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Background
Inter-individual variability is ubiquitous in biology, from the fluctuations of molecular 
contents across populations of single cells [1], to the variations of physiologial param-
eters between whole organisms [2]. This variability has uncountable consequences, for 
instance at the scale of developmental [3], ecological or evolutionary processes [4, 5].

As a result, one often faces significant amounts of variations between replicates of the 
same biological experiment, which we will refer to as experimental variability. This vari-
ability can be taken into account by deterministic dynamical models of the biological 
system, as a random variation around its predicted behaviour [6, 7]. Such models thus 
disregard the fact that variability is inherent to the biological nature of the system under 
study.

Abstract 

Background:  Nonlinear mixed effects models provide a way to mathematically 
describe experimental data involving a lot of inter-individual heterogeneity. In order to 
assess their practical identifiability and estimate confidence intervals for their param-
eters, most mixed effects modelling programs use the Fisher Information Matrix. How-
ever, in complex nonlinear models, this approach can mask practical unidentifiabilities.

Results:  Herein we rather propose a multistart approach, and use it to simplify our 
model by reducing the number of its parameters, in order to make it identifiable. Our 
model describes several cell populations involved in the in vitro differentiation of 
chicken erythroid progenitors grown in the same environment. Inter-individual variabil-
ity observed in cell population counts is explained by variations of the differentiation 
and proliferation rates between replicates of the experiment. Alternatively, we test a 
model with varying initial condition.

Conclusions:  We conclude by relating experimental variability to precise and identifi-
able variations between the replicates of the experiment of some model parameters.
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Another difficulty that can arise from this approach is when some parameters of the 
model are unidentifiable. A parameter is said identifiable when a particular measure-
ment of the model output (potentially affected by measurement error) is associated to a 
unique parameter value [6]. Otherwise it is unidentifiable. The model itself is said iden-
tifiable if all its parameters are identifiable, and unidentifiable if at least one of its param-
eters is unidentifiable.

More precisely, a model can be unidentifiable for several reasons. If some param-
eters are redundant, meaning that they can be varied together in such a manner that 
the model output is kept constant, they are called structurally unidentifiable. If the data 
quantity (sample size) or quality (measurement error) are insufficient to precisely infer 
some parameter values, these parameters are said practically unidentifiable. It should be 
noted that while all practically identifiable parameters of a model are also structurally 
identifiable, the converse is not necessarily true (see for instance the recent review on 
identifiabilty by Wieland et al. [8]). For this reason, the focus of this paper is on practical 
identifiability, and unless stated otherwise we will be referring to the practical identifi-
ability of model parameters.

When the parameters of a model have a precise physical or biological interpretation, it 
can be tempting to use their estimates to formulate predictions about the system. How-
ever, as these estimates are not uniquely determined in unidentifiable models, an uni-
dentifiable model should never be used for predictive purposes [9].

In order to interpret experimental heterogeneity, we propose to use nonlinear Mixed 
Effects Models (MEM). In particular, we are interested in the identifiability of such mod-
els. MEM work by applying the same mathematical model to all the individuals of the 
population, with different parameter values for each individual, and thus have been 
used in a variety of fields involving inter-individual variability [10]. This approach allows 
to assign different levels of variability for each parameter by making the distinction 
between population parameters, that are the means and variances of the parameter val-
ues across the whole population, and individual parameters, that are the precise param-
eter values assigned to each individual.

In the context of experimental variability, one might for instance consider all repli-
cates of the experiment as individuals coming from the same population (the theoretical 
population of all the possible outcomes of the experiment). Assigning different param-
eter values in a dynamic model for each individual (i.e. each replicate of the experiment) 
would then allow to assess which parameters of the model are mostly affected by experi-
mental variability (i.e. which parameters are the most variable between individuals). The 
question that naturally arises is whether or not such a model would be identifiable.

In general, one argument in favour of the use of MEM is the fact that using the popu-
lation distribution as a prior can help with the estimation of the individual parameters, 
thus improving their practical identifiability [11]. This rationale is based upon the fact 
that most MEM calibration methods estimate the population parameters in a first step, 
using the data from the whole population, and then estimate individual values for every 
parameter in a bayesian way, an approach referred to as Empirical Bayesian Estimation 
[12].

However, this first intuitive argument on parameter identifiability in MEM is some-
what challenged by another consideration: the intricate definition and estimation of 
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population and individual parameters might in fact complicate the assessment, and even 
the definition, of parameter identifiability in MEM [13]. As a consequence, the identifia-
bility of MEM parameters is of critical importance to their widespread applications, and 
should not be neglected [9, 14]. In general, practical parameter identifiability depends on 
the precise definition of the model parameters (in the case of MEM, that is the definition 
of the distributions of the individual parameters across the population), together with 
the quantity and quality of the experimental data used for calibration [6]. Several kinds 
of approaches for structural identifiability analysis, that were developped for models 
without mixed effects, have been adapted in a mixed effect context [15, 16]. Regarding 
practical identifiability analysis, two different kinds of empirical approaches are reported 
for MEM [13], though with a lot of potential refinements.

First, the Fisher Information Matrix (FIM), which is computed from the Hessian of the 
likelihood, estimated at the optimal parameter set, allows for a quadratic approximation 
of the likelihood surface near its optimum. This in turn, allows to infer confidence inter-
vals for any parameter at any level, provided that the FIM is non-singular [17, 18]. In this 
setting, a singular FIM indicates that some parameters are structurally unidentifiable. 
Conversely, a near-singular FIM could indicate that some parameters are practically uni-
dentifiable. However, the quadratic approximation of the likelihood surface might mask 
practically unidentifiable parameters in the case of nonlinear, partially observed mod-
els. In extreme cases, the FIM can even make some practically unidentifiable parameters 
appear as identifiable [6]. As a consequence, the FIM is inadequate to study practical 
identifiability. Since our focus is on the practical identifiability of MEM, we will not use 
the FIM to assess the identifiability of our models. Other methods have been developed 
for models without mixed effects, such as the profile likelihood [6], but to our knowledge 
they have not yet been implemented in any of the existing software for MEM calibration. 
Given the widespread use of these software for the calibration of MEM in pharmacology 
and personalized medicine [19], it would be particularly interesting to be able to empiri-
cally study the practical identifiability of MEM, directly from the calibration software.

Secondly, one might run the estimation algorithm several times, using a sample of ini-
tial guesses for the parameter values [13]. In that case, the convergence of the algorithm 
to a unique likelihood optimum, with different optimal parameter values, indicates that 
the parameters are unidentifiable. We refer to this approach as Initial Guess Sampling 
(IGS). It has also been termed the multistart approach, and the samples of estimated 
parameter values that it provides do not contain any information regarding the variance 
of the estimation or the confidence intervals of the parameters [20]. Since this method 
requires a potentially large sample of runs of the estimation algorithm, it is more costly 
in terms of computational power than a simple evaluation of the FIM eigenvalues. As a 
consequence, most approaches to the identifiability analysis of MEM rely on the FIM 
[10, 13, 14, 21–23], despite its proven inaccuracy at assessing practical identifiability [6].

Since the practical identifiability of a model depends on both the definition of the model 
and the data used to calibrate it, there are two broad classes of approaches for dealing with 
an unidentifiable model. On one hand, it is possible to increase the amount of data avail-
able for parameter estimation. For instance measuring an additional, previously unobserved 
quantity might remove structural unidentifiabilities. It is also possible to use the tools of 
experimental design [22, 23] to define a new set of more informative experiments, that can 
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then be used to estimate new parameter values and assess their identifiability. However, 
experimental design approaches are approximate and there is no a priori proof that per-
forming the optimal experiment will actually make the model identifiable [24, 25]. On the 
other hand, it is also possible to change the definition of the model parameters, in order 
to simplify the estimation for the other parameters [26, Section 10.2], an approach which 
we refer to as model reduction. For instance, reparameterizing the model in terms of the 
estimable parameter combinations would remove any structural unidentifiabilities, while 
potentially sacrificing the biological interpretation of these parameters. It is also possible 
to constrain the value of some unidentifiable parameters (for instance setting them to zero) 
in order to simplify the estimation task. But then, which criterion would allow us to choose 
which parameters to remove from the model?

This consideration is particularly important for MEM, as all individual parameters might 
not have the same variance across the population. Thus, the size of the sampled dataset (in 
terms of the number of individuals) is critical for the estimation of the population variances, 
since a sampling bias in a small dataset could mask the variance on some parameters. From 
the point of view of experimental design, the determination of the necessary sample size in 
order to guarantee a certain level of confidence on all parameters in MEM is a central ques-
tion, which has already been covered to a certain extent [22, 27], using geometric features 
of the likelihood surface approximated from the FIM [28, section 10.5.3]. From the point of 
view of model reduction, it would be tempting to remove the unidentifiable variances by 
setting them to zero, potentially improving the estimation of the other parameters of the 
MEM without affecting the quality of the model fit to the data. In some cases however, add-
ing a random effect or a covariate to a MEM could improve parameter identifiability [26, 
Section 5.1], as it might split out combinations of structurally unidentifiable parameters.

In this paper, we adress these questions using a MEM of the in vitro erythropoeisis that 
we adapt from a previous model, proven to relevantly reproduce the dynamics of single rep-
licates of the experiment [29]. This MEM accounts for experimental variability by assign-
ing different parameter values for proliferation and differentiation in each replicate of an 
identical experiment. We assess its identifiability using a multistart approach, based on 
extensive parameter estimations with the MEM calibration software Monolix [30]. Then, 
we reduce the model in order to make it identifiable, using the correlations between the 
estimated parameter values. Alternatively, we test whether or not the observed variations 
in the outcome of our experiment could be explained by variations in the initial condition 
of the experiment rather than variations of the differentiation and proliferation dynamics. 
Our final model associates different levels of variability for each dynamic parameter, which 
allows us to identify which features of the erythroid differentiation are the most variable 
from experiment to experiment. Moreover, this work proposes a multistart approach for 
MEM identifiability analysis, which appears as a promising alternative to the FIM.

Methods
T2EC cell culture

The experimental setting from which all the data used in this study were obtained 
consists in a culture of 25,000 chicken erythroid progenitors called T2EC that were 
extracted from the bone marrow of 19 days-old embryos of SPAFAS white leghorn 
chickens (INRA, Tours, France). They may either be maintained in a proliferative 



Page 5 of 21Duchesne et al. BMC Bioinformatics          (2021) 22:478 	

state or induced to differentiate into mature erythrocytes depending on the medium 
in which they are grown, as previously described [29, 31–33].

In the self-renewal medium (referred to as the LM1 medium) the progenitors 
self-renew, and undergo successive rounds of division. Its composition is given in 
Table  S1  (Additional file  1). Cell population growth was evaluated by counting liv-
ing cells in a 30µL sample of the 1mL culture using a Malassez cell and Trypan blue 
staining (SIGMA), which specifically dyes dead cells, each 24h after the initial sowing 
of 25,000 cells in the culture, as previously described [29, 31–33].

T2EC can be induced to differentiate by removing the LM1 medium and placing 
cells into 1mL of the differentiation medium, referred to as DM17. Its composition is 
given in Table S1  (Additional file 1). Upon the switching of culture medium, a frac-
tion of the progenitors undergoes differentiation and becomes erythrocytes. The cul-
ture thus becomes a mixture of differentiated and undifferentiated cells, with some 
keeping proliferating. Cell population differentiation was evaluated by counting dif-
ferentiated cells in a 30µL sample of the culture using a counting cell and benzidine 
(SIGMA) staining which stains haemoglobin in blue. A parallel staining with trypan 
blue still gives access to the overall numbers of living cells, as previously described 
[29, 31–33].

Consequently, the data available from this experiment are the absolute numbers of 
differentiated cells, as well as the total number of living cells (which comprises both 
self-renewing and differentiated cells) each 24h after the initial sowing of 25,000 cells 
in the culture. The data presented on Fig.  1 are the total number of living cells in 
the culture, and the fraction of differentiated cells in 7 independent replicates of the 
experiment.

Modelling framework

A Mixed Effects Model (MEM) is defined as the combination of three components. 
The structural model describes the dynamic process at play in each individual. The 
parameter model, or individual model, describes how the parameters of the structural 
model vary from individual to individual. Finally, the observation model, or error 
model, describes how the predicted outcome of the model for each individual differs 
from the observation.

Fig. 1  Data used in this study. They comprise the total number of living cells in the LM1 and in the DM17 
media (in log-scale), as well as the number of differentiated cells in DM17 (represented as a fraction of the 
total number of cells) in 7 independent replicates of the experiment
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Dynamic model

The SCB model, that we previously described [29], faithfully reproduces the dynamics 
of T2EC proliferation and differentiation by accounting for 3 cellular states (Fig. 2). 
The self-renewing state S describes the state of cells in the LM1 medium, where they 
can only proliferate or die. The differentiated state B (which stands for Benzidine-pos-
itive) describes mature erythrocytes in the DM17 medium. Lastly, in the committed 
state C, cells have not finished differentiating, but cannot go back to self-renewal any-
more, so that they are committed to differentiation. The dynamics of these three com-
partments are given by the equations:

It is characterized by the set (ρS , δSC , ρC , δCB, ρB) of five dynamic (or kinetic) param-
eters, where ρi is the net growth rate of compartment i, which might be positive or 
negative depending on the net balance between cell proliferation and cell death, and 
δij is the differentiation rate of compartment i into compartment j, which must be 
positive.

Moreover, it should be noted that differential system (1) is fully linear, and that its 
matrix is lower-triangular, which makes it easily solvable analytically. Its simulation is 
thus very fast. The detail of the analytical solutions to this system is given as supple-
mentary material in [29].

Not all variables in the models can be measured through the experiments that we 
presented, and we only have access to three observables of the system: the number of 
living cells in LM1 (which we denote as S since there are only self-renewing cells in 
LM1), the number T of living cells in DM17, and the number B of differentiated cells 
in DM17 (it is null in LM1). Unless stated otherwise, we will always consider that the 
initial condition is fixed by the experimentalist so that the initial state of the observa-
bles is: (S0,T0,B0) = (25,000, 25,000, 0).

The SCB model was selected among others models with different structures, based on 
its ability to reproduce the kinetics of erythroid differentiation. It should also be noted 
that the original description of the SCB model –with slightly different constraints on 
parameter values compared to the context of this manuscript– was proven to be struc-
turally and practically identifiable, using the profile likelihood approach [29].

(1)






dS
dt

= ρSS(t)− δSCS(t),
dC
dt

= ρCC(t)+ δSCS(t)− δCBC(t),
dB
dt

= ρBB(t)+ δCBC(t).

Fig. 2  Diagram of the dynamic model. S: self-renewing cells. C: committed cells. B: Benzidine-positive (i.e. 
differentiated) cells. ρi denotes the proliferation rate of compartment i and δij is the differentiation rate of 
compartment i into compartment j 
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Parameter model

In order to describe inter-individual variability in the parameter values of the SCB 
model, we consider at first that the five kinetic parameters can vary between every 
individual. The two differentiation rates δSC and δCB must be positive, and the net pro-
liferation rates ρS , ρC and ρB can be positive or negative. In order to respect these 
bounds on the individual parameter values, we use a combination of normal and log-
normal distributions across the population:

This parameter model has 5 fixed effects ( ρpop
S  , δpopSC  , ρpop

C  , δpopCB  and ρpop
B  ), which quan-

tify the average behaviour of the population, and 5 random effects (associated with the 
standard deviations ωρS , ωδSC , ωρC , ωδCB and ωρB).

Error model

In order to account for experimental errors in the measurement of the observables, 
MEM include an error model, or observational model, which describes the statistical 
fluctuation of the model prediction around the observation. We previously demon-
strated that the proportional error model is the best to describe the prediction error 
of the SCB model [29]. It is defined by:

where yi,j,k marks the measurement of the ith observable, at the jth timepoint, on the 
kth individual, and fi marks the model prediction for the ith observable from System 
(1), which depends on time t, the initial condition y0 , and the individual parameters θk . 
Finally, bi denotes the proportional error parameter for the ith observable, which quanti-
fies the standard deviation of the prediction error, and εi,j,k is the individual weighted 
residual of the model for individual k, at time tj , for observable i. The proportional error 
model introduces one additional parameter bi for each observable, resulting in three 
error parameters for our SCB model.

Together with the dynamic model of System (1) and the parameter model of Eq. (2), 
this error model defines our first version of a MEM for the in  vitro erythropoiesis. 
Since all other MEM in this manuscript will have the same dynamic and error com-
ponents, we will omit them from now on, and will define each MEM by its parameter 
equation only, such as Eq. (2).

Parameter estimation

We used the Stochastic Approximation version of the Expectation-Maximization 
(SAEM) algorithm [34] implemented in Monolix [30] to estimate the parameters of 
our MEM (Additional file  1: Table  S2). To avoid potential local likelihood optima 
and ensure the convergence of the algorithm to the global optimum, we performed 

(2)






ρS →֒ N
�
ρ
pop
S ,ωρS

�
,

δSC →֒ logN
�
δ
pop
SC ,ωδSC

�
,

ρ֒→ N
�
ρ
pop
C ,ωρC

�
,

δCB →֒ logN
�
δ
pop
CB ,ωδCB

�
,

ρB →֒ N
�
ρ
pop
B ,ωρB

�
.

yi,j,k = fi(tj , y0, θk)+ bi.fi(tj , y0, θk).εi,j,k , εi,j,k →֒ N (0, 1),
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the estimation 50 times using the Monolix Convergence Assessment tool, with inde-
pendent uniformly sampled initial guesses for the parameter values (Additional file 1: 
Table S3). For the fixed effects, we sample the initial guess in an arbitrarily large inter-
val (Additional file 1: Table S3). Thus most initial guesses will be wrong, and poten-
tially far from the true value. To ensure convergence in these conditions, we set a high 
initial variance and error parameter values (Additional file 1: Table S3). This ensures 
that the first step of SAEM can sample individuals across all the parameter space, 
which will allow for a subsequent improvement of the estimates both for the popula-
tion averages and variances. This is a multistart approach that we refer to as Initial 
Guess Sampling.

Model selection

In order to select which SAEM runs converged to the global optimum, we used Akaike’s 
weights [35]:

where wi is the Akaike’s weight of the i-th run, AICi is its Akaike’s Information Criterion 
and R is the number of competing models. The Akaike’s weight of a given model in a 
given set of models can be seen as the probability that it is the best one among the set 
[35]. In this setting, selecting the best models of a set of models means computing their 
Akaike’s weights, sorting them, and keeping only the models whose weights add up to a 
significance probability (in this manuscript, 95%).

In MEM, one might either choose to use the marginal or the conditional AIC depend-
ing on the context [36]. They differ by the corrective term that they introduce in the like-
lihood. However, we will essentially use the AIC and the corresponding Akaike’s weights 
for selecting models with the same structure and different likelihoods, such as the 50 
runs of SAEM that we perform on the same model to assess its convergence. For this 
reason, the choice of mAIC or cAIC is not relevant to our study, and we will use the 
marginal AIC ( AIC = −2 log(L̂)+ 2K , where L̂  is the maximum likelihood and K is the 
number of population parameters), that is computed by Monolix by default [10].

In order to select models with different structures, i.e. models that would differ by 
the definition of their fixed or random effects, we use the BIC that has been derived for 
MEM [37, 38].

Identifiability analysis

Population parameters

We use an approach based on repeated parameter estimations, starting from different 
initial guesses, to empirically assess the identifiability of our MEM. In this case, conver-
gence to different parameter values with the same likelihood indicates unidentifiability 
[13].

This approach has also been termed the multistart approach, for instance by [20]. We 
will refer to the multistart approach as Initial Guess Sampling (IGS) in this manuscript.

Our approach to IGS is the following: 

(3)wi =
exp

(
−

(AICi−min(AIC))/2
)

∑R
j=1 exp

(
−(AICi−min(AIC))/2

) ,
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1.	 We perform a random sampling of the initial parameter guesses and run SAEM for 
each of the initial guesses, using the Monolix Convergence Assessment tool. This 
provides us with a sample of optimal parameter values.

2.	 We test the convergence of the SAEM runs: we only want to consider the runs which 
reached the global optimum. To this end, we use a selection criterion ( wAIC ) to keep 
only the runs that converged to the lowest likelihood values.

3.	 We compare the parameter values of these convergent runs. If they are different, 
then the model is unidentifiable, as several different parameter values give the same 
likelihood.

It should be noted that since multistart approaches do not provide any information on the 
parameters estimation error or confidence intervals [20], this approach do not allow for any 
statistical testing of parameter identifiability. The distribution of estimated values can rather 
be used to design a diagnostic plot of population parameter identifiability, showing which 
parameters vary the most between the convergent runs, and are thus the most poorly esti-
mated. We propose to visualize the distributions of estimated values as a boxplot normal-
ized by their median in order to display this information.

Individual parameters

Individual parameters are estimated using an empirical bayesian approach, where the popu-
lation distribution of the parameters serves as a prior balanced by the individual data. In the 
case of unidentifiable individual parameters, the experimental data do not provide enough 
information to determine them precisely. Then, the posterior distribution is very close to 
the prior, resulting in individual parameters being estimated as their population mean.

More precisely, this principle that the posterior matches the prior for unidentifiable 
parameters holds under two conditions [39]: first, the prior distributions must be inde-
pendent, second, the parameter space must be a product space. When one of these two 
conditions is not met, it is possible that the posterior distribution will differ significantly 
from the prior even for unidentifiable parameters [39].

In the case of our model, the prior distributions of the individual parameters, which are 
the population distributions defined in System (2), are independent, since the variance-
covariance matrix of the random effects is diagonal. Moreover, each individual parameter is 
either real (net self-renewal rates) or positive (differentiation rates), and thus the individual 
parameter space is a product space, namely (ρS , ρC , ρB, δSC , δCB) ∈ R

3
× R

2
+

Consequently, we can assess the identifiability of the individual parameters by measur-
ing the overlap between the prior and posterior distributions. This phenomenon is summa-
rized by a scalar criterion called the η-shrinkage [12, 40]:

where std(ηk) is the standard deviation of the estimated individual random effects in the 
population, and ωθ is their theoretical standard deviation. In the case where information 
about a parameter is insufficient, the random effects on this parameter shrink toward 0 
in the population, and thus sη increases. Eq. (4) also implies that shrinkage values vary 

(4)sη = 1−
std(ηk)

ωθ

,
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from parameter to parameter, and that some parameter might be more poorly character-
ized than the others.

Simulation studies have shown that shrinkage has a variety of effects on the model 
diagnostics, starting from 30% shrinkage [12]. High shrinkage values affect the correla-
tions between random effects and covariates, as well as the correlations between the ran-
dom effects themselves. It can also affect the detection of structural model specification.

In this paper, we will use the 30% limit introduced in [12] as a rule of thumb to con-
sider that the individual parameters are well estimated.

Results
The model is unidentifiable

We estimated the parameter values of Model (2) by using our multistart approach. The 
distribution of estimated likelihood values over the 50 runs of SAEM is displayed on 
Fig. 3A, showing small variations between the estimated log-likelihood values. Among 
these 50 runs of SAEM, the 45 associated to the lowest −2 log(L̂) add up to 95% of Akai-
ke’s weights (Fig. 3B). We thus focus on the outcome of these 45 runs in the following.

The distributions of estimated population parameter values are represented in Fig. 3C. 
The fixed effect ρpop

S  , the corresponding variance ωρS and the three error parameters b1 , 
b2 and b3 are estimated with the smallest variance. For any of the other 8 parameters, the 

Fig. 3  Model (2) is unidentifiable. A Likelihood distribution over 50 SAEM runs on the Model (2). B 
Cumulated AIC weights over the 50 runs of SAEM. The 45 runs associated to the lowest likelihood values (i.e. 
those that add up to 95% of the total weight of the 50 runs) are coloured in red. C Normalized parameter 
values in the 45 convergents runs of SAEM. Displayed are the distributions of estimated parameter values, 
normalized by their median. D Distribution of the η-shrinkage values for the individual parameters in the 45 
convergent runs of SAEM
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estimated values display more or less variability. For these parameters, the estimation is 
less reliable.

Thus, we conclude that the fixed effects δpopSC  , ρpop
C  , δpopCB  and ρpop

B  are unidentifiable, as 
well as the corresponding variances (a total of 8 unidentifiable population parameters).

The shrinkage of the individual random effects is displayed on Fig. 3D. The values of 
shrinkage for δSC ρC , δCB and ρB range from 20 to 90% depending on the run, which indi-
cates a clear discordance between the population distribution of the parameters and the 
actual distribution of the individual parameters. We thus conclude that the individual 
data are not informative enough to estimate all random effects for each individual.

As a consequence, it appears that Model (2) is unidentifiable at the population level as 
well as at the individual level.

A reduction approach for MEM

Fixed effects: parameter correlations

Figure 4A displays the value of Spearman’s ρ2 , which measures the nonlinear correlation 
between two variables, for each pair of the 8 unidentifiable population parameters of 
Model (2). There is a high correlation between δpopSC  , ρpop

C  and δpopCB  across the runs, which 
is represented in Fig. 4B, C.

These results show that the optimal values of δpopSC  , ρpop
C  and δpopCB  are strongly correlated 

in the range of values of Fig. 4. This range corresponds to the range of estimated values 

Fig. 4  Correlations between the population parameters in Model (2) allow for a reduction of its fixed 
effects. A Correlation heatmap (Spearman’s ρ2 ) of the 8 unidentifiable population parameters in the 50 runs 
of SAEM for the initial model. For each pair of unidentifiable population parameters, the heatmap displays 
the color-coded value of ρ2 . B: Nonlinear correlation between δpopSC  and ρpop

C  . C: Linear correlation between 
δ
pop
CB  and ρpop

C  . (B, C Displayed are the estimated population parameter values over the 50 runs of SAEM, 
color-coded by likelihood.) D Estimated parameter values in the 36 convergent runs of SAEM for Model (7), 
with reduced δpopSC  and δpopCB  . Displayed are the distributions of estimated parameter values, normalized by 
their median
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in the 50 SAEM runs. The correlations suggest that if we would replace two of these 
parameters by their expression as a function of the third one, we would also reduce the 
number of population parameters to estimate, and still allow them to reach their optimal 
value.

We found the following expressions for the correlations:

and

We thus conclude that if we replace δpopSC  and δpopCB  by their expression as a function of ρpop
C  

in Model (2), it might help the estimation. Yet, such a reduction might affect the conver-
gence of SAEM because the correlation might not hold outside of the parameter range 
of Fig. 4.

Replacing δpopSC  and δpopCB  in Model (2) by their expression as a function of ρpop
C  , we 

obtain the following reduced model:

Following the same approach as for Model (2), we ran the SAEM algorithm on this model 
50 times using uniformly sampled initial guesses for the population parameters. The 
resulting optimal likelihood distribution is displayed on Figure S1A (Additional file 1). 
Most of the runs reached the same likelihood optimum as with Model (2) (Fig. 3A), but 
10 of them found higher likelihood values. In the case of Model (7), Akaike’s weights 
select only 36 runs as the best ones (Additional file 1: Figure S1B), that we will consider 
as the runs that reached the global likelihood optimum.

The parameter values estimated in these 36 runs are displayed on Fig.  4D. First, it 
shows that the reduction of the model did not affect the accuracy of the estimation for 
the five parameters that were identifiable in Model (2). Then, the population parameters 
ρ
pop
C  and ρpop

B  are estimated more precisely in the reduced model (7) than in Model (2). 
However the three standard deviations ωρC , ωδCB and ωρB are still estimated with some 
variability.

Since ωρC , ωδCB and ωρB define the distributions of three random effects, their unidenfi-
ability might indicate an overparameterization of the random effects. We investigate this 
using the η-shrinkage of the individual random effects in the next section.

Random effects: shrinkage

We measured the η-shrinkage in the convergent runs of Model (7). The average of the 
shrinkage values for each parameter are displayed in Table 1. Their distributions over the 
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convergent runs are displayed in Figure S2 (Additional file 1). These values confirm that 
the individual parameters of Model (7) are unidentifiable.

These results indicate the individual data that we presented in Fig. 1 are insufficient 
to estimate five parameters per individual precisely. Indeed, our dataset only comprises 
7 individuals. In order to obtain an identifiable model based on Model (7), one might 
remove the random effect on one or several individual parameters. Fixing their val-
ues across the population might allow for a more precise estimation of the other, still 
variable, individual parameters, while keeping the same quantitative fit as with Models 
(2) and (7). However, all parameters are not necessarily equivalent in this regard, since 
different parameter sensitivities would make the model output more flexible under some 
combinations of fixed parameters. This would allow for these combinations to better fit 
the data, depending on the sensitivies of the model output to the parameter values. This 
sensitivity is imposed by the analytical solution to the structural equations of the model 
that we defined in System (1), but for most models there is no closed-form expression 
for the parameter sensitivities. As a consequence, and in order to keep our approach as 
general as possible, we will not attempt any analytical expression of the model output 
sensitivities to the individual parameters herein.

In order to choose which random effect to remove from our model, we consider that 
the parameter with the highest shrinkage is the most poorly estimated across the pop-
ulation. Since ρC and ρB display similar amounts of shrinkage in Model (7), we might 
remove either of their random effects in order to reduce our model. Removing the ran-
dom effect on ρC defines a new model with reduced δpopSC  and δpopCB  , and with no variability 
on ρC , which is described in System (S1, Additional file  1). Conversely, removing the 
random effect on ρB defines a new model with reduced δpopSC  and δpopCB  , and with no vari-
ability on ρB , which is described in System (S2, Additional file 1). We display the optimal 
likelihood distribution over an initial guess sample for Model (S1) and Model (S2) in 
Figures S3 and S6 (Additional file 1), respectively.

In both Model (S1) and Model (S2), the population parameters (Additional file  1: 
Figures  S4  and  S7) and the individual parameters (Table  1, Additional file  1: Fig-
ures S5 and S8) are still unidentifiable. We conclude that removing one random effect 
from Model (7) is not sufficient to make it identifiable. Thus, we propose to further 
reduce it by removing both the random effects on ρC and on ρB , resulting in a reduced 
model with 3 remaining random effects:

Table 1  A comparison of our models along reduction

The table displays the optimal likelihood, the number of convergent runs (as selected by Akaike’s weights over 50 SAEM 
runs), the number of fixed and random effects, as well as the average η-shrinkage for each parameter (expressed as a 
percentage of the population variance) over the convergent runs for our models. For each model, we give the reference of 
the equation where it is defined.

Model −2 log(L̂) Convergent 
runs

Fixed effects Random 
effects

η-shrinkage

sρS sδSC sρC sδCB sρB

(2) 1761 45 5 5 3 31 77 63 39

(7) 1761 36 3 5 3 28 66 40 62

(S1) 1761 36 3 4 3 28 – 49 44

(S2) 1761 22 3 4 3 29 63 32 –

(8) 1761 25 3 3 3 28 – 21 –
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In this model, every population parameters—including the remaining variances ωρS , ωδSC 
and ωδCB—are reliably estimated (Additional file 1: Figure S10) and the average shrink-
age is lower than 30% for every parameter (Table  1, Additional file  1: Figure  S11). In 
other words, our reduction approach allowed us to define a fully identifiable MEM, i.e. 
a model which is able to quantitatively reproduce the individual trajectories of Fig.  1, 
while explaining experimental heterogeneity in terms of precise parameter variations 
between individuals.

In the next section, we test another hypothesis, under which experimental heteroge-
neity does not come from inter-individual variations of the parameters of the dynamic 
model, but rather from variations in the initial condition of the experiment. Then, we 
discuss the biological significance of the parameter values of Model 8.

Variability of the initial condition

In the previous section, we have considered that experimental heterogeneity originates 
from individual differences in the parameters of proliferation and differentiation kinet-
ics. On the other hand, experimental heterogeneity might also be caused by an error in 
the sampling of the inital 25,000 cells in the culture. In this section, we assess whether a 
variability of the initial condition could better account for experimental heterogeneity 
than variability on the model dynamic parameters. This can be tested by defining Mixed 
Effect Models accounting for the heterogeneity of the initial population size. First, we 
define three alternative versions of Model (8), which differ by their definition of the ini-
tial condition. We then calibrate these models and study their identifiability in order to 
select the best model at reproducing our data that is also identifiable.

The first model that we are considering is our reduced model (8), in which the kinetic 
parameters ρS , δSC and δCB can vary between individuals, while ρC and ρB are kept con-
stant between individuals. In this model, the initial condition is fixed for all individuals: 
(S0,T0,B0) = (25,000, 25,000, 0).

In the second model that we consider, all kinetic parameters are fixed to their popula-
tion average, and we allow the initial condition to vary between individuals:
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In this model, parameters Spop0  and Tpop
0  are the average of the initial number of cells in 

the LM1 and DM17 experiment. They represent a systematic error in the sampling of 
the initial 25,000 cells. Parameters ωS0 and ωT0

 are the standard deviations of the initial 
number of cells in each experiment. For the third observable B, which is the number of 
differentiated cells, we consider the fixed initial condition B0 = 0 for all individuals, as 
the differentiation is initiated at time t = 0.

Finally, the last model that we consider allows for interindividual variations of both the 
kinetic parameters, as in Model (8), and the initial condition, as in Model (9):

For Models (9) and (10), we present the convergence data in Figures S12 and S15 (Addi-
tional file 1), the distributions of the population parameters in Figures S13 and S16 (Addi-
tional file 1), and the distributions of shrinkage values in Figures S14 and S17 (Additional 
file 1) respectively.

We display the optimal log-likelihood −2 log(L̂) and the corresponding BIC for Mod-
els (8–10) in Table 2. Model (8) appears as the best one, closely followed by Model (10). 
On the other hand, Model (9) performs much worse than its competitors. Since Model 
(10) is unidentifiable (Additional file 1: Figures S16 and S17), we conclude that Model 
(8) is the best one both in terms of quality of the fit and of parameter identifiability. This 
means that individual variations in the parameter values are more important in account-
ing for experimental heterogeneity than variations in the initial condition.

The final model

In Model (8), the population parameters are identifiable (Fig. 5). It is the same for the 
individual parameters (Additional file 1: Figure S11). This means that every parameter of 
the model can be reliably estimated from our data, and that the estimated values reflect 
an actual optimum in the description of in vitro erythropoiesis.
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Table 2  Bayesian Information Criterion (BIC) computed for Models (8–10)

Since the definition of the BIC depends on the decomposition of individual parameters between fixed parameters and 
random parameters [37, 38], the computation of the BIC is ambiguous for Models (8) and (10). In these models, ρpop

C  
determines jointly the population values of ρC (which is fixed), δSC and δCB (which are random). Consequently, we can 
compute two different values of the BIC, depending on whether we consider ρpop

C  as the fixed effect of a fixed parameter (a), 
or as the fixed effect of two random parameters (b). In practice, this consideration does not seem to affect the outcome of 
the selection

Model 2ln(L̂) #θF #θR BIC

(8) 1761 2
a/1b 4

a/5b 1778
a/1775b

(9) 1801 3 4 1822

(10) 1759 2
a/1b 8

a/9b 1784
a/1782b
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The distribution of the estimated population parameter values in the convergent runs 
of Model (8) is displayed on Fig. 5. The estimated population average of the parameter 
values in the optimal run are displayed in Table 3. The fixed effects ρpop

S  , ρpop
C  and ρpop

B  
determine the average behavior of the experiment. The average proliferation rate ρpop

S  is 
estimated at 0.61 d−1 (Table 3). The doubling time of the self-renewing cells (i.e. the time 
it would take to double their population in the absence of differentiation) is thus 27 h in 
the average experiment, which is longer than the originally reported 18 h [33]. Prolif-
eration in the committed compartment is much faster ( ρpop

C = 3.8 d
−1 , Table 3), which 

gives the committed cells an approximate doubling time of 4 h . Even though T2EC cells 
are known to proliferate faster in the differentiation medium than in the self-renewal 
medium [33], such a difference in proliferation times is rather intriguing.

Moreover, ρpop
B  is estimated at 0.26 d−1 , giving the differentiated cells a doubling time 

of 65 h . This means that their proliferation is almost invisible at the timescale of the 
experiments, as might be expected from differentiated cells.

From Eq. (5), the value of ρpop
C  sets δSC to an average 0.37 d−1 . The half-life of the self-

renewing cells (i.e. the time it would take to differentiate half of the population in the 
absence of proliferation) is thus approximately 45 h . Respectively, from Eq. (6), the aver-
age value of δCB in the population is estimated at 4.5 d−1 , which gives the committed 
cells a half-life of approximately 3 h in the average experiment.

Fig. 5  The estimated parameter values of Model (8) are identifiable. Displayed as dots are the estimated 
population parameter values in the 25 convergent runs of SAEM for Model (8), color-coded by log-likelihood. 
Error bars are the FIM-derived standard errors of the estimates when available (when there is no error bar for a 
parameter value in a given run, it means that it was impossible for Monolix to invert the FIM). The population 
means and standard deviations are expressed in d−1 . The error parameters are dimensionless

Table 3  Parameter values in the optimal-likelihood run of Model (8)

The table displays, for each parameter, the average value across the population in the SAEM run with the lowest −2 log(L̂) . 
For the three parameters that vary across the population, we also give the bounds of the confidence intervals at level 0.95 
for the individual parameter values. All values expressed in d−1

Parameter Lower bound Population average Upper bound

ρS 0.38 0.61 0.85

δSC 0.22 0.37 0.59

ρC – 3.8 –

δCB 3.8 4.5 5.3

ρB – 0.26 –
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Apart from this average behaviour, three parameters of the final model can vary across 
the population, and are estimated at different values for each individual experiment. The 
first one is ρS , which has the estimated variance ωρS = 0.12 d

−1 . This translates into the 
individual values of ρS being estimated between 0.38 d−1 and 0.85 d−1 (Table  3), which 
corresponds to doubling times between 20 h and 44 h . Then, ωδSC is estimated at 0.25 d−1 
with the individual parameter values of δSC estimated from 0.22 d−1 to 0.59 d−1 , which 
means that the corresponding half-life ranges from 28 h to 76 h approximately. Finally, 
ωδCB is estimated at 0.086 d−1 , with individual parameter values for δCB ranging from 
3.8 d

−1 to 5.3 d−1 and the corresponding half-life approximately ranging from 3 h to 4h30.
All these parameters are practically identifiable according to our initial guess sampling 

approach: each population parameter is estimated at a unique value (Fig. 5), and the dis-
tibution of individual parameters matches the population distribution (Additional file 1: 
Figure S11). However, identifiability analysis in Monolix is based on the FIM, and it was 
impossible to compute the FIM of our final model in any of the SAEM runs that we 
performed (Fig. 5): ρpop

C  and ρpop
B  have an infinite standard error when computed from 

the FIM. Based on the FIM, these two parameters thus appear as unidentifiable, while 
the others are all identifiable with a standard error which seems consistent between 
the SAEM runs. This means that the method used for identifiability analysis in MEM 
has an impact on the outcome of the analysis. However, since the FIM is proven to ren-
der biased confidence intervals when studying practical identifiability [6], our FIM-free 
method for identifiability analysis and model reduction appears as a reasonable approach 
with MEM.

Discussion and prospects
Generalizing our approach

Most approaches for identifiability analysis in MEM rely upon the FIM [10, 13, 14, 21–
23], even though its parabolic approximation of the likelihood surface might mask com-
plex practical unidentifiabilities [6]. We rather propose a multistart approach [13], that 
we refer to as Initial Guess Sampling.

Multistart approaches do not provide any information regarding the confidence inter-
vals of the model parameters [20], but they indicate parameter unidentifiabilities when 
the estimated values differ.

For this reason, our samples of estimated values cannot be used in statistical analyses. 
On the contrary, they only allow for a visual check of the estimated values (for instance 
on Fig. 5), thus adding a new kind of diagnostic plot to the visual tools already available 
to the modeller using mixed effect models.

This approach allowed us to design an identifiable MEM of in  vitro erythropoiesis 
which accounts well for experimental heterogeneity as inter-individual variations of 
the proliferation and differentiation parameters. Then, a question that naturally arises 
is whether or not our approach could be applied, or generalized, onto other MEM? 
We identified two features of our approach, that might be of importance for such a 
generalization.
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First, it seems that iteratively reducing our model affects the convergence of SAEM. 
Indeed, while all 50 runs of SAEM reached the same likelihood optimum for Model (2) 
(Fig. 3A), only 36 runs reached it for Model (7) (Additional file 1: Figure S1B). Conver-
gence was further affected by removing random effects from our model (Additional 
file 1: Figures S3B & S6B), to the point where only 25 runs of SAEM reached the likeli-
hood optimum for Model (8) (Additional file  1: Figure  S9B). However, the number of 
convergent SAEM runs is critical to the assessment of population parameters identifi-
ability. Depending on the complexity of the model and the dataset, 50 SAEM runs might 
not be sufficient to assess parameter identifiability and allow for model reduction, and 
the number of runs to be performed should thus be finely tuned in order to avoid issues 
with computational time.

Morevover, we used the correlations between population parameters to define Model 
(7), with constraints on the fixed effects. The exact shape of the likelihood landscape 
and the resulting unidentifiability is related to the structure of the model, and the qual-
ity of the data. This means that we were able to explore the parameter space near the 
likelihood optimum using pairwise correlations (Fig. 4). Yet, in more complex nonlinear 
MEM, it is possible that the correlations would involve more than two parameters at a 
time. In the end, detecting these complex correlations would require some kind of multi-
variate correlation analysis [41].

About the source of experimental heterogeneity

In this paper, we consider that experimental heterogeneity might either originate in vari-
ations of the kinetic parameters between replicates of the experiment, or by experimen-
tal errors in the initial number of cells. Using model selection and identifiability analysis, 
we conclude that variations in the kinetic parameters of proliferation and differentiation 
best explain experimental heterogeneity.

Considering that every replicate of the experiment was obtained with the exact same 
protocol, it seems that only two features of our experiment could change from replicate 
to replicate.

The first one is the group of 25,000 cells used to initiate the culture. In the haematopoi-
etic system, in vivo stem cells and progenitors display substancial variations in terms of 
self-renewal and potency [42]. Since our T2EC cells are erythropoietic progenitors, our 
results suggest that the self-renewal and differentiation abilitites vary between the cell 
populations that we used to initiate every experiment.

On the other hand, there has also been discussion around the fact that the external 
temperature of the incubators (i.e. the temperature of the room where the T2EC are 
incubated, which is not their incubation temperature) might affect the variability of gene 
expression [43]. This in turn, could affect their self-renewal or differentiation potency.

Conclusion

In this paper, we proposed a MEM for in vitro erythropoiesis, that accounts for experi-
mental heterogeneity. We developped a multistart approach for assessing its iden-
tifiability, and we successfully reduced it to make it identifiable. We showed that 
experimental heterogeneity is faithfully accounted for by variations of the kinetic 
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parameters of proliferation and differentiation in our system, and we relate these param-
eter variations to actual biological features of our cells. This work establishes a MEM 
framework to study variability in the outcome of biological experiments. Furthermore, it 
proposes a novel approach for the analysis of parameter identifiability in MEM, and for 
reducing unidentifiable MEM.
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