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Abstract—One Kkey objective of Cyber-Physical System (CPS)
simulation is to evaluate different CPS configurations regarding
a certain user objective. First, simulation of CPS necessitates
frameworks to handle heterogeneity of CPS components (the
software and hardware system control, the behavior of the CPS
itself and its physical environment). Then, to build simulators,
designers use paradigms like FMI (Functional Mock-Up Inter-
face) that proposes a data-driven generic interface facilitating
the integration of heterogeneous models. However, in order to
facilitate simulation configuration, an approach is required to
drive modeling of parametric features and operational conditions.
In this paper, we present CARES, a component-based and model-
driven approach to facilitate CPS simulation. CARES is applied
to evaluate an Autonomous Underwater Vehicle (AUV) navigation
function by simulation. The proposed models integrate both the
principles of a generic simulation (integration of Component
Based Software Engineering CBSE concepts and FMI paradigm)
and domain specific aspects through a component-based archi-
tecture style. From a design model, a code generator builds the
structural (Java or C++) code of the simulator. The generated
code relies on a given run-time library for its execution and
its structure facilitates integration of domain-specific code. The
experiments show the effectiveness of the approach to build
simulators for evaluation of different AUV configurations.

Index Terms—component-based design, simulation, model-
driven engineering, cyber-physical system

I. INTRODUCTION

In recent years, AUV usage in the hydrographic field is
a more and more recurring point. Indeed, AUVs offer many
benefits in terms of bathymetry resolution, mission planning
and coverage rate. However, there are some uncertainties con-
cerning the estimation of the position of the AUV underwater
due to GPS signal loss whereas engineers need to predict,
before the mission, that their robot will not be in a forbidden
area or lost [5]. Considering those uncertainties and the cost
involved for such a system, simulation has become a key
issue to predict the AUV position, computed by the navigation
function of the AUV [1].

CPS simulation faces four challenges. The first challenge
concerns simulation performance. This aspect is addressed by
optimizing the domain specific code and by using parallel
infrastructure [8]. The second challenge concerns precision of
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results which relies on the quality of the domain specific code.
The third challenge concerns CPS modeling [3]:

o Preventing misconnected model components. Indeed, not
only because of the type of the components, one issue
is the unit and referential of data that can be different
from one component to another one. Standardization of
the referential and the unit of data is a key element to
prevent errors.

o Modeling sensor behaviors and time disparities. The pre-
cision and the frequency of the sensors can be different.
Different sensors are used to monitor the behavior of the
CPS and each of them can be noised or disturbed by the
environment.

o System heterogeneity. Integration of heterogeneous do-
main specific aspects requires the separation of con-
cerns related to modeling system and simulation. Due to
different data sources, different models and algorithms,
different simulation configurations are to be considered.

For integration and orchestration of heterogeneous models,
the FMI [4] standard is widely used. Even if some points
(discrete events, timing semantic, distribution [24]-[26]) may
be discussed, the basic concepts proposed by FMI 2.0 for co-
simulation (communication between simulation modules and
orchestration) are sufficient for our simulation problem.

Finally, the last challenge is the need of easy-to-use envi-
ronment to design simulators. Classically, complexity of Cyber
Physical System (CPS) encourages developers to change the
development process by using modeling approaches [3] and
more specifically a Component-Based Software Engineering
(CBSE) approach [16]. Recently, high-level modeling lan-
guages and standards have been proposed to facilitate the
description of simulator structures and simulator runs [27]-
[29]. But from our knowledge, there is no approach proposing
a high-level modeling language integrating richness of CBSE
and parametrization to build a flexible simulation environment
for dedicated CPS, here AUV navigation function.

In this paper, we propose first a framework, called CARES,
dedicated to CPS simulation. The framework is a tool-



independent high-level modeling language (based on concepts
defined by CBSE and FMI 2.0 for co-simulation). From
models, a code generator and a runtime library allow to build
a simulator for a given scenario. Then, to integrate the domain
specific aspects of the AUV navigation function, we propose
an architectural style, called Navidro. Navidro provides model-
driven design rules and templates to facilitate domain specific
simulator development. It proposes generic API and adapters
to facilitate integration of different AUV behaviors, sensor
configurations and navigation functions.

The remainder of the paper is structured as follows. Section
IT presents the application domain of AUV and more specifi-
cally the navigation function. Section III introduces the generic
aspects of the model-driven and component-based framework,
called CARES. Section IV presents the Navidro architectural
style proposed to design the model for an AUV navigation
function. In Section V, the simulation results are discussed.
Section VI presents related works before a conclusion in
Section VII.

II. THE AUV NAVIGATION FUNCTION

An AUV is used mainly to observe and collect data in a
specific area. To fulfill its mission, it requires an evaluation of
its position. This is the role of the navigation function. This
section describes the different concepts and elements required
to simulate the navigation function of an AUV.

The first element to consider is the trajectory of the AUV.
This trajectory is the reference to evaluate the precision of
the navigation function. For simulation, the trajectory can be
extracted from a given log file (replay of a previous mission)
or computed from a trajectory model. For the latter, the
trajectory is usually specified by a list of way-points. Indeed,
the trajectory cannot follow exactly the succession of way-
points through segment lines due to physical constraints: the
drone cannot turn directly and the motor control implies some
uncertainties in the trajectory. To simulate a realistic trajectory,
different trajectory models can be used as for instance splines
[12]. For testing purpose, a simple trajectory may be computed
as set of consecutive segments and semi-circles (cf. Figure 1).

Fig. 1. Two different simulated trajectories built at the right with lines and
semi-circles and at the left with splines.

The trajectory is impacted by the environment and mete-
orological conditions. In our case, the AUV evolves in an
environment where current and depth play an important role,
disturbing the intended trajectory of the AUV. To maintain
its direction, reacting to the current, the AUV adopts crab

steering mode. Moreover, the AUV may have to respect a
given altitude from the seabed. Then, to simulate a realistic
trajectory, current and depth are a part of the model for
drone navigation estimation. The environment behavior may
be extracted from a log file (replay of a previous mission),
given by a forecast file of computed from an environment
model.

For sensors, the following Figure 2 illustrates the different
elements that can be present in an AUV. Indeed, each AUV
is equipped with different sensors, in our case those different
sensors are considered :

o the GPS provides an estimation of the position of the
drone while it is on the surface.

o the accelerometer is a part of Inertial Measurement Unit
(IMU): it provides an estimation of the linear accelera-
tions.

« the gyroscope is part of IMU: it provides an estimation
of the angular speeds.

o the DVL (Doppler Velocity Log): it provides an estima-
tion of the linear speeds.

« the barometer provides an estimation of the depth.
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Each sensor is characterized by a level of quality (precision)
and runs at a given frequency (in Hertz). The technical
specification of a sensor characterizes its quality through a

. model of error (white noise, bias, scale factor, time drift, ...)

[11]. Moreover, each data provided by the sensors are given
in the frame and orientation related to itself.

Finally, different navigation functions can be used. Some
of them use only a few sensors data (GPS on the surface,
gyroscope and DVL integration, gyroscope and accelerometer
double integration) [10], while others use hybrid process
merging all data received by the different sources (i.e. Kalman
Filter). A Kalman Filter necessitates parameters’ tuning to
provide a correct estimation of the AUV position [13].

In conclusion, the simulation of the navigation function
depends of the AUV trajectory, the environmental conditions,
the quality of the sensors and the chosen algorithm. To evaluate
one algorithm, one can deal with real data logs (replay of a
given mission) or with models of the different components
(evaluation for a specific AUV architecture).



III. CARES FRAMEWORK

This section presents the CARES? (Component framework
for Adaptative Real-Time Embedded Systems) framework
we propose for simulation of CPS. CARES provides model
editors and Java tools to develop and run model-driven and
component-based simulators.

The model-driven framework CARES proposes to prevent
inherent problems of code-centric approaches by describing
a CPS through a set of communicating components, each
component simulating one part of the CPS. At execution stage,
CARES follows a time-driven orchestration (such as FMI).

A. Main concepts

In the following section, we briefly present the main con-
cepts of CARES.

Structure. CARES derives from a component-based ap-
proach. Basically, a component is either a leaf component or
a composite component. A leaf component executes a specific
task, while a composite component can be composed of leaf or
composite components. The composite components are only
proposed for structural purpose. It facilitates navigation in the
system description. From FMI perspective, a leaf component
corresponds can be viewed as a Functional Mock-up Unit
(FMU). It is a co-simulation unit in charge of simulating one
part of the system.

Communication. Communication between components is
based on data exchange through input and output ports. The
communication protocol is implemented by following the
Ravenscar profile [15]: a data producer overwrites data, so a
module always considers the last produced data. The algorithm
of communication orchestration is then generic and then not
described in the model. We just represent datalinks that rely
output ports to input ports (one to many relationship).

For our problem, the data exchange protocol is not suf-
ficient. Classical functional services provide facilities to ex-
change complex data, to configure component behaviors and
to program different simulation scenarios. For these needs, we
add functional required and provided interfaces to components.

Components behavior. As with FMI, at execution, each
leaf component executes a doStep() function following a Run-
To-Completion paradigm. The doStep() function is executed
considering data inputs at the beginning and producing data
outputs at the end. Each component is initialized with an
initialize() function and stopped with an end() function. To
implement different modes during simulation, each component
may be activated or not for a given scenario.

Time aspects and scheduling. Following the FMI paradigm
for co-simulation, time and scheduling are managed by a
centralized scheduler. The scheduler launches periodically
the (doStep(timelnterval)) operation for each leaf component.
The period is based on a frequency expressed in hertz. The
time interval is modelled through a delay associated to the
component. It corresponds to the time used by the real system
to produce data. The output of the component are then updated

Zhttps://framagit.org/jpbabau/cares

after this time interval. For scheduling, the execution order is
defined by the partial order given by the dataflow. If a cycle
exists, a priority associated to each leaf component is used to
define the execution order between components.

Scenario. The scenario modeling step corresponds to a
timed sequence diagram modeling. A scenario defines:

o start and end time for the simulation;

o the time step size;

« at the beginning of a scenario: a sequence of parameter
initializations; a list of components to stop (a not-used
component may be deactivated); the binding of required
and provided interfaces (if necessary); a list of operation
calls on specific components for configuring them;

« a sequence of timed events and for each timed event a
sequence of parameter initializations or operation calls;

« at the end of a scenario: a sequence of operation calls on
specific components for configuring them;

« when a simulation contains random data, a scenario may
be played many times. In this case, some operations
may be performed at the beginning and the end of each
scenario.

A scenario definition provides a high-level description of a
given simulation run. Using language facilities, it is then easy
to adapt simulation to test a given configuration (parameter
valuation or component structure).

B. Modeling

The CARES concepts are implemented through three meta-
models:

o ComponentType metamodel: this metamodel contains the
required elements to describe data types, functional inter-
faces and types of leaf components (list of required and
provided interfaces, data inputs and outputs, attributes).
Instances of types are described through a textual editor
based on Xtext’.

o ComponentSystem metamodel: this metamodel contains
the required elements to describe a configuration of
components (leaf and composite components, data and
interface links). The Figure 3 exhibits an excerpt of this
metamodel. A graphical editor based on Sirius* allows
to instantiate a model of components and links between
them.

e Scenario metamodel. This metamodel contains the re-
quired elements to describe a simulation scenario. A
scenario contains initialization steps and timed events
(component initialization, attribute modification, function
call). A scenario is described through a declarative lan-
guage, based on a Xtext textual editor.

The three metamodels are implemented using Ecore’.

3https://www.eclipse.org/Xtext/
“https://www.eclipse.org/sirius/
Shttps://www.eclipse.org/ecoretools/
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Fig. 3. Component System Metamodel

C. Code generation

From instantiated models, a code generator implemented
using Acceleo® generates Java code by analyzing the whole
model (checking typing constraints). The generated code
contains all the declarations and the glue code for all the
components.

For integration of domain specific code, we impose that the
code is "FMU-Compliant” by providing only the three init(),
doStep() and end() functions. Then, for each leaf component,
a corresponding Java class is generated inheriting from a Leaf-
Component generic classes defining initialize(), doStep() and
end() functions. The domain-specific code is then integrated
by implementing the delegator pattern [14] in the generated
class.

Once the domain specific code is added, the simulator
is ready to run by using the provided runtime library that
implements the Master module. A scheduler launches each
leaf component, viewed as a FMU, considering its frequency.
Data communication is directly handled by the components
without the need of the Master module to coordinate read/write
operations.

At the end, from a given scenario, a class is generated to
declare all the timed events considered by the main class to
drive the simulation.

The code is now ready to perform a simulation.

IV. NAVIDRO ARCHITECTURAL STYLE

In the following part, model and architectural elements
related to the simulation of an AUV navigation function
are presented according to the Cares framework described
previously.

A. Global architecture

This subsection describes the global architecture style of
Navidro (see Figure 4).

Shttps://www.eclipse.org/acceleo/
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Fig. 4. Global architecture defined by Navidro

The Environment component is used to model and represent
the environment in which the AUV evolves. The environment
of the drone is composed of components generating current
and level of the seabed at a given position. Both of those
elements may be either simulated or extracted from log files.

The Drone component is responsible for the generation of
the drone trajectory. This component is based either on a
mission log reader (replay) or a trajectory model (a list of
way-points defined by the Mission component). For the latter,
the simulated trajectory can be computed simply with lines
and arcs or more realistically with splines.

The Sensors component contains all the components simu-
lating each sensor such as gyroscope, accelerometer, barometer
or GPS. Data produced by a sensor can be computed consid-
ering a given error model or extracted from a log file. In the
case of simulated data, data are produced by adding error to
data obtained by analysing the simulated reference trajectory.

The Navigation component is responsible for the navigation
function used to estimate the position of the drone. Different
navigation functions can be plugged to build the trajectory
from the initial point with information provided from the sen-
sors. For instance, a basic navigation function integrating the
speed (DVL output) considering the direction by integrating
the rotation speed (gyroscope output) has been implemented.
This component corresponds to the software part of the system.

The Analysis component compares the position given by the
Drone component with the estimated position computed by
the Navigation component. Its role is to compute the position
incertitude.

As discussed in introduction, to prevent misconnected com-
ponents, a standardization of units as well as referential frames
is necessary. The global architecture style Navidro defines a
list of referential frames and units fixed to avoid misconnected
components. For instance, the speed, is given in m/s for the
current and the measure of the DVL sensor. The position of
the AUV is given according to the NED (North/East/Down)
frame.



B. Heterogeneity integration

Designing Navidro simulators, different issues have been
identified such as adaptation of heterogeneous frames and
units, specific component selection for a given simulation and
integration of domain specific code in any language.

1) Units and referential adaptation: As previously noticed,
data provided by each sensor is given in the frame and ori-
entation related to itself. To adapt to the defined standard, we
propose to provide a library of adapter components that make
conversion and referential changes for classical data. Those
components allow to standardize domain-specific processes.

The Figure 5 illustrates the utilization of such adapter
component. The picture corresponds to the composite com-
ponent DVL, a part of the Sensor composite component. This
component is responsible to produce DVL data. Data may be
either simulated by a model error (ErrorDVL component) or
real data (readDVL component). The latter produces data by
reading a log file, whereas the first one simulates classical
measurement errors. For this component, adaptations are nec-
essary for inputs and outputs. Firstly, it is necessary to adapt
data provided by the Drone component to the body frame
of the sensor since data is computed in the body frame of
the drone. This is the role of the myBodyToDVL component.
Furthermore because the frame and units of log data are
based on technical sensor choice, an adapter is also necessary
(readerDVL).

[ sensovs!o yToDVL

myBodyToDVL
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‘ errorDVL

myErrorDVL

PItfEDVL

bodylinearspeed ~>.
scalefactorSdx.
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rotationSpeed |~ rotationSpeed thetaDVL scalefactorRwx
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= myDviSpeed biaisSdz
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thresholdClosestValue
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Fig. 5. DVL composite component

Reciprocally, DVL data necessitates to be converted in the
body frame of the drone to be processed by the navigation
function. This is the role of the myDVL component (see Figure
6 of the composite Navigation component) modeling the DVL
driver of the system.

DVL is an example of the pattern used for each sensor:
local adaptation of the frame, error modeling, standardized log
reader and output adaptation to drone frame. Indeed, several
reference frame adaptations are proposed by the framework
such as ECEF (Earth-Centered, Earth-Fixed), NED, body
frame of the drone or of the sensors. The proposed pattern
allows to easily integrate heterogeneous sources of data.

2) Data Source Selection: For a given simulation, the
user has to select specific sources of data in a transparent

Fig. 6. Navigation composite component

way. The data source selection from logs, models or
forecasts is necessary for the following components of the
global architecture: Environment, Sensors, Drone. For the
Navigation component, the user has also to choose a specific
algorithm for the estimation of the position. To configure
simulation (data source selection), several approaches exist:

o the first idea is to link at design stage the chosen data
source component to the corresponding input: this solu-
tion requires that the source respects the input standard
(respect of the architectural style);

« the second idea is to plug all possible sources to a switch
component: the switch component acts as a selector
configured by the scenario;

o the third approach has been addressed in [2] where the
authors propose a Model System Logic (MSL) to switch
the components during the execution according to a mode
defined by the user.

The first solution is simple and efficient at execution stage.
But this solution implies that the user has to modify the
design view. This point is not easy to users who only want
to configure a simulator, without having a knowledge of
how it is built. The third solution requires a more complex
runtime library for dynamic adaptations. This is not necessary
in our case: the configuration of the data sources is fixed
for the whole simulation. We propose then to follow the
second approach as illustrated in Figure 5 with the component
mySourceDVLSwitch. This solution implies that all data source
components are embedded in the simulator. To optimize ex-
ecution, this solution requires to do not execute un-selected
data source components. So the not used components are
deactivated for performance purposes.

Another illustration of the swifch component is the selection
of the simulated trajectory as depicted by the Figure 7. In
this figure, the Missionlnterpreter component considers splines
while the SimpleMission component considers lines and semi
circles (see results on Figure 1). The latter is useful for testing
purposes while the spline allows to model a more realistic
trajectory.
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The two examples show the facility of the approach to
integrate different sources of data. The switch component has
the advantage to impose an API, standardizing frame and units
to prevent computation errors.

3) Integration of legacy code: To integrate domain-specific
code, we impose that the code respects a given Java interface
composed of three functions (init(), doStep() and end()). To
integrate legacy codes developed in several languages, a first
solution is to use the FMI facilities. FMI proposes a Java API
to consider heterogeneity of languages for FMU execution.
This solution requires to use the corresponding FMI tool
licences. In our experiments, we develop a simple adaptor
to integrate C++ code. The original C++ code (a Kalman
filter for the navigation function) has been first extended to
implement the init(), doStep() and end() functions. Then a
language adaptor has been implemented by using JNI facilities.

C. Scenario definition

An example of scenario AuvSimulation for Navidro is
presented in Figure 8. It implements a simulation for 100
seconds. The MissionInterpreter component is used to provide
the trajectory, so the SimpleMission component is stopped. To
evaluate the impact of random errors on sensors, the scenario
is played 10 times. For each scenario execution, the initial
speed and direction is set to 5.0 and 1.0 respectively. After
20 seconds, resp. 50 seconds, the speed, resp. the direction, is
modified. During simulation, the estimated positions are stored
each ms in a csv log file.

V. EVALUATION

In order to evaluate the ability of our approach to simulate
an AUV navigation function, simulations are performed on
realistic configurations.

First, simulations are performed to qualify the performance
and the quality of the simulator itself. We consider here a drone
following a straight line during 20 km with a constant speed of
5 m/s (duration of 4000 seconds, a little bit more than 1 hour).
We simulate ideal sensors (no error) acting at a frequency
of 1000 hz. The drone and the navigation function are also
simulated at the same frequency. With a PC i7 of 3.6 GHz
CPU speed with 8GB RAM, the simulation takes less than 47
seconds and the position error is under 5 mm. Considering this
ideal configuration, the simulator performance and precision is
quite acceptable. Then we consider some classical scenarios.

Considering the mission contained in a csv file specifying a
list of way-points characterized by their position, altitude and
desired speed, a drone trajectory is simulated with splines.
After applying a model error, to qualify the quality of the
navigation function, we draw the two trajectories produced by
the Drone component and by the Navigation component. The
following Figure 9 depicts the results obtained for a specific
mission with a DVL misalignement (the DVL has a different
orientation from the drone and the navigation function does
not considered it), the yellow trajectory corresponds to the
estimated one while the green one represents the trajectory of
the drone.

The following example (Figure 10) is obtained with real
data logs and a navigation function based on the integration
of the DVL speed, taking into account orientation through
the gyroscope data. The simulation shrinks in 20 seconds a
duration of thirty minutes. For this scenario, the maximal error
is about 13.5 m.

VI. RELATED WORK

The literature proposes a lot of works on usage of CBSE
paradigm for architecting CPS. [16] shows that the main
concerns handled by CPS component models are those of
integration, performance, and maintainability. The instruments
to satisfy those concerns, while architecting CPS, are ad-hoc
software/system architecture, model-based approaches, archi-
tectural and component languages, and design. Our approach
concerns model-based ad-hoc architecture for integration pur-
pose. The main difference from the literature is that we
are interested in simulation while most focus on design and
verification as some works about CPS and robot control ( [20],
[21], [18], [19], [7D).

Concerning architectures for simulation, some generic solu-
tions have been proposed like FMI [4]. FMI is an independent
standard for modeling and co-simulation . The aim of FMI is
to associate several simulation tools into one co-simulation en-
vironment orchestrated by the Master module (data exchange
and scheduling). FMI constitutes a generic proposal while our
approach addresses domain specific concerns. In another way,
DirectSim [23] proposes a framework to develop agent-based
simulators. It provides a run-time library, configuration and
observation facilities, a set of bricks to model different kinds
of vehicle, to model errors and 2D and 3D monitors. It is an
open-source project but it does not propose a guide on how
to build a simulator of an AUV navigation function.

CoSim20 proposes a modeling language to define a correct
coordination of different executable models for co-simulation,
which can be distributed at execution stage [25]. In our
approach, due to the simulation domain, distribution is not
necessary and coordination is simplified because of the time-
driven simulation.

FIDE is an Integrated Design Environment (IDE) for FMI
[27]. It allows the modeling and design of co-simulation by
integrating FMUs and considering discrete events. It pro-
poses to implement a deterministic FMI Master Algorithm.



Simulation Auvsimulation (ms)
system Navidro; //namz of the system model under study

simulationTime [©,100000]:1;

Jfname of the scenarioc and time unit

//simulation from @ to 180808 ms, step of 1 ms

hgg;ﬂi ff 1n1t1511Lat10n of parameters and stop unused compenents

g"=false;

Navldro Drone. umlu;tmm -stop()s}

scenarios {Scenario sgeparlog [12] // the scenaric zgenaclog is played 10 times

bngn { Hf 1n1t1511‘at10n of drone parameters

events {

// at instant 205, the speed Df the drone is set to 2.5
g = ged”=2.5; }

instant, 2eee0 { "Navic

// at instant Ses, the dlrectlon of the swimmer is set to -1.8@

instant. Seeee { "Mavid

-1.e5} }

end {// operations performed at the End of each Slmulatlon execution}
logs {// each m3, time and the estimated position of the drone is stored

DronePosition.csv tlmed (1 2y {

end { // operatlons performed at the end of the 51hulat10n executlon}

Fig. 8. A simulation scenario for Navidro
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Fig. 10. Example of navigation function evaluation with real data

Daccosim NG proposes a Graphic User Interface (for co-
simulation graph description) and a Command-Line Interface
(to drive co-simulation run) to run FMI 2.0 co-simulations
based on both centralized and distributed architectures [28].
Experiments show correct performances for Daccosim.

As Daccosim and FIDE, CARES proposes high-level graph-

ical interface to describe co-simulation graphs. CARES imple-
ments a similar Master Algorithm as FIDE without considering
roll-back. CARES provides facilities to consider parametriza-
tion and Client/Server interfaces for component description.
Aln addition CARES proposes a high-level declarative lan-
guage to facilitate the description of different co-simulation
runs (the CARES scenarios).

The SSP standard proposes a tool-independent XML-based
format for the description, packaging and exchange of system
structures and their parameterization [29]. The standard inte-
grates notions of units, valuation and mapping between param-
eters and components. SSP may be used to describe a system
parametrization precisely. In the same idea, CARES pro-
poses parameter definition, but directly into the co-simulation
graph. Moreover, the parameter valuation is used to drive co-
simulation runs through a high-level declarative language.

Some simulators exist for drones like the open source
OpenAUYV testbed [17]. The simulator is proposed because ex-
tensive physical testing can be expensive and time consuming
because of short flight times due to battery constraints and
safety precautions. This approach remains code-centric and
is dedicated to Multirotor Unmanned Aerial Vehicles. In the
same domain, Aerostack [22] proposes a layered architectural
style to design and simulate controllers of Unmanned Aerial
Systems. Even if this work addresses a different domain, we
share with this work the idea of defining a component-based
architecture style, the development of domain-specific library
and the idea of designing a system by configuring existing
blocks.

The literature proposes also specific simulators for AUV.
UWSIM [6] integrates a mechanical model of a submarine
drone for simulation of its movements. Different sensors can
be simulated as well as the sea state. However, this work
focuses on visualization rather than simulating the sensors and
the environment. Navlab [1] proposes a software with the same
objective as in the paper: the simulation of navigation function
of AUV. It has been developed with MATLAB. Like in our



approach, it is based on three layers (trajectory simulation,
sensors and navigation function). In addition simulated sensors
(integrating noise) or real data may be considered. However,
this project is not open-source, it is developed as a black-box
with no information on its architecture.

VII. CONCLUSION

In this paper, the CARES framework for the design of
simulators of CPS has been proposed. This model-based ap-
proach combines classical CBSE concepts and FMI paradigm.
To use it in the specific domain of AUV navigation function,
the Navidro architectural style has been proposed. It helps to
standardize units and deals with heterogeneity of data source.
The approach has been tested for different AUV configurations
considering simulated or real trajectory and measurement
errors.

Future works concern performance improvements by adding
parallelism at execution stage. For instance, each sensor com-
ponent may be executed in parallel. In addition, because of
the iterative aspect of simulation, each iteration may be also
parallelized. Another idea is to split the simulator in two parts,
one for the trajectory creation and another one for sensors and
navigation function analysis.

CARES has been defined to integrate FMUs following the
FMI 2.0 Co-Simulation standard. The FMI 3.0 Co-Simulation
standard offers new facilities to consider initialization, con-
figuration, internal and external events [30]. CARES has to
be extended to facilitate the driving of simulations integrating
FMU following the FMI 3.0 Co-Simulation standard.

Finally, a simulation could launch several simulations with
different parameter values in order to compare the impacts
of some parameters on the performance of the navigation
function. The idea is to develop an architecture exploration
tool for the navigation function.
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