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Abstract: Background: Most work in endocrinology focus on the action of a single hormone, and
very little on the cross-talks between two hormones. Here we characterize the nature of interactions
between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis.
Methods: We used functional genomics to derive genome wide profiles of methylated DNA and
measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin.
Clustering classified the data into four types of biological responses, and biological networks were
modeled by system biology. Results: We found that gene expression is mostly regulated by either
T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-
negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions
between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are
dominated by cross-talks. Conclusion: Cross-talks between thyroid hormones and glucocorticoids are
more complex than initially envisioned and are not limited to the simple addition of their individual
effects, a statement that can be summarized with the pseudo-equation: TH · GC > TH + GC. DNA
methylation changes are highly dynamic and buffered from genome expression.

Keywords: Xenopus metamorphosis; thyroid hormone; glucocorticoids; cross-talks; functional
genomics; DNA methylation

1. Introduction

Thyroid hormones (TH) and Glucocorticoids (GC) are ubiquitous mediators of en-
docrine signalling systems coordinating homeostasis, a response to environmental chal-
lenges and development throughout life, starting from early development until death.
These systems are highly conserved in vertebrates [1–3], where they regulate similar pro-
cesses across taxa ranging from fish to amphibians to birds and mammals [4]. Their action
is very diverse [5–13], and both signalling pathways often cooperate in biological pro-
cesses (e.g., during bone growth and differentiation [14], brain maturation [15,16], and liver
metabolism [17]), where affecting one or the other signalling pathway results in various
pathologies and developmental defects [5,18,19]. This is at the very heart of the biological
question we ask, and we will list below some molecular details to highlight some sources
of functional interactions between pathways.

The action mechanism of these hormones involves specific receptors belonging to the
super family of nuclear receptors (NR) transcription factors [20]. They directly regulate the
expression of a number of target genes, typically in the order of a few thousands [21–23].

Cells 2021, 10, 2375. https://doi.org/10.3390/cells10092375 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-1190-2934
https://orcid.org/0000-0002-1925-6650
https://orcid.org/0000-0001-5820-8785
https://orcid.org/0000-0002-1812-2853
https://www.mdpi.com/article/10.3390/cells10092375?type=check_update&version=1
https://doi.org/10.3390/cells10092375
https://doi.org/10.3390/cells10092375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10092375
https://www.mdpi.com/journal/cells


Cells 2021, 10, 2375 2 of 26

Transcriptional regulation may also be indirect, as direct target encoding transcription
factors may induce a secondary wave of transcriptional changes [24,25]. Importantly,
nuclear receptors have a natural tendency to functionally interact with each other, thus
making their corresponding pathways cross-dependent of one another [26]. For instance,
this is the case for GC and estrogen signalling [27,28], TH and estrogens [27,29–31], and
GC and androgens [32]. At the mechanistic level, NRs can synergistically bind or compete
to DNA at shared response elements [33,34].

TH and GC action is not only dependent on the receptor binding to DNA (for
TH [35,36]; for GC [37]). This involves direct action of the hormone at other targets,
or a cytoplasmic action of the hormone bound receptor. Even cytosolic factors are potential
platforms for functional interactions between pathways, as exemplified by PI3K, which
physically interacts with both THR and GR [38,39]. Despite much evidence that TH and
GC pathways functionally interact, very little details are known about the mechanisms
involved and their general properties.

In this paper, we provide a detailed description of the nature of the functional inter-
actions between TH and GC signaling. Our working model is Xenopus metamorphosis
because TH is necessary and sufficient to initiate metamorphosis [40,41], while CORT acts
synergistically with TH to accelerate progression of TH-induced metamorphosis [42–45]
and is essential for survival at the climax [46]. Anuran metamorphosis marks the end of lar-
val developments and coincides with the transition from a water-based to an air-breathing
life style and anatomy [41,47]. This process is very fast (<two weeks) and controllable
in laboratory settings. Remarkably, organotypic culture of tail explants fully recapitulate
tail regression in vitro, without the confounding effects of body-level feedback regulation
loops [48]. Here, we choose to focus on tailfin because (1) tail tissue is highly responsive to
TH and GC [44,49], and (2) tailfin displays a limited diversity of cell types.

Previous reports [50,51] demonstrated that GC regulates the expression of dio2 and
dio3 genes, which encode enzymes metabolizing THs and regulate the availability of the
biologically active hormone (T3). Through this action, GC increases the activity of the DIO2
enzyme, resulting in enhanced transition from T4 into biologically more active T3, and
decreases the activity of DIO3, responsible for the degradation of T3 into (less) inactive
products. In a seminal work, Kulkarni demonstrated that co-treatment of pre-metamorphic
tadpoles results in unexpectedly complex biological responses [52].

In this work, we used a combination of hormone treatment on the highly TH respon-
sive tailfin tissue, on whole animals and explant cultures. We measured variations of
gene expression by RNA-Seq followed by in-depth modelization of biological signals with
system biology technologies. Overall, we demonstrate that the action of TH and GC is not
limited to the simple addition of the effects of TH and GC, and that the known action of
GC on dio2/dio3 cannot explain the diversity of transcriptional responses in tailfin. In other
words, we identified many novel components of TH and GC interactions. From therein, we
will refer to the complete set of functional interactions between pathways with the terms
“cross-talks” or “X-talks”, and this accounts for already known mechanisms of action (syn-
ergy, cooperation) and well as any novel mechanism of action. At the transcriptional level,
we demonstrate that, quantitatively, TH and GC effects are mostly independent or additive
(i.e., the independent action of both hormones), and that cross-talks are nonetheless rela-
tively frequent and display a large diversity of biological responses. Surprisingly, we found
a strong transcriptional reprograming of the DNA-methylation machinery. We therefore
profiled changes of DNA methylation levels genome-wide. Contrary to our expectations,
we found that, quantitatively, the DNA methylation dynamic is dominated by the complex
interactions between TH and GC, in complete opposition to the transcriptional response.

We thus propose a new picture of the interactions of TH and GC, and between two
hormones in broader terms, which is far more complex than initially realized.
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2. Methods
2.1. Animal Care

Xenopus tropicalis (X. tropicalis) tadpoles were obtained from the Centre de Ressources
Biologiques (Rennes, France), raised at 26 ◦C in dechlorinated tap water, and fed with nettle
powder. Developmental stages were set according to the normal table of Xenopus laevis
(Daudin) [53]. Animal care was in accordance with institutional and national guidelines
(ref: 68008, delivered by the Cuvier Ethic Committee).

2.2. Whole Tadpole Hormonal Treatments

The most biologically active TH, 3,3′,5′-triiodothyronine (T3, T2752, SIGMA, Lezennes,
France) was dissolved in 0.1 N NaOH and added to the culture medium or the tank to
a final concentration of 10 nM. Corticosterone (CORT, C2505, SIGMA) was dissolved in
100% DMSO (D8418, SIGMA), and added to the culture medium or the tank to a final
concentration of 100 nM. All treatments received an equivalent amount of DMSO vehicle
(0.001%). For whole tadpole hormonal treatment, 5 tadpoles at stage NF-53-54 were placed
in a 1 L beaker containing 500 mL of dechlorinated tap water, where the hormones have
been previously added. For transcriptome and DNA methylome analysis, tadpoles were
euthanized 24 h later with an overdose of anesthesia (0.01% MS222, SIGMA), prior to
dissection of tailfin skin.

2.3. Organotypic Tail Culture

Th tail of stage NF53-54 X. tropicalis tadpoles were amputated just above the posterior
legs. The tails were then dipped in 100% ethanol and washed with 65% L15 (11415-049,
GIBCO, France) + antibiotic/antimycotic (15240-96, GIBCO). Each tail was then cultured in
24 well culture plates (TPP), with 1 mL 65% L15 + antibiotic/antimycotic and T3 and/or
CORT at 24 ◦C, protected from light. After 24 h, tailfin skin was dissected from the whole
tail, snap frozen in liquid nitrogen, and stored at −80 ◦C. Three independent biological
replicates were used for the RNA-Seq and another set of >8 independent replicates were
used for RT-qPCR validations.

2.4. RNA Isolation and Measure of Gene Expression

Tissues from either cultured tail explants or whole tadpoles were processed as de-
scribed in [54]. RNAs were quantified with a NanoDrop spectrofluorometer and their
quality controlled with Agilent RNA 6000 nano chips on a Bioanalyzer before treatment
with DNAse (TURBODNAse, Ambion, UK). Reverse transcription of mRNA was carried
out with SUPERSCRIPT v3 following the manufacturer’s recomendations and subject to
quantification of cDNA abundance by conventional RT-qPCR. The endogenous control
rpl8 was selected based on NormFinder [55] analysis of a panel of candidate genes. Raw
results were processed using the −2∆∆Ct method. Data were normalized on the endoge-
nous control rpl8 (∆Ct). For each treatment (T3, CORT, T3 + CORT), ∆Ct were normalized
on the non-treated control. Resulting values correspond to the expression fold-change
compared to the non-treated control in log2 scale. Statistical significance was addressed
with a Mann-Waitney test. Primer sequence is described in Supplementary Table S1.

Library preparation and Illumina sequencing were performed at the Paris Genomic
Center (France). Messenger (polyA+) RNAs were purified from 1 µg of total RNA using
oligo(dT). Libraries were prepared using the strand non-specific RNA-Seq library prepara-
tion TruSeq RNA Sample Prep v2 kit (Illumina, France). A 50 bp single read sequencing
was performed on a HiSeq 1500 device. A mean of 67 ± 5 million passing Illumina quality
filter reads was obtained for each of the 32 samples. Read qualities were assessed with the
FASTQC toolkit v0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

2.5. RNA-Seq Data Processing

Redundant reads were filtered by keeping the read with the best quality score. We
used the fastx toolkit (v 0.0.13) to clip the 3′ end of reads when the score dropped below

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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30 on the Sanger scale (Phred + 33). Preprocessed reads were mapped on the version 4.1
of the X. tropicalis genome [56] using bowtie 0.12.3 [57] with the following parameters:
“-5 10 -m1 -n2 -l28”. Gene expression call is based on models aggregated from Ensembl,
Xenbase, and [58]. Overall, uniquely mapped read mapping efficiency was higher than 75%.
Redundancy removal further reduced the mapped read count by a factor of two, resulting
in a uniquely mapped and non-redundant read count ≥ 22.106 (not shown). Consistency
between replicates and treatments was assessed by Principal Component Analysis (PCA):
raw read counts were subjected to a variance-stabilization transformation as described
in [59]. Differential expression between treatments was performed with DESeq [59] version
1.12 with the following parameters: method = “pooled”, sharing-mode = “maximum”, and
fit-type = “parametric”. Genes with low expression values were discarded as described in
the DESeq, with θ = 0.4. Genes statistically differentially expressed were called at an FDR
of 5%. Genes were grouped in 81 clusters according to their expression profiles.

Culture effects were removed by filtering out genes without similar expression profiles
in both cultured tail explants and whole tadpoles. Only genes DE with a fold change higher
or equal to two-fold changes were considered in the whole tadpole data sets.

Gene ontology analysis is based on GORILLA software suite [60]. Most significant
categories are shown either as a bar graph or a circle plot. In this case, the size of each circle
is set by the number of genes in each category, and color is inversely proportional to the
p-value of the term enrichment.

2.6. Clustering

Clustering of DE genes is aimed at classify individual genes into a number of a specific
“response types”. Expression values of each gene across the four treatment conditions
(CTRL, T3, CORT, and T3-CORT) were standardized by setting their average to 0 and
their variance to 1. For each treatment, the normalized gene expression level is compared
to CTRL and used to derive whether it is up- (‘u’), down- (‘d’) or not- (‘n’) regulated
after each treatment. Genes are then assigned to a cluster named after the corresponding
letters arranged in the T3, CORT, and T3-CORT order. This compact notation summarizes
transcriptional responses. For example, gene transcription only induced with T3 is labeled
u_n_u: transcription is up with T3 (first ‘u’), not affected with CORT (middle ‘n’), and up
after T3-CORT co-treatment (last ‘u’). Similarly, CORT only responsive genes are n_u_u
or n_d_d, and genes transcription regulated by both T3 and CORT belong to d_d_d or
u_u_u. Non trivial regulations (i.e., X-talks) also become explicit. For instance, u_n_n
corresponds to a transcription level up in T3, but with no change after CORT and T3-CORT
treatments. In this case, despite no direct action on its own, CORT cancels the action of T3.
The threshold used to call u and d is set as the smallest for which the n_n_n cluster contains
no gene (i.e., zero genes that are not DE at least once). This very simple mathematical
transformation has three strong advantages:

- This is a gene-level transformation, with few constraints on the actual number of
genes within each cluster. This differs from the widely used k-mean clustering, which
tends to produce clusters with similar number of genes. It is clear that there is no
reason a priori to impose that each type of biological response should be constrained
in term of the number of genes.

- It has better control of false negatives because it does not call multiple times for statis-
tics with limited power, as calling multiple times for differential analysis performed
with few biological replicates (n = 3, as the current standard suggests) would. Thus,
statistics may deviate slightly from the differential analysis.

- The biological response of genes can be compared without the confounding effect of
their expression level, which range over five orders of magnitude.

2.7. Signaling and Metabolic Network

In this work, we focus on two types of biological pathways: signaling and metabolism
for modeling biological processes, and protein-protein interactions for modeling molecular
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mechanisms. The information needed for building each network are available at dedicated
databases: the KEGG pathways database (Kyoto Encyclopedia of genes and Genomes
database), which mostly focuses on signaling and metabolism, for biological processes,
and BIOGRID, which is a repository of known protein-protein interactions, for modeling
molecular mechanisms.

The signaling-metabolic network is built upon pathways extracted from the KEGG
pathways database with the JEPETTO plugin [61] of the Cytoscape v3.8.2 environment [62].
All KEGG pathways containing at least one DE gene were collected and merged to create
a network, where nodes correspond to gene products and links describe the functional
connections between them. This step is easily carried out by populating a square matrix
representation of the network. Network properties were computed with in-house scripts, in
a manner similar to other published tools (e.g., networkX). Network lay-out computed with
the “edge weighted spring-embedded” algorithm. Hubs are defined as nodes (i.e., gene
product) with a degree (a.k.a. connectivity) higher than 20. Fitting the degree distribution
to a power low function confirms that the network is scale free and displays small world
properties (not shown).

2.8. PPI Network

Protein-protein interactions (PPI) were from BIOGRID v 4.4.198 [63], downloaded as
a CSV dump file. PPI were extracted and formatted with standard Unix tools (grep and
gawk) before being loaded into CYTOSCAPE. The gene content of metabolic pathways and
apoptosis were from the KEGG pathway database [64]. Fitting a power low function on
degree distribution demonstrates that the reconstructed network is scale free and displays
small world properties (not shown).

2.9. Prediction of Nuclear Receptors Binding Sites

Nuclear receptors binding sites are notoriously difficult to detect because they are
composed of two half sites in direct, everted, or inverted orientation, separated from
each other by a spacer of a length of 0 to 8 bp [65,66]. The diversity of binding sites
topology prevents the direct use of position-specific scoring matrices. Instead, the NHR-
scan software [67] relies on a Hidden Markov Model that explicitly models the various
topologies. Unfortunately, the published model contains many errors, as the sum of all
probabilities of several nodes did not sum up to one, thus making the design improper for
probabilistic modeling. Many state transitions were also missing. We corrected the model
by adding missing links and setting equal probability between novel links reaching each
state, so that the total sum of probabilities at each state equals to 1.

2.10. MethylCap-Seq and Identification of Differentially Methylated Regions (DMRs)

Purification of methylated DNA was carried out by affinity columns with methyl-
DNA binding proteins (MethylCap Kit), following the manufacturer’s protocol (Diagenode;
Denville, NJ, USA). DNA was eluted with buffers of increasing ionic strength, and only
the fractions corresponding to moderate to high levels of methylation were kept. Library
preparation and Illumina sequencing were performed at the Paris Genomic Center (France).
Libraries were prepared using NEXTflex ChIP-Seq Kit (Bioo Scientific), using 30 ng of
purified genomic DNA. Libraries were multiplexed by 8 on 2 flowcell lanes. A 50 bp read
sequencing was performed on a HiSeq 1500 device (Illumina). A mean of 209 ± 20 million
passing Illumina quality filter reads was obtained for each of the 16 samples.

Read mapping was run with bowtie at highest stringency (parameters−l 50,−n 1,−m
1, −5 0 −3 0), producing a total of 74 to 95 million uniquely mapped and non-redundant
reads per sample. Read density profiles were generated for each treatment condition and
signal intensity was normalized for sequencing depth. Variations of DNA methylation
relative to the control were derived by subtracting the CTRL density profile from each of
the T3, CORT, and T3-CORT profiles. The signal of this differential profile was smoothed
by using the average value computed over a 10 bp sliding window. Peaks correspond to
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either an increase or decrease of DNA methylation levels. For the sake of computation
time, the whole process was implemented in C and automated in a custom shell script.
This resulted in a ~10,000× speed up compared to the same programs written in PYTHON.

In itself, the detection of DMRs is based on non-parametric permutation tests aimed at
finding the maximal width and peak height obtained when comparing two profiles without
biological contrast. This defines the thresholds of biological and technological noise above
which peaks correspond to actual DMRs, with their width and height corresponding to
the genome span of the DMR, and the amplitude of DNA methylation changes, respec-
tively. By nature, this DMR detection strategy is fairly conservative, which would limit
background noise.

The pipeline works as follows: we created two datasets of reads randomly sampled
from the combined pool of all MethylCap-Seq reads (i.e., without biological contrast),
before generating the corresponding differential profile and scoring for the longest and
highest peaks. This process was iterated 100 times and the highest width and height were
kept. Quantitative data are visualized with the JBROWSE genome browser [68].

DMR have then been classified in various response types by following the same
procedure as for RNA-Seq (clustering). DMR nomenclature follows the same convention.

3. Results
3.1. Experimental System to Address Tailfin Regression

The experimental system is the following (Figure 1): pre-metamorphic tadpoles were
treated with either 10 nM T3, 100 nM CORT, or both, and tailfins were collected before
measuring the quantitative variations of RNA and methylation levels (by RNA-Seq and
MethyCap-Seq, respectively). To differentiate between autonomous changes of tailfin from
the effects of feedback loops originating from the central nervous system, hormone treat-
ments were applied to organotypic tail cultures, although this may introduce confounding
effects of the culture process itself. To filter them out, whole animals were also treated,
and only the genes found consistently regulated in both datasets were kept. Downstream
processing and analysis follow state of the art functional genomics workflows coupled to
system biology, as well as the use of novel bio-informatic tools.

3.2. Standard Analysis Suggests Additive T3 and CORT Effects

RNA abundance per gene was measured by RNA-Seq on tailfins originating from cul-
tured tail explants, following standard protocols and conventional bio-informatic pipelines.
We first subjected the reads-count tables to principal component analysis, which aims at
controlling the correspondence between components of the total biological variability cap-
tured by RNA-Seq and the effects of hormone treatments (Figure 2A). We found that almost
80% of the total variance is projected in the first two principal components, which capture
the transcriptional changes induced in response to T3 (PC1, 48% of the total variance) and
CORT (PC2, 29% of the total variance) treatments. This is indicative of strong biological
responses, high contrast between treatments, and very little technical and/or biological
noise. As a technical validation of the RNA-Seq procedure, we performed independent
measures of gene expression changes by RT-qPCR, on a number of genes displaying vari-
ous amplitudes of transcriptional response (Figure 2B). Results show strong correlation
between expected (RNA-Seq) versus observed (RT-qPCR) signals, illustrating the robust-
ness of our measures of gene expression by RNA-Seq. As expected [69], thbzip and thrb
genes expression is strongly induced after treatment with T3 and T3-CORT (Supplementary
Table S2).
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Figure 2. Transcriptome analysis following T3 and/or CORT. (A) Principal Component Analysis (PCA) of RNA-Seq
variance from tailfin dissected from cultured tail explants. The two main components capture the effects of both hormones,
corresponding to 77% of the total variance. Square, circle, and diamond: biological replicates. (B) Independent validation
of RNA-Seq data by RT-qPCR. Scatter plot of the relationship between RNA-Seq versus RT-qPCR expression changes,
also shown in box plots. (C) Average expression value versus fold change (MA plot). DE genes are in blue. (D) Gene
Ontology analysis.
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Overall, in tailfin culture, the total number of differentially expressed (DE) genes is
relatively modest: 303 DE genes with T3, 342 with CORT, and 1163 with T3-CORT. This
represents a non-redundant set of 1363 DE genes. Filtering out culture effects further
reduces the number of DE genes down to 186 for T3, 114 for CORT, and 655 for T3-CORT
(Figure 2C and Supplementary Table S2). This corresponds to a final non redundant set of
729 DE genes. Despite a limited number of DE genes following treatment with either T3 or
CORT alone, the number of DE genes after co-treatment is about four times higher (655 vs.
186 and 114), indicative of a strong and specific transcriptional reprogramming.

Gene ontology (GO) analysis is often used to summarize the functional categories of
the transcriptional response. Despite limited sensitivity, it is useful to highlight the few
dominant biological processes acting in the biological responses (Figure 2D, Supplementary
Table S3). As expected in the context of tail regression, T3 responsive genes involve
the metabolism of various extracellular matrix components. On the other hand, CORT
responsive genes relate to the metabolism of various small molecules (alcohol, sulfur, and
detoxification). The most significant biological processes after the T3 -CORT co-treatment
correspond to a combination of the terms found after T3 (extracellular matrix) or CORT
(small molecules metabolism) treatments, and very little terms relative to known TH
biology and developmental processes. Overall, this very common type of analysis suggests
that the biological output of a T3-CORT co-treatment would be as simple as the addition
of the effect of each hormone alone. As we will detail below, this view is very broad and
partly results from a sub-optimal (albeit classic) analysis design.

3.3. Cross-Talks Do Exist, and They Only Represent a Fraction of Transcriptional Responses

The next part of the analysis is aimed at clustering genes based on their expression
patterns. Clusters are named with a three letter code depending on whether the (normal-
ized) expression level is higher (‘u’ for up), lower (‘d’ for down), or not different (‘n’) from
the control. The three letters are arranged in the following order: T3, CORT, and T3-CORT.
For example, the cluster d_n_d corresponds to the set of genes which are down-regulated
after treatment with T3 and T3-CORT, but unaffected by CORT alone, and the cluster n_u_u
contains genes are up-regulated after treatment with CORT and T3-CORT, but unaffected
by T3 alone. These two examples actually correspond to the simple scenario where gene
expression is affected by one hormone only, with little or no interaction between them (‘T3’
and ‘CORT’). A more complex scenario is ‘ADDITIVE’ (clusters u_u_u and d_d_d), where
gene expression is induced or repressed by both hormones individually and the resulting
expression level corresponds to the addition of their effect. The third scenario, ‘X-talks’,
corresponds to all other cases with functional interactions between TH and GC pathways.

The overall proportions of each categories are shown Figure 3A. A majority of genes
belong to ADDITIVE (44.5%, 376/845, Figure 3B), where gene expression is regulated by T3
and CORT, and T3, where genes only respond to T3 (38.8%, 328/845, Figure 3C). Very little
genes belong to the CORT category (4.5%, 38/845, Figure 3C). Surprisingly, a non-negligible
fraction of genes (12.2%, 103/845) display alternative biological responses which neither
respond to T3, CORT or ADDITIVE. We collectively refer to this family of responses as
“X-talks” (Figure 3D). This category is composed of multiple clusters, where one hormone
cancels the action of the other (clusters d_n_n, n_u_n, u_d_n, u_n_n), where the action of
one hormone dominates over the other (d_u_d, u_d_u). Other cases are more complex; for
example, the u_n_d cluster corresponds to genes where CORT action, which has no effect of
its own, and results in a response opposite to that of T3 alone. The cluster n_u_d is a similar
case, but with T3 modulating the CORT response. These clusters are usually composed of
only a single gene. Finally, two clusters (36.9% of X-talks genes, 38/103) are particularly
notable: n_n_u and n_n_d (Figure 3D). These genes show differential regulation exclusively
when both hormones (T3 and CORT) are present. Importantly, we found dio2 to belong to
the n_n_u cluster, meaning that its expression requires both T3 and CORT, whereas dio3
expression only depends on T3 (cluster u_n_u).
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Figure 3. Gene expression is modulated by one, the other, or both hormones. Only genes displaying consistent expression
between explants culture and whole animals were kept. (A) Types of gene regulation by T3 and CORT. (B) Gene regulation
by either T3 or CORT. (C) Gene regulation by T3 and CORT. (D) Complex regulation by both hormones (X-talks).
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These important results demonstrate that:

- Most of CORT-regulated genes are also regulated by T3 in tailfin.
- We provide a new list of CORT-only responsive genes, which are notoriously difficult

to isolate [70].
- Qualitatively, the effects of T3 and CORT co-treatment are not limited to the cumulative

response from each hormone individually. There is a large palette of biological
responses involving complex interactions between pathways (X-talks).

- At the transcriptome level, transcriptional responses are dominated by the T3 effect
and ADDITIVE, and although X-talks do exist, they correspond to ~10% of differen-
tially regulated genes.

3.4. Understanding Molecular Phenotypes: From Lists of DE Genes to System Biology

To obtain an understanding of the processes involved for each type of biological
response, we modeled a functional interaction network based on signaling and metabolic
pathways available from the KEGG resources. Individual pathways summarize our current
understanding of signal propagation and functional interactions between gene products
in a given biological context (“Insulin signaling”, “Calcium signaling”, “Fructose and
mannose metabolism”, etcetera), providing a well-focused and high quality knowledge
base readily usable for biologists. An intrinsic property of biological pathways is that
many factors are shared between pathways [71], and affecting the biological activity of
one such factor can simultaneously affect multiple pathways. These factors often (but not
always) correspond to hubs, which act as central communication points between network
components. Therefore, pathways are not functionally independent from one another and
fail (and are not aimed) to describe the overall complexity of functional interactions within
the cell. Pathway analysis, as commonly carried out in RNA-Seq data analysis, cannot
provide an integrated description of transcriptional remodeling. In contrast, a network
of pathways clearly integrates the functional interactions between pathway components,
and can help identify, for example, novel shortest routes between membrane receptors and
transcription factors, thus corresponding to new signaling pathways [57]. To this end, all of
the KEGG pathways containing at least one DE gene were collected and merged together,
in a procedure similar to that of [56] (see Methods and Supplementary Table S4).

The reconstructed network is shown Figure 4A. It is built from 157 pathways and
is composed of 3606 nodes (gene products) and 11,216 edges (functional interactions),
in which 108 DE genes could be mapped: 50 from T3 response, 5 from CORT, 47 from
ADDITIVE, and 6 from X-talks. Of note, 90% of X-talks genes interact with less than 13 other
genes, while 90% of the ADDITIVE genes interact with up to 31 other genes, thus suggesting
that ADDITIVE genes may engage more functional interactions within the network than
X-talks. Unfortunately, this fails to reach statistical significance (p~0.1, permutation test, see
methods), mostly because of the small number of DE genes mapped into the network. We
then collected the first neighbors (i.e., genes DE and non-DE sharing a direct interaction) of
each DE gene (Figure 4B). To our surprise, they all form strongly connected sub-networks,
implying that they collectively participate in specific cellular functions. The corresponding
biological processes are clearly in line with the expected phenotypes induced by treatments
with a single hormone (Figure 4C): T3 effect is associated to developmental processes,
signal transduction and metabolic processes, while CORT effect is associated to stress and
immune responses. In contrast, ADDITIVE and X-talks effects differ markedly from the
specific effect of each hormone alone (Figure 4C): mostly DNA damage, cell death, and
metabolism for the former, and JAK-STAT signaling for the latter. This analysis shows
that, contrary to what standard GO analysis would suggest (Figure 2D), the effects of
the T3-CORT co-treatment are more complex and involve multiple components, each
corresponding to a very specific biological response. Also, the enrichment of cell death
terms in ADDITIVE genes after co-treatment is strongly indicative of a synergy between
the two pathways.
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tailfin regression. Only transcriptional responses displaying consistent expression between explants culture and whole
animals are considered. (A) Network of KEGG pathways. (B) DE genes together with their first neighbors in the network,
forming densely connected sub-networks. (C) GO analysis of the sub-networks highlighting terms such as cell death, DNA
damages, and DNA repair. (D) Tail regression test in vitro. Synergistic action of T3 and CORT after 3 day treatments.
(E,F) Protein-Protein Interactions network and identification of hubs. Most DE protein complexes relate to DNA methylation.
(G) Heatmap of expression levels of genes involved in DNA methylation.

If true, one would predict treatment with sub-optimal T3 concentration or CORT to
have little effect on tail regression, but co-treatment should result in a strong acceleration.
We took advantage of the fact that tail explants of pre-metamorphic tadpoles (NF54) can be
cultured ex vivo for extensive periods of time (up to 7 days [72]) and subject them to vari-
ous hormone treatments. As expected, treatment with nominal T3 concentration (10 nM)
leads to rapid shrinkage and regression of the tissues (Figure 4D), with no apparent sign of
necrosis nor tissue degradation. This recapitulates well the known fact that tail regression
is an autonomous and local process [72,73]. When supplemented with 100 nM CORT, tail
regression does not speed up, suggesting that at high T3 concentration, it already reached
a maxima (not shown). In contrast, with sub-optimal T3 concentration (1 nM) or 100 nM
CORT alone, explants are phenotypically un-affected, even after extensive incubation time.
This indicates that each hormone, when acting alone at these concentrations, does not trig-
ger tail regression. In contrast, co-treatment with sub-optimal T3 concentration and CORT
strongly accelerate tail regression, without apparent necrosis. This is a clear confirmation of
the functional synergy between CORT and T3 [42,49,52], and the implication of ADDITIVE
genes in cell death pathways.

To complete the network analysis above and get more a mechanistic insight of each
biological response, we reconstructed a PPI network. To this end, we collected all proteins
known to physically interact with DE gene products from the BIOGRID database (see
Methods). The resulting network is composed of 2481 nodes and 3277 edges, with a
giant component followed be a number of smaller disconnected networks (Figure 4E).
We used two metrics to characterize hubs: connectivity (a.k.a. degree) and betweenness
centrality (Figure 4F) [74,75]. The latter, ranging from 0 to 1, measures how much the
corresponding node influences the network, while the former measures how much the
node is connected to other nodes of the network. The relationship between degree and
betweenness centrality helps discard central nodes in star-like small networks (such as
in Figure 4E, right) characterized by a low degree and a high betweenness centrality.
Surprisingly, DE hubs are highly enriched in various genes involved in DNA methylation
and belonging to the T3 (DNMT3 up, EZH2 up, MECP2 down, and UHRF1 down) or
ADDITIVE (UHRF2 down) response types. This is a clear signal that tail regression might
be mediated through changes in DNA methylation.

To further explore this relationship, we plotted a heatmap of the expression Log
Ratio of 75 genes annotated in the GO terms related to DNA methylation. Results clearly
demonstrate that most of them display increased or decreased expression relative to the
non-treated control, and only a few genes display minute (or no) difference of expression
(Figure 4G and Supplementary Table S5). With only a few exceptions, gene response is
very similar when treatments are applied to tail culture or whole animals. Despite a few
differences between treatments, T3 and T3-CORT profiles are very similar. The expression
of 15 genes (dnmt1, uhrf1, mecp2, and mbd2, to name a few) is consistently decreased
in response to all treatments. In contrast, apobec2 expression is strongly induced in all
experimental conditions, although it displays differences between culture vs. whole animal.
Importantly, the expression of two key components of the DNA hydroxy-methylation
machinery, tet2 and tet3, is also consistently increased and displays clear signs of synergy.
These results therefore strongly suggest that the DNA methylation machinery undergoes a
strong transcriptional switch.



Cells 2021, 10, 2375 14 of 26

3.5. T3 and CORT Induced Massive and Complex Changes of DNA Methylation

To test whether the action of T3 and CORT on tail regression is mediated, at least in part,
through changes of DNA methylation, we undertook to characterize the DNA methylation
dynamics by MethylCap-Seq. Briefly, methylated DNA is captured by affinity column
and released with buffers of increasing ionic strength. The methylated DNA captured
is then deep sequenced to derive genome wide maps of DNA methylation changes. In
this system, a peak corresponds to a region of increased or decreased DNA methylation.
Visual examination of genome profiles quickly highlights a complex dynamic of DNA
methylation. A few representative examples are shown Figure 5A–C. It is difficult to relate
them to changes of gene expression, as they are located in gene deserts (Figure 5B) or
nearby genes that do not respond to treatments (Figure 5A,C).

We further processed the data and identified regions of differential methylation levels
(DMR). We found a non-redundant set of 17,705 DMRs, with extensive numbers in all treat-
ment conditions: 7000, 6358, 8324 after T3, CORT, and T3-CORT treatments, respectively
(Supplementary Table S6). The dataset is dominated by demethylation (94.3% to 97%),
despite a low but non-negligeable fraction of re-methylation (3.0% to 5.7%). Most DMRs
(90%) are the genomic region up to 1.1 kb large, and there is no shift in DMR size upon
treatment (Figure 5D). We also found that the ratio of CpG over other di-nucleotides is
higher in DMRs when compared to exonic sequences (Figure 5E), indicating that DMRs are
protected from spontaneous deamination of 5 methyl-cytosines.

Altogether, these results unambiguously show that each treatment alone or in combi-
nation induces complex and extensive changes of DNA methylation.

3.6. The Cross-Talks-Like Complex Regulations Drive the Majority of DNA Methylation Changes

We next clusterized DMRs by using the same procedure as for RNA-Seq, and we de-
rived response types corresponding to T3, CORT, ADDITIVE, and X-talks effects (Figure 6).
The naming convention based on a ‘d’, ‘u’, and ‘n’ triad is also similar. Qualitatively, DMRs
follow an inverse dynamic of transcriptome (Figure 6A–D), where X-talks correspond to
the vast majority of DMR responses (65.4%, 11,576/17,705), while T3 and CORT effects are
only a minority of responses (7.1% -1263/17705- and 6.7% -1,199/17,705-, respectively).
ADDITIVE responses account for 20.7% of DMRs (3667/17,705). X-talks DMRs are actually
composed of a large diversity of responses, which is indicative of multiple regulatory
mechanisms (Figure 6D). First, the action of one hormone inhibits the effect of another, as
with clusters d_n_n (2633 DMRs) and u_n_n (41 DMRs), where CORT cancels the effect
of T3, and inversely for the clusters n_d_n (185 DMRs) and n_u_n (235 DMRs), where T3
cancels the effect of CORT. Another category (14.1%, 1632/11,576) corresponds to opposite
responses with one or two hormones, as displayed for clusters d_u_u, d_d_u, u_n_d, u_u_d.
Intriguingly, for 2064 DMRs (17.8%), CORT alone has no effect on the DMRs methylation
state but co-treatment ends up with opposite regulation of the T3 treatment alone (d_n_u
cluster). Lastly, two clusters, n_n_u (378) and n_n_d (94 DMRs), only display variations
of methylation level when both hormones are present and none otherwise. Overall, these
results demonstrate that (1) T3 and CORT treatments induce a large palette of DNA methy-
lation changes, and (2) transcriptomic and DNA methylation data follow opposite trends,
where X-talks correspond to a minority of biological responses in one case, and a majority
of responses in the other.
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Figure 5. T3 and CORT induce genome wide changes of DNA methylation levels. (A–C) Three independent loci with local
changes of DNA methylation (green arrow). Tracks order: gene annotation, DNA methylation changes relative to CTRL (T3,
CORT, and T3-CORT), mRNA abundance (CTRL, T3, CORT, and T3-CORT). (D) Relationship between the genomic span
and the amplitude of differentially methylated regions (DMR). (E) Differential dinucleotide frequency found in DMRs and
exonic sequences. DMRs are enriched in CpG.
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Figure 6. The complex dynamics of DNA methylation levels at DMRs. (A) Types of gene regulation by T3 and CORT.
(B) Gene regulation by either T3 or CORT. (C) Gene regulation by T3 and CORT. (D) Complex regulation by both hormones
(X-talks).
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3.7. DMRs Are Located Far from Genes

To get a better understanding of DMRs distribution, we compared their genomic
location to that of genes. We found that 27.7% of DMRs (4913/17,705) overlap with, or are
located within, genes (Figure 7A). This is in line with DNA methylation changes reported
in the brain of metamorphosing tadpoles [76]. We note, however, that in our case, the
repertoire of DE genes is very limited and corresponds to only five genes: B4GALNT4
(d_d_d), CHTF18 (d_n_d), PAPPA (n_n_u), ATP12A (n_u_n), and ANGPTL2 (u_n_u). Other
DMRs are located far away from genes, typically from 10 to 100 kb away. All four types of
biological response provide equivalent genomic distribution. This result is not surprising,
as enhancers and response elements are expected to be located at large distances from
their target gene, and even enhancers located within a gene may in fact regulate a different
target [21,58]. We next addressed whether the presence of transposable elements or other
repeated sequences correlate with biological responses. We found that most DMRs, from
60 to 75%, overlap with known transposable elements and repeated sequences (Figure 7B),
and they all share similar proportions of individual repeated sequence families (Figure 7C).
We did not find any feature shared by DMRs that do not overlap with TEs, with the notable
exception of the PTR_XL family.

We next addressed whether DMRs are enriched in predicted binding sites for nuclear
receptors (NRBS), which mediate the nuclear action of CORT and T3. NRBS are composed
of two AGGTCA half sites in various orientations relative to one another, and spaced by a
linker of varying sizes, typically 0 to 8. The glucocorticoid receptor (GR) is preferentially
found at inverted repeats with a 3 bp spacer (IR3) [77], whereas thyroid hormone receptor
(THR) binding is biased toward direct repeats with a 4 bp spacer (DR4) and sometimes
6 bp (ER6) [78,79]. NRBS are composed of two 6 bp motifs in various orientations and
spaced by a linker of varying sizes, typically 0 to 8. As expected [66,80], known DNA
binding motifs of THR (DR4, ER6, and IR0) correspond to the vast majority of NRBS found
in DMRs (Figure 7D). Only a limited fraction of IR3 motifs (GR binding sequences) could
be found in DMRs and the genome. This certainly reflects over-fitting of the model as a
result of poor initial training of IR3 motifs [67]. Overall, motifs found in DMRs are slightly
enriched in DR4 compared to other motifs (Chi square test, p = 0.049), whereas ER6 are
somewhat under-represented (Chi square test, p = 0.049).
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4. Discussion

In this work, we interrogate the functional interactions between TH and GC signaling
pathways. Our model is Xenopus metamorphosis, a well-known developmental transition
dependent on both TH and GC signaling. In addition to their developmental role, GC also
mediate stress response, resulting in a set of complex interactions.
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GC potentiate the action of TH by modulating its synthesis or the balance between the
metabolic activation of the hormone from a (less active) precursor or its degradation. On the
other hand, in mammals, TH also exert a central regulation on GC synthesis [81,82]. This
model of TH and GC signaling interactions would predict only a reciprocal modulation of
the effect of each hormone individually, not complex types of biological responses at the
gene level; this is the point that we are challenging.

4.1. TH and GC X-Talks: A Large Repertoire of Transcriptional Regulations

Anuran metamorphosis is a fast and well-choreographed process. Limb growth
and development is a very early process preceding tail resorption by several NF stages,
therefore ensuring proper locomotion throughout the entire process [53]. The timing
of tail resorption is controlled by modulating the level of available TH with DIO2 and
DIO3, which expression is in turn modulated by GC [42,83]. This model implies that tail
resorption is fundamentally controlled by TH and does not predict X-talks response genes.
Our data clearly demonstrate that this model is incomplete and that T3 and CORT act on a
specific set of genes.

The first indication that gene-level regulation is modulated by TH and GC may be
more complex was carried out by Kulkarni and Buchholz [52], where they treated Xenopus
tadpoles with relatively high doses of T3 (50 nM) and CORT (100 nM) and examined gene
expression in tails with microarrays. They found a large set of genes (~5 k) with altered
expression levels in response to one or both hormones. Among these, hundreds of genes
(1308) presented an atypical expression profile, where they were exclusively over-expressed
(or repressed) when both hormones are present. Unfortunately, these analyses did not
benefit from the powerful combination of clustering and system-biology level modeling,
thereby preventing deeper analysis.

Therefore, we undertook to address it by deriving a detailed map of the changes
of functional state throughout the genome. At the molecular level, we measured gene
expression changes in response to hormone treatments, and we modeled RNA-Seq signals
into system-wide integrated biological responses. Combining the sharp and contrasted
phenotype of tail regression together with the exquisite sensitivity of functional genomics
and network analysis, we demonstrate that the transcriptional response to TH and GC of
pre-metamorphic tadpoles is more complex than initially envisioned. The key result is
that despite the fact that changes of gene expression are dominated by the effect of each
hormone individually (T3, CORT, or ADDITIVE), an extra set of complex regulations sum
up to a significant fraction of transcriptional responses. This can be summarized in the
following equation-like format: TH · GC > TH + GC, meaning that the joint effect of both
hormones is more than/not limited to the sum of effect of each hormone individually.

X-talks profiles are not trivial and cannot be accounted for with additive effects. For
instance, the u_n_d profile (Figure 3D) implies that, despite an apparent lack of action,
CORT inverts the regulation. For others, the action of one hormone dominates over the
other (e.g., d_u_d and u_d_u) or they cancel each other (e.g., d_n_n and n_u_n). All these
cases unambiguously correspond to regulatory interactions between TH and GC signaling
in individual genes, and not the simple addition of their independent effect on target gene
expression.

The two clusters n_n_d and n_n_u are important: their expression is strictly depen-
dent on the action of both hormones simultaneously and using single hormone treatments
will fail to identifying them. The corresponding gene products are involved in membrane
bound signaling, or correspond to extracellular proteases and components of the extra-
cellular cellular matrix. It is noteworthy that the transmembrane TH transporter MCT8
belongs to the n_n_u cluster; this suggests that part of the tailfin resorption program is
strictly dependent on the simultaneous action of both hormones. Buchholz previously
demonstrated that GR knock out mutants die at metamorphic climax, at the time of tail
regression [46]. Strikingly, the phenotype of pomc mutants could be rescued with the addi-
tion of CORT but also with high doses of T3, suggesting that the function of CORT would
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only be limited to the potentiation of TH action. Our results suggest that alternative and
partly redundant pathways might be involved, instead. In line with this, the expression of
the MCT10 transporter, which is functionally redundant with MCT8, is regulated by T3 but
not CORT (u_n_u cluster).

The gene regulatory networks controlling transcription can be decomposed into a
number of specific genetic sub-circuits implementing various regulatory logics [84]. The
transcriptional output can be viewed as the end result of the processing from several
sub-circuits integrating regulatory input signals with combinatory logic. Intuitively, X-
talks profiles can also be described with boolean operators obeying some regulatory logic.
More formally, the n_n_u and n_n_d responses can be rephrased with an AND boolean
operators where change of gene expression (up or down) depends on the regulatory logic
T3 AND CORT. The same is true with n_u_n, but with the exclusive OR operator (T3
XOR CORT), and for u_n_n with the NOT operator (NOT (T3 OR CORT)). More complex
responses, especially when signal is inverted (e.g., u -> d) can be further build from a
combination of additional logic blocks: d_d_u would result from INV (T3 OR CORT).
The point here is that beyond a clear and explicit representation, the simple fact that the
different X-talks responses obey different regulatory logic imply that in each case, gene
expression is governed by a very specific regulatory circuit(s). Even though the molecular
mechanisms of each type of transcriptional response needs to be precisely dissected, there
is little doubt that a large number of specific regulatory mechanisms are expected. This
clearly extends the initial model much further, where TH and GC pathways would regulate
hormone availability.

Our data fit well with the known biology of THR and GR. Regulation of gene ex-
pression by THR is well described with a dual model, where the receptor acts as both a
repressor and an activator of transcription by the differential recruitment of transcriptional
co-repressors and co-activators [85]. The THR can also display very gene specific regula-
tions [69,79]. GR action involves a remarkably large number of molecular pathways which
can clearly implement various regulatory logics.

4.2. X-Talks: An Unexpected Large Impact on DNA Methylation

We found that TH and GC signaling cooperate to alter the transcript levels of a major-
ity of the factors involved in DNA methylation and demethylation pathways. Monitoring
genome wide DNA methylation changes by MethylCal-Seq further provide strong evi-
dence of massive and large scale demethylation, although some local increases of DNA
methylation also occur. Contrary to our expectations, these changes in DNA in methylation
follow complex regulations and are mostly dominated by X-talks with little T3, CORT, and
ADDITIVE responses. This important result, which contrasts sharply with the transcrip-
tome output dominated by T3 and ADDITIVE responses, implies that distinct regulatory
processes occur at each level and that changes of DNA methylation are more dynamic
and more dependent on hormonal environment inputs than initially thought. Clearly, the
extent of genomic DNA methylation changes is buffered and does not translate directly
into changes of the transcriptome.

In xenopus tadpole brain, klf9 transcription is induced upon treatment with T3 or
CORT, but much stronger with T3-CORT [86,87]. At the mechanistic level, klf9 transcrip-
tional expression is sustained by the binding of THR and/or GR transcription factors at a
short genomic region located a few kbs upstream, and containing an enhancer called klf9
Synergy Module (KSM). The progressive DNA demethylation at the KSM correlates with
accumulation of TET3 and the progressive transcriptional induction of the gene [88]. Note
that this ‘synergy’ of action fits with the ADDITIVE response in the terminology we use in
this work. Interestingly, DNA methylation levels at KSM do not seem to be affected T3 nor
CORT in tailfin despite a clear ADDITIVE transcriptional induction. Therefore, the DNA
methylation dynamic relies (at least in part) on tissue specific factors.

Nonetheless, our data are well in line with previous reports demonstrating a strong
DNA demethylation, together with local DNA re-methylation, in gene bodies during
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metamorphosis in brain [76]. We also found DMRs located not only at gene coding
sequences, since the majority of them are located in non-coding regions of the genome
(intergenic). This apparent discrepancy likely reflects differences in the processing pipe-
lines and the fact that we explored non-coding sequences. It is often difficult to interpret the
data because these regions are packed with repeated sequences and are poorly annotated,
therefore preventing a direct comparison with functional elements. In line with this, most
DMRs could not be related to other functional changes or gene features. Nonetheless, we
found a clear enrichment of a specific transposable element family (PTR_XL) in X-talks
and ADDITIVE DMR clusters. Although we could not detect any obvious enrichment of
predicted nuclear receptor binding sites in these sequences, the demethylation of DNA at
these loci strongly suggests they are being transcribed, which is reminiscent of previous
work where SINE-like TEs were found to be strongly expressed during metamorphosis in
brain [89].

In brain, immuno-reactivity for 5-hmC, 5-caC, and TET3 increase in parallel in the
brain of tadpoles undoing spontaneous metamorphosis [49,76], and particularly at the
metamorphic climax where TH levels are highest [90]. Their correlation indicates, at least
in part, that TET3 might be involved in the demethylation process. MethylCap-Seq analysis
in tadpole brain also displayed DNA demethylation, suggesting that this would be a T3
dependent mechanism. Raj et al., [88] provided additional support by treating animals
with T3 and displaying accumulation of TET2-3 and biochemical DNA demethylation
intermediates (5-hmC, 5-caC), strengthening their point. Our work extends from this as we
demonstrate that the vast majority of DNA methylation changes are not only dependent
on T3, but also depend on CORT. This implies that the regulatory processes involved are
more complex than initially thought.

What could the regulatory mechanisms involved in the genome wide change of
DNA methylation be? Many components of the DNA methylation and demethylation
machineries functionally interact with TH signaling. The dnmt3a gene is a TH direct target
gene [91,92] (but its expression is not regulated by CORT, our data), while TET3 physically
interacts with THRa [93]. TH induces TET2 expression [88] and regulates the expression of
gadd45a and b [94,95], mbd3 [96], and apobec [97]. GC signaling, too, is functionally connected
to DNA methylation/demethylation [98]. In a more indirect manner, GR also physically
interacts with the histone methylase TRIM28 [99] and a component of the chromatin
remodeling complex SMARCA4 [100], which in turn impact DNA metylation. GR is a very
versatile platform that can accommodate numerous action mechanisms [101,102].

The fact that all but one DE hub acting on DNA methylation display T3 responses may
seem counter intuitive when DMR dynamics display mostly X-talks properties; several
lines of evidence can help settle this apparent discrepancy. First, our experiments measure
changes of gene expression and many events may be regulated at other levels (post-
translational modifications, alterations of intracellular Ca++ signaling, etcetera). Second,
even though UHRF2 is the only non-T3 hub (ADDITIVE) of the PPI network, it nonetheless
makes a functional connection between DNA methylation and transcriptional regulation
by T3 and CORT. Furthermore, the functional response is certainly not limited to hubs,
and other non-hub factors may be involved. Two interesting candidates are OTUD4 and
ZMPSTE24, for which the transcriptional response is also ADDITIVE (d_d_d and u_u_u,
respectively). A quick BIOGRID survey indicates that in humans, UHRF2 and OTUD4
engage in physical interactions with USP7 (expressed in tailfin, but not DE), thus providing
a good starting point to elucidate the molecular cascades involved.

5. Conclusions

In this work, we demonstrate that TH and GC pathways cannot be considered in
isolation. Rather, they intimately cooperate and produce complex regulatory interactions,
both in terms of gene expression and DNA methylation landscape. The sheer level of
X-talks changes of DNA methylation is not reflected at the transcriptome level, and was
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fully unexpected. This has important implications for all those working in clinical and
non-clinical environments manipulating these two signaling pathways.
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