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Abstract

The objective of Smart Manufacturing is to improve produc-
tivity and competitiveness in industry, based on in-process
data. It requires reliable, explainable and understandable
models such as Bayesian networks for performing tasks like
condition prediction. In this context, a Bayesian network can
be classically learned in a supervised, unsupervised way or a
semi-supervised way. Here, we are interested in how to per-
form the learning when the ground truth isn’t included in the
learning data but is observable indirectly in another related
dataset. This paper introduces a fully unsupervised variation
of co-training that allows to include this second dataset, with
two learning strategies (split and recursive). In our experi-
ments, we propose one simple probabilistic graphical model
used for predicting the state of a machine tool from results
given by several sensors, and illustrate our unsupervised co-
training strategies first with benchmarks available from the
UCI repository, for which 4 out of 5 datasets have best results
with the recursive strategy. Finally, the recursive strategy was
validated by McNemar’s test as being the best strategy on a
real industrial dataset.

Introduction
Smart manufacturing is a promising research area to im-
prove productivity and competitiveness in industry (Wang
et al. 2018) (Tao et al. 2018). Indeed, it is crucial to de-
tect any system failure as early as possible to reduce mainte-
nance costs and downtimes. This is the reason why predic-
tive maintenance is a key issue in industry 4.0 (Gao et al.
2015). Approaches can be data-driven, model based or hy-
brid.

In our work, we are interested in discovering and under-
standing of the events leading to the damage of industrial
production machine, and in predicting their failure, in a pre-
dictive maintenance perspective. In the application, we have
been faced with a more general problem. Supervised learn-
ing is a classic approach for learning any predictive model
when the ground truth is known. Unsupervised learning aims
at learning the same model when this ground truth is un-
known. In our application, we consider the unsupervised
scenario, but with an additional information provided about
the system state during another phase.

Smart manufacturing can make use of supervised learning
in order to build a predictive model, such as a Probabilis-
tic Neural Network to classify broken tools and good tools

(Huang, Ma, and Kuo 2015) or Bayesian networks and Sup-
port Vector Machines for thermal modelling and prediction
(Ramesh et al. 2003).

Improving the learning of a given model with the results
of another one is one of the founding principle of the co-
training. (Blum and Mitchell 1998) and (Nigam and Ghani
2000) proposed semi-supervised learning paradigm, which
trains two naive Bayes classifiers respectively from two dif-
ferent views and lets the classifiers label some unlabeled
data for each other. (Yu et al. 2011) used Bayesian undi-
rected graphical model for co-training.

This paper introduces a fully unsupervised variation of co-
training and several learning strategies are proposed, the first
one to our knowledge. It includes a conditional linear Gaus-
sian Bayesian Network structure and the learning strategies
associated. The strategies were experimentally tested on 5
UCI datasets, and on a real industrial dataset dedicated to
the diagnosis of machine tool. The result is the first generic
framework for fully unsupervised diagnosis, which parame-
ters are learned with co-training.

Section problem statement proposes a formal descrip-
tion of the problem. Section unsupervised co-training de-
scribes our unsupervised co-training framework, as well as
three learning strategies. Section 6 is dedicated to the em-
pirical evaluation of the proposal. In section 6, we describe
one simple hybrid Bayesian network dedicated to condition
prediction. In section 6, we will describe one first set of ex-
periments with benchmarks available from the UCI repos-
itory, transformed for co-training task, in a controlled con-
text where the ground truth is known. Section 6 presents an
application on real industrial data, and section 6 concludes
on the contribution of this paper and our perspectives of re-
search.

Problem Statement
{SensA1, ..., SensAn} is a set of continuous variables, out-
puts of several sensors (potentially preprocessed) that are
measured every day during the ”production phase” (phase
A) of the machine tool. The objective is to predict StateA,
the (discrete) state of the system, by the mean of one model
ModelA learned from data.

A classic approach to this problem would be to
learn the parameters of ModelA in a supervised way,
from a dataset containing observations of the sensors



{SensA1, ..., SensAn} and the ground truth about StateA;
or in an unsupervised way, without measuring the ground
truth. Let us denote DA this dataset with the sensors infor-
mation only.

In our problem, we consider the unsupervised scenario,
but with an additional information DB provided by another
set of sensors about the system state during another phase
(phase B). So, {SensB1, ..., SensBm} is also a set of con-
tinuous variables, outputs of these other sensors (potentially
preprocessed), that are also measured every day. This dataset
can be used to predict StateB , the state of the system dur-
ing phase B. States A and B of the system are assumed to be
two estimations of the same underlying state of the machine.
Our objective is to learn ModelA, with DA, i.e. in an unsu-
pervised way, without knowing the ground truth, but also
by taking into account data DB acquired during the second
phase. As an example, in our application, DA is the data
from the process monitoring and DB is the data collected
during condition monitoring when the component signature
are recorded.

As shown in a strong context by (Blum and Mitchell
1998) or a weaker one by (Balcan, Blum, and Yang 2005) for
(supervised) co-training, we consider the following assump-
tions : (a) weak sufficiency, each of our views (ModelA
and ModelB) is at least approximately sufficient in itself
to achieve good prediction, and (b) weak dependency, both
views are not too highly correlated.

Unsupervised co-training
Principle
In order to solve the problem described in the previous sec-
tion, we propose to ”enrich” ModelA with another sub-
model ModelB dedicated to the prediction of StateB from
the other sensors {SensB1, ..., SensBm} leading to an un-
supervised co-training of both models that should agree
about the state of the system.

We will consider that both models are probabilistic graph-
ical models with continuous and discrete variables (and pa-
rameters θA and θB), and that unsupervised learning can be
performed by the EM algorithm (Dempster, Laird, and Ru-
bin 1977; McLachlan and Krishnan 2008).

This unsupervised co-training can be performed with dif-
ferent learning strategies, in relation to the way the equality
assumption between StateA and StateB is envisaged.

Split learning
Instead of learning one unique model with all the sensors
inputs, we propose to reduce the complexity of the parame-
ter learning by splitting this task. i.e. learning one first sub-
model in an unsupervised way with the help of the EM al-
gorithm, and then the second one enriched with the results
of the first one, obtained by probabilistic inference, as de-
scribed in algorithm 1. As described in figure 1, one model
is then learned to ”reproduce” the vector [State∗B ] of the op-
timal outputs of the second model.

In this case, ModelA takes benefit of the ModelB unsu-
pervised learning. However, in a symmetrical way, a better
learning of ModelA would also help for learning ModelB .

Recursive learning
The recursive method consists in using the previous method
and iterating nstep times (2nstep EM and probabilistic in-
ference runs). Sub-model B is learned in an unsupervised
way, enabling the supervised learning of model A, and then
of model B, etc. The procedure is detailed in algorithm 2,
where P (DA|θA) is the likelihood of observing the dataDA

for the model A, and symmetrically for model B.
For an optimal computation time, we break complexity by

learning one model, and then learning the other model with
the prediction of the first one, and repeating it nstep times.
The model is learned in a sort of semi-supervised way, but
without real labeled data such as in usual co-training frame-
work.

Instead of controlling the number of steps, we can also
monitor the likelihood and stop the iterations when it has
stopped improving significantly.

Experiments
Model and parameter initialization
We propose to use probabilistic graphical models which are
explainable models, and more especially Conditional Lin-
ear Gaussian Bayesian Networks (CLGBNs, (Lauritzen and
Wermuth 1989)) that are able to deal with continuous and
discrete variables.

Our unsupervised co-training framework proposes to use
jointly or iteratively two models ModelA and ModelB . We
will consider here that the structure of both models is simi-
lar, and we will describe only the first one. As we are inter-
ested in applying this unsupervised co-training for condition
prediction, the choice of the model used in the experiments
and described in Figure 2 is inspired from the following con-
siderations.

In an industrial system, the physical measurements
(power, temperature, etc.) corresponding to good operating
conditions of the system are within a limited range of values.
Therefore, values outside this small and frequently observed
range probably indicate problems during the manufacturing.
We are defining StateA as a boolean variable with {OK,
KO} values. Moreover, each sensor is usually able to dis-
criminate some intermediate states. Let us define DiscrAi

the local estimation of the state provided by SensAi. This
variable is a discrete variable with a larger domain, for in-
stance {OK, degraded, KO}. As in usual CLGBNs, we con-
sider that the distribution of each SensAi is a Gaussian dis-
tribution conditional on DiscrAi.

In order to simplify the description of the model, we will
also consider that low values of SensAi usually corresponds

Algorithm 1: Split strategy
Input: DA, DB

Output: θ∗A, θ∗B
1 θ∗B = argmax P (DB |θB)
2 [State∗B ] = argmax P ([StateB ]|DB , θ

∗
B)

3 θ∗A = argmax P (DA, [StateA] = [State∗B ]|θA)
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Figure 1: Unsupervised co-training by split learning strategy. Firstly, ModelB is learnt in an unsupervised way, then ModelA
is learnt in a supervised way, by considering that StateA should be the optimal prediction of StateB after ModelB learning.
The blue nodes denote variables observed during the learning task, where the white ones represent unobserved variables.

Algorithm 2: Recursive strategy
Input: DA, DB

Output: θ∗A, θ∗B
1 θ∗B = argmax P (DB |θB)
2 for i = 1 to nstep do
3 [State∗B ] = argmax P ([StateB ]|DB , θ

∗
B)

4 θ∗A = argmax P (DA, [StateA] =
[State∗B ]|θA)

5 [State∗A] = argmax P ([StateA]|DA, θ
∗
A)

6 θ∗B = argmax P (DB , [StateB ] =
[State∗A]|θB)

to StateA = OK, and the more the sensor values increase,
the more the state of the system is degraded or KO.

Each conditional Gaussian distribution is initialized ei-
ther by one application of EM for the joint distribution
P (SensAi, DiscrAi), or by using a classical grid initial-
ization given in eqn 1 for a mixture of k distinct Gaussians
(with i from 0 to k − 1).

µi = min(SensAi) +
0.5 + i

k
(max(SensAi)−min(SensAi))

(1)

σ2
i =

σ2
SensAi

k

We finally consider that the global state of the system is
an aggregation of the local states estimated by each sen-
sor. In a first approach that is very similar to a deterministic
MAX function, we consider here that StateA=KO when it
has been diagnosed as degraded or KO by at least one sensor
of the model.

Experiments on UCI datasets
Dataset adaptation for co-training Several benchmarks
from the UCI repository (Dua and Graff 2017) have been
used. They were selected based on their similarity to our

SensA1

SensA2

...

SensAn

DiscrA1

DiscrA2

...

DiscrAn

StateAMAX

Figure 2: Conditional Linear Gaussian Bayesian Network
used in our experiments for process monitoring in smart
manufacturing. Circles denote continuous variables and
squares discrete ones.

industrial context, with several numerical variables as in-
puts. The target variable was binarized such as the highest
value corresponds to a failure if it wasn’t already binary.
These benchmarks are not dedicated to co-training. In or-
der to adapt them for our task where we need two-viewed
datasets, we followed a procedure described in (Ling, Du,
and Zhou 2009) to split an ”usual” one view dataset into
two views by using an entropy based method. The two-views
UCI datasets are shared on github 1 to create a public bench-
mark for co-training. (Ling, Du, and Zhou 2009) also intro-
duces two measures to verify the two assumptions needed
for co-training.

The sufficiency criterion δ1 measures the fact that the
two models should have sufficient information by itselves
to predict the target variable. The independence criterion δ2
measures the ability of predicting the attributes of the other
dataset (given the value of the class variable). As shown in
(Ling, Du, and Zhou 2009), the lower δ1 and δ2 are, the bet-
ter the dataset is fit for co-training.

1https://github.com/MathildeMonvoisin/Co-training-
benchmark



δ1 δ2 n m N IR

heart-statlog 0.33 0.12 7 6 270 45%

APS failure 0.11 0.39 5 5 758 36%

hydraulic stable 0.45 0.66 8 7 2206 34%

hydraulic valve 0.56 0.67 8 7 2206 67%

hydraulic leakage 0.19 0.67 8 7 2206 22%

Table 1: UCI datasets characteristics in a co-training context.
δ1 and δ2 are the respective measures for sufficiency and
independence. n and m are the number of columns of views
A and B,N is the number of samples in the dataset and IR is
the imbalance ratio, i.e. the percentage of the positive class.

Table 1 summarizes all the benchmarks selected from UCI
repository, with their properties (total number of input vari-
ables, data size, imbalance ratio) and the sufficiency and in-
dependence measurements (δ1 and δ2) estimated by using
a decision tree as a baseline classifier and stratified 10-fold
cross-validation.

Experimental protocol The implementation of the mod-
els described in section 6 with our different learning strate-
gies proposed in section has been performed with our
library dedicated to Probabilistic Graphical Models (PIL-
GRIM) with the help of ProBT2 library.

We compare in these experiments our two learning strate-
gies (Split and Recursive). As a baseline method, we also
learned independently each model in an unsupervised way.

Parameters used during learning were: a threshold equal
to 0.0001 on likelihood variation as stopping criterion for
EM and nstep = 30 (chosen for guaranteeing convergence
in all our experiments) for the recursive strategy.

The accuracy and sensitivity of each model (A and B) are
estimated with 10-fold cross validation, and expressed as a
value between 0 and 100%. Their average (between both
models) is then considered as the global performance of each
learning strategy (unsupervised, split learning and recursive
learning).

Results Table 2 shows us the variation both of our metrics
(accuracy and sensitivity) for each dataset.

The recursive strategy is usually better than the simple
split one, with an increase in terms of accuracy and sen-
sitivity for all datasets excepted for one dataset (hydraulic
stable). The recursive co-training strategy is also more inter-
esting than the unsupervised learning (without co-training)
for three datasets (heart-statlog, APS failure and hydraulic-
valve) or equivalent (for hydraulic leakage, the increase of
accuracy is counterbalanced by a decrease in sensitivity).

Both co-training strategies are not efficient for the hy-
draulic stable benchmark and not useful for another one (hy-
draulic leakage). Both datasets have one high value for δ2,
showing that one of the co-training usual assumption (inde-
pendence here) is not verified with also one small imbalance

2https://www.probayes.com/

split vs
unsup

rec. vs
split

rec. vs
unsup

∆ acc. 1.67 0.56 2.22heart-statlog
∆ sens. 3.12 0.21 3.33
∆ acc. 0.49 0.21 0.71APS failure
∆ sens. 11.59 1.55 13.14
∆ acc. 0.70 -1.82 -1.12hydraulic stable
∆ sens. -0.92 -1.68 -2.60
∆ acc. 1.74 1.43 3.17hydraulic valve
∆ sens. 4.79 2.66 7.45
∆ acc. 1.50 -0.06 1.44hydraulic leakage
∆ sens. -1.44 0.52 -0.92

Table 2: Variation of accuracy and sensitivity between un-
supervised learning and the split and recursive co-training
strategies.

ratio. In such imbalanced context, the first model seems to
produce wrong results that are given as a ground truth for the
next model. This situation can lead to a negative feedback
loop and progressively produces a decrease of the global per-
formances.

Experiments on real data from industrial use case
Data and experimental protocol This use case concerns
the machining industry and the component to be diagnosed
is a machine tool spindle. The industrial dataset have been
collected over more than one year, aggregated at a daily level
and it is unlabelled. The results obtained by a previous study
(Godreau et al. 2019) which have been afterwards confirmed
by an expert are considered as the ground truth.

The model A is dedicated to process monitoring during
the machining phase: the four inputs are classical vibration
criteria. The model B corresponds to the spindle condition
monitoring: a vibration signature is performed once a day to
evaluate it, with also four criteria.

Problems are uncommon in machining: from the process
monitoring and the spindle monitoring datasets respectively
only 7 (1.6%) and 5 (1.1%) events are considered as events
that might have seriously damaged the spindle, from the pre-
vious study. Another issue in this real application is the fact
that the two diagnosis don’t coincide perfectly: only 3 of the
5 spindle damages are included in the 7 events detected dur-
ing the process monitoring.

For this dataset, the sufficiency and independence cri-
teria have been estimated by applying various over-
sampling algorithms from the package imbalanced-learn
(Lemaı̂tre, Nogueira, and Aridas 2017) because of the
very low imbalance ratio (≈ 1%). The results from the
ADASYN, BorderlineSMOTE, KMeansSMOTE, Rando-
mOverSampler, SMOTE and SVMSMOTE over-sampling
algorithms gave results in the range [0, 02; 0, 12] for δ1 and
[0, 34; 0, 58] for δ2. These values are in the range of values
where co-training was efficient in our previous study on the
UCI datasets.

We compare in these experiments our two co-training
strategies (Split and Recursive). As a baseline method, we
also learned independently each model in a unsupervised



way without the help of the other model.
The evaluation of the learning strategies is done here

by two confusion matrices comparing the predictions done
by our ModelA and ModelB to the same ground truth.
For each model, we also present the classic performance
indicators (precision, recall, ...) and computation time for
each model A and B. In our application, the sensitivity is
a very important indicator because it measures how wrong
the model was when predicting an OK, and there can be a
big impact if we ignore a KO, depending on what was the
damage suffered.

Results Table 3 and table 4 present the confusion matrices
and the other performance indicators obtained for our two
co-training strategies and the baseline unsupervised learn-
ing.

The recursive method converges to performances very
similar to the split one on (B), and gives increased accuracy
performances on (A) and they both have a very fast learning
time (less than 10s).

Table 5 presents the results of McNemar’s statistical test
(Dietterich 1998) where the null hypothesis considers that
the predictive performances of the two classifiers are equal
(with a significance level of α = 0.05). The tests were
computed using the statsmodel python library (Seabold and
Perktold 2010). This table shows that the split strategy im-
proves the spindle diagnosis results, compared to the unsu-
pervised one. Recursive learning is globally the best strat-
egy, by significantly outperforming all the other strategies
except the split one for the spindle condition diagnosis.

The fact that the recursive strategy is not always better
than the split one means that repeating the learning itera-
tions can decrease precision and sensitivity in the process
diagnosis classifier. This situation can be explained by sev-
eral hypothesis: our unsupervised co-training is considering
that both models should agree about their outputs, where the
ground truth considered for the evaluation metrics is based
on independent results for both models that disagree about
some KO events. Some improvements addressing this situ-
ation are proposed in the following section.

A detailed study with a machining expert has validated a
new incident in the data that was detected using the recursive
strategy. This rare event has not been previously detected by
other techniques that were used on this dataset.

Conclusion and future work
The paper focuses on learning a predictive model in a
smart manufacturing context with an unsupervised frame-
work where additional information is provided about the
system state during another phase.

We have proposed one fully unsupervised variation of co-
training framework with several learning strategies, which
can be applied to various models and application fields.

These strategies have been illustrated with several bench-
marks available from the UCI repository (and adapted for a
co-training purpose), and have then been applied in a real
application dedicated to the detection of machine tool fail-
ure when the ground truth is unknown. We have shown that

our unsupervised co-training strategies can take profit from
separate information in order to provide better results.

This present work can yet be extended or improved in sev-
eral ways. In order to avoid the negative feedback loop ob-
served during our experiments, the split and recursive strate-
gies could be improved by not transferring from one sub-
model learning to the second one the state predicted by the
sub-model (cf. eqn 1), but the probability distribution of the
state as a soft evidence, as proposed in multi-agent context
(Vomlel 2004). We can also inspire ourselves from the semi-
supervised co-training strategies with only a partial transfer
of information between the two learning tasks, as proposed
in (Nigam and Ghani 2000) where only the more confident
prediction are transferred. As the sufficiency assumptions
are not always met in real applications, we are also inter-
ested by extending our work with insufficient views, such as
proposed for co-training in (Guo and Wang 2019).

The model structure we proposed in a smart machining
context is a very simple one, used to highlight the interest
of the co-training strategies. This model can be improved
by taking into account more complex deterministic aggrega-
tion functions (for instance the AtLeastK operator instead of
the MAX one) or probabilistic ones like NoisyMax (Srini-
vas 1993) or other causal independence models (Dıez and
Druzdzel 2006).
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A B
FP FN TP TN FP FN TP TN

Independent unsupervised learning 1 15 414 6 0 38 393 5
Unsupervised co-training (split) 1 15 414 6 0 9 422 5
Unsupervised co-training (recursive) 3 2 427 4 0 8 423 5

Table 3: Process diagnosis (A) and spindle condition diagnostic (B) confusion matrices for several unsupervised co-training
strategies compared with a baseline independent learning of both models.

A: Process diagnosis B: Cond. monitoring
Prec. Sens. Rec. Acc. Prec. Sens. Rec. Acc. Time (s)

Unsupervised 99.7% 85.7 % 96.5% 96.3% 100% 100% 91.2% 91.3% 2.1
Split strategy 99.8% 85.7 % 96.5% 96.3% 100% 100% 97.9% 97.9% 2.8
Rec. strategy 99.3% 57.1% 99.5% 98.9% 100% 100% 98.1% 98.2% 9.8

Table 4: Process diagnosis (A) and spindle condition (B) performance indicators (precision, sensitivity, recall, accuracy and
computation time) for the split and recursive (rec.) unsupervised co-training strategies, compared with a baseline independent
unsupervised learning of both models.

A : Process diagnostic B : Spindle Condition Maintenance
unsupervised split recursive unsupervised split recursive

unsupervised = 6= 6= 6=
split 6= =

Table 5: Results of McNemar’s statistical test where the null hypothesis considers that the predictive performances of a pair of
classifiers are equal (=) with a significance level of α = 0.05. The classifiers were learned with our unsupervised co-training
strategies or with a baseline independent unsupervised learning of both models.


