme instead provides an effective decoupling between the macromolecular motion and

the ionic passage, thereby allowing to study the motion of the saline solution during the

macromolecular evolution.

The simulation on ionic transport proceeds as follows. MD simulations deliver a time se-

quence of structural configurations of the neuroreceptor, {Ct, t = 0, tsim}. For a prescribed

sequence of such configurations, a long-time (hundreds of nanoseconds) LB simulation is

performed until the steady-state current, Jt ≡ Jss(Ct), supported by the given configuration

at time t is obtained. In passing, we note that this procedure also permits to accumulate

significant statistics, due to the the fact that the structural changes of NMDA are pretty

slow on the scale of the MD integration. The resulting current Jt shows abrupt up and down

changes in time, which we associate with opening (closing) of conductive channels within

the receptor configuration. Needless to say, the structural dynamics of these channels is ex-

tremely rich, with abrupt morphological changes, such as sudden narrowings that eventually

quench an otherwise highly conductive channel and vice-versa.

Functional response is quantified by considering both the APO and HOLO versions of

NMDA and considering a single 300 ns MD trajectory. Conformational analysis of the

receptors and application of the HOLE method exhibit large fluctuations of the pore region

by steric analysis, indicating that allosteric transition is effectively taking place (data not

shown). Conductance was measured by extracting 100 protein conformations, evenly spaced

in time of the last 100 ns of the all atom simulations of the equilibrated receptor for the

putative close and open states.

Figure 7C shows the conductance (in picoSiemens) as a function of time. From this

figure, several bursts of conductance are visible past the open-up event mark the genuine

microscopic nature of conductance, driven by the underlying fluctuations of the protein

matrix. These fluctuations provide a neat signature of channel opening/closing events but

with a clear trend towards stabilisation of the open configuration. It is expected that at

longer times, not covered by the present simulations, the open state will likely exhibit a
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consistent amount of short-lived closed configurations.

Summarising, within our procedure, the neuroreceptor is treated as a slow time-changing

molecular porous medium, and the geometrical flexibility of LB is leveraged to compute the

“electrical permeability” of such molecular porous media “on-the-fly” Succi et al. [47].

D. Summary

We have presented a new three-stage multiscale method for the computational study of

the NMDA neuroreceptor.

The computational framework combines three distinct representation levels:

i) Homology models for the characterisation of the protein structure, ii) various forms of

Molecular Dynamics for the dynamical stability of the NMDA complex and finally iii) lattice

Boltzmann simulations of ion transport across the neurotransmitter. The main novelty of

our approach relies on LB electrokinetics to analyse the mesoscale flow of ions by taking

into account the complete hydrodynamic modes of the saline solution as it flows inside the

receptor matrix. It is thus possible to observe directly the effect of electrostatic forces and

convection on ionic currents at varying receptor configurational states. To this aim, the

usage of mesoscopic representation of the protein via a coarse grained force field (such as

OPEP used in this work) with the saline solution described by the Boltzmann picture pro-

vides equivalent levels of detail. In more general terms, the three-stage multiscale method

described here can be further extended to combine the evolution of the Lagrangian repre-

sentation of one subsystem, typically simulated via MD, with the eulerian representation of

a complementary subsystem, simulated via LB, thereby taking into account the dynamical

two-way exchange of forces.

The numerical results on NMDA show clear evidence of allosteric transitions stimulated by

binding of Glutamate and Glycine ligands. Ionic transport across the NMDA complex show

preliminary agreement with experimental data. Importantly, the provided scheme makes

the study of the neuroreceptor functional response viable thanks to the high performances

of the MD and LB components. In particular the MD component requires approx. 4 GPU

hours per nanosecond, while the LB requires 1 CPU/hour per simulation of electrokinetics,

that translates to 0.1 GPU/hour when running on a single GPU.

It is hoped and expected that the present three-stage framework may pave the way to
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the computational study of a variety of multiscale biological processes spanning a broad

spectrum of scales in space and time. As presented in the text, such outcome compares very

favourably with single-channel patch clamps, thus boding well for future use of the present

computational multi-stage methodology to other types of neuroreceptors.
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FIG. 1: Protocol Flowchart illustrating the three-level approach to studying the neuroreceptor func-

tion. Top: starting from the incomplete crystallographic data, homology and structure modelling

allows reconstructing the initial condition. Middle: by applying MD all-atom and coarse grained

simulations one can access the allosteric transition and compute affinity to binding, allowing to

determine the dose-response relation. Finally, use of the fluctuating protein matrix enables the use

of LB to quantify the eletrokinetic content of the receptor, thereby constructing the dose-function

relation.

18



FIG. 2: Reconstructed NMDA receptor embedded in the POPC membrane and with the GLN and

GLY ligands. The water solvent has been removed from the visualisation for the sake of clarity. .
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FIG. 3: Example of passage obtained with the HOLE method exemplifying one possible conduction

pathway and its narrow steric space .
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FIG. 4: RMSD of the Cα along the HOLO (black) and APO (red) simulations in the three different

levels of detail: all-atom (AA, top), OPEP coarse-grained (CG, middle) and elastic network (EN,

bottom). On the right-side of each plot the top views of the superimposed APO and HOLO

conformations of the apical lobes (transparent chain-coloured surface representation: APO chains

in cyan, pink, yellow and magenta; HOLO chains in blue, red, orange and purple) .
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FIG. 5: Time evolution of the two gating bottleneck distances in the NMDA pore for the APO

(upper) and HOLO (lower) states. In both panels, in red the distance between the CoM of V632 and

V2244 of the two GluN1A monomers, in blue the distance between I1426 and I3039 of the GluN2B

monomers. On the right-side of each plot the corresponding APO and HOLO conformations of

the bottleneck cross-section (represented as semi-transparent chain-coloured surface) with the four

above mentioned residues (APO: V632 cyan, I1426 pink, V2244 yellow and I3039 magenta; HOLO:

V632 blue, I1426 red, V2244 orange and I3039 purple). .
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FIG. 6: Characteristic curve of NMDA obtained fromthe LB method and compared to experimental

data Cui et al. [38].
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FIG. 7: Representation of NMDA evolution upon binding with the ligands and the computational

scheme. A: the receptor evolves from the closed to the open state, characterised by a change

in conductance from a baseline value to the one associated with the conducting state. B: MD

simulations sample the allosteric evolution of the receptor conformations, characterized by large

fluctuations during the 300 ns single MD trajectory. C: by selecting configurations every 3 ns

after binding to ligands, the evolution of conductance is obtained from LB simulations of a saline

solution (made of neutral, anionic and cationi species), whose data are shown in the rightmost

column. The horizontal lines are guides to the eye .
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SoftwareX 1, 19 (2015).

[14] E. Karakas and H. Furukawa, Science 344, 992 (2014).

[15] M.-y. Shen and A. Sali, Protein science 15, 2507 (2006).

[16] S. Jo, T. Kim, V. G. Iyer, and W. Im, Journal of computational chemistry 29, 1859 (2008).

[17] E. L. Wu, X. Cheng, S. Jo, H. Rui, K. C. Song, E. M. Dávila-Contreras, Y. Qi, J. Lee,

V. Monje-Galvan, R. M. Venable, et al., Charmm-gui membrane builder toward realistic

biological membrane simulations (2014).

[18] M. A. Lomize, A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg, Bioinformatics 22, 623

25



(2006).

[19] J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, S. Wei, J. Buck-

ner, J. C. Jeong, Y. Qi, et al., Journal of chemical theory and computation 12, 405 (2016).

[20] J. Huang and A. D. MacKerell Jr, Journal of computational chemistry 34, 2135 (2013).

[21] Y. Chebaro, S. Pasquali, and P. Derreumaux, J. Phys. Chem. B 116, 8741 (2012).

[22] F. Sterpone, S. Melchionna, P. Tuffery, S. Pasquali, N. Mousseau, T. Cragnolini, Y. Chebaro,

J.-F. St-Pierre, M. Kalimeri, A. Barducci, et al., Chem. Soc. Rev. 43, 4871 (2014).

[23] F. Sterpone, P. Nguyen, M. Kalimeri, and P. Derreumaux, J. Chem. Theory. Comput. 9,

4574 (2013).

[24] J. W. Rocks, N. Pashine, I. Bischofberger, C. P. Goodrich, A. J. Liu, and S. R. Nagel,

Proceedings of the National Academy of Sciences 114, 2520 (2017).

[25] F. Sterpone, P. Derreumaux, and S. Melchionna, J. Chem. Theory Comput. 11, 1843 (2015).

[26] M. Chiricotto, S. Melchionna, P. Derreumaux, and F. Sterpone, J. Chem. Phys. 145, 035102

(2016).

[27] M. Chiriccotto, S. Melchionna, P. Derreumaux, and F. Sterpone, J. Phys. Chem. Lett. 10,

1594 (2019).

[28] S. Timr, D. Gnutt, S. Ebbinghaus, and F. Sterpone, J. Phys. Chem. Lett. 11, 4206 (2020).

[29] F. Sterpone, S. Melchionna, and P. Derreumaux, J. Phys. Chem. B 122, 1573 (2018).

[30] O. Languin-Cattoen, S. Melchionna, P. Derreumaux, G. Stirnemann, and F. Sterpone, J.

Phys. Chem. B 122, 11922 (2018).

[31] M. Fyta, S. Melchionna, and S. Succi, Journal of Polymer Science Part B: Polymer Physics

49, 985 (2011).

[32] S. Succi, The Lattice Boltzmann equation: for fluid dynamics and beyond (Oxford university

press, 2018).

[33] U. M. B. Marconi and S. Melchionna, The Journal of chemical physics 134, 064118 (2011).

[34] S. Melchionna and U. M. B. Marconi, EPL (Europhysics Letters) 95, 44002 (2011).

[35] B. Lu, M. J. Holst, J. A. McCammon, and Y. Zhou, Journal of computational physics 229,

6979 (2010).

[36] S. Melchionna and S. Succi, The Journal of chemical physics 120, 4492 (2004).

[37] U. Marini Bettolo Marconi and S. Melchionna, Langmuir 28, 13727 (2012).

[38] C. Cui, M. Xu, and M. Atzori, Molecular pharmacology 70, 1761 (2006).

26



[39] S. Raafatnia, O. A. Hickey, M. Sega, and C. Holm, Langmuir 30, 1758 (2014).

[40] U. M. B. Marconi and S. Melchionna, The Journal of chemical physics 135, 044104 (2011).

[41] C. S. Peskin, Acta numerica 11, 479 (2002).
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