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Exponential stabilization of waves for the Zaremba boundary
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Abstract

In this article we prove, under some geometrical condition on geodesic flow, exponential
stabilization of wave equation with Zaremba boundary condition. We prove an estimate on the
resolvent of semigroup associated with wave equation on the imaginary axis and we deduce the
stabilization result. To prove this estimate we apply semiclassical measure technics. The main
difficulties are to prove that support of measure is in characteristic set in a neighborhood of
the jump in the boundary condition and to prove results of propagation in a neighborhood of a
boundary point where Neumann boundary condition is imposed. In fact if a lot of results applied
here are proved in previous articles, these two points are new.
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1 Introduction and results

1.1 Framework

In this article we are interested by stabilization of wave equation with Zaremba boundary condition.
To be precise we have to introduce some notation. Let Q be a bounded open set in R, with €
boundary. Let 0Qp and 9Qy two open sets in 9 such that 9Qp N Oy = 0 and 9Qp NIy =T,
where I is a smooth manifold of dimension d—2. The manifold I' is not necessary a connected set. Let
P be a second order differential operator. We have P =37, .\ g D;pji(¥) Duy+3 -1 < j< g i (2) Doy +
po(z), where p;x(z), p;(z) are in €>°(V) where V is a neighborhood of Q. The matrix (pjx(z));k
is assumed positive definite for every x € V. We assume that the operator defined by Pu for
ueD={uec H(Q), Pue L*Q), upa, = 0,(0,u)pn, = 0}, is self-adjoint and non negative.
Here 0, is the exterior normal derivative. Let a € €°° (V') be such that a(x) > 0 for every z € Q.
We associate with P the following wave equation

0?u + Pu+ a(z)0u =0 in Q x (0, 00)
(u, Opu)p=o = (uo,u1) € H'(Q) & L*()
u=0on 00p x (0,00)

Oyu =0 on Iy x (0,00)

(1)

We associated the energy that is E(t,uo,u1) = (Pulu)p2) + [, |0sul*dz, where (vjw)p2q) =
fQ v(z)w(z)dr. Under assumptions on flows associated with P and a (see sections 1.2, and 1.3)
we obtain that the energy satisfies E(t) < Ce ' for some constants ¢ > 0 and C' > 0. We ob-
tain this result by an estimate on the resolvent associated with this problem and by the Gearhart-
Huang-Priiss theorem [20, 38, 27]. To prove the resolvent estimate we use semiclassical measures.
The method is well-known, since the seminal work by Bardos-Lebeau-Rauch [8], and was applied
in different contexts and different variants, defect measures, Wigner measures, H-measures, see
Aloui-Khenissi-Robbiano [2], Anantharaman-Léautaud-Macia [3, 4], Burq [11], Burg-Lebeau [12],
Dehman-Le Rousseau-Léautaud [16], Gérard-Leichtnam [23], Gérard [21, 22], Le Rousseau-Lebeau-
Terpolilli-Trélat [29], Lebeau [30], Miller [37], Robbiano-Zuily [40], Tartar [43] for instance.



We can find an introduction to this subject in Zworski [46].

Problems for the Zaremba boundary condition was studied by several authors. In particular,
for elliptic problem, Shamir [42] and Savaré [41] proved that the regularity of solution is not as for
the Dirichlet boundary condition, there is a lack of regularity, s = 3/2 is critical in the Sobolev
spaces H? if the datum is in L2. The problem is related with boundary problem in non smooth
domain, with corner for instance. There is a large literature on this subject. For damping wave
equation with Zaremba Boundary condition, the problem was studied by Bey and al. [7], Cornilleau
and al. [13] where they prove exponential decay with multiplier method, and in [14] where we only
prove logarithmic decay but without geometric condition on the support of the damping. Same kind
of result was proven by Fu [19] for mixed boundary condition of Robin type.

In the following we described the geometry in section 1.2. This allows to give the precise assump-
tion and the result in section 1.3. At the end of this section we give a description of proofs.

1.2 Geometry

Here we give the geometrical notion we use in this article. This framework comes from Melrose and
Sjostrand [35, 36] and the reader may also find in Hérmander [26, Chapter 24] more informations
and proofs. The characterisation of symplectic sub-manifold is probably classical and more details
can be found in Grigis [24].

Assumption on the symbol. We define the symbol of P by

p(z,&) = Y pi@)&é -1, (2)

1<y,k<d

Where pji are €°°(£2). Locally in a neighborhood of the boundary we can define Q by ¢ > 0 with
dp # 0. We can also choose coordinates (i.e. normal geodesic coordinates) such that ¢(z) = x4 and
p(z,8) = & + R(x, &) — 1 where z = (2/,24) and £ = (&, &4).

Symplectic sub-manifold ¥. We can define a symplectic manifold 3, contained into 7*RN{p =
0}. We set ¥ = {(,¢), o(x) = 0 and {p,p}(z,£) = 0}. The set ¥ is a symplectic manifold as
{¢,{p,p}} # 0. In coordinates (2, z4), we have ¥ = {x4 = 0,&; = 0}, this manifold is isomorphic
to T*0Q and described by coordinates (z',¢’).

The Hamiltonian vector field H), is not a vector field on ¥, but for all X a vector field on T*R?,
we can find unique fonctions a and 8 such X + aH, + BHy, py is a vector field on . For H, we
denote the associated vector Hzlv and an elementary computation leads to

{p.{p, o}
{o.{o,p} ¥

In coordinates (z',24), H), only depends on R and we have

H, = H, +

d—1
H, = Hp = Z(@ij(x/, 0,80y, — 0y, R(2',0,£)0, ).

Jj=1

In particular the integral curves associated with HZ’) starting from a point into ¥ stay into ¥. In
coordinates (2, 4), we denote the integral curve starting from (z/,&’), either ~v4(s;2’,¢’), either
vg(2', &), if s is implicit or v4(s), if (2/,¢’) is implicit.

Symplectic sub-manifold ¥’. The manifold T can be locally defined by {¢ = 0, ¥ = 0}, where
dp A dip # 0. We define the manifold ¥ by

S ={(,9), o(x) =v(z) ={e,p}(x,&) = {4, p}(z,§) = 0}.



This manifold is symplectic. It suffices to prove that the following matrix

0 0 {o:{p:n}} {e. {v,p}}

0 0 {¥,{p,p}} {4, {¥,p}}
Hesph vt {{e,p} v} 0 Hespt A i} |7
He,ph ey o) v} {{¢,p}{e )} 0

is invertible. Clearly this is true if the matrix

(‘{%{%p}} {%{1/1,1)}}) 3)
{w.{e.pt {v.{¢,p}})"

is invertible. The quadratic form in (t,2), {ty + 29, {t@ + 21, p}} is positive definite as pf;, is a
positive definite matrix and dy and di are independent as dy A dip = 0. The matrix associated with
{tp + 210, {tp + 21, p}} is the one given by (3), then this matrix is invertible.

We can choose local coordinates (z1,x"”, z4) such that ¢(z) = x4, ¥(x) = 21 and

p($,§) = 5(12 + 5% + Rl(xlvgll) + $dR2($,§I) -1= 53 + R(xvgl) - L

In these local coordinates, the manifold X' = {z1 = x4 = & = £ = 0} which is isomorphic to T*T,
and described by the coordinates (z,£").

For all vector field X defined on T*R¢, we can find unique functions «, £, 7, ¢ such that
X +aH, +BHy 4 vH{, p) + CHy py is a vector field on X', For X = H),, we denote the associated
vector field H) and we have H) = H, + aH, + BHy, as Hyp = Hyp = 0 on X' and Hyp = 0.
We can compute o and 8 but the precise values are not useful for general functions ¢ and . In
coordinates (21,2",xq), we have H) = Hj, + adg, + f0¢,. The equations H,/&; = H,/¢q = 0, on
Y, give a = —0,, R(0,2",0,0,£") and 8 = —0,,R1(0,2",¢"). In particular H} only depends on
Ry, and we have H)) = Hj = Hp = Zj;g(aijl(o, x",6")0y; — (0, R1(0,2",£")0¢,). The integral
curves starting from X’ stay on X'. We denote the curves starting from (z”,£"), Ysing(s;2”,€"),
Ysing (2, &), if s is implicit and ysing(s), if (2,£") is implicit.

Description and topology of T;Q. Let T;Q = T*0Q U T*Q, this set is equipped with the
following topology.

First if p € T*Q, a set V is a neighborhood of p if V contains an open set W of T*Q) such that
peWw.

Second if p = (x(, &) € T*0N0Q, a set V is a neighborhood of p if V' contains a set

{(@', &) € T70Q, |z — 2’| + 1§ — €' < e}
U{(x, &) € T*Q, |ag — 2’|+ &) — &'| < e and (z4,&q) € UN{zq > 0}},

where € > 0 and U is a neighborhood of {(z4,&4) € R?, x4 = 0} in R2.

In local coordinates where 2 is define by x4 > 0, we define j : T*Q — TyQ by j(z,€) = (,€)
if x € Q, and j(x,8) = (¢/,¢) if x4 = 0. The map j is continuous for the topology given above.
We can define more intrinsically j with the previous notation where Q is given by ¢(z) > 0. For
(2,6) € T, j(2,€) = (2.€) if & € Q and j(2,€) = (z,&dw — ({p, o}/ H2p)di), if plz) = 0. We
verify, in this last case that j(z,&) € {¢ = {p, ¢} = 0}, as {p, p}(z,dp) = {¢, {p.p}}.

As usually we define the map 7 : Ty — Q, in local coordinates, as 7 (x, &) = x, if (2,€) € T*Q
and 7(2/, &) =2/, if (o', &) € T*ON.

Bicharacteristic and generalized flow. For (z,¢) € T*RY, we denote by v(s;x, &) the integral
curve of H,, starting from (z, ). We use the same short notations (s) and y(z, §) as above.

Now we define the generalized bicharacteristic denoted by I'(s, p) for p € T;Q. To describe this
curve in a neighborhood of the boundary we use the coordinates (2/,x4,&’,&4) and we identify >’
and T*9Q and locally Q = {z € RY x4 > 0}. Moreover, we assume p € char(P) = {(x,¢) €
T*Q, p(x,&) =0} U{(2', &) € T*0Q, R(2',0,£)—1<0}.



Now we define the curve I'(s, p) locally for each (sg, p) and we use the group property of the flow,
namely I'(s + ¢, p) = I'(s,[(, p)) to extend this function for every s € R.

For I'(sg, p) € T*Q, T'(s,p) = v(s — s0; L' (s0, p)) if ¥(s — s0;T'(s0,p)) € T*Q. In particular, this
defined T'(s, p) at least for s in a neighborhood of so as v(s — so;I'(s0, p)) stay in T*Q for small
|s — so|. Observe that p(y(s — so; I'(s0,p))) = 0.

For p = (), &) € T*05, we have to distinguish different cases, first if R(z(),0, &) < 1 and second
if R(x(,0,&)) = 1, T'(s,p) depends on the properties of v(s;x,0,&),0). In what follows we only
define the flow in a neighborhood of s = 0. We can extend the flow by the group property.

If R(Iéa 075(/)) <1, let g:ﬁ: == V 1- R($6, Oaé{)) Let 7(5; Io,fo) - (I(S;x07§0>a€(5; IO;&O))) as
& = 2&4, we have z4(s;x(,0,£),&1T) > 0 for s > 0 sufficiently small, and z4(s; z(),0,&,,£7) > 0 for
s < 0 sufficiently small. Then we set I'(0, p) = p, I'(s, p) = v(s;2(,0,&,&T) for s > 0 sufficiently
small and I'(s, p) = v(s;2(,0,&,&7) for s < 0 sufficiently small. Observe that for s # 0 sufficiently
small, I'(s, p) € T*Q and p(I'(s, p)) = 0.

Such points are called hyperbolic points and we set H = {(z(, &) € T*0R, R(x(,0,&)) < 1}.

Definition 1.1 (Finite contact with the boundary). Let (z(), &) be such that R(xzy,0,£)) = 1. We say
that the bicharacteristic y(s;xy,0,&),0) = v(s) does not have an infinite contact with the boundary
if there evists k € N, k > 2, a # 0 such that z4(s;2(,0,£5,0) = 24(s) = as® + O(sF1) in a
neighborhood of s = 0. We denote by G* the set of such points.

For k =2 we distinguish two cases.

e The diffractive points, and we denote

Ga={(2',&) e T*0Q, R(2',0,&) =1, 0,,R(2',0,&") < 0}.
e The gliding points, and we denote

G, ={(2,&) e T 00, R(2',0,¢') =1, 9,,R(2',0,¢) > 0}.

Remark 1. By Taylor’s theorem and as xq4(0) = 0 and ©4(0) = 2£4(0) = 0, we always have
2q(s) = O(s?).

We have four cases to treat.

- k even, a > 0. In this case z4(s) > 0 for s # 0 sufficiently small. We define I'(0, p) = p and
(s, p) = ~(s;xp,0,80,0) € T*Q for s # 0 sufficiently small.

- keven, a < 0. In this case z4(s) < 0 for s # 0 sufficiently small. We define I'(s) = 74(s, p) € T*9Q
for s sufficiently small.

k odd, @ > 0. In this case z4(s) > 0 for s > 0 sufficiently small and z4(s) < 0 for s < 0
sufficiently small. We define I'(s,p) = 74(s,p) € T*0Q for s < 0 sufficiently small, and
T'(s,p) =~(s;2(,0,&),0) € T*Q for s > 0, sufficiently small.

k odd, o < 0. In this case x4(s) < 0 for s > 0 sufficiently small and z4(s) > 0 for s < 0
sufficiently small. We define I'(s, p) = ~v(s;x(,0,&),0) € T*Q for s < 0 sufficiently small, and
(s, p) = v4(s,p) € T*0Q for s > 0, sufficiently small.

This local description of I'(s) allows to prolongate I'(s) for every s € R. The function I'(s, p) defined
on R x char(P) is continuous for the topology of R x T, where the topology of T, Q2 is defined
above.



1.3 Statement of Theorems

In the following we give the assumptions on the flows and these assumptions depend on the starting
points. The assumptions also depend on the damping a and we assume a(z) > 0 for every x € ().
We denote by w = {x € Q, a(x) > 0}.

Definition 1.2. We say that P, a(z) and Q satisfy the modified Geometric Control Condition
(mGCCQC) if the bicharacteristic only has finite contact with the boundary (Definition 1.1) and the
following assumptions are verified. Let py € char(P).

o Ifm(po) ¢ T' we assume there exist so € R be such that 7T (so, po) € w and for every s € [0, so],
if m(s, po) € T then T'(s,po) € H.

o Ifm(po) € T we assume there exist so € R be such that mYsing(So, po) € w.

Remark 2. This definition of mGCC is different from the usual GCC. We are not able to prove
propagation of support of measure for generalized bicharacteristic hitting I except for hyperbolic
points. It is possible that singularities can be create at I' but we do not know what can happen. For
points on I' we are only able to prove propagation on I' for integral curve of H}, if we already know
that measure is supported in the fiber above a point of T'.

We recall the assumptions on P, a second order differential operator. We have

P= Y Dupj(@)Duy + Y pi(@)Da; +polo), (4)

1<j,k<d 1<j<d

where pj (), pj(z) are real valued and in ¢>°(V') where V is a neighborhood of Q. We assume that
P is formally self-adjoint. The domain of P is given by D(P) = {u € H'(Q), Pu € L*(Q), ujpq, =
0, (Oyu)jpay = 0}, where 0, is the exterior normal derivative. With this domain P is self-adjoint,
and

(Pulv)r2@) = Y (pjk(@) Doyl Dayv) o) + (Y, pi(x)Dayti+ po(x)ulv) 120, (5)

1<j,k<d 1<j<d
where u and v are in D(P). Moreover we assume P positive definite, there is § > 0 such that
(Pulu)p2(0) > 5Hu|\§{1(9), for every u € D(P). (6)

To give a precise formulation of the wave equation we introduce H = H*(Q2) & L?*(2), we denote
by U = (ug,u1) an element of H and the operator A is given by

A= (—OP —al(:zr)) ! ")

associated with the domain
D(A) = {U = (ug,u1) € H, Pug € L*(Q),u; € H(2),u0 =0 on 90p,d,up = 0 on I}

Let U be the solution of 9,U = AU satisfying U(0) = (uo,u1) € H, we have U(t) = (u(t), Ou(t)) =
e (ug, u1), where e*4 is the semigroup associated with A. Then u satisfies the wave equation

O2u(x) + Pu(z) + a(x)du(r) = 0 in Q,
u =0 on 0Qp,

Oy,u =0 on 0Qy,

(u(0), 9yu(0)) = (ug,u1).

To U(t) = (uo(t),u1(t)), we associate the energy E(t,uo,u1) = (Puo(t)|uo(t))r2q) + [o [ui(t)*dz.
We have 0; E(t, uo,u1) = —2(aus|u1)2(q) < 0. This implies E(t,uo, u1) < E(0, uo, u1).



Remark 3. We have assumed that P is positive definite for simplicity but if P is non negative we
can introduce H = H/ker P, working on H instead of H we can obtain same results. For instance
see [32] where this reduction is used.

The main result of the paper is the following

Theorem 1. We assume that P, a(x) and Q satisfy the modified Geometric Control Condition given
in Definition 1.2. We assume that P has the form given in (4) and P is self-adjoint positive definite.
Let A be defined by (7), we have

1) 3 >0, e e < M,
2) A —iul, is invertible for all i € R,
3) IM >0, [[(A—ipl) ™ zm) < M.

Remark 4. There are several results when the third item is replaced by other estimates as e€1Ml,
|p|™ in these cases the energy decay with a speed depending of the estimate on the resolvent. For this
kind of results we refer to Batty-Duyckaerts [6], Borichev-Tomilov [10], Burq [11], Lebeau [31].

The first item is a consequence of the energy decay. The second is given by unique continuation
theorem and also by the result given in [14, Proposition 1.1]. The goal of this article is to prove
the third item. From the Gearhart-Huang-Priiss test for the exponential stability (see[20], [38], [27,
Theorem 3], [18]), the three items of the previous theorem imply that the semigroup generated by A
is exponentially stable and this implies the following theorem.

Theorem 2. We assume that P, a(x) and Q satisfy the modified Geometric Control Condition given
in Definition 1.2. We assume that P has the form given in (4) and P is self-adjoint positive definite.
Let A defined by (7), there exist C,c > 0 such that

e | zcmry < Ce™ .

The outline of the proof is the following. In Section 2 we recall some tools on semiclassical pseudo-
differential calculus (Section 2.1), we reduce the third item of Theorem 1 to a semiclassical estimate
(Section 2.2 and Proposition 2.2), and we prove a basic estimate on the trace at the boundary
(Section 2.3 and Proposition 2.6).

In Section 3 we construct a semiclassical measure and we prove that this measure is supported on
the characteristic set. To do that at the boundary -for interior point the result is classical- we have
to distinguish three kinds of points, hyperbolic points (see Section 3.1.2 and Proposition 3.2) and
glancing points (see Section 3.1.3 and Proposition 3.6). Only for elliptic points (see Section 3.1.4) we
need to consider the boundary conditions. In a neighborhood of boundary where we impose Dirichlet
or Neumann boundary condition, we prove Proposition 3.11 and we deduce Proposition 3.12. The
proof is delicate in a neighborhood of T' (see Proposition 3.16). These estimates on trace allow us
to prove Proposition 3.1 in Section 3.2. In Section 3.3 we prove that semiclassical measure is not
identically zero and in Section 3.4 we prove that semiclassical measure is null on support of the
damping.

We shall reach a contradiction if we also prove that the measure is identically null. This is done
in the next sections.

In Section 4 we prove some properties of semiclassical measure. In Section 4.1, we obtain the
action of Hamiltonian vector field on the semiclassical measure up to the boundary. The interior
result is stated in Proposition 4.1. Propositions 4.7 and 4.8 are analogous results at boundary. In
Section 4.2, we deduce from that a decomposition of the semiclassical measure in two measure, the
measure restricted in interior and a boundary measure (Lemma 4.9). The action of Hamiltonian
vector field allows us to deduce some properties of these measures. Lemma 4.10 describes the action
of Hamiltonian on the interior measure, Lemma 4.11 gives precisions in neighborhood of hyperbolic
points, Lemma 4.12 and Lemma 4.13 give properties of boundary measure in a neighborhood of
Dirichlet and Neumann boundary, and Lemma 4.14 is the analogous in neighborhood of jump between
Dirichlet and Neumann boundary conditions.



In Section 5 we prove the propagation of support of semiclassical measure. We have to distinguish
the different cases, if a bicharacteristic hits boundary transversally or tangentially, 9Qp U9y or I
This allows to prove the main theorem.

In Appendix A we prove some regularity measure needed to prove some estimate in a neighborhood
or I'.

In Appendix B we prove some estimates on boundary trace in the case of Neumann boundary
condition. This is useful to prove properties of semiclassical measure in a neighborhood of a diffractive
point in a neighborhood of 9. Appendix C is devoted to prove some technical results stated in
the previous section.

This work is based on previous results, mention particularly, the course given by Patrick Gérard
at THP in 2015, the articles of Burq and Lebeau [12] and Luc Miller [37]. We thank Claude Zuily for
the first step in this kind of problem (see [40]), Belhassen Dehman, Matthieu Léautaud and Jérome
Le Rousseau for the working group where we have together studied this subject, Nicolas Burq to
draw our attention on the Tataru paper [44]. That allowed us to achieve the propagation of measure
at boundary in the case of Neumann boundary condition.

2 Semiclassical formulation

2.1 Notations and pseudo-differential calculus

Here we summarize some result on pseudo-differential calculus. More details, results and extension
are given in the Hormander book [26, Chapter 18], Martinez [34] and Le Rousseau-Lebeau [28].
Essentially we follow here this last article.

To a smooth function a(z,§), and h € (0,1) (a may depend on h but the constants, in the
estimates given below, does not depend on h), we associate an operator by the following formula

Op (a)u= (2m)* |

Rd

e a(x, he)au(€)dE, where u(€) :/ e "y (x)da.

]Rd
This formula make sense under some assumption on a and u. In this paper we mainly use symbols
in S*. We say that a € S* if for every a, 8 € N? there exists C = C, g such that

1020 a(w,&)| < C(€)FF, where (€) = (1 + [¢[%)Y/2.

For a € S*, Op,.(a)u has a sense for u € .#(R?), and can be extended for v € H*(R?) for every
s eR.

In a neighborhood of 9 it is useful to use a tangential calculus. For a smooth function a(z,&’)
we associate a tangential operator by the following formula

op,.(a)u = (27r)7d+1/ e a(z, he)a(€', xq)de!, where (¢, zq) = / e (o xg)da.
Rd-1 R

d—1

This formula make sense if a € SE,, that is, for every a € N4, 3 € N~1 there exists C' = Ca,5 such
that

050Eale, €] < C(ENP, where (¢) = (1+ &)/

We also use this notation for pseudo-differential operator on the boundary z; = 0. In this case, a
and u does not depend on z4.

For technical reason we also have to use other classes of symbols. In these cases we use the
Hérmander’s notations, for instance, S((€)™, (dx)? + (¢')=2(d¢")?), S((&')™, (dx)? + (d€')?). In this
case we keep the notations Op,.(a), if the symbol depends on &; and op,.(a), if the symbol does not
depend on &;. We also use the notation op,.(b) = b(x, hD’), in particular when we restrict a function
on xg = 0, this allows to distinguish b(z, hD’) and b(z’,0, hD").

The main interest of pseudo-differential operators are the calculus of products, commutators,
adjoints. We have for a € S* and b € S™,

Op,.(a) Op,.(b) = Op,.(c), where ¢ € Smtk



and ¢ admits an asymptotic expansion, c(z, &) = a(z, £)b(z, ) + hd(z, &), where d € S™HE—1,
[Opsc(a’)7 Opsc(b)] = hopsc(c)u where ¢ € Sm+k_17

and ¢ admits an asymptotic expansion, c(z,£) = —i{a,b}(z,£) + hd(z,£), where d € S™F=2 and
{a,b}(z,&) = Z;l:l (0e,a(x,£)0z,b(x, &) — 0y, a(x, £) e, b(x,€)) is the Poisson bracket. At some point,
it is useful to use that the commutator between an operator and a derivative admits an exact formula,
we have [hD,,,Op,, a] = —ih Op,, (9., a).

For a € S*, we have

Op,.(a)* = Op,,(b) and b(z, &) = a(z, &) + he(z, €) where b € S* ¢ € SF1,

The asymptotic expansions may be extended to all power in h. Analogous formulas exist for op,, a.

Associated with this semiclassical calculus, we introduce the semiclassical Sobolev spaces. For
u € . (R?), we define |Jullgs, = || Op,((§)®)ull L2ray, if Opy.((§)*)u € L*(R?). On the boundary
we define for u € .7/(R?~1), |U|H§C(zd:0) = |Opsc(<€/>S)U|L2(Rd—l), if op,,((¢)*)u € L2(R9™1). On
the boundary we define (ulv)g = fRﬁFl u(z")o(a")da’'.

We keep the same notation for a general Q, namely (u|v)o = [, u(z')0(z")do(z"), where o is the
superficial measure on 9f2.

Pseudo-differential operators act on Sobolev spaces. For a € S*, there exists C' > 0 such that

| Opy.(a)ul

For a € Sf,, there exists C' > 0 such that

gt < Cllullgs,, for every u € HZ,.

|opse(@)ul s < Clulgs, (z,=0), for every u € H] (x4 =0).

When we consider Sobolev spaces on z4 > 0, it is useful to consider op,, and distinguish variable
7q € (0,00) and variables 2/ € R, Let L?((0,00), HZ,) be the space such that u € L2((0, 00), HZ.)
if [oas [y Tope ((€) ) u(a!, xq) | dxgda’ = ||u||%2((0100)1Hs ) < 00. We have the following estimate,

let a € SE_ | there exists C' > 0, such that

tan>
[ oPsc(@)ull L2 ((0,00), 2%y < CllullL2((0,00),H5,), » for every u € L*((0,00), HE,).

In the context of semiclassical Sobolev spaces we have the following trace formula. Let s > 0, there
exists C' > 0, such that

Uz =0l H, < C’h_l/2||u||Hs+1/z, for every u € H: /2, (8)

We recall the Garding inequality for semiclassical Sobolev spaces. Let a € S° be such that
a(z,&) > 0, there exists C' > 0, such that

Re(Op,.(a)ulu)2(ra) + Ch||u||2L2(Rd) > 0. (9)

Here and in what follows (w|v)2(x) means the inner product in K.

For tangential symbol we have the analogous result. Let a € S, be such that a(z,£’) > 0, there
exists C' > 0, such that

Re(opsc(a)u|u)L2((0,oo)><]Rd*1) + ChHuH%Q((O,oo)XRd*U = 0. (10)

We use consequences of this result. Let a € S, , such that there exists K > 0 such that |a(x,¢)| < K,
then

| 0P (@)ull L2((0,00) xra-1) < 2K [Ju]| L2((0,00) xR-1) + Chl[ull L2((0,00) xRE-1)> (11)

where C' > 0, depends on a finite number of seminorm of a. We have the same estimate at the
boundary, if a € S(1, (dz')? + (d¢')?), and |a(2’,£")| < K, we have

| Opsc(a)u|Lz(Rd71) < 2K|U|L2(Rd—1) + Ch|u|L2(Rd—l), (12)



where C' > 0, depends on a finite number of seminorm of a. In particular we use this estimate if a
depends on a parameter but K is uniform with respect this parameter. In this case, in the previous
estimate C' depends on the parameter. For w € L?(Q), we extends w for x € R?\ Q by 0, and we
use the following notations

w(z) if x € Q,

13
0if z € R\ Q. (13)

w(z) = low(r) = {

If w e LRI x (0,00)), we extend w by 0 for 4 < 0 and we use the notation w(z) = 1,,~ow(z).
In this article we use the symbol <: A < B means, there exists C > 0, A < CB, where C' is
independent of parameters.
We denote z® = exp(slog(z)), where log z is the principal value of the logarithm, where z € C\R™.

2.2 Evolution equation and resolvent estimate

We begin the proof of the third item of Theorem 1. We may assume |p| > 1 as A —iul is invertible
for all u € R, by second item and p + (A —ipl)~! is continuous from R to L(H, H).
Let F = (fo, f1) € H and let U = (up,u1) € D(A) be such that AU —ipU = F, we have

{ul —ipug = fo . (14)
—Pug — auy —ipuy = fi.
Lemma 2.1. Assume that there exists C1 > 0 such that

lllluoll 2oy + [Vuoll 22y < Crlll follar ) + 1 fill2 o)) for all (fo, f1) € H, (15)
where (ug,u1) are the solution of (14). Then there exists Co > 0 such that

[Ulg < ClIF|n, for all F € H,
where AU —iuU = F.
Proof. By (14), uy = ipug + fo, so that
luill2) < I follzz) + [pllluollLz) S Ifollar@) + 1 fillLz),

and (15) gives ||uol| g1 () S | follmr @) + If1llz2(q), for |u| > 1. This gives the result. O

Formula (14) implies the following equation on ug
—Pug + pPug — ipaug = afo +ipfo + fi.

To use semiclassical tools, we set h = 1/u, we multiply (15) by h?, we obtain the following
equation on wug
—thuo “+ ug — ihauo = ah2f0 + Zh,f() + hzfl,

and (15) is equivalent to
uollz2e) + 1RVuollz(oy < Ch(llfollar ) + 1 f1llL2(e)- (16)

We shall prove this inequality by contradiction. If (16) is false, up to a normalization, there exist a
sequence h,, — 0 as n — oo denoted for sake of simplicity by h, (up), € H*(Q) and (f&, fh), € H
satisfying

— B2Puy, + up, — ihauy, = ah?f +ihfl + h2fP

lunllrz) + 1AVusll L2 =1

(13 e + [/ 22()) = 0 as b — 0. (17)
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Let gh = ahfl + hf and g} = ihfl, (17) is equivalent to

— h2Puy, + up, — ihaup, = hg{)I + gf
lunllr2@) + 1AVusllL20) =1
g6 L2@) + llgt ) — 0 as h — 0. (18)

Proposition 2.2. There exist > a > 0, there exists 0 € €5°(R), supported in [a, 5], there exists
(@n)n, satisfying ||in| L2 + |RVanl 12 < C, for some C > 0, such that

— h®Puy, + vy, — ihavy, = hqy,
||’Uh||L2(Q) =1 and ||thh||Lz(Q) <2,
||qh||L2(Q) — 0 as h — 0, (19)

where v, = O(h2P)iy,.

Proof. Let ¢ € 65°(R), 0 < ¢ < 1 such that

lifs<1
vls) = {0 if s> 2.

Let A > 0 be sufficiently large to be fixed below. We have

1= lim (27 "A 's) = +§: —p(27F1 AT L)),

n— o0
k=1

Setting ¢(s) = ¥(s) — ¥(2s), we have
)+ Z (2 ) and ¢ is supported in [1/2,2]. (20)
By functional calculus for auto-adjoint operators, we have
I = (Y(ATh2P) — (AR P)) + (AR2P) + Z (2 F A2 P). (21)

Lemma 2.3. There exists C > 0 such that

(AR PYup| 120y < C(A™" + h+ hllghll L2y + 19t 2@)), (22)

| Z ¢(2_kA_lh2P)UhHL2(Q) < CA (1 +hllggll2@) + gt lz2)- (23)

Proof. We apply 1(Ah2P) to equation (18), we obtain

—h2PY(AR%P)uy, + (A2 P)uy, — ihyp(AR* P)(aup) = hib(Ah?P)gh + (Ah?P)gh.
Let 9(s) = stp(s) we have

Y(AR2 PYuy, = A~ (AR2 PYuy, + ihap (AR P)(aup,) + hp(AR? P)gl + ¢ (AR2P)gh

As [1h(s)| <1 and |§(s)| < C, we obtain (22). i
To prove (23) first we estimate ¢(27FA'h?P)uy. Let ¢ € 65°((0,00)) to be fixed below. We
apply ¢(2 ¥ A~1h2P) to equation (18), we obtain

—h2P(27F AT A2 P)uy, = —p(2 R AT A2 P)uy, + ihd(27F AT A2 P) (auy,)
+he(27FATIR2P)gh + 6(27F AT W2 P) gl

11



Let ¢(s) = —s~1¢(s) be supported in [1/2,2]. We obtain
2k Ap(27F AT W2 PYuy, = —p(27FAT W2 PYuy, + ihd(27F AT W2 P) (auy)
+he(2F AR P)gy + (27 AT IR P) g
This yields
2" Al ¢(2 AT WP Pun| L2(q) < C(1+ hllggll L2 + 197l L2@))-

Summing over k we obtain (23). O

Let 0(s) = (A~ 1s) — ¢(As), by Lemma 2.3 and (21) choosing A sufficiently large and h €
(0, ho] for hg > 0 sufficiently small, we can have |lup, — 0(h*P)uy|| 120 as small as we want. From
equation (18) multiplying by %, and integrating by parts, we obtain

_(PUh|Uh)L2(Q) + / |uh|2d;v = ih(auh|uh)Lz(Q) + h(gg|Uh)L2(Q) + (gﬂuh)p(g).
Q
Taking ho sufficiently small, we have

hQ(P’U,h|’U,h)L2(Q) = / |uh|2d:1: + e, where ¢, —+ 0 as h — 0. (24)
Q

We now observe that h?(Pup|up)rz(o) is equivalent to HZ.(Q)-norm, uniformly with respect to
h € (0,1). From (18), the assumption on norms consequently gives ||up|/z2(q) > Co + &x, where
Co>0and &, —0as h—0.

Let vy, = 0(h*P)uy/||0(h*P)up| r2(q). Now we prove that vy, satisfies the equation. We apply
0(h?P) to (18), we have

h2PO(h*P)uy, + 0(h* P)uy, — ih0(h*P)(auy,) = hO(h*P)gll + 6(h*P)gh
which is equivalent to
h?Poy, + vy — ihavy, = ||0(h* P)unl| 2o (iR[6(h*P), aluy, + h8(h* P)gg + 0(h*P)gy') = han.  (25)

To obtain the estimate on g; we have to prove
[[0(h*P), alun||r2(0) — 0 as h — 0, (26)
R 0(R*P) gt || r2(q) — 0 as b — 0. (27)

To do that we need the following result proved below.

Lemma 2.4. Let ¢ € 65°(0,00), and a € 65°(R2), there exists C > 0 such that
I[e(h*P), alwl| 2y < Chljwl|z2(0),
110, $(h*P)w]| 20y < Cllwl|z2(0),
102, 0(h* P)w| 20y < Cllwlm (),

forj=1,...,d.

Estimate (26) is a direct consequence of Lemma 2.4. To prove (27), let 6(s) = s '6(s) €
65°(0,00), we compute

h72||9(h2p)9?”%2(9 h™~ (9( h*P )9?|9(h2p)9?)m(9),
= h=2(h2PO(h*P)gt0(h> P)gt) 12 (),
" (pin0s,0(h2P) g} |04, 0(h2P)gl) L2

1<j,k<d

+ > (=ip;0x,0(h* P)gt|0(h*P)gl) 12y + (pof(h*P)gr10(h* P)gt) L2
1<5<d
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as 0(h?P)gh and §(h?P)g! are in domain of P we can apply (5). By Lemma 2.4, we obtain
h_2||9(h2p)9?”%2(9) < OHQ?H%F(Q)'

This completes the proof of Proposition 2.2 because arguing as we did to obtain Formula (24), we
get ||vn|lL2() = 1 so that ||hDvp||2q) = 1 + e, with e, — 0 as h — 0. O

Proof. Lemma 2.4. We start with the following lemma which will be proved below.
Lemma 2.5. Let C; > 0. There exists C > 0 such that

[(=h*P +2)"" fllp2) < ClIm 2|7 fllr2(0),
70z, (=h*P + 2) "' fllr2(0) < ClIm 2|7 || fll 220
[(=h*P + 2)"'héy, fll 120y < ClIm 2| 7| fll 22(0)

for all |z| < Cy and f € L*(Q).

To prove Lemma 2.4 we use the Helffer-Sjostrand formula,
2 L[5~ 2 -1
6(02P) =~ [ 0.6(0.)(~12P + ) dudy,

where z =z +iy € C and ¢ is an almost analytic extension of ¢ (see [25, Proposition 7.2] and [15]):
¢ is compactly supported and satisfies

¢($,0) = (b(‘r)u
10.6(z, )| < Cnly|N, for every N.

We recall that 9, = (1/2)(d, +i0,). The Helffer-Sjéstrand formula gives
[¢(h*P),a] = L /5Z¢§(x,y)[(—h2p+ 2)7", aldzdy
T
! /@é(:p, Y)(—h?P + 2)"Y~h2P,a)(—h%P + z) " dzdy.
T

As [~h?P,a] is a sum of terms of following type bh?d,, and ch?, where b and c are into ¢°>°(9Q), the
first estimate of the lemma is given by the two following estimates
[(=h2P + 2) " eh®(=h2P + 2) " w2y S 2 Tm 2|~V [(=h2P + 2) ]| 2y
< W2 Imz| 72w L2 (), (28)
by the first estimate of Lemma 2.5.
[(=h*P + 2)"'0h*0,,(—h*P + 2) " 'wl|r2(0) S bl Im 2| H|hO,, (—h*P + 2) " 'wl| 12(a)
< hlIm 2| 72 |lwl p2 ), (29)

by the two first estimates of Lemma 2.5.
For the second estimate we have by the Helffer-Sjostrand formula

[6mj7¢(h2p)] = —%/52(;5(:6,?4)[6%, (_th + Z)_l]d.%'dy
= /5203(% W) (=h2P + 2) Y0, —h2P + 2(—h2P + z)dady,

and [8%., —h2?P + 2] is a sum of term of type h28wjb8$k, ch28mj and dh? where b, ¢ and d are in
%>°(Q). The terms with ch?d,, and dh* were estimated in (28) and (29). For the term h%9,,b0,,,
we have

[(=h*P + 2) " h20,, b0y, (—h°P + 2) " 'w| 120y S |Tm 2|~ ||h0,, (—h*P + 2) " w| r2(q),

< m 2|7 |wll 22 (o,
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By the second and third estimate of Lemma 2.5. This gives the second estimate of Lemma 2.4.
To prove the third estimate of Lemma 2.4 we write

O, ¢(W*P) = ¢(h*P)0y, + [0s,, p(h*P)].

The first term is clearly estimated by H'-norm and second term is estimated by the second inequality
of Lemma 2.4. O

Proof. Lemma 2.5. Let u = (—h%*P + 2)~1f, we have u € H'(Q) and u satisfies (—h?P + 2)u = f
and the Zaremba boundary condition. Multiplying the equation by wu, integrating over (2 and an
performing integration by parts, we get

= (W*Pulu)20) + 2llull720) = (flu)- (30)

Taking the imaginary part of equation we have |Im z||\u|\%2(ﬂ) < | fllz2c)llull2(q), which gives the
first estimate.
Taking the real part of (30) and from (6) we have HVUH%Q(Q) S (Pulu)r2(q), we obtain
1BV ul|T2 0y S 112 lull2@) + lullZz)-

This gives the second estimate with the previous result.
It is sufficient to prove the third estimate of Lemma 2.5 for f € 45°(2) as 65°(£2) is dense in
L?(2). We have

[(=h*P + 2) " hdy, flI72() = (h°P + 2) " hdy, fI(=h*P + 2) "' hiy, f)
= —(f|h8y,(—h*P + 2) Y (=h?P + 2)"'hd,, f)
< ClIm 2|7 fll 2@ I (=R*P + 2) " h,, fll 120,

by the previous result. This gives the third estimate of Lemma 2.5. O

2.3 A priori estimate on traces

In this section we assume that  is locally given near a point of the boundary by x4 > 0 and we
denote the variables by z = (2/,24) where 2’ € R9"! and we set RY = {(2/,24) € R?, 24 > 0}.
In these local coordinates' we have h?D2 vy, + (R(z,hD') — 1 + iha)v, = hqn. When there are no
ambiguity we only write R instead of R(xz, hD").

Proposition 2.6. Let vy, given in Proposition 2.2. Then, there exists C' > 0 such that
|(vh)|md:0|H;C/2 < Ch_1/27 (31)
|(hDavh) gm0l 172 < ChTY2, (32)

Proof. As v, € HL.(Q), the trace formula (8) gives the first estimate.

IRigorously, the laplace-Beltrami operator has a term hQDzd. We can eliminate this term after a conjugaison of
operator by a function non null everywhere but this has no influence on the proof given here. For simplicity we choose
to keep vy,) instead of the conjugated function.
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Let x € €°(R) be such that x(zq) =1 if 24 <9, x(xq) =0 if x4 > 26 and 0 < x < 1. Firstly
Bl 0D ()2 Dy on (@, 0)[2 = —i / D, (x(@)] 0D, (€)2RD, on ()| ) da
= [ @ opnl(€) D o )P

—2i /OOO X(za) Re (op,((¢)"V*)W2D2 o (2, 2a)| 0pe.((€') "/ ?)hDy on (2 24)) dag
- " (@0)] 0D (€)AAD, on (i 2a) P

o /om \(@4) Re (09, (€)7/2) (=R + 1)on (@', 20) | 09, (€) /2 hDs v (o 7))

— 2 /OOO X(2a) Re (0p,.((€) ") h(an (2’ xa) — i(avn) (2, 2a))| 0P ((€) "/ hDy vn (2’ 24)) dag
L4 L+ s
Secondly, we have
FEIRS h”thdUh”%mz) <C,
s < h(llgnllz2@) + lvnllz2@) MADz,vnll220) < C.

Finally, we obtain
I = —Qi/ X(za) Re (0p, ((€) ") (=R + 1)vp(2', 24)|[hDy, v (2, z4) ) dza.
0

By tangential semiclassical pseudo-differential calculus, op,.((¢')~1)(=R + 1) is of order 1, then

I2] < 1 opse (€N vnll L2 (@) 12Dy vnll L2() < C.

This achieves the proof of the proposition. O

3 Semiclassical measure and the characteristic set

3.1 Support of the semiclassical measure

We now define a semiclassical measure associated with (vy)p. It is classical, as (vp,)p, is bounded in
L?(9), that there exists  a measure on T*(R?) such that, up to extraction of subsequence of (vp)p,
we have for all b(z, &) € €5°(R?),

(Opsc(b)v_hlv_h)LQ(Rd) — <M7 b> as h — 0. (33)

For first expositions on microlocal defect measure or H-measure see [22, 43]. For semiclassical measure
or Wigner measure see [11, 21, 37, 40]. The goal of this section is to prove the following result.

Proposition 3.1. The measure y is supported in Q x R? and pp = 0, where p is the semiclassical
symbol of h>P — 1 (see (2)).

To prove this proposition we consider four sets in 7*(R?), exterior or interior points (i.e. z € R4\ Q
or z € Q), hyperbolic points (i.e., 2 € 9Q and R(z,£’) — 1 < 0), glancing points (i.e., z € 9Q and
R(x,&") —1=0), and elliptic points (i.e., z € 9 and R(z,&’) — 1 > 0).

The proofs for exterior and interior points are classical, we give the proofs for the sake of com-
pleteness. The proofs for hyperbolic and glancing points are similar to the proofs given by Burq and
Lebeau [12] in the context of defect measures. The proof for elliptic points is specific to Zaremba
boundary condition. Of course in 0Q2p N Iy the proof is also classical.
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3.1.1 Interior and exterior points

Clearly, for x(z) € €5°(R?\ Q) and ¢(£) € 65°(RY), (Op,.(x(2)B(€))vn|vn) — 0 as h — 0. Then u
is supported in € x R%.

Let x(7) € 65°(Q), ¢(&) € €5°(R?) and x1(x) € €5°(2) be such that x1x = X, we have, by
symbol calculus as the symbol p(z,¢) — 1 is in S?(R? x R?) and x(z)p(€) € S™°(R? x RY),

Op,.(x(2)$(€))(h* P — 1) = Op,.(x(2)$(€)p(x,€)) + h Op,(ro)
= Op,.(x(#)0(&))x1 () (h*P — 1) + h Op,.(rp),
where rg,79,75 € S°(R? x R?). As y; is compactly supported in  and P is a local operator
x1(z)(h*P — 1)v, = x1(x)(h*P — 1)vp,, we have
(0P, (X(2)$(€))(h* P — L)vplvn) = (O, (x(2)$(€))x1 () (h* P — Lyvn|vn) + hO(|[on||72q))
= (Op,e(x(#)0(&))x1 (z)(~iha — han)vp|vn) + hO(|val72())
—0ash—0. (34)

We also have

(0P (X(@)$(€)) (> P = unfon) = (O, (x(@)$(p(a: )unlon) + hO(un22(0)
> (el X(@)H(E) as h 0.

This and (34) give that {u, p(x, &)x(z)p(€)) = 0. This proves Proposition 3.1 for the interior points,
as the space spanned by functions y(z)¢(€) is dense in €5°(Q x RY).

Before proving Proposition 3.1 in a neighborhood of the boundary, we have to prove estimates
more precise than Proposition 2.6. We have to distinguish microlocally hyperbolic, glancing and
elliptic points. For hyperbolic and glancing points the boundary condition play no role. For elliptic
points we have to distinguish points in 0Qp U 9y, and points in I'. The results are stated in
Proposition 3.12 and in Proposition 3.16.

3.1.2 Hyperbolic points
Let 6 > 0 be sufficiently small, let y = y. € ¥°°(R??) be such that

1if R(z,&') — 1< —cand xg <90

35
0if R(x,&') — 1> —¢/2 or xq > 26, (35)

X(Iag) = {

and 0 < y < 1. Observe that x € S;,°° as supported for |'| < C, where C' depends on R.

tan

Proposition 3.2. For any € > 0, there exists Ce > 0 such that

|Opsc(X\zd:O)(Uh)|xd:O H!, < C;
| Opsc(X\IdZO)(hDIdUh)\IdZO|L2 < 087 (36)
for all h € (0,1].

Remark 5. The estimate on traces, in the hyperbolic region, are better than the one proved in
Proposition 2.6.

We begin the proof by giving a localization result which is useful in each region defined in what
follows.

Lemma 3.3. Let x(x,&), x1(x, &) € S, be such that x1(x,&") =1, for (x,&) in the support of x.
We assume 0 < x <1 and 0 < x1 < 1. Let wy, = op,.(X)vn, there exists qg such that

(R*D7, + 0pe (X3 (R(2,€') = 1)) wn = hay, where ||¢3|12() < C, (37)

for some C > 0 depending on semi-norms of x and x1.
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Proof. We have, for x4 > 0,
(h*D3, + R(z,hD') = 1wy, = hop,.(x)(an — iavy) + [R(z, hD"), 0p,.(xX)]vn + [F* D3, 00, (X)]
= hq}'.
The symbol of [R(z,hD’),0p,.(x)] is in hSE,,
[h2Dazcd7 Opsc(X)] = _ithwd Opsc(aIdX) - Zh Opsc(aidX)hDId
= —2ih Opsc(ade)hDId + h2 Opsc(TO)a

and by exact symbol calculus with D, we have

where 1y € S2,,.. By the properties of vj, given in Proposition 2.2 and the previous formulas, there
exists C' > 0 such that [|g!'||: < C.
We have

R(JI, hD/) —-1= Opsc(X%(R(‘T?g/) - 1)) + Opsc((l - X%)(R(.’L’,f/) - 1))7
thus
(h* D2, + opy (XT(R(z,€') = 1))wn = hay' — opy.((1 = x1)(R(z, &) = 1)) opye(x)vn = has-
As (1 — x3)x = 0 by assumption, we deduce from symbol calculus that
H Opsc((l - X%)(R(:Lg/) - 1)) Opsc(X)Uh||L2(Q) < Ch.
This gives (37). O
Proof of Proposition 3.2. Let x1 € €>(R??) be such that

1if R(z,&') — 1< —¢/2 and x4 < 26

A
Xl(zag ) - {O lf R(fl;,é—/) _ 1 2 —8/4 or Trgq 2 367

in particular x1 is 1 on the support of x. Let b(z, &) = x1(z, &) (1 — R(x,¢)) 1/2, observe that
1 — R(x,&') > 0 on the support of x1. We denote wy, = op,.(x)vn, where x, is defined by (35).

Lemma 3.4. There exist C. > 0, q:},} and g such that
(thd - OpSC(b)) (thd + Opsc(b))wh - hqg
(thd + Opsc(b)) (hDﬂCd - Opsc(b))wh = hqz’llv
where ||q;?||L2(Q) < C. for j =3,4.

As the semi-norms of x, x1 depend on ¢ the estimates depend on ¢ and to keep in mind that, we
denote these constants by C..

Proof. Let k =1,2. We have
(h’DEd - (_1)k Opsc(b)) (hDﬂCd =+ (_1)k Opsc(b)) = h2D§d + (_l)kh’DEd Opsc(b)
- (_1)k Opsc(b)thd - Opsc(b)2
= h?D3, + op,(XT(R(2,£") = 1)) + £hop,.(r1),

as op,..(b)? = op,, (b?) + hop,.(71) and exact symbol calculus, we have 71 = (—1)*D, ,b+7;. As x1 is
compactly supported, we have r1,7, € S . Then || oPs.(r1)wnl z2(0) < Cellopg.(X)VnL2(0) < C-.
With (37), this proves the lemma. O

Let 2! = (hDy, — (—1)* op,.(b))wp, by Lemma 3.4, we have, for k = 1,2,
(thEd + (_1)k Opsc(b))zlfg = h(ﬂcla
where ¢! = ¢} and @& = ¢}'. By Proposition 2.2 and Lemma 3.4, we have ||z]'||;2) < C- and

lGrl 2o < C- for k=1,2.
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Lemma 3.5. There exists Cc > 0 such that |(2])z,—0|r2 < C-.

Proof. We have
h(?wd/ |20 (2, zq) [Pda’ = 2Re/ ihD,, (zﬁ(m’,xd))zg(x’,xd)dx'
Rd—l Rd—l
— 9Re / i(=1)* op,, (b) (4 (a', 2a)) 2f (a7 2a)
Rd—l
+ 2Re/ ihgl 2t (2! xq)da’
Rd—l

Integrating with respect to x4 from 0 to oo, we obtain

h/d ) |ZZ(=’EI=O)|2d$/ S ]Re(i OPsc(b)ZﬂZZ)B(Q)} + hH(jl}cLHL?(Q ||Zk||L2 ()~ (38)
Ri-

As (Z Opsc(b)zl}ﬂzlfg)L%Q = ( | ZOpsc( ) ZIQL)L2(Q) and Opsc(b)* = Opsc(b) + hopsc(ro) where ¢ €
S0, we have [2Re(iop,, (b )zk|zk 12| < Cehllzp)|22 2(q)- Then (38) implies Lemma 3.5 O

The definition of 2}, implies

(thdwh)\deO + Opsc(bo)(wh)|iﬂd:0 = (Z{I)\wdzo
(thdwh)\deO - Opsc(bo)(wh)|iﬂd:0 = (ZS)\wd:m (39)

where by = b|;,—g- Then we have

2(thdwh)\zd:0 = (Z{I)Imdzo + (Zg)lmd:()'
As
(hDId Opsc(X)vh)Imd:O = (Opsc(X)\wd:O(hDIdvh)Imd:O + hOpsc(DmdX))\deO(vh)\deOa
and from (31) we deduce that [(hDy,wp)|z,—0lz2 < Ce by Lemma 3.5. This gives the second estimate

of (36).

From (39) we also have
|Opsc(b0)(wh)|md:O|L2 <C.. (40)

Let x2 € 65° (R x R9™1), be such that (x2)s,—0 = 1, on the support of x|,,—o and supp x2 C {x1 =
1}. By symbol calculus we have

OPsc (X2(1 - R(.I, 5/))‘;2/:20) Opsc(bo) = Opsc(XQ)\deO + hOpSC(To),

where 79 € Sg,p, and

an’
Opsc(X2)|md:0 Opsc(X\EdZO) = Opsc(XWd:O) + hopsc(r1)7

where 71 € S;,1. We can write
(wh)\idzo = Opsc(X)\EdZO(Uh)Wd:O = Opsc(x2)|md:0(wh)\zd:0 - hopsc(rl)(’whhmd:o

= OPg, (X2(1 - R(.I, 5/))92/:20) Opsc(bo)(wh)\wdzo - hopsc(ro)(wh)kﬂdzo
- hopsc(Tl)(wh)\wd:O'

As x2 is compactly supported, op,.((¢'))op,. (x2(1 — R(x 5))|m —0) has a symbol in SY  and
op4.({€")) op,.(1%), k = 0,1 have symbols in S? | then

|Opsc(X\deO)(vh)\wd:0|H51C < O€| Opsc(bo)(wh)|wd:0|L2 + h| Opsc(X\deO)(vh)\deOh/z < CE?
applying (40) and (31). This achieves the proof of Proposition 3.2. O
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3.1.3 Glancing points
Let x = xe € €°(R??) be such that

1if |R(x,&') — 1] < 2¢ and x4 < 2§

41
0if |R(z, &) — 1| > 3¢ or 24 > 34, (41)

x(z,&') = {

and 0 < y < 1. Observe that x € S;,2° as supported for ¢’ in a compact set, as R(z,¢’) is bounded.

tan
Let wp, = op,.(x)vn. We have the following estimate on the traces on wy,.

Proposition 3.6. There exists C > 0 such that, for any € > 0,
OPyc(Xfza=0) (Vh)jzg=olms, < O/ Y2 4 C.n=5/° 42
I d ‘ d sc
0P (X1ws—0) (B D, 0n) 120l pz < Ce3/*h=12 4 C.h™3/8, 43
sc |zq d |zq
for Cc >0 .

Remark 6. Compared with the estimates stated in Proposition 2.6, we have the same power of h but
with a power of € in front of h~*/2. The term C.h=3/% = C.h=Y2h'* is a remainder. This gives a
gain in this microlocal region.

Proof. In this proof C'is a constant independent of € and we denote by C. a constant depending on
e. Let x1 € €°°(R2?) be such that

, 1if |[R(z,&')— 1| <ecand 24 <0
xi(z, &) =19 . ,
0if |R(z,&")— 1| > —e/2 or 24 > 0,
and 0 < y; < 1. The symbol x; € S.,.>° since it is supported in || < 2. We have by Lemma 3.3
(R*D3, + ops (XT(R(2, &) = 1))wy, = hgy, where [|¢5 ]| 12(0) < C-,

for some C: > 0.
Then we have

J

First, by symbol calculus, we have

Opsc(Xi(R(xv 5/) - 1))’(Uh = Opsc(X%(R(xv 5/) - 1)) Opsc(X)vh
= Opsc(X(R(x7 5/) - 1))Uh + hOpsc(’f'o)’Uh,

w202 e <2 [ op (G (RGE) ~ DyunPdo+2 [ fhabPan ()
R+

d
+ R

where ro € S,. Observe that the semi-norms of ro depend on €. This gives

lopse (X (R(2,€') = D)wnllr2(e) < |l opse (X (R(x,€) = D)vnllr2(e) + Cehllvnllz).  (45)

On the support of y, we have |R(z,¢') — 1| < 2¢ then 4¢? — x2(,&)(R(,&') — 1) > 0 and
2z, &) (R(z,€') — 1)? € S2. as x is compactly supported. By Gérding inequality (10) and by
symbol calculus, we have

4e?vnll72(e 500 = lloPse (X (R(2, &) = 1))vnl1Z2(zy50) = —Celtllvnllizs,>0)-
We deduce from this equation, (44) and (45)
1h* D3, wnl 12 (z450) < (Ce + Ceh ) onl 12 (2g>0) + CBlG5 |2(2 05 0)-
By estimates on v, and ¢, we obtain

|R?D2 wn|L2(zy>0) < Ce + CehM2. (46)
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Lemma 3.7. Let g € L?(xq > 0) be supported in RI~! x [0,1]. We assume D,,g € L*(zq > 0) then
h|g|13d:0|%2 < 2||hDIdg||L2(md>0)||g||L2(md>0)' (47)

Proof. Since

h/ lg(2’,0)[2dz’ = —i/ / hDy,|g(2', x4)|?d2’ dzg
Rd—1 Rd=1 J0
=—2i Re/ / hD.,q(z',xq)g(2', 2q)dz’ dzg,
Rd-1Jo
we obtain the lemma by Cauchy-Schwarz inequality. O

Lemma 3.8. There exists C > 0, such that for all g € L*(z4 > 0) be supported in R~ x [0,1].
Moreover we assume D,,g € L*(zq > 0) and Didg € L*(xq > 0), we have

1hDaygll 22,50y < CIRDZ, 9l 22(@a>0) 191 L2wa0) (48)
Proof. We have

/d / |hDIdg($/7$d)|2dIIdId - /d / hDq, (thdg(Il’ Id)g(xlv‘rd))dxldxd
Rd=1J0 Rd-1

/]Rd 1/ WD g(z',xq)g(x', xa)da' dxa,

we yields
1hDaygl722y50) < hlADa,g(’,0)]L2lg(@’,0)|z2 + [B*D3 gllL2(eu>0) |9l L2@es0)- (49
As g € H%*(zq > 0), we can apply Lemma 3.7 to hD,,g to obtain
h|(hDIdg)\wd:O|%2 < 2||h2D§dg||L2($d>0)||h’Dzdg||L2($d>0)' (50)
This estimate and (47) yield
1/2 1/2
hgj,=0l 22| (ADay ) a0l 2 < 20102D2 glI15%, o0 10 Daadll 12 (20 50) 1911 Fot 0
From this estimate and (49) we obtain (48). O
Lemma 3.9. There exists C > 0 such that, for any g € H?(xq > 0) supported in R?~! x [0,1], we
have
1/2
hlgisa=ol32 < CIR2D2 g1l i, 5019175 150 (51)
3/2
h|(ADs,9) z,=0l32 < ClIW2D2 gl1750,, o) l9115%0, 500 (52)
Proof. The first estimate is obtained from (47) and (48). The second estimate is obtained from (50)
and (48). O

Before applying the previous lemma to wy,, we have to estimate uniformly this function. As x
depend on ¢ the norm of op,.(x) as an operator on L? depends on e. Nevertheless applying (11) a
consequence of Garding inequality and as |x| < 1 we have

1wl £2(ra>0) = 1| 0Psc ) VA || 22(2y0) < CllonllL2@as0) + Ceh2{|vp| 12 (zy=0) < C + Ceh'/2.
From (46) and (51), we moreover have
h(wh)zu=ol32 < (Ce + C-hY?)Y2(C + C.hY?)3/2 < Cel/? + C.hM4,

which gives (42).
From (46) and (52), we also have

h|(hDy,wh)s—0l32 < (Ce + ChM?)2(C + Ch?)Y2 < C3/2 + C.n'/*,
which gives (43) as
(hDﬂCd Opsc(X)vh)Pﬁd:O = OpSC(X‘deO)(thEdvh)ldeO + hOpsc(hDIdX)|Id:0(vh)\zd:07
and the last term can be estimated by (31). O
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3.1.4 Elliptic points
We start with the notation introduced in Proposition 2.2. Let x = x. € €>°(R??~!), be such that

X($7§,>_{1ifR(x,§')—1225and:vd§5 (53)

0if R(z,&") —1 < e orag > 24,

and 0 < x < 1. We have x € S? . In this region the support of x is not bounded, we have to take
care of the symbol classes we use.

Let p(x,&') = (R(z,¢') — 1)1/2 if (z,¢) satisfies R(x,&') —1 > 0. Let x1(z,&) € S2,, be such
that, x1 = 1 on the support of x, and supp x1 C {R(z,&') —1 > ¢/2} U {zq < 36}. Observe that
X1p € S.,- We have

(hDy, +i0py.(x1p)) (hDz, — i0p,.(x1p)) = h*D3, — ihDy, 0p,.(X1p) + i 0D, (x19)hDe,
+ Opsc(le)z
= h?D2, —i[hDs,, 0p,.(x1p)] + 0psc(x10)?,

and

[hDy,,0p,.(x10)] = hop,, (Dz,(x1p)), where Dy, (x1p) € St
Opsc(le)2 = ODPgc (X%(R(Iagl) - 1)) + hopsc(T1)5 where 71 € Stlan'

Then
(hDg, +i0p,.(x19)) (hDa, — i0p,.(x1p)) = B*D3, + op,. (X3 (R(x,&") — 1)) + hop,.(71),

where 71 € Sk
Applying Lemma 3.3 we obtain

(hDa, +i0p..(x1p)) (hDa,y — i 0D, (X1p)) 04 (X)vn = ha, (54)

where [|g3]| 12 (z,>0) < Ce.
Let z = (thd — iopsc()ap)) 0P, (X)vn; z depends on h but for the sake of simplicity we prefer
to denote it z. From (54) we have

(hDa, + i0psc(x1p))z = ha,
in zg > 0. We then have
2Re ((hDa, +10D.e(X10))2l1 0D4e(X10)2) 12 50y S Mll@E [ 22> 0) | 0Pse(X10) 2] L2(wa>0)- (55)
We recall the integration by parts formula in semiclassical context,
(ulhDg,w)L2(2,50) = (hDz ulw)2(2,50) = iP(U)z,=0|W)z,=0)0, (56)
for u and w sufficiently smooth. Taking w = iop,.(x1p)z and u = z we have
(2lih Dy 0D (X19)2) 12 (24>0) = (ADay 2|t 0Pse(X19)2) L2 (2a>0) — 1P (2|2 =07 OPsc(X10) 2|z 4=0)o-

As ihDy, op,.(x1p) = i0ps.(x1p)h Dz, + hop,. (9, (X1p)), and opg.(X1p) = ops.(x1p)* + hop,.(T0),
where 7y € SO, we obtain

2 Re(h]Ddeh Opsc(le)Z)L2(md>0) = h’Re(z\wd:d ODPsc (le)ZILEdZO)O + hKv (57)

where
|K| S 1hDzll L2 (zy>0) 12 ]| L2 (a>0) + 12117 2 (>0 -
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From equation satisfied by z, we have
1hD2y2 ]| L2(@a>0) S | 0Pse(X10)2l| L2(@u50) + Plldb | 22 (w0 >0)
S lopec ()2l 2 am0) + hllaS | L2 (2a>0)-
Then
K| S 10psc((€D) 2] 2(2a>0) 2]l L2@as0) + P25 1200 50)- (58)
From (55), (57) and (58) we yield
|| Opsc(le)Z||%2(;Ed>O) + hRe(z|LEd:0| Opsc(xlp)z\deO)O
S bl opse (D)2l L2 as0) 12| L2(2a>0) + RPNl 12 (0 y0)s  (59)
as we can estimate
hllg3 1122 (>0 | 0P (X10)2 [l 222> 0) < @l 0Pse(X10) 2] 20y 50) + Cah® 145 172 (g0
and absorb the term || opsc(xlp)z||%2(md>0), by the left hand side of (59) if « is sufficiently small.
Lemma 3.10.
[opsc((€ D)2l L2@a>0) S 0Psc(X1P)2 ] L2 (24>0) + PIBDVR| L2(2450) + RllVRl L2 (24>0)-

Proof. Let xa(z,&") € S2,,, be such that, ya = 1 on the support of x1, and supp x1 C {R(x,&')—1>
e/4} U{xy < 45}. We have by symbol calculus

Opsc(x2p71) Opsc(xlp) = Opsc(xl) + hopsc(Tl)a
where 71 € S;,1. Thus we obtain

|| Opsc(<§/>) Opsc(Xl)Z||L2(wd>0) S || Opsc(le)Z||L2(wd>0) + h||z||L2(wd>0)'

From this estimate we obtain

|| Opsc(<§/>)z||L2(wd>0) 5 || Opsc(<§/>) Opsc(1 - Xl)Z”L2($d>O)
+ llopse (X102l L2(@4>0) + Pllzl L2(2,>0)- (60)

From definition of z, we can write z = op,.(x)(hDqg, + 0ps.(r]))vn, where 7| € Si,,. From symbol

calculus and support properties of x and y; the operator op,,({¢’)) ops.(1 — x1) 0p,.(X) is bounded
on L? by Ch. From (60) we thus have

o, ((€))zllL2(za>0) S PIRDVRI| L2 (5450) + PllvnllL2(za>0) + (0P (X10) 2] L2(2y>0) + hllzl| 20050 -
We obtain the statement as we can absorb hl|z|[12(z,>0) by the left hand side. O

From (59) and Lemma 3.10 we deduce
[opse(X10)2[1 722450y +  Re(2]z=0| 0P (X10) 212 4=0)0
< B2 hDvk |2 (a,50) + P l0nl T2 @y0) + 21163 12 (0500

as ||zl L2 zy>0) < [ 0P ((€) 2] L2(2g>0)-
From Lemma 3.10 we obtain

lopee (€N 2l L2@as0) S ARDVAZ 2 (2y50) + hllvnllL2(e>0) + Rl 63 122G 050)- (61)

From equation satisfied by z we have

1hDzyzllr2(a>0) S Il 0Pse((€) 2] L2 (> 0) + BllGS | L2 (>0 -
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From this estimate, (61) and trace formula (8), we deduce
|2jz4=0l /2 < C.ht/2, (62)
From definition of z, we have, for x4 > 0 and by symbol calculus,
2 = 0pge(X)hDa,vn — i 0ps.(XP)VR + h21,
where z1 = op,.(ro)v, and ro € S,,. In particular
l21ll2(@y>0) + 1RD21]| L2 (2 >0) < Ce.
Let uo = h(Dz,Vh)|z,=05 U1 = (Vh)|zy=05 X0 = X|zy=0 and pg = p|z,—¢. From (62), we have
0P (X0)uo — i 0py.(xopo)u1 = h'/%z4, where |24]2 < C-.
Let ® € €°°(09), we have
P op,.(x0) = 0Py (x0)® + hop,(ro) and © op.(xopo) = 0P..(X0po)® + hop. (7o),
where ro, 7o € SY,,, by symbol calculus. From Proposition 2.6, we have
0P (X0)Pug — i0py.(xopo)®Pus = h'/?2z5, where |z5].> < C.. (63)
With this equation we can obtain trace estimates into 9Qp and 9Q .

Proposition 3.11. Let ® € €°°(90Q).
If @ is supported on OQ2p. Then

|0psc(X0)q)u0|L2 < Oshll/z-
If @ is supported on 0Qn. Then
|Opsc(X0)q)u1|Hslc < C€h1/2'

Proof. If ® is supported on 9Qp, then ®u; = 0, (63) gives the first result. If ® is supported on
OQn, then ®ug = 0. Let x; € €°(RY! x R%1) be such that x; = 1 on the support of xo,
supp x1 C {R(2',0,&)—1 > ¢/2}, x1 € S, in particular we have xox1 = Xo and py # 0 on support

of X1- We have OPs¢ <§I> Opsc(leal) Opsc(XOpO) = Opsc<€/> Opsc(XO) + hopsc(r0)7 where g € S?alm by
symbol calculus. From Proposition 2.6 and (63), we have

| OPsc(XO)‘I)Ul |H}C < | Opsc<§/> Opsc(leal) OPs¢ (XOPO)(I)UI |L2 + h| Opsc(ro)q)ul |L2
< h’l/2| Opsc<§l> Opsc(leal)Z5|L2 =+ h| Opsc(ro)®u1|L2
< C.h'/2
This gives the second estimates. [l
Proposition 3.12. Let ® € €°°(092). We assume that ® is supported either on OQp or on Oy .
h2(vn)jsg=ol 2, — 0 as h — 0,
hY2|(hDg,vh)zy=0lr2 — 0 as h — 0.
Proof. Let € > 0, we can find x g, x¢ and xg satisfying respectively the assumption of Propositions

3.2, 3.6, 3.11 and furthermore the relation xyg + xg + xg = 1. Applying the results of Propositions
in each region, we deduce the proposition. O
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In what follows we shall prove estimates in a neighborhood of 9Qx N 9Qp. The result is more
delicate and less classical than these obtained for Dirichlet or Neumann boundary condition.

Now we assume that ® is supported in a neighborhood of a point of 9Qx NN p. We can assume
that locally this set is given by x; = 0 and the support of ® is contained into a fixed domain in ’
and into {|z1| < pe/2} where p > 0 will be fixed below sufficiently small. Here and in what follows e
is the one used to define hyperbolic, glancing, elliptic regions (see respectively (35), (41) and (53)).
We assume that suppug C {1 < 0} and suppu; C {z1 > 0}. We can choose the local coordinates
such that

R(2',0,¢") = {% + Ro(z",&") + xyra (2, €, where 2’ = (z1,2") and ¢ = (&,¢"), (64)

Ro € S((£")2, (dx")? + (¢")72(d¢")?) and ro € S2,. Indeed in normal geodesic coordinates we have

R(2',0,&") = & + Ry(2/,¢") = €2 + Ro(2",€") + x1r2(2',€') and in fact ro(a’, &) does not depend
on & but we do not use this property in what follows.
Let a(z”,&') = (1 + Ro(2”,€") — 1 + ia)1/2, and let

5(17//751/) _ (Ro(fﬂ”,{”) 14 i6)1/2, (65)

be such that Im 8(z”, &) > 0, for all (2”,¢") € R¥=2 x R?~2. We have

1/2

aa", &) = (& +iB". €M) (@ - B, €)',
Observe that Re (2, £"”) > 0, we deduce that

+1/2

& (& +ip(a",¢")
& (G —ip",¢")

are holomorphic functions in {Im¢&; > 0},
/2 are holomorphic functions on {Im¢; < 0}.
Let vy = op,, (&1—iB(a”,£")) 1/2<I>u1. The operator op,,, (& —iB(z”,£")) "2 is a convolution operator
with respect x1 and its kernel is supported in x7 > 0. As u; is supported in z; > 0, this implies that
vy is supported in z; > 0. Let vy = op,.(&1 +iB8(2”, &))"/ 2®ug. As ug is supported in z; < 0 and
(&1 +iB(x",€"))~/? is a holomorphic function in {Im¢&, > 0}, vy is supported in z; < 0. We first
prove the following lemma.

Lemma 3.13. There exists C' > 0, such that for all e € (0,1) we have, for every h € (0,1)

lu1|pe < CeYPh=Y2 4 C.n=3/8,
lvo| 2 < Ce/Ph=Y2 4 C.h=3/8,

where Cz > 0 depends on €.
Proof. Observe that (& —if(x”,&"))*1/2 € S((€)FV/2, (dx'")? + (d¢')?) then
opse(&1 — iB(x",€") 72 op. (&1 — iB(a",€"))"/? = Id + hop,.(ro),
where ro € S(1, (dz')? + (d¢’)?). From the definition of v; we have
op.(€1 = iB(a", €)™ v1 = Bus + hopy.(ro)ur. (66)

As op,.(x0p0) 0P,.(r0) has a symbol in S({¢), (dx')? + (d¢')?), we obtain

| Opsc(XOPO) Opsc(TO)vl |H;:1/2 < CE|U1|HSI£2 < Csh71/2
by Proposition 2.6. Then from (63) we obtain
. . —1/2
Opsc(XO)q)uo - ZOpsc(XOpO) OPge (51 - 7’6(1‘.”7 5”)) / U1 = h1/2267 where |26|H;CI/2 < CE' (67)
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To determine ug and u; we have to use the support properties of these functions. To do that, we
have to modify the operators acting on these functions, note that op,.(xopo) does not preserve the
support of ug.

We introduce three cutoff functions x g, x¢ and x g, be such that xg + x¢ + xg =1 and

supp xu C {R(2/,0,¢') =1 < —¢/2}, 0<xu <1

supp xe C {|R(2',0,,¢') = 1] <&}, 0<xc <1

supp xe C {R(2',0,£) =1 >¢/2}, 0< xp < 1.
We then have xu, x¢ and xg, the x|,,—0, defined respectively in the hyperbolic, glancing and el-
liptic regions (after multiplying e by a fix factor). We have ®ug = op,.(xm)Puo + ops.(xa)Puo +

op..(xE)Pup. From hyperbolic estimate given in Proposition 3.2, Proposition 2.6 and symbol calcu-
lus, we have

| Opsc(XH)(q)u0)|L2 < CE'

From glancing estimate given in Proposition 3.6, Proposition 2.6 and symbol calculus, we have
| Opsc(XG)(q)uo)|L2 < 053/4h_1/2 + Cgh_B/S.

We deduce that

|Puo — op,.(xE)(Pug)|r2 < Ce3/4h=Y2 4 CLh™3/8, (68)
Lemma 3.14. With the previously defined notations, we have
) —-1/2
| Opsc(XHa) ODge (61 - Zﬁ(xll7 gll)) / U1 |H§01/2 < CE (69)
0P (X@) 0P (€1 = iB(2",€") ™ vl e < CE¥RT2 4 R, (70)

where az”, &) = (€8 + Ro(2”,€") — 1+ ia)l/z.

Proof. Let xg be such that xg = 1 on the support of xg and yg = 0 if Ro(a’,&') — 1> —¢/4. Let
Xc be such that xg = 1 on the support of x¢ and xyg = 0 if |[Ro(2',£’) — 1| > 2¢. Let J = G or H.
By symbol calculus, we have

Opsc(aXJ) = Opsc(aXJ) Opsc()zJ) +h Opsc(ro)v

where 7y € SP,,. From (66), we deduce

) ~1/2
| op,.(XJQ) 0pg, (51 — zﬁ(:t”,f”)) / vllH;1/2
< | opg. (xg)Puy |HS—C1/2 + hlop,.(xsa)op,.(ro)us |H§c1/2

< | Opsc(XJa) Opsc()zJ)U’l'H;lm + CV“—“h|’u’1|Hslc/2
If J = H we have
. —1/2 ~
|Opsc(XHa) OPsc (51 - ZB(.’II”,&”)) / U1|H;C1/2 < C€| Opsc(XH)U‘l'H;C/Z + Cé‘h|u1|H}C/2

we obtain (69) from Propositions 2.6 and 3.2.
If J = G, using that |z;| < ue/2, on the support of g, we have || < Ce'/2. As

| Opsc(XJa) Opsc()zJ)uﬂH;l/Q < C| Opsc(XJa) Opsc()zJ)ul |L27
we apply Garding inequality (12) and we obtain
. —-1/2 ~
| Opsc(XGa) OPse (61 - Zﬁ(xll7 gll)) / U1 |H§01/2 < Cgl/2| Opsc(XG)ul |H}C/2 + Cah|u1 |H51£2 )

where, at the right hand side, we have estimated the L?norm by the H'/?-norm. We obtain (70)
from Propositions 2.6 and 3.6. O
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Following (67) (with xo = xg), (68) and Lemma 3.14, we have

bug — i op,. (alxm + X)) opse(&r — iB(x", &)~ 0
—i0Dy(XEP0) 0P, (&1 — iB(2", "))
where |Z7|H;cl/2 < C3/*h=Y2 1 C.h=3/8. Applying op,.(&1 +iB(x",€"))~1/? to this equation, we
obtain
00— 70B,0(61 -+ 182", €")) 7 0b,c (s + X6)) 0Buc(€a — 18", €")) 0
—iop,.(& +iB(a",€") 2 0y (XEP0) 0Dy (€1 — iB(a",€") T 0
= op,. (& + (2", ") P2 (71)

We have to precisely estimate zg = op,.(&1 + iB(2”,€"))"1/?27. By the definition of f(z”,¢")
there exists Cy > 0 such that Reg(z",£") > Coe, as Ro(z”,§”) — 1 > —1 moreover if || >
2, then ReB(z”,&") > Cy(¢”). We deduce that [ + i8(z”,&")| > Coe(¢’). This implies that
(€1 +iB (", €)1 < Coe=1/2(¢')~1/2 where Cy > 0. We have by symbol calculus
|z8]22 < Jopye (€1 + 8", €M) 72E) ) 0bo (€))7 21l 12 + Cehl opyo ((€')7H2) 20 12,
and by Garding inequality (12) and the estimate on z7, we have
28] 12 < O™ /?|0p, ((€')71/%) 20|12 + Cehl opyo ((€')71/2) 21 12,
< CetApY2 4 on T8,

—-1/2
/ v = 27,

By symbol calculus, as (£, +i3(z”, &))"V 2a(é; —iB(z",€"))~Y? = 1, we have

Opsc(é-l + iﬁ(xll7 H))_l/2 OPse (a(XH + XG)) Opsc(gl - iﬁ(xll7 H))_l/2
= Opsc(XH + XG) + hOpSC(To), (72)
where 7o € S(1, (d2")? + (d¢')?).
By the same argument, we have
Opsc(gl + ’L.B(JJ”, 5”))71/2 Opsc(XEpO) Opsc(é-l - iﬁ(l’”, ”))71/2 = Opsc(XEpoail) + hopsc(r0)7 (73)

where ro € S(1,(dz')? + (d€')?). Indeed (&1 % iB(z”,€"))~1? € S((&)~1/2, (dx')? + (d¢')?) and

XEpo € S((£), (da')? + (dE')?).
The following lemma gives a precise estimate on xg(poa—! — 1). We shall exploit that a and pg
are close.

Lemma 3.15. We have
|op.(xBpoa o1 — op,.(xE)v |, < CeY/PRT2 4 Coh ™5,

Proof. Let ®(x1) supported in {|z;| < pe} and ® = 1 on the support of ®. Let b be either the
symbol xgpa~! or xg, we have b € S(1, (dz')? + (d¢')?).

By symbol calculus we have op,,(b(1 — ®))v; = hop(r)u;, where r € S((&)'/2, (dz")? + (d€’)?).
By Proposition 2.6 we have |op,,(b(1 — ®))vy |2 < C€h|u1|ch/2 < C.h'/2. Then we can considerate
0P (Pxppa~t) and op,,(Pxg), instead of respectively op,.(xzpa™") and op,.(xx).

We introduce three cutoff functions x; € €>°(R%~2 x R4~1) be such that

CJ1if @+ Ro(a”, &) -1 < VP,
X1 = 0 if 512 + Ro(l‘”,ﬁ”) 1> 354/57

{1 if 1>+ Ro(2”,€") — 1> 2845,

X2ZV00 €24 Ro(a,€") — 1< e¥5 and [¢)2 — 1> 3,
Lt &+ Ro(a",6") -1 > 2,
BTV0i 4 Ro(a ) —1< 1,
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X1+x2+xs=land 0< x; <1forj=1,2,3.

Estimation on the support of ygyx;.

On the support of yzpx1 we have 2 + Ro(z”,&") — 1 < 3¢*/% and R(2/,0,¢') —1 > ¢/2, in
particular |¢'] is bounded. We compute on this domain

po(xlvgl) - o‘(x”agl) = D(Ilagl) ($1T2($/7§I) - iE), (74)

—1
where D(2/,¢’) = ((R(x’,O,{“’) — Y2 4+ (& + Ro(z",¢") — 1 + i5)1/2) . Observe that we have
Re (&7 4 Ro(a”, ") —1+ig)t/? > 0 and (R(2',0,£”) —1)!/2 > 271/21/2 then |D(a/,¢')| < Coe~1/2.
We deduce that |pg — a < Coel/? if |x1| < pe where p was introduced in the definition of ®. As

€1 + Ro(2”,€") =1 = (R(a',0,€") = 1)] < Clan| < Clee,

if 41 is chosen sufficiently small, on the support of x g, we have 7 + Ro(z”,£”) —1 > Coe, for Cy > 0.
We deduce that |a(z”, &) > Ce'/?, for Cy > 0.
This implies that

|(po — a)a™t| < Oy on the support of xgx1, for Cy >0 and |z1| < pue. (75)
Let
L 1 on the support of x1,
X1(z'€) =9 .
0if &+ Ro(z",&") —1>4e*or  R(2',0,¢") — 1 < e/4.

By symbol calculus in classes S({¢")*, (dz')? + (d¢')?), we have

(0Pee(PxEX1P00 ") — 0D, (DX EX1)) V1 = 0Due(PXEX1(P0 — @) ") 0P, (Y1)v1 + h oD, (ro)v1,

where 7o € S(1, (d2')? + (d¢’)?). By Garding inequality (12) and (75) we have

| (0P (@xEX1P00 ") — 0D, (PxEX1)) V1] 2 < Clopy.(R1)vilL> + Cehlv L2, (76)

Observe that

Opsc(xl)vl = OPsc (51 - ’L.B(JJH, 5”))1/2

by semiclassical symbol calculus in S((¢')%, (da')? 4 (d€')?), where 1,5 € S((€')1/2, (da’)? + (d€')?).
4/5

@ Opsc()zl)ul +h Opsc(rl/Q)U’l?

As X1 is supported in |R(z’,0,&) — 1| < Ce*/®, we can apply Proposition 3.6 with ¢*/® instead of ¢.

From (76), Proposition 2.6 and as |v1]z2 < Ce|u1] /2, we have

|(opse(xEX1P00™Y) = 0Dy (XEX1)) V1| fi/2 < Clopy(X1)ur|m, + Cehlui .
< CelPpY2 4 oLh38, (77)

Estimation on the support of xgxo.

Equation (74) is valid in the supports of xgx2 and ®. As &2+ Rg(z”,€")—1 > ¢*/5, on this domain,
we have Re(£7 4 Ro(z", &) —14-ie)'/? > Cye?/5, for Cy > 0. We deduce that |D(z',¢')| < Ce=%/® and
la=t(x”,¢")| < Ce=2/5, then |(py — a)a~t| < Ce'/5. We conclude by semiclassical symbol calculus
in S((¢')*, (dx')? + (d¢')?), Garding inequality (12) and Proposition 2.6 that

| 0Doe (X EX20007") — 0Due (X EX2)V1]

= ‘ Opsc(&)XEXQ(pO - O‘)ail) OPse (61 - iﬁ((b”, 5//))1/2

Quy|,, < Ce/Ph7V? 4 C (78)
Estimation on the support of xgxs.

On the supports of xgx3 and ®, we have Re(&f + Ro(2”,&") — 1 +ie) > Co(¢')? for Cp > 0.
We deduce that Re(&7 + Ro(z”,£") — 1 +ig)'/? > Cy(¢') for Cp > 0 and |(pp — a)a~'| < Ce. By
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semiclassicalsymbol calculus in S({¢')*, (d2')? + (d¢’)?), Garding inequality and Proposition 2.6 we
have

| oD.e(Px X300 ") — 0D (DX EX3)V1]
= | oo (®XxEX3(p0 — a)a~ ) op,, (& —iB(", &)

As x1 + x2 + x3 = 1, Formulas (77), (78) and (79) give the conclusion of Lemma 3.15. O

V2Pu|,, < Cen 40 (19)

From (71)—(73) and Lemma 3.15 we have
vo — ivy = z9, where |zg|p2 < Ce'/Sh™Y2 4 C.R73/8, (80)
As vg is supported in 1 < 0 and vy is supported in x1 > 0, if we restrict (80) on 1 > 0, we obtain
V1] L2 (21 50) = 01|12 < CeYOR™Y2 4 Ch3/8,
and we deduce |vo|r> < Ce/®h=2 4 C_h~3/8. This proves Lemma 3.13. O
Proposition 3.16. With the previously defined notation, we have

hl/z'(vh)\zd:()l]-[sl

h'2|(hDy o)

2 = h1/2|u1|H1/2 —0ash—0,

\1d:0|H71/2 = h1/2|u0|H71/2 — 0 as h — 0.

Proof. We have to introduce another small parameter v > 0 chosen below such that v >> . Let
XH, X and xp in € (R?~! x R4~1) such that
xu (2, &) is supported in R(z',0,¢') —1 < —v,
xa (2, &) is supported in |R(z',0,£') — 1] < 2v,
xe (', &) is supported in R(2/,0,&) —1 > v,
XH +X¢+xE =1
Let ¥p, ¥z and ¥y in €°°(9Q) such that
¥p is supported in z7 < —ep/4
1z is supported in |z1| < ep/2
Yy is supported in x; > ep/4
Yp +Yz +pn = 1.

To be clear, the ¢ is the one used in elliptic region. We recall the estimates obtained in previous
sections. From Proposition 3.2 we have

|opse (Xm)ur|m, < Cy
|op,e(xm)uolzz < Cu. (81)
From Proposition 3.6 we have
| 0P, (X )| g1, < CUYARTH2 4 O R3S
2, < CVARTY2 4 O I8, (82)

|(Opsc(XG)u0)\zd:O

In the elliptic region, we estimate v; and we have to estimate u; for j = 0,1. To be precise,

vg = opg.(&1 + iﬁ(:ﬂ”,f”))fl/z@bzuo and v; = op,, (51 — iﬁ(x//,f//))1/2§/}zu1, where £ is defined by
formula (65) and ® = 1)z. By Lemma 3.13, we have

1|2 < CeYOR=Y2 4 CLn=3/8,
lvolpz < CeY/Ph=Y2 4 CLh=3/8,

Thus Opsc(XE (61 —iﬂ(I”, 5//))—1/2)1)1 = Opsc(XE)¢Zu1 +h Opsc(TO)ulv where ro € S(17 (dxl)2+(dé.l)2)
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Lemma 3.17. On the support of x g, we have |(& —iB(2”, ")) 712 < Cv= V4712 = C, (¢) 712,
where C,, does not depend on ¢.

Proof. We have to consider different cases.

If |€"| > C, where C sufficiently large to have Ro(z”,£") > 2, we have Re 8(z”,£") > C1(¢"), for
Cy > 0. Then [& —if(x",&")| > Ca(¢'), for Cy > 0.

If |¢”] < C and |&] sufficiently large, we have |§; — if(z”,&")| > C3(&1) > Cu(¢).

If |¢’| bounded, on the support of xg, if € is sufficiently small with respect v, we have £ +
Ro(z”,€") —1>v/2. If Ro(z”,€&") —1 > §v, for §; > 0, then Re (2", £") > do0'/2, for 6 > 0. If
61 is sufficiently small and Ro(z”,£") — 1 < §1v, then & > v/4 and |& — ifB(a”,£")| > 630 /2.

In all cases, we get that |&; —iB(z”, &) > d3v/2(¢'). This implies the result. O

By symbol calculus, we have

|opoe (XB)¥zu1] 172 < [0pe((€)/2) 0pe(xE (&1 — iB(2", €)™ vi| 2 + Cuchlun| /2
Hg Hg
S |Opsc(<€/>1/2XE(§1 - iﬂ(IN, //))71/2)v1|L2 + CV,€h|u1|H31£27

and by Garding inequality (12) and Lemma 3.13 we have
| Opsc(XEW)ZUﬂHSlg? < Cyloi|pe + O, B2+ CV75h|u1|H§£2
< Cue PR 4 Oy ch ™ 4 Oy chlua| . (83)
For vy we have
0P (XE (&1 +iB(z", ")) ?)vg = op,.(xB)Yzu0 + hop,.(ro)ug, where rg € S(1, (dx')* + (d€')?).

A proof analogous to the one of Lemma 3.17 gives |(& + iB(z”,&"))Y?| < C,(¢')'/?, we have by
Garding inequality and symbol calculus

|0pSc(XE)1/JZUO|H—1/2 < va|’UO|L2 + Cv,shl/z + Cv,5h|u0|H;Cl/2
< C PR 4 Oy ch T8 + Cy chlug|y-1/e. (84)
From Proposition 3.11, we have
|op,.(XE)YDug|r2 < C,,,ahl/2 and Ypu; =0
|opse(xE)YNuL] < Cpeh? and Yyug = 0. (85)

As uj = op,.(xu)u;j + ops.(xa)uj + obs.(XE)UNU; 4+ 0Ds.(XE)YzU; + O0Dy.(XE)YDU;, We have,
by (81)—(85),

h1/2|Uj|chl/2+j < CV(B_Qj)/4 + CU€1/5 + CV7€h1/8 + CV7€h3/2|Uj|chl/2+j.

Choosing first v sufficiently small, second e sufficiently small, we can absorb the right hand side
term Oyﬁsh3/2|Uj|H—1/2+j by the left hand side term taking h sufficiently small. The limit superior
with respect to h of the left hand side can be estimated by any positive number. This proves
Proposition 3.16. O

3.2 Support of semiclassical measure in a neighborhood of boundary

We can now prove Proposition 3.1, that is, the measure p is supported on p = 0, in a neighborhood
of zy € 09.

Proof. The proof is based on the results obtained by Proposition 2.2 and Proposition 3.16. We recall
that in local coordinates p(z, &) = €3 + R(x, &) — 1. We have with the notation (13)

(WD, + R(z,hDy) — oy = hg, — ih(hDy,vn) =0 ® 0uy—0 — ih(0n)|zy—0 @ "Dy 6z,—0.  (86)
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Let ¢ € 65°(Re,) and x € 65°(R,,) be such that x is supported in a neighborhood of 0. Let
0 € E(RET x Rgf ). By symbol calculus we have

Op. (X(za)p(éa)l(z',€))[W* Dy, + R(z, hDyr) — 1]
= Op,. (x(za)e(Ea)l(x', &) (&5 + R(x,&') — 1)) + h Op,.(ro),

where 7o € SY. Then
1= (Op.c (x(@)p(€0)(e’, &) Dy + Rl hD.r) = vn v )

= (OPu (X(@a)e(Ea)t(a’ €€} + R(@,€') = 1))vnlun) +h(Ope(ro)vnlun)
—_— ———

=:A =B

By definition of the semiclassical measure, the term A converges to (u|x(za)p(a)l(a’, &) (&3 +
R(x,&') — 1)) as h to 0. The term B is estimated by Ch||vh|\%2(m and this converges to 0 as h
to 0 by Proposition 2.2.

By (86) we also have

I= h(Opsc (X($d)(p(§d)€($/,§/))q_h|v_h)
- Zh( Opsc (X(l'd)gD( )Z(LL'/, I)) (thdvh)|xd:0 & 5zd:0|v_h)
—ih(Op,. (x(xa)p(Ea)l(x",€)) (vh) w0 © WDy 80 y=0lvn) = I + I + I3.

£
(', €
Obviously we have

&d
&d

[11] < Chllgn|lz2@llvnll L2 s
as x(za)p(&a)l(z',&") € S°. Then I; — 0 as h — 0 by (19). By exact calculus, we have
Op,. (X(za)p(8a)l(2",£')) = X(wa) 0Py (£(2,€)) OPe((8a))-
Let w; = ((thd)l_jvh)|xd:0, we have for j = 0,1

h|(Opye (X(za)p(€a)l(a’,€"))w; @ (hDx,)’ 6s,=0lvn)|
= h|(x(z4) 0ps, (¢(a",€"))w; ® Opy, (9(6a)) (hDa,y)’ 8 ,=0lvn) |
< hlw;lpi-1/2]] Opye (9(6a)) (hDx,4) Oay=oll L2y vn ]l 20, (87)
where we have used, to estimate wo, that (¢)/20(z',¢') is bounded on L2, as ¢ is compactly sup-

ported. A direct computation in Fourier variable gives that || Op,. (¢(£a))(hDaey) 6a,=0llr2r) S
h=1/2. From (87), we obtain

|Ig| + |Ig| < C(|(Uh)|xd:0|Hl/2 + |(Dmdvh)|xd:0|Hfl/2)hl/2 —0as h— 0,

by Proposition 3.16. We conclude that {p|x(za)e(Ea)l(2, &) (€2 + R(x,&') — 1) = 0 and by density
of functions spanned by x(z4)p(£2)0(x’,€') in €5°(R? x RY), we have that (p(x, &) u|d(z,€)) = 0, for
all ¢ € €5°(R? x RY). This gives the conclusion of Proposition 3.1. O

3.3 The semiclassical measure is not identically null

Proposition 3.18. The measure u constructed at the beginning of Section 3.1 for the sequence (vp)n
satisfying (19) is not identically 0, i.e. p % 0.

Proof. Let ¢ € 65°(R) be such that ¢ = 1 in a neighborhood of 0. Let s € (0,1/2). Let ¢r(&) =
#(|¢]/R), we have

|| Opsc(l - ¢R)U_h||L2(]Rd) < CR—SH Opsc(<§>s)v_h”LQ(Rd) < CR_S||U}IHH§C(Q)
< CR™*|lvp|lg () < CR™F,
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as [|w| gs ey is equivalent to [|wl| g (o) (uniformly with respect to h € (0,1)) if w is supported in
Q. Then for R sufficiently large, || Op,.(1 — ¢(|¢]/R)va| 2ra) < 1/2. We thus have

(Opsc(¢R)U_h|%)L2(Rd) = HU_hHQLz(Rd) — (Opg.(1 = ¢R)U_h|v_h)L2(Rd)
21— Opy.(1 = o€l /R)vnl| L2rey = 1/2.
Let x € 65°(R%) be such that x(z) = 1 for z € Q and x > 0, we have

(OPs(Pr)vn|vn) 12y = (OPse(Pr(E)X(2))vn|V0) L2(Re) — (11 X(2)PR(E)) as b — 0,
we obtain (u, x(x)¢r(€)) > 1/2. Then p is not identically null. O

3.4 The semiclassical measure is null on the support of a

Before proving the result we need to extend the space of test functions acting on u. We have the
following lemma. ‘

Let b(x,&") € €°°(R? x R4™1), we can give a sense to the expression (u, b(z,¢)€)) for all j € N.
Lemma 3.19. Let ® € 65°(R), be such that (o) = 1, for |o| < 1. Let j € N, then the quantity
(. b(x, £ P(|€]/R)) does not depend on R for sufficiently large R.

By definition, we denote (u,b(z,€')&)) = limp_00 (u, b(x, £)E (€| /R)).

Proof. As pp = 0, p is supported in |¢'|? + &3 < Cy, for Cp > 0, sufficiently large. If R is suf-
ficiently large and R’ > R, ®(|¢|/R) — ®(|¢|/R’) = 0, if |{| < R, in particular if R? > Cy. Then
b(z, &) (P(|¢]/R)—®(|¢|/R’)) = 0, on the support of z1. This proves that (u, b(z, & )&;®(|¢|/R)), does
not depend on R if R is sufficiently large. O

Proposition 3.20. We have ap = 0.

Proof. From Proposition 2.2 we have —h2Puvy, +v;, —ihav, = hqp,. The inner product with vy, lead to
(—h%Pup, +vp, —ihavy|vn) = h(gn|vn). Taking the imaginary part of this equation, as (Pup|vp) is real,
we have —(avp|vp) = Im(qnlvn). As [Im(qnlvn)| < |lanlll|vn]] = 0, as b — 0, we have (avp|vp) — 0,
as h — 0. Let ® € 65°(R), be such that ® = 1 in a neighborhood of 0, and 0 < & < 1.

By Lemma 3.19, the limit when h goes to 0 of (Op,.(a(x)®(|{|/R))vn|vn) does not depend on R for
R large enough. By Garding inequality (9), as a > 0, (Op,.(a(x)®(||/R))vn|vn) and (Op,,(a(x)(1—
®(|¢]/R)))vn|vn) are non negative modulo O(h).

Consequently, we have limy_,o(Op,.(a(x)®(|¢|/R))vn|vy) > 0, limp_o(avp|vp) = 0 moreover
(Op,.(a(z)(1 — ®(|¢|/R)))vn|vn) has a limit and limp,—o(Opg.(a(z)(1 — ®(|€]/R)))vn|vn) > 0. Since
(

Lim (Op,(a(z) @ (|¢]/R))vnlon) + lim (Opy (a(z)(1 — S(|E]/R)))vnlvn) = 0,

we deduce that limp,_,o(Op,.(a(z)®(|¢]|/R))vn|vn) = 0. This implies that (u,a) = 0, and as a and p
are non negative, we deduce au = 0. [l

4 Measure properties

4.1 Action of Hamiltonian

We first recall the main results proved in previous sections. There exists a sequence (vy)j, satisfying
the following properties

h?Puy, — vy, + ihavy, = hgp,
[vnllz2(@) =1 and ||AVop || r20) < 2,
llanll2) — 0 as h — 0,
2] (0n) =0 gy
hY2[(h Dy vn) s g=ol =
pp = 0. (88)

2 —0ash—0,

12— 0as h — 0,
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We also proved that ap = 0 but in the following we do not systematically use this property. These
results was stated in Proposition 2.2, Proposition 3.1 and Proposition 3.16.
4.1.1 Interior formula

We begin by stated that the measure y is propagated along the H,, flow in interior of domain. This
property is classical but the proof is simpler in this case than in a neighborhood of boundary, even
if the main ideas are used.

Proposition 4.1. Let b € 65°(Q x RY). We have (Hppu — 2aju,b) = 0.
Proof. We consider the following quantity
A=ih ! (b(x, hD) (hQP -1+ iha)vh|vh)L2(Q)
—ih™! (b(x, AD)op | (B*P = 1+ iha)vn) 2,

=ih ! (b(x, hD)hqh|vh)L2(Q — ih™ " (b(z, hD)vs|hqn) , »

) (@)

We have |A] < [Jvn|l2()llanllz2(), then A goes to 0 as h. As b is supported far away the boundary
of Q, we have (b(z,hD)vy|(h?P — 1+ iha)vh)L2(Q) = ((h*P — 1 — iha)b(z, hD)vh|vh)L2 (- As the
principal symbol of b(x, hD)a — ab(z, hD) is O(h), we have

A= ihil([b(x, hD),h*P — l]vh|vh)L2(Q) — 2(ab(z, hD)vh|vh)L2(Q) + O(h/)H’UhH%2(Q)7
and by symbol calculus the principal symbol of [b(x, hD),h?P — 1} is —ih{b,p}. Then
A= ((Opsc({b,p}) - 2&($)b($, hD))vh|vh)L2(Q) + O(h)th”%?(Q)’
then A — (u, {b,p} — 2ab) as h — 0, which gives the result. O

4.1.2 Limit computations

In the following section quantities as (opsc(a)th:{dvhwh) for j = 0,1,2 appear. We need to evaluate
their limits in term of the measure p. To do so we shall now state some technical results.

Proposition 4.2. Let by(z,¢') € S(1, (dz)? + (d€")?), and by(x,&"), ba(z,&") € €5°(RT x RI~2).
Lot b, &) = bo(z, &)+ by (2, € )61 +ba(,€")E7. We have (0pyu(B)onlvn) o, o) — (1:5) as h— 0.

For the proof we need the following lemma.

Lemma 4.3. Let ® € 65°(R), be such that ®(o) = 1, for o in a neighborhood of 0. For all
s €(0,1/2), there exists C > 0, such that

H( Opsc gd/R))> $d>ov‘ L2(R4) < CR_S||UHH§C(1d>O)

| (1= Op.c (@(ca/ R/ R)) ) gm0

L2(Rd) <CR™ ||UHH§C(:Ed>0)a

for allv e H*(xq > 0), for all h € (0,1) and all R > 1.

We recall that
H:(zq>0)={u€ 2 (za>0): 3w e H(RY), w0 =ul},

and for u € HJ.(zq > 0), we define ||ul|gs (z,>0) = Inf{||w|| g re), W)z, >0 = u}. We recall that for
s €0,1/2) and u € H.(zq > 0), one has 1,,50u € HS (R?) and [[ul| g2 (z,50) and |1
define two equivalent norms (uniformly with respect to h € (0, 1)).

e (RY)
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Proof. Let w = 1,,50v. We have

H (1 — Opse (q)(gd/R)))lzpov‘ ’

L2(Rd)

< [ (- et/ m) Yl <o e

2
S [ (- vtnga/R) &) (6™ (€' 0P de.
But

1 ®(h&a/R))/(|h&al*)| < R™°|1 = ®(h&a/R))/(|h&a/RI*)| S R™%,

then, as s < 1/2, we obtain that

| (1~ O (@(64/2)) Lo

L2(R4)

SR / (B> | (€ €a)Pde S B0l uym0  (89)

which is the first estimate of statement.
By the same method, we prove that (for any s > 0)

| (1 Op.c (@€ /) Yoo

L2(Rd)

As 1= B(€a/R)B(E/R) = 1 = B(Ea/R) + B(€/ B)(1 — B(€'|/R)). we have
| (1~ Opuc (@(6a/ RIB(E1/ B 120t

SR / (he' Vi (€' €a)PdE S B2 [0llfgs(n0) (90)

L2(R9) = H (1 ~ Ope ((I)(fd/R))lwpoU) |22 (Ra)

(1= opac (@0'1/7) ) as0v]

L2(R4)’
as Op,, (@({d/R)) is bounded by 1 on L2 From (89) and (90), we obtain the second estimate of
statement. O

Proof of Proposition 4.2. Let ® € €5°(R), be such that ®(¢) = 1, for ¢ in a neighborhood of 0. We
treat the terme by. We have as op,.(bg) is a tangential operator

(Opsc(bo)vh|vh)[l2(md>o) = (Opsc(bo)lmd>ovh|1Id>0vh)L2(Rd)
= (Opsc(b ) Opsc ((I)(é.d/R)q)(KIVR)) 1$d>0vh|1md>0vh)L2(Rd)
(Opsc(bo) Opy. ((1 - (I)(lgll/R))q)(gd/R))1Id>0vh|1$d>ovh)L2(Rd)
(Opsc(bo) Opy. (1 - (I)(fd/R))) 1Id>0vh|1wd>ovh)L2(Rd) = A1 + Az + As.

By definition of semiclassical measure and from Lemma 3.19 we have

Ay = (1, bo(x, §)@(Ea/ R)D(I'|/R)) = (i, bo) as b — 0.

We have

| Aa| S 12450 Opge (1 = (IE'1/R)Jvn | L2 ey [ 12g> 00| L2(ra)

S R M|onllpe, e, a1 lvall L2 (2>0),

and, for s € (0,1/2) we have

sc(a>0) ||U||L2(:cd>0)a

45| 11 0p,e (1 = @84/ R))Lay>00nll2(re) 1 leg>00n | L2ra) S Bl

as opg,(bo) is bounded on L?(RY) and from Lemma 4.3. As A; + Az + A3 does not depend on R we
obtain the result for bg.
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In the following we only consider the term by&?, the term b1&; can be managed as the previous
with some minor modifications.

(0P4c(b26)0n[Vh) 2y 50y = (0Pac(D26)10,>00h Ly >00h) 1o gy
= (0D4e(b267) Opye (®(€a/ R)P(1€11/ R)) Loy >00h Lo u000) 12z
+ (0D4e(0267) Opye (1 — (Ea/R)P(I€1]/R)) Lay>00h] Lay>00h) 12
+ (0D4e(0267) Opge (1 = @(€11/R)) Las>00h]Lau>00n) 12 5a)
= B1+ By + Bs

As previously By — (u, b2£2®(E4/R)®(|&1]/R)) = (, b2£%) as h — 0. We need to prove a regularity
result on v, given by the following lemma which is proven in Appendix A.

Lemma 4.4 (Zaremba regularity result). Let s € (0,1/2). There exists C' > 0, such that for any vy,
satisfying (88), we have ||vh||Hslc+5(Q) <C.

We have after an integration by parts and symbol calculus, for s € (0,1/2)

|Ba| < 1| Opye (1 = @(|€al/ R)) Lou>0h Dy vnl| 22 (2y0) |00 ]| L2y > 0,013, 1)) + hllVRlFrs, (2y0)

S R™°NhDeonll e (eg>0) 1R L2(2g 50,80, ®a-1) + BlloRllE 2ys0)

and
|Ba| S 1((1 = @(&11/R)) vnll L2 (@a0,m2, @1y |08l L2 (2g> 0,2, Re-1y) + BlloRllTr (20
S R [lonll g2 (wys 0, 11t ga-1y) 108l L2 (g 50,111, a-1)) + Bllonllrn gu>0)
where we have applied Lemma 4.4. Then we can conclude as for the term by. O

In the following lemma we consider the quantity (opsc(b) h?D? LV |vh) L2(24>0)" which is not clearly

well defined. But as vy, satisfied (88), we can prove that h2DZ v, € L?(zq > 0, H'(R*"')). The
inner product in tangential variables need to be interpreted as a duality product H ', H!.

Proposition 4.5. Let b(z,¢') € 65°(R? x R™1), we have
(Opsc(b)thidthh)L2(zd>0) — {(u,b€2) as h — 0.
Proof. We use the equation satisfied by v, (see (88)).
(0Dsc ()R D3, vnlvn) 12y 50y = (OPsc(D)R(an = iavn)vn) o, <o)

- (Opsc(b)(R(x7 th’) - 1)Uh|vh)L2(zd>O)
=A+ B.

Clearly
Al S hllanllL2(@a>0) + [[vnllL2@a>0)) lvall L2 (@a>0) = 0 as b — 0.

By symbol calculus, op,.(b)(R(z,hDy) — 1) = op,, (b(z,&')(R(z,&') — 1)) + hop,.(ro), where ro €
SY .- Then, by Proposition 4.2, we have B — —(u,b(R — 1)). Let ® be as given in Lemma 3.19, we

tan-*

have for A\ sufficiently large

—(p, b, &) (R(@,€') = 1)) = —(p, b(x, &) (R(,&") = 1)2(a/N))
= _</J'7 b(l’,f/)(fg + R(xvgl) - 1)(I)(§d/)‘)> + </1'7 b(l‘,f/)fgq)(fd/)\»
= <:ua b(I,gl)ggq)(fd/)\» = <:U‘7 b($,§l)§§>7

as pp = 0. Which gives the lemma. O
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Proposition 4.6. Let b(z,¢') € S(1, (dx)? + (d€')?), we have
(Opsc(b)thdUh|Uh)L2(zd>0) — (1, b€q) as h — 0.
Proof. Let ® be as given in Lemma 3.19, we have for A > 0,

(0Pse(D)hDavnvn) 12y 50y = (0Pse(B)lay>0hDryvn|le,>00h) 12 gay
= (0Psc(b) OPge (2(€a/N)) Laa>0h Dy Vn|Lzy>00n) 12 ga)
+ (09oe8) Ope (1 = B(Ea/ X)) Lay0hDayvnl Luo00m) 1o sy
=A+B.
By symbol calculus in S(1, (dz)? + (d€)?), we have

Opsc(b) Opsc (1 - (I)(fd/)\)) = Opsc (1 - q)(gd/)‘))* Opsc(b) +h Opsc(ro)7
where 7o € S(1, (dx)? + (d€)?). Then
|B| 5 ’(Opsc(b)lid>0thdvh| Opsc (1 - (I)(gd/)‘)) 11d>0vh)L2(Rd)‘ + hHhDﬂCdUhHLQ(]R) th”Lz(Rd)
SAT+h,

by Lemma 4.3 and a priori estimates (88).
Next we treat the term A. We have 1,,~0hD,, vy = hDy, (1md>OUh) + ih(vh)|md:0 ® 0z,=0. Then
we have

A= (Opsc(b) Opsc (q)(gd/A))thd (1$d>0vh) |1Id>0vh)L2(Rd)
=+ Zh( Opsc(b) Opsc ((I)(é.d//\)) ((vh)\md:O & 59601:0) |1$d>0vh)L2(Rd) = A + As.
We have Op,, (®(£a/A))hDs, = Op,, (£a®(£a/A)) and by symbol calculus in S(1, (dz)? + (d€)?),
we have op,.(b) Op,. (£4®(€a/N)) = Op,. (£a®(€a/A)b) + h Op,.(ro), where 1o € S(1, (dx)? + (d€)?).
Then A; = (Opsc(b) Opsc ((I)(gd/A))hDid (11d>ovh) |11d>ovh)L2(Rd) — <,LL7 qu’(fd//\)@ = <,ua gdb>a if

A is sufficiently large.
Let @ be such that F® = ®, where F is the Fourier transform. We have Op,, (®(£a/)))dz,—0 =

h='A®(A\zq/h). Then
|A2| S } (Opsc(b) ((Uh)\zd:())‘(i)()‘wd/h)) |1$d>ovh)L2(Rd)}
S M (Wn) za=ol L2 ra-1) |P(Aza /) | L2() 1va ]l L2 (24> 0)

S ARV |(0n) =0l L2(Ra- 1),

as |<i>()\:vd/h)|Lz(R) = Ch'Y2X\=1/2. From (88), we have Ay — 0, as h — 0. From estimates on A;, Ay
and B we obtain the result. (|
4.1.3 Boundary formulas

The two next propositions are the analogous of Proposition 4.1 at the boundary.

Proposition 4.7. Let b € €5°(R? x R¥1Y) (resp. b € 65°(RY x R=2)) be real valued functions. We
have the following formula

<leu - 2CL,UJ, b> = <:u7 {bap} - 2ab> = flzlino 2Re (b(xlv Oa hD/)(vh)|md:0|(thdvh)|;Ed:O)0'
( resp. %%2Re (b(a’,0, hD”)(Uh)\zd:d(thdUh)\zd:o)O-) (91)

In particular (b(z',0, hD")(vn)|z,=0l(hDz,Vn)jw,=0) , (resp.(b(z’,0,hD")(vn)zy=0l(hDa,Vh)jz1=0) )
have limits as h — 0.
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Remark 7. In what follow we write b(a’,0,hD’) even if b only depends on variables (x,&"). With
Proposition 3.16 we can only proof that (b(z',0,hD")(vn)z,=0l(PDayVh)|z,=0),s is @ o(h™"). In the
proof below we show thatl the quantity has a limit and converges to the left hand side of (91). We
are not able to prove that (vp)|z,—0 0T (hDy,Vh)z,=0 are bounded.

Proof. We recall (56) the integration by parts formula in semiclassical context.
(u|thdw)L2(zd>0) (hDIdu|w)L2 (xqg>0) — h(u\zd O|w\zd 0)0

for w and w sufficiently smooth.
To proof the lemma we compute the following quantity by two different manners.

A=ih ' (b(z,hD')(h*DZ, + R(z,hD’) — 1 + iha)vhlvh)m(wo)
— i~ (b(z, hD")on|(W* D2, + R(z,hD’) — 1 + iha)vh)Lz(md>0)

= ih™ ' (b(x, hD')hqp|vn) —ih™ " (b(z, hD")vp, |hay)

L2(x4>0) L2(z4>0)"

Then |A] < |lgnllz2(@y>0)[[vr ]l L2 >0) — 0 as b — 0 from (88). To compute A we now integrate by
parts. We have

(b, hD"Yop| (R(@, kD) = 1)vn) 1o, <o) = ((R(@, hD') = 1)b(a, kD' Yon|vs)
(ihb(x, hD")avnlvn) o, <o) — (b(x, AD Yvnlihavn) o, o
= 2ih (0P, (b(z, €' )a(x))vnlon) 2, 50) + OR?),

L2(z4>0)’

as first R(x, hD') is self-adjoint and does not contain derivative with respect x4 and second by symbol
calculus b(x, hD")a = ab(x, hD’) = op,.(a(z)b(x, &) up to O(h). We have
(b(fL‘, hD/)’Uh|h2Dg25dUh) = (thdb(CL', hD/)UhlhDidvh)L2(md>0)
—ih(b(a’, 0, hD")(vn) 240l (h D, Vh) 4=0) o
= (D2 b(z, hD/)Uhlvh)LQ(md>0)
—ih(b(z’,0,hD")(hDa,vh)jza=0l (Vh)|wa=0) o
— ih(b(:v', 0, hD/)(Uh)\zd:0|(hDIdvh)ldeO)o'

L2(z4>0)

Then we have
A= i ([bla, hD'), (D2, + Rz, hD') = D)Jonlon) 1oy o) — 2(0poc (b€ )al@)onlon) 1o, o
_ (b(:p” 0, hD/)(thdvh)\md:M(”h)\deO)o — (b(;p’7 0, hD/)(vh)Imd:d(hDIdvh)\deO)o + O(h).
From the structure of b we claim that
[b(z,hD"), (h*D2, + R(z,hD') — 1)] = —ih Op,, ({b, p}) + h? 0p,.(ro)

where ry € S(1, (dz)? + (d¢’)?). Indeed, the assumptions imply that b(z,¢’) € S(1, (dx)? + (d¢')?),
and hQD?Cd + R is a sum of terms c(m)hQij D., . By exact symbol calculus we have
[b(z, hD"), c(x)h* Dy, Dy, ] = [b(x, hD"), c(x)|h* Dy, Dy, + c(z)[b(2, hD"), hDy,|h Dy,
+ c(x)h Dy, [b(x, hD"), hDy, ]
= b, hD'), e(@)h2 Da, Doy + c(@)[b(, kD), hDy, JA D,
+ e(@)bla, kD), hDy, JhDs, + e(@)[hDs,, [b(ar, hD'), hD,, ]
= —ih Op,.({b, &€k }) + h* oD, (7o),

where 7o is in S(1, (dz)? + (d¢')?).
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First {b,p} = —2£40.,b + {b, R}, we can apply Propositions 4.2 and 4.6 as {b, R} is the sum of
terms in S(1, (dz)? + (d¢")?) or of the form q(z,&"), q(z,£")& and q(z,£")E2, where g € 65° (R4 x
R?=2). Second |(opg,(ro)vn|vn)| < [0n[|72(4,50) We can conclude that

ih™"([b(z, hD"), (thgd + R(z,hD") — 1)]vh|vh)L2(wd>0) —2(opg.(b(z, §')a(x))vh|vh)L2(wd>O)
— {u,{b,p} — 2ba) as h — 0.
By symbol calculus we have op,,.(b(z',0,£"))* = op,.(b(z',0,&')) +hopg.(ro), where 7o € S(1, (dx)?+
(d§/)2) Then (b(‘rl7 0, hDI)(hDIdvh)|Id:0|(Uh)\zd:())o = ((hDIdUh)\Idzow(‘rI? 0, hDI)(’Uh)\IdZO)O'i_Bu

where |B| < hl(vn) |z =0l m1/2|(RDs2y0n)|zy=0lg-1/2 — 0 as h — 0 by (88). This gives the conclusion
of Lemma. O

Proposition 4.8. Let b € €§°(R? x R4™1) be a real valued we have the following formula

(=Hpp + 2ap, b&a) = (p, {p, Lab} + 2abq)
= lim Re ((b(a:’, 0,AD") (R(2, 0, hD") = 1) (v8)jg—0 (U8 jra=0),

= (6", 0,AD") (2 Da08) fr=o| (1 D00, =0) ) (92)

In particular this means that

Re ((b(a’, 0,AD")(R(@',0,AD") = 1) (0h) ol (v0) 1r=0),
— (b(',0, hD/)(thdvh)|md:0|(thdvh)‘wdzo)(J) ,

has a limit as h — 0.

Remark 8. As in Proposition J.7 the right hand side of (92) does not have a priori limit and we
do not know if each term of the sum has a limit.

Proof. We begin by an observation on regularity of traces. From the definition of g (see (25)), the
terms 0(h*P)g} are in D(P) for j = 1,2. The term [0(h*P),alup, = 0(h*P)(aun) — af(h*P)uy, is
in D(P), it is clear for §(h?P)(auy) and af(h?P)uy, is in HY(Q), a direct computation shows that
P(af(h?P)uy) is in L?(Q) and af(h?P)uy, satisfies the Zaremba trace condition as (h?P)uy, satisfies
it. This implies that ¢, € H'(Q). In particular we have h*D2 vj, = hg, — (R(z, hD') — 1)vy,, then
(Opsc(b)hQngvh)\deO = (h Opsc(b)qh)\wd:(J - (Opsc(b)(R(xvh’D/) -1+ Z.ha)vh)\wdzo € LQ(ZEd = O)a
for b compactly supported and using properties (88). In this analysis we do not estimate the size of
the norm with respect h but this allows to give a sense to some terms appearing in what follows. We
introduce the following quantity which is real

A= i (0w, hD)AD, + Dy, b, hD') Youl (B2D2, + R(w,AD') = 1+ iha)on) 12 , o)

— ((#*DZ, + R(z,hD") — 1 + iha)vy|(b(z, hD')hDy, + hDy b(z, hD’)*)vh)LQ(WO))

((®(@, ADYAD., + hD b, AD'Y Yonlan) 2, 0

- (qh|(b(xv hD/)hDId + thdb(I’ hD/)*)’Uh)L2(Id>O))'

As hD, b(z,hD")* = b(z,hD")*hD,, + op,.(ro) where ro € S, we obtain
IA]'S llanll 2 @a>0) (lvnl 2w o>0) + 1ADzyvnl L2(04>0)) — 0 as h — 0,

by (88).
Let

B = ((h*D3, + R(z,hD") — 1 + iha)vy|(b(x, hD')hDy, + hDy b(x, hD')* )vy) (93)

L2(Id>0) :
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We have by integrations by parts
B = ((b(z,hD')hDy, + hDy b(x, hD')*)(h* D2, + R(x, hD') — 1+ iha)vy|vp)
+ ((b(@, hD")h Dy, + hDy,b(x, hD")*)ihavy|vp)

L2(24>0)
L2(z4>0)
- ih(((b(m, hD') + b(z, hD')*)(h* D2, + R(x, hD') — 1)vh)|wd:0|(vh)‘zd:0)o. (94)
Let
C = ((b(z,hD")hDy, + hD, b(z, hD’)*)vh|h2D§dvh)L2(zd>O).

We have by integration by parts

— / I\ %
C= (thd (b(x, hD'\hD,., + hD,,b(x, hD') )uh|thdvh)L2(w0)

— ih(((b(w, hD' YDy, + hDy b, hD')Yon) ol (BDy0h) ,=0)

= (hW*D2 ,(b(x,hD")hDy, + hDy b(z, hD/)*)vh|vh)L2(md>0)

- ih( [hD., (b(z, hD")hD,, + hD,b(x, hD')*)vs] ‘md:0|(vh)|md:0)0
- ih(((b(m, hD')hDy, + hD,b(x, hD')*)v) ‘zd:0|(thduh)‘zd:0)0. (95)
The terms with damping term a, coming from A and B, give a term
_ 4(ihab(x, hD/)thd”h|vh)L2(md>o) +h? ( Opsc(ro)vh|vh)L2(md>0)
+ h? ( Opsc(FO)thdvh|vh)L2(md>O)’
where ro, 7o € S, From this, (94) and (95) we obtain
A= ih*l([hz’Did + R(z,hD") — 1,b(x, hD'Yh Dy, + hDy,b(z, hD’)*]vh|vh)L2( )
Tq>
+ 4(ab(x, hD/)thdvh|vh)L2(md>0) + hO(||vh||%2(;Ed>O) + ||hDvh||%2(;Ed>O))
- (((b(:c, hD') + b(z, hD')*)(h2D2, + R(z, hD') — 1)vh)‘zd:0|(vh)|md:0)0

+ ([#Da, (b, AD' V0D, + hD bl AD') ] ‘md:0|(vh)|md:0)0

n (((b(x, hD'YhD,, + hD,, bz, hD’)*)vh)‘md:0|(thdvh)|md:0)0. (96)
By symbol calculus we have
ih~'[h*D2 + R(z,hD') — 1,b(x,hD')hDy, + hDy b(z, hD')*] (97)
= Op, &7 + R(x,€') — 1,2b(x,€")a} + hop,.(ro) + hop,e(Fo)h Dy, (98)
where 1o, 79 € SY, . Propositions 4.2, 4.5 and 4.6 imply that
(OPa{€3 + Rlw,€) = 1,26(x, €)Eubonlvn) 1oy, o — (s {9 26}) a5 b 0. (99)

By Proposition 4.6 the term 4(ab(z, hD/)thdvh|vh)L2(zd>0) — (1, 4ba&q) as h — 0. And we have

|(hopge(ro)vnlvn) L2(ws>0) | S hllvnllF2(pys0) = 0 as h = 0,
|(h’Opsc(FO)thdvh|vh)L2(wd>0)| S h||hD1dvh||L2($d>0)||vh||L2($d>0) —0ash—0.
Then this and (99) imply that

ih*l([hz’Did + R(z,hD') — 1,b(x, hD'Yh Dy, + hDy,b(z, hD’)*]vh|vh)
Lz(Id>0)

+ 4(@()(.’157 hD/)thdUh|Uh)L2(zd>0)
= {1, {p, 2b} + 4ab&q) as h — 0. o
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We now treat the boundary terms coming from (96). We have by symbol calculus

b(z, hD') + b(z, hD")* = 2b(z, hD") + hop,(ro),
b(x, hD')hD,, + hDy,b(x, hD')* = 2b(x, hD')hD,, + hop,.(ro),

hD,,(b(z,hD")hD,, + hD, b(z,hD")*)
= (b(x, hD") + b(x, hD/)*)h2ng + hopg.(ro) + hop,.(To)hDy,,

where 79,79 € S{,,. Then boundary terms of A can be written as

— ((@b(a, D) (B, hD) = 1yon) , |00 =)

n ((21)(:1:, hD')thd“h)|md:o|(thd”h>Iw:0)ov (101)

up to terms estimated by A|((0p(ro)vn)js,=ol(vh)z,=0) | + Al ((0P(F0) A Ds 01 j,=0| (Vh) 12,~0 ) | and
these terms converge to 0 from (88). Recalling that A — 0 as h — 0 and A real valued, we deduce
Proposition 4.8 from (96), (100) and (101). O

4.2 Properties and support of semiclassical measure

Here we decompose the measure into an interior measure and a measure supported at boundary.
Moreover this last measure is supported on &; = 0.

Lemma 4.9. There exists a non negative Radon measure i° on xq = &4 = 0 such that i = 1,,~0p+
12 @ 84y—0 @ 8¢ —0. Furthermore p® is supported on R(x',0,¢") —1 = 0.

Proof. We apply Proposition 4.8. We observe that H, = 2£430,, — (05,R)0¢, + H, where Hf, =
S 01 (B¢, R)Dx, — (80, R)Oe,). We have Hy(€ab) = 263(05,b) — (Bu,R)D + EgHpgh. Let b = b° =
ex(za/e)l(z, &), where x € €5°(R), such that x(0) = 0 and x'(0) = 1, £ € €5°(R% x R4~1). We have

Hyp(£ab%) + 2ab°Eq = 265 (wa/e)0(x, &) + 2ex(wa/€)E500, L — (O, R)eX (2a/e)l(, )
+ &aex(za/e)HRl + 2cax(za/e)l(x, £).

Clearly Hp,(£qb%) + 2ab®¢, is uniformly bounded on the support of p and Hp(Eq0°) + 2ab°&y —
262X/ (0)01,,—0 everywhere as € — 0. Then by Lebesgue’s dominated convergence theorem we have
(p, Hy(£aD%) + 2ab°€q) — (1, 26301 ,,—0) as € — 0. As x(0) = 0, the right hand side of (92) is 0 for
every h. Then (u,26201,,-0) = 0. This means that 1,,_ou is supported on &; = 0. We denote p?
the measure 1¢,—oly,—op. As p = 1y, >0 + lo,—op, we have u = 1,50 + pd @ Ozy=0 ® 0g,—0. We
have by Proposition 3.1, (€2 + R(z,¢&') — 1)1,,—0p = 0, then (R(2’,0,¢&’) — 1)u? = 0. This gives the
conclusion of Lemma. (|

The Hamiltonian of the interior measure is a priori a distribution of order one supported on
xq = 0. The following lemma says that this quantity is a measure if the Hamiltonian vector field is
transverse to the boundary.

Lemma 4.10. We assume that ap = 0. There exists a distribution (of order 1) po defined on
xq = 0, such that Hy(ply,>0) = 0p,=0 & po. Moreover, in a neighborhood where Hpxq > 0, po is
a non negative Radon measure, and in a neighborhood where Hyzq < 0, po is a non positive Radon
measure.

Proof. The support of Hy(uly,>0) as a distribution is x4 > 0 and H,(u) = 0 on 24 > 0. Then
H,(11y,50) is supported on x4 = 0. This implies that there exist n > 0 and p; distributions on
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zq = 0 such that Hp(uls,>0) =370 ) ® pk. Suppose that n > 1 and let y € %5°(R), be such

IdZO

that x(*)(0) =0 for k =0,...n —1 and x™(0) = 1. Let b € €§°(R? x R?"1), we have

{50, Hy (e x(a/2)b(x,€)) = (Hpp "x(za/e)b(x, €))
= (32690 @ i, e"x(wa /)b, €)) = {pn, (', 0,€).  (102)

7=0
We also have

Hy(e"x(za/e)b(x, &) = 26ae™ X (za/e)b(x, &) + " x(wa/) Hpb(x, '),

which is bounded uniformly with respect € and supported in a fixed compact set. Then if n > 2,
H,(e"x(za/e)b(z, &) — 0 everywhere as e — 0 and (102), Lebesgue’s dominated convergence
theorem imply that p, =0 for n > 2. If n =1, Hy(ex(zq/e)b(x,&)) = 2841a,—0b(x, &) everywhere
as € — 0. Lebesgue’s dominated convergence theorem and (102) imply that

_</L1$d>07 2§d11d:0b(xa 5/)> = <:u15 b(I/v Oa €I)>,

as (ulg,>0, 284l ,—0b(z, &) = 0 we find that py = 0. Then we have Hy(plsz,>0) = 0z,=0 fo, where
1o is a distribution of order 1.

If Hyzg # 0, let (z(s;a',€),&(s;27,€)) the solution to (&,&) = H, satisfying the initial condition
(2(0;27,€),£(0;27,€)) = (2/,0,8). We verify that the map (s,2’,&) — (z(s;2/,¢),&(s;2/,&)) locally
is one to one and transforms 0y in H,. Moreover, s = 0 is transformed in x4 = 0 and if H,zq > 0,
s > 0 is transformed in x4 > 0, if Hyzq < 0, s < 0 is transformed in 4 > 0. In coordinates
(s,2',&) the equation Hy(uly,>0) = 0z =0 ® po is transformed in s (plsso) = ds=0 @ po if Hpzq >0
and Os(uls<o) = ds=0 ® po if Hyxq < 0, where we keep the notations p, po in variables (s,z’,&)
for the images of p,po. If Hyxg > 0, we have plsso = (lsso0ds) @ po and if Hyxg < 0, we have
1ls<o = —(ls<ods) ® po. As p is non negative, we obtain that pg is a measure and its sign. O

At the hyperbolic region the measure o has a particular structure given by this lemma.

Lemma 4.11. We assume that ap = 0. Let (x(,&)) be a hyperbolic point (i.e. R(x(,0,&)) < 1).
Locally in a neighborhood of (x(,,&)), there exist p* and = non negative measures on Rxfl X Rgfl

-t - e - /
such that pg = p ®55d2m—u ®5€d:im. Moreover, if in a neighborhood of xy,
(vp)n satisfies the Dirichlet boundary condition or the Neumann boundary condition then p+ = u=.

In a neighborhood of T' we have the following property, if u= = 0 (resp u= = 0) then u= =0

(resp ut =0).

Proof. As p is supported on &2 + R(z,&') — 1 = 0, this implies that d,,—0 ® po is supported on
& + R(z,&') — 1 =0, then g is supported on &g = £1/1 — R(a/,0,¢"). Moreover Hy, = 2£40,, + X
where X is a vector field tangent to x4 = 0, in particular Hyzq = 2§4. This implies that H,zq > 0

it &g = /1 —R(2/,0,¢') and Hyzq < 0 if g = —/1 — R(2',0,¢’). From Lemma 4.10, we obtain
o = pt ® 6&1:\/% —u® 6&1:—\/W' From Proposition 4.7 if by, ,—¢ is supported
on a part of the boundary such that (vy ), satisfies the Dirichlet boundary condition (resp. Neumann
boundary condition), then the right hand side of (91) is 0. Then we have (H,u,b) = 0 which implies
(Wt —p=,bjg,=0) = 0 as by, describes every ¢5° function supported in a neighborhood of (xf, &),
this implies that u™ = g~ in a neighborhood of (zf, &)).

Now to obtain the result in a neighborhood of T, it suffices to take b € €5°(R¢ x R4~2) positive.
Here we use notation defined above Formula (64). As 65°(z1 > 0) is dense in H'/2(x; > 0) (see
[33, Theorem 11.1]), we can approach in o2 (for h fixed) (vp)|z,—0 by a sequence (wy ), of smooth
functions supported on x; > 0. We have (b(az’, 0, hD”)wn|(thdvh)|wd:0)0 = 0, by support properties
and passing to the limit we have (b(:z:’, 0, hDN)(Uh)|:cd:0|(thdvh)|zd:0)0 =0, for each h. As above
we obtain (u* — p~,bjy,—0) = 0. If p= = 0 we have (u*,bj,,—0) = 0 for all b independent of &;
supported on a neighborhood of a point p of I' x R9~!, as u* is a non negative measure we obtain
uT =0 in a neighborhood of p. O
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We recall that G = {(2/,¢'), R(2/,0,¢') = 1 and 9,,R(2',0,&') < 0} is the set of diffractive
points.

The following lemma states that the diffractive points whose projection belong to d€)p are not
in the support of the measure.

Lemma 4.12. We assume au = 0. We have 1gdm(aQDNde71)ua =0, where 0QpNy = 0Np Uy .

Proof. We apply Proposition 4.8. We have to choose an adapted function b. Let xy € % be
such that x(o) = 0 if |s| > 2, x(o) = 1 if |o| < 1. We apply Proposition 4.8 with b(z,¢') =
X((1 = R(x,&"))/e)l(x, & )x(zq/e), where € > 0 will be chosen in what follows and ¢ is supported in
a neighborhood of a point of 9Qpy x R x R4~1. We recall that H, = 28405, — (03,R)0¢, + Hp; (see
the proof of Lemma 4.9). We have

Hy(ab) = 263 (= (Do, X (1 = R(2,€))/2)l(w,€ )x(wa/e) ¢
(1= R(w,€))/2)(0r, 0, €)X (wa/e)
X(1 = R(@,€)) )z, € (wa/e) e
<auR>x<< — R(@,£))/e)(@,€ )x(@a/e)
M(1 = R(w,€)/2)x(a/)eaH Rtz €)) (103)

We claim

H,(b€4) is uniformly bounded on &3 + R(z,¢') =1,

Hp(bgd) (8zdR(33 0 5 ))1R x/,0,6")= 111d:0€(x/705€/) ase —0

for all (x,€), such that &2 4+ R(x,&’) = 1. (104)
As p is supported on &2 + R(z,£') — 1 = 0, then &2/e = (1 — R(x,¢'))/e on the support of p, this
implies that the three first terms in (103) are bounded. It is easy to prove that they converge to 0 as
€ to 0. The fourth term is bounded and converges to —(0,,R(2",0,£))1p(ar 0.¢/)=11z,=0f(2’,0,&").
In the last term as |R(z,&’) — 1|/e is bounded, thus |£4] is bounded by C4/¢ and then this term

converges to 0 as € — 0. This proves (104). From that we can conclude that (u, H,(¢£4)) converges
to

</1'7 —(ade(fL'/, 0, 5/))1R(I,,O,El):11$d:O€($/7 0, 5/)>
= (1%, = (0u, R(2',0,)) 1 Rar 0,)=1£(z',0,€")), (105)

as ¢ — 0, which is a non negative term if [ is non negative and supported in a neighborhood of a
point of Gg.
We now assume ¢ supported on a neighborhood of a point of 9Qp. Let

Ao = ilzli% ((b(I/, 0, hD/) (R(xla 0, hD/) - 1) (vh)\wd:0|(vh>|md:0)0
_ (b(x/,o,hD/)(thdvh)‘zd:d(thdvh)‘zdzo)O)

= — lim (b(z",0, hD")(hDy,vn)zy=0|(RDg 0k |21=0) (106)

0’

as vp, satisfies the Dirichlet boundary condition. We want to prove that A. < 0. By Garding
inequality (9) (in fact used for R9~! instead RY) we have

= (b(a",0, AD")(h Dz, 01) s =0| (h D 100 2=0) g < Ceh|(hDs,vn) =072

Taking the limit as h — 0, Proposition 3.12 implies that A, < 0. As (105) is non negative, this
prove that

(10, =0z, R(2',0,€") L iar 0,6n=1(2",0,€')) = 0. (107)
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Then 1g,1® = 0 on 9Qp as £ can be arbitrary chosen.
We now assume ¢ supported on a neighborhood of a point of 9Qx. With A. defined in (106) we
have, as (hDz,vp)|z,—0 = 0 on the support of ¢

A = %li% (b(z',0,hD")(R(z",0,hD") = 1) (v8)|2,=0l(VA) 2,=0)
= }];li% (Opsc (X((l - R(‘Tlv 0, 5/))/8)£(x/7 0, 5/)(R(£L'/, 0, hﬁ”) - 1)) (Uh)|md:0|(vh)\zd20)0'

From Proposition B.7, A, goes to 0 as ¢ — 0. Then from (105) and Proposition 4.8 we obtain (107)
in this case and 1g,u? = 0 on 9Qy. O

This lemma describes how the support of the boundary measure propagates along the boundary.

Lemma 4.13. Let (x7,&) € T*0Q be such that x € 00p Uy Let (x,§) € T*Q, we denote v, ¢)
the integral curve of Hy, starting from (x,§). We assume that p is locally supported in a neighborhood
of (20,0,&,0), in the set {(x,£), & + R(z,&') = 1, such that Y(w,e) hits zg = 0, & = 0}. In
particular g is supported on §q = 0 and po = fig @ dg,=0 + f1 @ O¢,_¢, where fig is a distribution
and i1 is a Radon measure. Then H&ua —2ap? +jig =0, fi1 =0 and Hyp = —0,,R(2",0,)u? @
O24=0 ® 0¢,_o + 2a? ® 0py—0 @ 8¢, =0, in a neighborhood of (x),0,&),0).
Proof. We have j1 = 1,,~0pt + 1% ® 84,—0 ® d¢,—0. Then we have
Hppo= p1o ® dpy=0 + 2&1[18 & 5;%:0 ® 0gy=0 — (&cdR(I/, 0, 5’))u‘9 ® 0py=0 @ 5/&1:0
+ H;%/La ® 0z =0 ® dg =0
= pto ® 0gu—0 — (02, R(2',0,€))? ® 6py—0 ® 04— + Hppi? ® 6540 ® G¢,—0, (108)

as fd,u%;dzo ® dg,=0 = 0. As pg is of order 1 and supported on {; = 0, we have pg = fig ® d¢ =0 +
fi1 @ O¢,_, where fi; are distributions.
To prove that fi; is a Radon measure, we test o on ¢ = Egp(x’, & )x(€4/¢). The first derivative

of ¢ are estimated by supremum of ¢(a’,&')x(€a/e), ¥(a’, €)Y (€a/€)éa/e and Eadu(a’,€ )x(Ea/e):
When e — 0 the supremum on ¢ is estimated by supremum of ¥ (z’,£’). We also have (ug, )
converging to (fi1,¢(2',£")) as e — 0. We deduce that {(fi1,1(2’,£’)) is estimated by the supremum
of ¥(a’,&"), this implies that fi; is a Radon measure.

By Proposition 4.7 and if b € €5°(R? x R?~1) is supported in 9Qp UIQ N and in a neighborhood
of (x(,0,&,0), we have (H,u — 2ap, b(z,£')) = 0.

Let b € 65°(R? x R71), be such that by,,—o = £ € €5°(R¥™! x R471), and x € 65°(R), be such
that x(o) =1 in a neighborhood of 0. From (108) we obtain

(Hypt — 2ap1, bx(wa/€)) = (io + Hin® — 201, £) — 2als s o1, by(wa/c)).
As bx(z4/e) is uniformly bounded and by(z4/e) converges to bl,,—o everywhere, we obtain
(aly,sop, bx(za/e)) = (aly,>op, bly,—0) = 0 as e — 0.

We deduce that Hj%ua — 2ap? + fip = 0, which gives the first conclusion of Lemma. We deduce
from (108)

Hyp = (ju — (0, R(2',0,6))p”) © 8520 @ 0, + 2ap1” ® 6z,=0 © S¢,=0- (109)
We then can write
(i, Hyb(,€)) = (fir — (00, R(2',0,€))u?, 9¢,b(a’,0,¢',0)) — (2ap®, b(2,0,£',0)), (110)

for b € €5°(R? x RY).

Now we choose an adapted b to apply (110). Let x € €5°(R) be such that x(c) = 1 for o
in a neighborhood of 0. Let £ € €5°(a’,¢’) be supported in a neighborhood of (z(,&)). We set
b(x, &) = &al(x', & )x(&a/e)x(xa/€e), where € > 0. We have

Hyb(w,€) = 20(z', €' )x(§a/e)X (wa/)d /e — (a',€') (Ou, R(x, &)X (wa /) (X(Ea/€) + X (§a/€)€u/ )
+&aHR(U(2',€))x(Ea/e)x(wa/2).
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As X' (za,e)x(£a/2)E2 /e, X(za/e)Xx(Ea/e)€a/e and Eax(€a/e)x(wa/e) are uniformly bounded and goes
to 0 as € goes to 0, and x(&/¢)x(xa/e) goes to 1ly,=0¢,=0 and is uniformly bounded. We have
(u, Hpb) goes to (1, —1,,=0.e,=0 (0, R(x’,0,&"))l(x',£")) as € goes to 0 and we have

(11, =Loy=0.64=002, R, 0,€")e(a",€)) = —(u?, (9s,R(z', 0, €)) (2", €")). (111)

The term (2apu?, b(z’,0,¢’,0)) goes to 0 as €, as b goes to 0 uniformly as & goes to 0. Now we compute
the limite as e — 0 of (i1, 9¢,b(2’,0,&’,0)). We have

aﬁdb(xlv Ld, 5/7 gd) = E(xlv §I)X(§d/€)X(xd/€) + €($l7 gl)xl(gd/g))((‘rd/g)gd/g'
Then O¢,b(z',0,¢,0) = £(2',¢’) and

(fir = (0, R(a",0,))n”, Be,b(a',0,€',0)) = {fir — (0, R(x", 0, (o', €))
= —(u?, (8., R(',0,E)Nl(2', €))

from (110) and (111). We deduce that i1 = 0 and the last result of the lemma from (109). O

We have an analogous result to Lemma 4.13 in a neighborhood of Zaremba condition. To be
precise we recall the notations defined in Formula (64), we have R(2’,0,¢') = €2 + Ro(z",¢") +
21722, €'), where 2’ = (21, 2") and € = (€1,€”), Ro € S((€")2, (dz")? +(€") 2(d¢")?) and 5 € S?

tan*
Lemma 4.14. We assume that (vp,)n satisfies the boundary Zaremba condition neighborhood of
(0,2). Let £ € G°(RE " x RE?), where & = (£1,€"). Then (Hpu® — 2ap® + po,t) = 0. In
particular if 12 is a measure supported on x1 = & = 0, this means that u° = 2 ® Op,=¢,=0 and
if po s supported on 1 = & = &g = 0, this means that there exists [ig, and f[iq g distributions of
order 1 on Rg;l X Rg;l, for a = (0,0,0) or (1,0,0) and B € {(4,0,k), j,k = 0 or 1} such that
o = flp ® 511:&:50120 + Z|a\+|5\:1 ﬂa,ﬁ ® 638?511:51:5d:0. Then Hﬁoﬂa - 204]6 + fo = 0, where
Hp, = Z2§j§d—1 (85].R0(:1:",§”)81j - aijO(Ivan)aéj)'

Proof. Let b € ¢5°(R? x R~2) be such that by,,_o = ¢. We apply Proposition 4.7 to b(z,£”). As in
the end of the proof of Lemma 4.11 we have (¢(x/, hD")(vh)|z,=0l(hDeyh)|z4=0) , = 0. Then we have
(Hpp—2ap,b(z,&")) = 0. We follow the same ideas of the proof of Lemma 4.13. From Formula (108)
we have

(Hep® = 2ap® + po, £) — 2(ale,sop,b) = 0.

Let x € €5°(R) be such that x(c) = 1 in a neighborhood of 0. Taking b.(z,£") = x(zq/e)l(x',£")
and letting € goes to 0, we obtain (Hpu” — 2ap® + 1o, ) = 0. We have H}, = 2£,9,, + H, + H,

x17re)

and H, . 0(2,&") = a1 H] ((2,€"), as ¢ independent of £;. We deduce from the form of ;2 that

Hipp? = H}{,U[LB @ Opy—g,—0. Taking £(z',€") = x(x1)(z",£"), we deduce from the form of pg
(Hppp? = 2ap? + po, 0) = (Hf, i° — 2a1° + fig, £) = 0. This implies the result. O

5 Support propagation results

In this section we prove propagation of support of semiclassical measure under the assumption mGCC,
see Definition 1.2.

Proposition 5.1. We assume that P, a(x) and Q satisfy mGCC. Let u the semiclassical measure
constructed from (vp)p and satisfying (33), we have p = 0.

We prove the propagation result, first in interior which is a classical result, second in a neighbor-
hood of a point on the boundary with Dirichlet or Neumann conditions and third in a neighborhood
of a point on I'.
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5.1 Propagation in interior domain {2

Here we use the fact that ap = 0. From Proposition 4.1, we have Hpp = 0. It is then classical that
0 in invariant by the flow of H,. More precisely, let pg € T*Q and we assume that (s, po) € T*Q
for s € [0,1]. Let b € €°(2 x RY) be such that b(y(—s,.)) is supported in T*( for s € [0,¢], we have

<FY* (ta '):ua b> = <:ua b(’}/(_ta ))> = <,LL, b>

5.2 Propagation at boundary: hyperbolic points

The propagation results given in this section are classical for Dirichlet boundary condition. We prove
a propagation result for Neumann boundary and in a neighborhood of I which is new in context of
semiclassical measure. We use the geometry context defined in section 1.2, in particular j and the
definition of the different flows.

We prove that the support of measure is locally empty in the future assuming that in the past the
support of measure is locally empty but by symmetry we can deduce that the support of measure is
locally empty in the past if we assume that the support of measure is locally empty in the future.

Recall that we choose coordinates such that p(z, &) = €2 + R(z,£’) — 1 and locally Q = {z4 > 0}.
In this section we use that ap = 0.

We recall that a point (z(,&)) € T*0Q is in H, if R(x(,0,&)) —1 < 0. We apply Lemmas 4.9
and 4.11. We have p = 1,,50p and Hpp = p* @ 5£d:m —pm®0, R0 Vith
pt=p.

We call 4* the integral curve of H, starting from (x, x4, &), £4/1 — R(2/,0,¢')). If we assume
that the support of p = 1,,5op is empty in a neighborhood of v~ (s) for s < 0 and |s| sufficiently
small, then p~ = 0. This implies u* = 0 and Hyu = 0. As Hlzy<o = 0 and vt (s) is in x4 < 0 for
s < 0 and |s| sufficiently small, this implies that 4 = 0 in a neighborhood of 4*(0).

Remark 9. In a neighborhood of points in 0Qp U 0Qn we can prove a propagation of measure
because we have proved py = p— but we do not know if this property is true for points in I'.

5.3 Propagation at 0Q2p U 0Qy
5.3.1 Propagation at gliding points

We recall that a point (z(,&)) € T*0 is in G,, if R(x(,0,£)) —1 =0 and 9., R(x(,0,&)) > 0. Let
v be the integral curve of Hj, starting from (x(,0,£),0). Then ~(s) into {xq < 0} for s # 0 and
|s| sufficiently small. In a neighborhood of (z(, &) in T*0% all the point are either hyperbolic, or
gliding. We assume that 5 (v4(s0; 2, &))) Nsupp p = @ for sy < 0 where |so| is sufficiently small.
Here 7, (s; 20, &) = I'(s; 2, &), then all the point p in a neighborhood of j~* (v,(s0; 24, &))) are not
in the support of u. By continuity of I' the curve I'(s; p) hit the boundary at p’ in a neighborhood
of (z,&). If p' is an hyperbolic point, by the previous result the point j~*(I'(s; p)) are not in the
support of u. If p' is a gliding point, all the points I'(s; p) are strictly gliding. In particular this
implies that p is supported on x4 = 0, then 1,,50p = 0 and po = 0. We can apply Lemma 4.13 and
n? satisfied Hiu? = 0. Let v, be the integral curve of Hj, starting from (z(,&)). As by assumption
19 @04,—0®@0¢,—0 = puis 0 in a neighborhood of j = (v4(s0; z(, &))), we have u? = 0 in a neighborhood
of v4(s0) and Hpu? = 0, this implies that v,(s) is not in the support of u? in a neighborhood of
s=0. As = p? ® 8,0 ® 8¢,—0 we have p = 0 in a neighborhood of j~*(x, &}).

5.3.2 Propagation at diffractive points

We recall that a point (z(),&)) € T*0Q is in Gy, if R(x(,0,&)) —1 = 0 and 9,,R(z(,0,&),) < 0. We
keep the previous notation for . For a point p in a neighborhood of (xf, &) € T*9Q U T*Q, there
are three cases, first the integral curve passing through p hits 4 = 0 at an hyperbolic point and
by previous result the integral curve is not in support of u, second it does not hit x4 = 0 and the
integral curve is not in the support of p by propagation result in interior, third the integral curve
hits 24 = 0 at a diffractive point. Then the support of u? is in G, and the support of 1,504 is into
{(2,€), &+ R(z,¢') =1, such that v(, ¢) hits 24 =0, & =0}.
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If (zf,0) € 00 pUINN we can apply Lemma 4.12, then u? = 0 in a neighborhood of (), 0,£)). As
the integral curves hitting x4 = 0 at an hyperbolic points are not in the support of 1,,50u, then o
is supported on §g = 0. We can apply Lemma 4.13 to obtain o = 0. Then Hyu = H,(15,501) =0
and as, by assumption, v(s) is not in the support of i for s < 0, |s| sufficiently small, we deduce that
~(0) is not in the support of u.

5.3.3 Propagation at boundary: integral curves with high contact order

We recall that if (z(,&)) is such that R(z(,0,&),0) = 1, 0,,R(x(,0,&,0) = 0 and if we denote
by v(s) = (2/(s),za(s),&(s),&€a(s)) the integral curve of H), starting from (z(),0,£),0). By the
assumption made (see Definition 1.1) there exist ¥ € N, &k > 3 and a # 0 such that z4(s) =
ast + O(s"1). We denote y,4(s) = (2,(s),&,(s)) the integral curve of Hf, starting from (zf, £).
For each k we assume that we have already proved that the integral curves hitting x4 = 0 at a point
in G7 for j < k or H are not in the support of .

Case k even, o < 0 The integral curve of H), starting from a point belonging to 7%Q in a
neighborhood of (x{), &) in T*0Q U T*Q eventually hits x4 = 0 at a point p/, in H or G/ for j < k
(see Section 1.2 for definition of G7). By assumptions and by induction this integral curve is not in
the support of p except if p’ is in G*, but in this case this integral curve is in x4 < 0. This implies
that 1,,50p¢ = 0, then po = 0. By Lemma 4.13, we have H&ua = 0 and as, by assumption, v4(s) is
not in the support of u? for s < 0, |s| sufficiently small, we deduce that 74(0) is not in the support
of u?.

Case k odd, a < 0 By the same argument as in previous case, the integral curve of H,, starting
from a point belonging to 7% in a neighborhood of (z{,&}) in T*0Q U T*Q hits G* or is not in
the support of p. Denote by p’ the point of this integral curve hitting x4 = 0. The generalized
bicharacteristic starting from p’ is on x4 = 0 for s > 0 and in 24 > 0 for s < 0, and for s > 0
all the points on the integral curve of HY, are in G, if |s| is sufficiently small. As, by assumption
the generalized bicharacteristic is not in support of p in the past, this means that 1,,-0p = 0 then
o = 0. We can apply Lemma 4.13 then Hyu? = 0. But v,(s) is not in support of u = u° for s < 0
and |s| sufficiently small as v,(s) € G4, then 7,4(0) is not in the support of u?.

Case k even, o > 0 By induction, only the generalized bicharacteristics with the same order of
contact k and the same sign condition o > 0 can be in the support of p. Applying Lemma 4.13 we
have —0,,R(x",0, )1’ @ 64,—0 @ d¢,—0 = 0 as by induction, u? =0 when 9,,R(2',0,¢') # 0. We
deduce Hyp = 0. Then the propagation the support of p is invariant by the flow of H,.

Case k odd, o > 0 By induction, only the generalized bicharacteristics with the same order of
contact k and the same sign condition o > 0 can be in the support of . We can apply Lemma 4.13,
and by the same argument used in the previous case, we have Hyu = 0 and as y(s) is in x4 < 0 for
|s| < 0 sufficiently small, v(s) is not in the support of u for s < 0 and by propagation (0) is not in
support of u.

Proof of Proposition 5.1, first case. By assumption for a point p € TpQ2 = T*Q U T*9Q with 7(p) €
QU U NN, we have assumed that 7(I'(so, p)) € {z € Q,a(x) > 0} for some sy € R and for
every s € [0, so], if 7[(s,p) € T then I'(s, p) € H. As supp p is a closed set, if p € supp p there exist
51 € [0, 80] such that 57T (s1, p) Nsupp p # 0 and j~T'(s, p) Nsupp u = 0 for s € [sg, 51). At ['(s1,p)
we can apply the results obtained in this section to prove that j~1T'(s1, p) Nsupp p = (), and reach a
contradiction. (|

5.4 Propagation on I’

Now we prove Proposition 5.1 in the second case, i.e. 7(p) € I'. We recall that we can change the
coordinates such that locally in a neighborhood of T' we have Q = {zg > 0} and T = {zg = 71 =
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0}, moreover, in the coordinates (z1,z”,74) = (2',24), we have R(2',0,&") = & + Ro(a”,¢&") +
x1r9(2’,&"). By the result obtained from the previous section, suppu C {z1 = 0,24 = 0, & = 0},
in particular 1,,>op = 0 and po = 0. Let p = (x(,&)) € T*0N such that z(, € I'. Then the measure
verifies 1 = p? ® 6,,-0 ® 6¢,—0 and u is supported on ;1 = 0.

We have to distinguish two cases, first if Ro(z”,£”) —1 < 0 and second Ro(z”,&”) =1 even if
the result is the same in both cases.

5.4.1 Case Ro(2z",¢")—-1<0

Let & (2", €") the positive solution in &; of &2 + Ro(z”,¢"”) — 1 = 0. There exist T (2", £") measures
such that ILLB = /L+ (IN, 5”) X (le:() X 551:& (111)5//) + /Li (.I”, g”) X 511:0 [ 551:_51 (m”,ﬁ”)- Lemma 414
implies that (Hyu?, £(2,£")) = 0.

Let S(a’,&") = Ro(2",&") + x1ra(a’, &), we have on x4 = §; = 0,

H;% =260, — (6I15($I=€/))651 + Hg’,v (112)
where Hf, = 25;21 (85].R(:1:’, 0,£)0z; — 0, R(2, o,g’)agj). Observe that on z; =0, Hy = Hp, .

Hips? = 26, (2", €)™ (2, €") © 81 _o ey o )
2612”0, €) © 8,y © by are)
- (851 S($I7 5’))/'["_ ('II/7 5”) ® 6:61:0 ® 621:§I(I//15N)
- (8'51 S(II7 5’)):”’_ (‘rlla g”) ® 511:0 ® 5,{512751 (11/75//)
+ H}x/’o:qu (@",") ® 62,20 ® 551:51(1”75”) + H§0u7 (2",€") ®dz,=0 ® 551:—51(1“,5")'
Let x € 65°(R) be such that x(o) =1 for o in a neighborhood of 0. Let ¢(a,£") = z1x(x1)b(2,£")
where b € €5° (R x R472). We have
(Hpu® (o', €")) = =2(&1(a”, ")t (2", €"),b(0, 2", ") + 2{€a (", €)™ (2", €"),0(0,2",€")) = 0.

Then pt = p~ as & (2”,€") # 0 in a neighborhood of (z, &)).
Now we take £(z',&") = b(z”,£")x(x1). Observe that (9, S(2/,&’)) = x10¢,r2(2, &) is null on
z1 = 0, we deduce that

(Hpu® U2’ ")) = (Hp, (n* (2", €") + ™ (2",€")),0(2" ")) = 0,

then, as ut = p=, Hp p* = Hj p~ = 0 with the previous equation. Then the support of u*, u~
and u? propagate along the integral curves of H #,- By assumption mGCC (see Definition 1.2) all
these curves hit the set a > § > 0, we obtain that 2 = 0 in a neighborhood of such a point (z, &)).

5.4.2 Case Ro(z", ") =1

By the result obtained in previous section the measure ;2 is supported on z; = & = 0, then we have
pl = f(x",€") @ 8z,—0 ® 6¢,—0, where ji is a non negative Radon measure. We deduce from (112),

as O, S(2',¢') =0on z, =0,
Hﬁ%ﬂa = Hﬁoﬂ(l'/l,g”) ® 6I1:0 ® 551:0'

Taking £(2',&") = b(a”,&")x(x1), where x € €5°(R) and x(s) = 1 for s in a neighborhood of 0,
by Lemma 4.14, and arguing as in the previous case, we have H go i = 0, then the supports of [
and p? propagate along the integral curves of H %0' As in the previous case we obtain x? = 0 in a
neighborhood of such a point (x(, &)).
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A Proof of Lemma 4.4, Zaremba regularity result

It is well known that the solution of elliptic equation of second order with Zaremba boundary condi-
tion is in H* with s < 3/2 for a data in L?, see for instance Shamir [42], Savaré [41] . Here we have
to prove that the solution is in semiclassical Sobolev spaces.

We start from (88) and equation h?Puvj, — vy, + ihavy, = hqy,. We have h2Puvy, + vy, = 1), where
rn = 2vp, — ihavy, + hgn and we deduce ||ry||z2() < C. We observe that h?P + 1 is a semiclassical
elliptic operator. To prove the result we follow the method used in Section 3.1.4 with the advantage
that the operator is globally elliptic and we keep more or less the same notations introduced in this
section. In particular we do not have to use microlocal cutoff.

We work in a neighborhood of the boundary in coordinate (z’,xz4) and Q is given by x4 > 0
and I' by x; = 0. The symbol of the operator is given by &3 + R(z,¢&') + 1 and R(2/,0,¢) =
& + Ro(2",€") + z1ra(a’,€).

Let x a cutoff in a neighborhood of a point of T, it will fix to 0 in what follows. We set wy, = xsvp,
where Xs5(z) = x(x/d). Let x another cutoff function such that y(z) = 1 if = is contained in a
neighborhood of supp ¥ and we set xs(x) = x(x/d). As v, is uniformly in H. (x4 > 0) and rq is a
differential operator, we have

h2D§dwh + h?D2 wy, 4 0p,(Ro(0, 2", za,&"))wn + 21 x6(2) 0pse(ra(z, &))wy = 11,

where || || L2(0) < C. Let p(z, &) = (€24 €2+ Ro(0, 2", 24, ") + 21 x5(x)r2 (2, €) +1)'/2. By symbol
calculus, we have in x4 > 0

(hDg, + i 0Dy (p))(hDa, + i 0py.(p))wn =1y, where |1 ]|L2(q) < C. (113)
Let z = (hDy, +i0p,.(p))wp, we then have

(hDiEd +Zopsc(p))z = T}z'

2Re((hDa, + 10Dy (p))2]i 0D (p)2) < 2|l ]| 2(0) | 0Psc(P)2 ]| 22, (20>0)- (114)
Integrating by parts (see (56)) we have

(i 0Py (p)2|hDxy2) = (ih Dy 0Dy (p)2]2) = ih(i 0D (p)2|zy=0]2]z4=0)o-
We deduce

2Re(hDy,zliopy.(p)z) = (i[hDzy; 0p4c(p)]212) + (0P (P)2)zs=012|zs=0)o-
As [(i[hDy,,0ps.(p)]2]2)| S h”ZH%?(o,Jroo,ch)v we deduce from (114)
[ Opsc(P)ZH%%mpo) + h(0Ps.(P)2|24=012|z4=0)0 < HT}le(Q)” oPsc ()2l 22 (2y>0) + h|\2’||2L2(o,+oo,Hslc)-
As op,.(p~ 1) op..(p) = Id + hopg.(r1), where 1 € S;;} we have
120720 100,112,) S I10Psc(P)2]1 225,50 + 2l 2l 2.

We deduce
h(Opsc(P)Z\md:0|Z\zd:0)0 S ||TI11||%2(Q)

And by tangential Garding inequality (9) (in R?~! instead of R?) applied to
(0P ({€") 712 0D (p) 0D, ((€1)7%) 0D, ((€1)2) 210 a=0l 04 (€)Y ?) 2100=0 )

we obtain, as (¢} "1p > C >0, hlzjz,=0l g1z S ||T}L||2L2(Q). By definition of z, we have

(hDgywh) wy=0 + i 0Dy (p0) (W) wym0 = b~ /?r}, where |7°,21|H;C/2 <C, (115)
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where po(2/, &) = (R(z',0,&') 4+ 1)/2.

Let B(z",£") = (Ro(x”,€")+1)1/2. We have po(a’,&") = (62 4+ B2 (x", ")+ x1xs572(2', €))1/2. Let
ug = (hDy,wh)|g,—0 and uy = (Wp)|z,—0, we recall that suppuo C {z1 < 0} and suppu; C {z1 > 0}.
As in Section 3.1.4, we have

e (&+ iﬁ(:b”,{’))il/z are holomorphic functions on Im¢; > 0,
& e (& —iB" €M)

Let v = opg. (& +48) Y ?ug. As ug is supported in z; < 0 and (& + i3)~'/? is a holomorphic
function on Im&; > 0, vy is supported in 27 < 0.

We have & (2", £") € S((E'), (da')? + (d€')2), then (& —iB(x", €"))*1/2 € S((E)*1/2, (da')? +
(d¢")?). This implies by symbol calculus that

Opsc(gl - iﬁ)71/2 Opsc(§1 - lﬁ)1/2 =Id+ hopsc(80)7 (116)

where sg € S(1, (dz’)?+(d¢")?). If h is sufficiently small, Id+h op,,(so) is invertible on H?, for every s.
Let v1 = op,, (&1—iB(z”,£")) 1/Z(Id—l—h 0P (s0)) " u1, thus we have op,,, (&1 —if(a”, 5”))71/21)1 = uj.
Moreover from (116), op,.(s¢) map distribution supported on z; > 0 to distribution supported on
x1 > 0, then by Neumann series, (Id + hop,.(so)) ! also satisfies this property. This implies that
vy is supported on z; > 0. From (115), we obtain

are holomorphic functions on Im¢&; < 0.

Opsc(gl + ’L'ﬁ)_l/2’00 + Z.Opsc(gl + iﬁ)_1/2 Opsc(po) Opsc(é.l - ’L'ﬁ)_l/2’01 = h_1/27";3” (117)

—1/2 —1/2

is by a simple

where [r}| 1 < C. The principal symbol of op,. (&1 +if3) 0P4.(p0) 0P4.(€1—10)

computation

T1X6T2
(& + B2)1/2(po + (€ + B2)1/2)

where 73 € S(1, (d2')? + (d¢’)?). Formula (117) reads

(& +iB) " 2po(&r —iB) P =1+ =1+ xz1x573,

opg. (&1 + Z'ﬁ)_l/zvo +iv1 +ix1Xs Opsc(r?))vl = h_1/27“;31.

—1/2

We restrict this equation on z1 > 0, as op,.(§1 +i5) vg is supported on x; < 0, we obtain

i(V1) 2150 + 121X6 (0D (13)01 ) |2y 50 = B2 (1) |21 >0

As Wiz, so0lms, < |w|gs, , we obtain that

(V1) 1210l mrs, (21 50) < |Z1X5 ODge(T3)vi| s, + B2 |rh s, (118)

Lemma A.1. Let y € 65°(RY) and xs5(z) = x(x/5), where § > 0. Then there exist C > 0 such that
for every 6 > 0, ||x1xs]|ca < O, for a € (0,1) and ||x1xs]|r= < CF.

Proof. First, we have |z1x(xz/d)] < Cd. Second, |(z1 + y1)x((z + y)/d) — z1x(z/0)] < 2C§ and
|0z (z1x(2/0))] < C, then we have |(x1 + y1)x((z + v)/d) — z1x(x/d)| < Cly|. For a € (0,1),
interpolating both estimates, we have |(z1 + y1)x((z +v)/8) — z1x(2/5)| < C5'~|y|*. Which gives
the result. O

Lemma A.2. Let s € (0,1) and 0 < s < a < 1, there exists C > 0, such that for every f € C%(RY),
and g € HS.(RY), fg € HS.(R?) and we have

1£9]

Here we say that f € C2(R?) if f is bounded and h®|f(z +y) — f(x)| < Cly|*. The norm on
C(RY) is || fl| oo (ra) + 8Dy yema 7| f (@ +y) — f(2)][y] =

me ey < Clf]

co®)llgllm:, @a)-
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Proof. We can follow the classical proof that the multiplication by C® functions are bounded oper-
ators on H*, using Littlewood-Paley theory and para-product in spirit of Bony [9].
We recall the Littlewood-Paley decomposition (see (20) for notations), we have w =37, 5 | Agw

vglere f(AAk(w))(ﬁ) = ¢(27FhE)F(w)(§) for k > 0 and F(A_1(w))(§) = ¥(h&)F(w)(€). Let Sy =
—1<j<k =

By assumptions on f, we have ||k f|| o (ray < C|| f[| o (ra) and by the usual proof of characteriza-
tion of C* functions with Littlewood-Paley decomposition we have [|[Ag f|| Lo (ray < C275| f]|ca (ra)
for £ > 0. By assumptions on g, we have ||Agg| p2re) < ck275F for k > 0, where ||(ci)|lezqv <

Cllgll s, rays [A-19ll 2y < C|fllz2(raey and [[Skgllz2@ey < CllgllL2®e)-
The product fg ="~ 1 Sk(f)Ar(9) + > >0 Sk—1(9)Ak(f). We estimate each term in previous
formula. For j > 2 we have B

||A Z Sk(f ||L2 RT) S ||A Z Se(f ||L2 (R7)
k>—1 k>j—2
< D 1Skl @) 1Ak(9) | 22y
k>_] 2
S27 N fllpemey Y, ex2*97
k>j—2

and d; = Eij—2 cp2~ (=9 € 02 4 01 C (2, where (di)llez S N9l s, mey-

125 (D Sk-1(@) A llz2@ay < NAG( Y Sk-1(9)Au()) |l 22y

k>0 k>j—2

< Z [1Sk—1(D 2@y [| Ak (f)|| oo (a)

k>j—2
e >, 27
k>j—2
sc(Rd)2_j82_j(a_s)'
As (279(@=#) is in ¢2, and as the result is obvious for j < 1 we obtain the result. O

Observe that ||flca ey S || fllce@e). Then by Lemmas A.1 and A.2 we have
Cél_alleSsc.
From (118) we have

b, (>0) < OO orlmz, + 2,

|(v1)21>0

for <s <a<1/2. As |vi|gs = |(v1) s (e1>0) for s €[0,1/2), we have

ws, <Ch™ 2,

[(V1))21 >0l E5, (21 50) < Ch=Y/2|r3
for ¢ sufficiently small. We obtain

. —1/2
Ho+1/2(2,>0) < |oDge (51 - 25(95”75//)) / U1

From (115) we deduce that

Het1/2 < C|’U1|Hs < Ch_1/2.

|u1

Ho-1/2 < Ch—1/2.

|uo
The solution wy, of semiclassical elliptic problem with boundary condition satisfying
|(Wh) zg=0l yos1/2 < OB~ and [(hDgwh) =0l grs-1/2 < Ch™Y2,
is in Hl*(xq > 0) and |lwp || gr+s(z,>0) < C. This result is well-known and it is a consequence of

Formula (60) in [39]. This achieves the proof of Lemma 4.4.
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B A priori estimate for the trace of solution for Neumann
boundary condition

We begin this section by recall some result on semiclassical Fourier Integral Operator.

Lemma B.1. Let (z(,&)) be such that R(x{,0,&)) —1=0. For all x4 in a neighborhood of 0, there
exist a smooth symplectic transformation k : Uy — Uy where Uy and Uy are some open set respectively
of R x Rg,_l and of R’;,_l X RZ/_l, satisfying (x(), &) € Uo, (0,0) € Uy, k(z(,&,) = (0,0), and
K*(m) = R — 1. Moreover x4 acts as a parameter and K is smooth with respect Tq = yq.

This lemma is classical. We can find a proof in Hérmander [26, Theorem 21.1.6]. This means we
can complete the coordinate R — 1 in a symplectic manner.

To avoid ambiguity even if 4 = yq we denote x4 when we work in (x,&’) variables and yq
otherwise.

We call a symbol of order 0 a symbol a € S(1, |dz|* + |d¢’|?) or in S(1,|dy|* + |dn'|?). In this
section we only use tangential symbol, but as in what follows we have to use different classes of
symbols, we prefer use everywhere the same kind of notation.

Lemma B.2. Associated with k, there exists F' a semiclassical Fourier Integral Operator satisfying
the following properties,

i) F is a unitary operator uniformly with respect x,.

ii) For all a € 65°(Uy), F~'op,.(a)F = op,.(a), where a = k*a+ hb where b is a symbol of order 0.
In particular we have F~ op,.(mX*(y, ")) F = op,.(x>(R—1))+hop,.(b), where X € €5°(Up),
X > 0 and b a symbol of order 0.

iii) there exist 0 a symbol of order 0, B a bounded operator on L? such that op,.(0)* = op,.(0),
k*Y = x and (0., F)F~1 =ih~top,.(0) + hB.

iv) If the operators A and A are such that A= F~'AF then
Ouy A =F"(0y,A+ih~'[A op,.(0)] + h[A B])F
where B is the operator defined previously.
v) In particular we have k*{n1,0} = 05, R in a neighborhood of (xy,0,&)).

Remark 10. Zworski states the result for Weyl quantification. It is clear that we can deduce the
result for classical quantification. In the proof of Lemma B.2 we use Weyl quantification but in
the rest of this section we shall use classical quantification to be coherent with notation used in this
article.

A proof of Lemma B.2 is given in Section C.

Here we adapt, in the framework of semiclassical analysis, the results obtained by Tataru [44]
especially Lemma 4.3, Propositions 4.5 and 4.7. We essentially keep the notation used in that paper.

From now we shall use two semiclassical quantifications of symbol, one with parameter h and
the other with parameter h'/3. To avoid ambiguity or confusion between both, we do not use the
notation op,, but we use classical quantification. For instance, for a a symbol of order 0 we have
op,.(a) = op(a(x, h¢')) that is we keep the h or h'/3 in the notation.

Let g = |dy|> + h?/3(h'/31,)=2|dn’|?, this metric gives symbol classes essentially as semiclassical
symbol classes with h'/3 for semiclassical parameter. We let to the reader to check that g is slowly
varying and o temperate. The ”h” defined by Hormander associated with ¢ is h1/3<h1/3n1>_1. It is
the quantity we gain in the asymptotic expansion for the symbol calculus. In particular the function
(h'/371)" is a g continuous and o, g temperate for every v € R. We refer to [26, Chapter 18, Sections
4 and 5] for definitions used freely here.
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From (88) we have —h?d2 vy, + op(R(x,h&') — 1)vy, = hqn. Let vy = op(xi1(z, h€))vp, where x1
is supported where xy = 1 and y is the cutoff function define in Lemma B.2. By symbol calculus we
have

— B?82 vi + op(x*(z, h&') (R(z, he") — 1))vi, = hay, (119)

where

an = op(x1(x, h&'))gn — K [W* D2, op(x1 (x, he'))]vn
+h™H (= op(x1(z, he')) op(R(z, he') — 1) 4+ op(x*(w, h&') (R(x, he') — 1)) op(x1(x, hE')))

is bounded on L?(z4 > 0) from symbol calculus and support properties of y and x;. Moreover we
have |Vh|L2(Rd—1) ,S |1}h|L2(Rd—1).

We recall some properties of the Airy function which is denoted by Ai. It verifies the equation
Ai"(2) — zAi(z) = 0 for z € C, Ai is real on the real axis and Ai(z) = Ai(2). Let w = €2*™/3 for
e = =£1.

For z € R, let a(z) = —w Ai'(wz)/ Ai(wz) € €°°(R). As the zero of Ai are on the negative real
axis, the function o is well defined for € R and smooth. The function « satisfies the following
properties.

Lemma B.3. We have

i) a(z) = -z + & +bi(x) for x>0

ii) a(z) =civ/—a+ £ +ba(z) for z <0

iii) Rea(z) <0 for all x € R,

iv) « satisfies the differential equation o (x) = o?(z) — x.
where b € S((x)~%/2 |dx|?) for j =1,2.

The proof of lemma is given in Section C.

Let 74 be such that k*7q = —0,,R. We assume that locally 0,,R < 0, this implies that 74 > 0 in
a neighborhood of (0, 0).

Let a(y,n’) = h1/3)~((y,hn’)v’(l/g(y,hn')a(g“) where ( = h1/3771f;2/3(y,h17’). We assume that on
the support of X(y, h1y'), 74(y, hyy') > 0. In what follows we denote p = (y, hn). We define A = op(a),
U = h 3 op((h1/3n)~1/2), and let A= F1'AF, ¥ = F~10F.

We have a € S(h'/3(h'/3n)1 /2, g) as h=Y3(h'/3n) =12 € S(h=1/3(h/31)~1/2 ¢) and from
Lemma B.3

Proposition B.4. Let v, satisfying properties (119). There exist Cy > 0 such that
|(hdzy Vi = AVR) jzy=oT2 a1y + W (72 Vi = AVA)[|T2(s,50) < CollvllF (us0) + CollanllZzey>0)-
This result is equivalent to the following. Let wy, = F(hOy,vi, — Avy), there exist Cy > 0 such that
|(wn) jya=0l 72 a1y + 1 Fwl|T2 (50 < CollvnllFr_(zy=0) + CollanlZ2(zys0):
Here and in this section we denote ||ul| g1 _(z,>0) = [|ull22(2,50) + [EVU] L2(2,50)-

Proof. To ease notation we write |u| instead of |u|z2(z4) when there is no ambiguity on the fact that
the L2 norm is taken on variables 2’ or ¢/ at point x4 or y4. By the same abuse of notation we write
the inner product (.|.) instead of (.[.) 2(ga-1)(xa). We compute

%8wd|hawdvh — AV}L|2 = Re ((9%1 (hamdvh — Avh)|h6“vh — Avh)

= Re (haﬁdvh — (6“A)vh — A@mdvh|h6wdvh — Avh)
= Re (h_l op(xz(:zr, he ) (R(z, h&") — 1))vh — qn — (0w, A)vi — ADy Vi |hOw, Vi — Avh),
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from (119). Then we have

1
§8md|hazdvh — AP =L+ L+ L+ 14, (120)

where

I =Re (= h™ ' A(hOy,vi — Avp) ROy, vi, — Avy)
I, = Re (b~ (op(xX* (2, h&¢)(R(z, he") — 1)) — A%)vp |y, vi — Avy)
Ig = Re ( — (8mdA)Vh|hadeh - AVh)
I4 = —Re (qh|h81dvh — AVh).
Using wy, = F(hOy, vy — Avy,), we have
Iy =Re (— h '"FAF 'wp|wy) = Re (— b~ Awp |wy).
From Lemma B.3 we have
—h Red(y,n) > 02052 (3) (W o),

and h™'Rea(y,n) € S(h=2/3(h'/3n;)1/2 g). Then from Fefferman-Phong inequality (see [26, Theo-
rem 18.6.8]) and as the real part of symbol of op(h=/3%(p) (h'/3n1)~Y/2)* op(h=1/3x(p) (K31 ) ~1/?)
is h=2/32(p)(h*/3n1) =" modulo an operator bounded on L?, we have

Ly = 6[h= 2 op(X(p) (R Pmn) /2 )wn ? — Clun?,

for C > 0.
From Lemma C.1 we obtain

I > 8| Wwy | — C(Jwn)? + |val* + |hOz,0n?). (121)
We have

— Re (b~ Fop(x(z, h)(R(x, he') — 1) — A2}y )
= Re (™ (op(hm ¥*(p)) — A2)th|wh) + Re (Bovp|wn),

where By = op,.(b) is bounded on L* (see Lemma B.2).
The symbol of A% is a? € S(h?/3(h'/3n;), g) modulo a term in S(h,g). From definition of @ and
Lemma B.3 we have

@ = PP (9)a’ ()
= PR (P)(C + o (0))
= i 2 (p) + W22 ()7 (B)e (€).

We have 25
R (0) ()l () € S(h Y3 (h 3ny)~ 12, g),

we then obtain R
|| < |vn| ([ Wwn| + |wh) (122)

‘We have

Iy = —Re (F(9,,A)F ' Fvy|wy)

= —Re ((0p(dy, (7)) + ih ™ op(a(p)). op(B(7) | Evi )
~ Re (hfop(@(7)). BIFvyw).

from Lemma B.2.
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Observe that a(p) € S(1,g) as h/3(h'/31;)1/? is bounded on support of ¥(5). Then op(d,,a(p))
and hlop(a(p)), B] are bounded operator on L?.
From properties of o and symbol calculus, the symbol of

h™ [op(a@(p)), op(0(p))] is in S(h/3(h3n) =12 g).

Then we obtain 3
3] < [on| (1 @wn] + |wal). (123)

We have
L] = [Re (qn, F~'wp)| < lan||wnl (124)

From (120), (121), (122), (123) and (124) we have

1 ~ -
§8wd|h6wdvh — AVh|2 Z 6|\I!wh|2 — C|wh|2 — C|\I/wh||vh| — C|’Uh|2 — C|h6md’vh|2 — C|qh|2

> &' Uwy | — O (Jwn|* + |val* + |h0s,vn]* + |an]?). (125)

Observe that h/3(hY/3n)1/2 < (hn/)1/2, then h/35(5)%7y *a(¢) is bounded.
We then have

|Avi| S [AFvA| < [vnl- (126)
We also have |hdy,vi| S |hOy,vn| + |vn|. Then
lwa| < 1ROz, vn] + val. (127)
We deduce from (125) that

1 -
Eamd“Ladeh - AVh|2 Z 5’|\I/wh|2 — C|qh|2 - C’|vh|2 - O|h81dvh|2.

Integrating this inequality between 0 and o > 0 we have
|hO v — Avp[*(0) + 5'/0 [Wwp|*(za)dza S lanll® + lvallF (ous0) + [BOe,onl* (o) + on]* (o)
from (127). Integrating this inequality between two positive values of o and as |Twp|(yq) =
| U (hOy,vi, — Avp)|(z4) we obtain the result. O
To state the next result we have to introduce another operator.
Lemma B.5. There exist a function § € €°°(R) satisfying the following properties
i) == BRea>0
ii) € S((z)~1/*, |dal?)
iii) 2 ()~

A proof is given in Section C.

We recall the notation a(y,n’) = h1/3)~((p~)7ﬁ/3 (p)a(¢) where ¢ = h1/377177;2/3([)) and by assump-
tion, 74(p) > 0 on the support of X ().

Let é(y,n') = h=/%%2(p)B(C), where Yo is supported on {{ = 1} and Y2 = 1 on a neighborhood
of (0,0). We have @ € S(h'/3(h/3n;)1/2, g) and & € S(h=Y/S(h/3n;) =14 g).

We define C' = op(&) and C = F~'CF.

Proposition B.6. Let vy, satisfying properties (119). There exists Cy > 0 such that

|C(hOy,vi — AVh)|zd:0|%2(Rd71) < OOHUhH%IgC(zpo) + CO||qh||%2(zd>0)'
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Proof. We have

1
5 04| C(h0y, i = AVA)[? = Re (01, (C(hdy v = Avi))|C(hdvi — Av))

= Re ((ade)(hadeh — AVh) + C(h@idvh — ((%ch)Vh — AadehHO(hadeh — AVh))
=Re ((02,C)(h0y,vi — Avp,) + C(h op(x*(z, k¢ ) (R(z, he') — 1))vi — ap,
— (00 g A)Vi — A8y vi)|C(ROp v — Avy)),
from (119). Then we have

1
5(faggd|0(hawvh — AP =Ji+ T+ T3+ Ty +Js = Ky + Koy + K3 + Ky + K, (128)

where
Jl = Re (O* (8de)(h81dvh — AVh)|hadeh — AVh)
J2 = —Re ((6IdA)Vh|C*C(h6Ith — Avh))
J3 = —Re (qu|C*C(hdp,vi — Avp))
J4 = Re ((—C*C)Aawdvuhamdvh — Avh)
Js = Re (b~ op(x*(z, h¢') (R(z, h¢') — 1))vi|C*C(hdy,vi — Avy)).
Taking as in the proof of Proposition B.4, w, = F(h0,,vy, — Avy,) and from Lemma B.2 we write
K = Re (C*(0y,C)wp|wy)
Ky =—Re ((8yd/i)th|C~'*C~'wh) — Re (h[[l, B]th|é*éwh) — Re (Fop(b(z, h{’))vh|é*éwh)
K3 =Re (th|é'*é'wh)
K4y =Re ((—h_lé*éfl +ih~1C*|C, op(0(p))])wn|wn) + Re (hé'* [C, Blwy, [wy,)
Ks = —Re ((h™1 A2 + ih™[4,0p(0(7))] — h™" op (b (7)) Fya|C* Cun,).

To estimate K1, observe that the symbol of C*(8,,C) is in € S(h=1/3(h'/31,)~1/2, g), then
K| S [Qwp[wn]- (129)

From symbol calculus the symbol of (8,,A4)*C*C is in S(1,g), thus this operator is bounded

on L?. Clearly the terms [A, B] coming from remainder term of d,,A (see iv) Lemma B.2) and
op(b(x, he')) coming from remainder term of F op(x?(x, h¢')(R(z, h§') —1))F~* (see ii) Lemma B.2)
are bounded on L?. As C*C has a symbol in S(h=/3(h/37,)=1/2 g), we obtain

| K| S wn o] + [on ][ Pws]. (130)
For the same argument we have .
|Ks| < lan||Pws|. (131)

To estimate the last term of Ky we write C*[C, B] = C*CB - C*BC, the first term gives a term
estimated by |Wwy||wy,| and the second is estimated |Cwp|? < [Vwp|[ws]. o
To estimate the other terms of K, observe that the symbol of —h=1C*CA+ih~1C*[C, op(0)]) is
—h~'&a + h='¢{¢,0(p)} modulo a symbol in S(h=2/3(h'/3p;)~1, g) and this term can be estimate
by [Ywy|?. We compute
RY(E,60(5)} = {X2(), 0(A)}B(Q) + {B(C), () } x2(P)
= {X2(p),0(p)}B(C) + {¢. 0(p) } x2(P)B' (€)-

The term h='¢h="%{x2(p),0(p)}B(C) € S(h='/3(h'/3n1)=1/2 g), and the term of K, coming from
this term can be estimate by |Wwp||wp|. For the other term we have

R3LC,005) = {722 (5),00) Y + {m, 0(5) )y 2 ().
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The term h='¢h=1/%x2(p)B' (¢ )h1/3{r72/3( p),0(p)}m € S(h ~1/3(hY/31.)71/2 g) and the term of Ky
coming from this term can be estimate by [Uwy,||wp|. o o
Thus, modulo remainder terms, the symbol of —h~*C*C A + ih=1C*[C, op(#)]) is given by

L=—h7'@a+ ' eh™ () (OR* . 0()}iy ()
=~ BB (R B O PR (p) P (7)€
= W R R (B)BOR X (D) (R a7 (5)
from v) of Lemma B.2. We thus obtain
L=h""B@E)BQOR*(0)(— BOX(a) — B(C) € S(h™,g).

As ¥ is equal 1 on the support of ¥3, 3 > 0 and —3(¢) Rea(¢) — 8'(¢) > 0 we have Re L > 0. We
can apply sharp Garding inequality (see [26, Theorem 18.6.7]), we yield, taking account remainder
terms ~ ~

Ky > —C’(|\I/wh|2 |\I/wh||wh|) (132)

The last term is K5. The symbol of h=1A% + ih='[A,op(0(p))] — h~Lop(hmx2(p)) is h'a® +
h={a,0(p)} — n1x*(p) modulo a symbol in S(1,g). We have
{@.0(0)} = h'Pa(OLGE )2, 00} + G ) P (Qm 7™ (7). 6(7))
+ R (g P)al (O . 0(7))-

The first two terms give a term estimated by h'/3(h'/31;)*/2 < 1 as on the support of ¥ we have
In1] < h~t. Then both terms give associated operators bounded on L?. Modulo a bounded operator
on L? we have to consider the symbol, taking account v) of Lemma B.2

W @) (P)a?(Q) = A ) (B)al () = m X (5)
= k= BRE) () (0*(0) = &/ (¢) = WM (p)m)
= W)= K5 ().
The first term is null from differential equation satisfying by « and the value of (. We claim that
op (™37 *) () (1 = X(5))e/ () Fvnl S lonl. (133)

The proof of the claim is given below. With this claim, (126) and what we do above, the operator
h=1A2 4 ih =Y [A,op(8(p))] — h~" op(hm X2(p))) gives a term bounded by |vs|. As the symbol of C*C
is in S(h=1/3(h'/3n)~1/2 g), we obtain that

|Ks| < [on[Twn. (134)
From (127), (128), (129), (130), (131), (132) and (134) we obtain
1 -
5024l C(h0e v = Avi)|* Z = (lanl* + [Vwn[* + [vn]* + [hDx,vn]?)-

Integrating this inequality between 0 and ¢ > 0, we have, estimating the term coming from |\ilwh|
by Proposition B.4,

|C(hdz,vn — Avi)*(0) < llanll* + lonlis (@y0) + 1C(hDs,vh — Avi) (o). (135)

As
|C(hdy,vi, — Avi)[2(0) = (C*Cwp,wy),

we have from (127)
|C(h8s,vh — Avi)*(0) S [Wwn[* (o) + [on]*(0) + |10z, vn]*(0)

Integrating estimate (135) between two positive values of o and estimating as above the term
|Wwy,|?(0), we obtain the conclusion of Proposition B.6. O
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Proof of Claim (133). As k*X1 = x1, from Lemma B.2 we thus have

F~ op(X1(p))F = op(x1(z, he)) + MK,

where K is bounded on L?. We then have Fv;, = op(X1(p))Fvy + hK'vy, where K’ is bounded on
L?. Then

op (h™ 3 (x7y*)(5) (1 = X(7)e’ (¢)) Fva
= op (b2 *)(5) (1 = X(5)e () (0p(R1 (7)) Fon + hEKvy,).

The first term coming from op(x1(p)) gives an operator with null symbol. As

)P = X(6)a () € S g),
then the second term is also bounded by |vy|. This proves the claim. O

Proposition B.7. Let (z(,0) € 0Qn. Let x4 € €5°(R) be supported on a neighborhood of 0 and
x4 = 1 in a neighborhood of 0. Let (x(,0,&) and Uy be as in the statement of Lemma B.1. Let
(e %OOO(Rd x R¥=1Y supported on {xo = 1} for every x4, where k*X2 = x2. We moreover assume
Oz, R(x,&") < 0 on support of . We have

tim Jim | (op (¢(a", 0, 1€ )xa ((R(", 0, h€') = 1)/&) (R(,0.h€) = 1) (00—l (vh)ja =0 ) | = 0

e—0h—0

Proof. We can assume that the support of ¢ is contained in {x; = 1}. We then have from symbol
calculus

lim lim <0p (€($/7 0, hé/)x4((R(I/; 0, h,é'/) _ 1)/6) (R(;p/, 0, h,é'/) — 1))(vh)|Id:0|(vh)‘1d:0)0

e—=0 h—0

= lim lim (op (ﬂ(x’, 0, hf')x4((R(x', 0,h¢") — 1)/5) (R(x',0,hE") — 1))(Vh)|md:o|(vh)\zd:0)

e—0 h—0 0

Let 2, = (FVh)|z,—0. From Proposition B.6 we obtain |C'Az,| is bounded. By symbol calculus and
the support properties of y and xo

CA = h%op (x2(p)B(O)7Y* ()a(0))

modulo an operator with symbol in S(hY/2(h'/35,)=3/4 g). From properties of traces, see (88), this
remainder term goes to 0 as h to 0.

Let ¢ be such that x*f = ¢ and s*x4(m/e) = xa((R(z',0,€") —1)/e). In what follow, to be
coherent with our notation we define y4, = x4 and we use the notation x4 when the function is
defined in (y,n) variables.

From Lemma B.2 we have

F~"op(hi€(p)Xa(hm /) F
— op (E(II, 0, hfl)X4((R(CL'/, 0, he' — 1)/8) (R(ibl, 0, hf’) _ 1)) + hop(ro(z, hf’))a

where 7q is of order 0. The term coming from 7y goes to 0 as h to 0, from properties of traces. Then it

is sufficient to prove that lim._,q limy,_q (op(hmg(ﬁ))@ (hnl/a))zh|zh>0 = 0. Considering the symbol
i €(p)Xa(hmy J€) € S(h¥/3(h'/31;), g) and from support properties of £ and Y2, we have

op(hm £(p)%a(hmy /€)) = 77 op (W (p)Ralhmn /€)B7 () ()| )5
where 7 = op (h'/6%, (ﬁ)ﬁ(g‘)ﬂl/g (p)a(¢)), modulo an operator with symbol in S(h, g) then this last

term involves a term going to 0 as h to 0. Then we obtain an estimation, modulo a term going to 0
as h to 0,

[(opmE()Xalhm /)2l |
< lob (W2 *m(p)a (b /)82 > (D)|alO)] ) n) [, (136)
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where z;, = op (h/®X2 (ﬁ)ﬁ(g‘)ﬂl/g (p)a(¢)) zn. Observe from Proposition B.6, |z,| is bounded.
We claim that h%®nixa(hni /) € S((KY/3n1)1/2, ). Indeed h¥/3|n1| < (k)2 (hY/3n;)1/2, and
this gives the sought estimate. We have for k£ > 1,

OF (K xa(hmife)) = h2/3(h/e)* " 38V (i fe) + 2 Pu (hf)F P (hi /).

As hny is bounded on the support of )Zflk)(hm/a) both terms are bounded by h*~1/3. From estimate
R23 (W 3n1) < (hapy) we have

_ k—1/2
pk—1/3 Shk/3(<h771>/<h1/3771>) / 7

which proves the claim. Observe that the constant of estimation are not uniform with respect ¢.
With the previous claim and as 372(¢)|a(¢)|72 < (h'/311) 712, we have

LGy, ') = B2l (p)Ralhan /) B~2(C)7 P (p)|a(Q)] 2 € S(1, 9).
As W23 | < [ [M2 (WM P) Y2 < (W 3n0) /2, on the support of X4(hm/€), we deduce from
Garding inequality (see [26, Theorem 18.6.7]) that the operator norm from L? to L? of op(L) is

bounded by Cy/g + C.h'/? where C is independent of ¢ and C. may depend on €. From that and
(136) we deduce the result. O

C Proof of Lemmas

Lemma C.1. Let x5 € 65°(U1) be such that (1 — x3)x1 = 0 where k*x1 = x1. We have

[wy| S (™13 op(s(p) (' 300) =2 )wn| + [vn] + [hOz,vnl-

Proof. We write W = h=1/3 op(¥3(p)(h"/3n1)~1/2) + op(h /3 (1 — 3(p)) (R/3m)~1/?), it suffices to
estimates terms coming from the second operator. Recall that w;, = F(h0,, vy, — Avy), we have

op(h™'/3(1 = x3(p)) (' *n1) "2 FA = op(h™'/3(1 — x3(p))(h'/*n1)~/?) AF,
as h=Y3(1 = x3(p))(RY3n) =12 € S(h=/3(h'/311)~1/2, g) and @ € S(h'/3(h'/31n1)1/2, g), we have
lop(h™3(1 = x3(p)) (W3 1) T2 F Avy| < |vnl.

We have
Fhaﬂﬂd OP(Xl (LL', hgl)) = FOP(Xl (,T, hgl))haﬂﬂd + F'h Op(aidxl(xv hgl)) (137)

The second term gives
lop(h ™2 (1 = X3(p)(h*m) =2 Fhoop (9, xa (2, hE)Jon| S hY%[onl.

As £*X1 = X1, from Lemma B.2 we thus have F~1op(x1(p))F = op(x1i(z, h€')) + hK, where K is
bounded on L2. Then the first term at the right hand side of (137) gives

lop(h™"3(1 = X3(p)) (b /) =1 /2) F op(xa (w, he'))hd vl
S lop(h™ 3 (1 = X3(7)) (W /2m) ™) (op(%1(§)) = hFK F ™) Fhiy ,op| < [h0yvnl,
as the both terms are bounded on L? indeed the asymptotic expansion of the first symbol is null and

the second is bounded by h2?/? times an operator bounded on L2. This concludes the proof of the
lemma. O
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Proof of Lemma B.2. We recall that Zworski use Weyl quantification. We give the proof in this con-
text. From that, it is easy to obtain the result for classical quantification. We denote by op®.(a) the
operator associated with symbol a by the Weyl quantification. Items i) and ii) come for Zworski [46,
Theorem 11.5]. To prove the others Items we have to use the construction of F' given by Zworski [46,
Section 11.1 and 11.2]. Let x; a smooth family of symplectic transformations, ¢ € [0,1], kg = Id and
k1 = Kk and ¢ € 65°(Uy) be real valued, such that Oik; = (k¢)«Hg, (see [46, Theorem 11.4]). Let
Q(t) = op®.(g+) (here as we use the Weyl quantification, Q(t) is selfadjoint). Let F(¢) the solution of

hD.F(t) + F()Q(t) = 0
F(0) = Id.

The Fourier Integral Operator we search, is F' = F/(1). We then have for G(t) = 0,,F(t)

RD(G(t) + GOQ() = ~F(1),,Q(t)
G(0) = 0.

The Duhamel formula yields

t
GHF(t) = —ihil/ F(0)0.:,Q(0)F*(0)do.
0
Taking Go(t) such that x;Go(t) = 0,,q(t) which it is possible as &, is a diffeomorphism, we have from
Item ii), F~1(0)op“(Go(o))F (o) = 0,,Q(c) + hop¥.(q1). We can repeat the construction taking
Kiqi(t) = qi(t) and we have F~!(o)opt.(Go(0) — hdi(0))F(0) = 02,Q(0) + h* opl.(g2(0)). This
implies that F(0)9,,Q(c)F (o) = op“(do(c) — hqi (o)) + h?B(o), where B(c) is bounded on L?
uniformly with respect o. From that and taking ¢ = 1 we deduce Item iii).
To prove Item iv) we have 9,,(F~!) = —F~19,,(F)F~1, we deduce

OpyA = —F~Y0,,F)FYAF + F~Y(9,,A)F + F~YA(9,,F)
= —F~*(ih "t op%,(0) + hB)AF + F~'(0,,A)F + F~*A(ih "' op®,(0) + hB) F
= F71((Os,4) +ih™'[A, 0p(0)] + h[A, B) F,
Which gives Item iv) as there exist a symbol 6y such that op,,(01) = op¥.(6).
Let x1 and x2 be €§° functions such that x; = 1 and x2 = 1 in a neighborhood of (z{, 0, &), and
we assume s supported on {x; = 1}. Applying iv) to A = (R — 1)y, taking account ii), we obtain

K ({m,0}x2(y,n')) = x20:, R where k*\2 = x2. We deduce Item v) taking the previous formula on
{2 =1} u

Proof of Lemma B.3. The asymptotic expansion of Ai is well-known (see [1, Formula 10.4.59]. We
recall that for z € C with |arg z| < m we have

= 2
Ai(z) ~ 27t V2 e O (= 1) e, (T, with ¢ = 522/3 (138)
n=0
Ai'(2) ~ =27 125 e (1), (T
n=0

5 7
where co =dyp =1, ¢1 = 32 and d; = —%. From that we obtain

Ai’(z) 1/2 = —n 1/2 = —3n/2
Aiz) T ° ,;)f"C T ,;)g"z ’

where fo =4y =1, f1 =1/6 and ¢; = 1/4.
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3/2 _

For x > 0, as w —1, we have,

alz) ~ wwl/21/2 Z w3 203002 _p1/? Z 1), p3n/2
n=0

As this asymptotic expansion is also valid for derivative with respect = we deduce Item 1i).
For x < 0, we have wx = —e%*™/3|z| = ¢7%™/3|z| to have |arg(wz)| < 7. As —we *7/0 = —¢j
we obtain

N81|$|1/QZ€ —1871'/3 3n/2| | 3n/2 N€Z|,’E|1/QZ E’L ng |$| 3n/2
n=0

This gives Item ii) from properties of this asymptotic expansion.
Let F(z) = Ai'(2)/ Ai(z) we have F'(z) = z — A%(2) for z different of a zero of Ai which are on
the negative real axis. As a(x) = —wF(wz) we have

o/ (2) = —w’F'(wz) = —w” (we — F*(wz)) = o(z) — .

This gives Item iv).
Item iii) is probably classical but we do not find this property in literature. Here we give a proof
of that. Let aj(z) and as(z) real valued be such that a(z) = ag(z) 4+ iaz(z). We have

{a’l(w) = a3(z) — a3(z) —«

ah(z) = 207 () ().

We also use a nice formula given in [45, Section 3]

(139)

= —i—Z ((z=v) " +v7 ),

where v;’s are the zeros of Ai (observe that v; < 0) and C € R is an explicit negative constant. We

deduce
oo
g z—v;)"
Jj=1

It is easy to prove that both series converge.

We fix € = 1, observe that a(x) is the a(x) defined with £ = —1. Observe that as(z) > 0, indeed
if ag(zo) = 0 for some gy € R, ag is identically null by uniqueness of System (139). Then as(z) > 0
as it is true for 2 < 0 from Item ii).

We have

oo

o (z) = —w?F(wz) = w? Z(w:v —vj)7?

Jj=1

= Z wa — vj| 7 (2? = 2wrjz + wrF).
We deduce that

= - V3
=D lwz —w (= VBvjm — )
j=1

Assuming x < 0 we have o4(x) < 0 and from (139), ay(z) < 0.
Now for z > 0 we compute

—a2(x)as(x) — ad(z) — zxas(x
(a1 Jan) () = —Ca(@)oa Lg(gj( ) — wan(x)

This implies (ov1/a2)(x) < (o1/a2)(0) < 0 then aq(z) < 0. This concludes Item iii). O

<0.
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Proof of Lemma B.5. Let vy1(z) = | Ai(wx)| and yo(x) = Co(z)~/* where Cy > 0 will be fixed below.
We shall begin to prove 7] +v1 Rea = 0. Writing 1 (x) = /Ai(wz) Ai(wz) we obtain

oo wAl(wz) Al(wz) + @ Ai(wa) Al (o)
i) = 2] Ai(wa)| ’

and
wAil'(wz) Ai(wz)  ~i(2)
| Ai(wz)[? m(x)
From definition of 75 we have for x > 0, 72 > 0, 74 < 0 and as Rea < 0 we have 75 + 2 Rea < 0 .
Let xo € €*°(R) be such that xo(z) = 0if 2 < 0, xo(z) = 1 if x > 1 and we assume
Xo > 0onR. Let 8 = xov2 + (1 — xo)n1. Clearly 8 is a smooth function. We have g/ =
Xovs + (1 — xo)vi + xo(v2 — 71). As 41 > 0, if Cy is chosen sufficiently small, 75 — v < 0 on
the support of x(. As x{ > 0, x5(v2 —v1) < 0. This and above properties imply i). We only
have to prove ii) for < 0. That is a consequence of asymptotic expansion of Airy function (138).
Indeed for = < 0, wx = |z[e”™/3, then (wz)3/? = —ci|z[3/2. We then have B(z) = | Ai(wx)| ~
2*177’1/2|:1:|’1/4’ > (—1)”cn§’”’, with ¢ = 2(wx)?/3. Clearly the asymptotic expansion satisfies

Rea(z) = —Re

n=0
symbol estimates. This asymptotic expansion also gives estimates iii) for < 0 with |z| sufficiently
large. For x > 0 iii) is obvious, and by construction § > 0. This achieves the proof. O
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