
HAL Id: hal-03364277
https://hal.science/hal-03364277

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Hw/Sw Co-Design technique for 2D fast fourier
transform algorithm on Zynq SoC

Kortli Yassin, Souhir Gabsi, Maher Jridi, Ayman Alfalou, Mohamed Atri

To cite this version:
Kortli Yassin, Souhir Gabsi, Maher Jridi, Ayman Alfalou, Mohamed Atri. Hw/Sw Co-Design tech-
nique for 2D fast fourier transform algorithm on Zynq SoC. Integration, the VLSI Journal, 2021,
�10.1016/j.vlsi.2021.09.005�. �hal-03364277�

https://hal.science/hal-03364277
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Hw/Sw Co-Design Technique for 2D Fast Fourier

Transform Algorithm on Zynq SoC

Yassin Kortli 1,2, Souhir Gabsi 2, Maher Jridi 1, Ayman Alfalou 1, and
Mohamed Atri 2,3

1 L@bisen, AI-ED Lab., Yncrea ouest, 20 rue du Cuirassé de Bretagne, 29200 Brest, France
2 Electronic and Micro-electronic Laboratory, Faculty of Sciences of Monastir, University of Monastir, Tunisia
3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

Email: yassin.kortli@isen-ouest.yncrea.fr, souhir.gabsi@fsm.rnu.tn , maher.jridi@isen-bretagne.fr, matri@kku.edu.sa,

ayman.al-falou@isen-ouest.yncrea.fr

Abstract- The Two-Dimensional Fast Fourier Transform (2D-FFT) algorithm is used for

the study of many modern systems applied for security and biometrics. The adoption of

this algorithm, which is a compute intensive task, is limited due to its hardware design

complexity. The first objective of this paper is to underline the effect of the

hardware/software co-design (Hw/Sw co-design) for the reduction of the processing

time and power consumption. Secondly, we propose an innovative architecture for the

2D-FFT algorithm tested on Zynq Soc, which requires less processing time and memory

compared to the traditional algorithm. Three implementations (one software and two

Hw/Sw co-designs) of the 2D-FFT algorithm using the Zynq SoC are presented in this

paper. The first is based on ARM processor. A speedup of 29x is obtained compared to

the original implementation thanks to many optimizations. The second is a Hw/Sw co-

design solution of the traditional 2D-FFT algorithm introduced on a hybrid platform

combining an ARM Cortex-A9 processor with an FPGA. The third is also a Hw/Sw co-

design solution using our optimized 2D-FFT algorithm to reach the real-time contraints

for high-resolution images(1920×1080). It provides a speedup of 1.13x, 3.31x and

96.21x faster than the Hw/Sw co-design implementation of the traditional RC

algorithm, the pure software implementations with and without optimizations,

respectively.

Keywords: 2D-FFT algorithm; Embedded systems; Hw/Sw Co-design; High-level

synthesis; Complexity.

1. Introduction

 The Fast Fourier Transform (FFT) algorithm was initially introduced by J. Cooley

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167926021001085
Manuscript_4766b7a4445b4d4af2bcf181232c3c89

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167926021001085
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167926021001085

and J.Tukey [1] in 1965 as a useful algorithm for image processing. It has become the

most effective algorithm used for computer vision to obtain the frequency or the

spectrum content of an image for many applications such as correlation filters and

discrete convolution [2][3][4]. It is necessary to improve their performance to respect

real-time and memory consumption constraints. However, the FFT algorithm is costly

in terms of processing time and memory consumption [4][5][6]. More specifically, the

traditional 2D-FFT algorithm is achieved by performing two 1D-FFT algorithms along

rows or columns and transpose operation[1]. This affects the overall latency and could

be designed differently. The use of embedded systems such as Graphics Processing

Units (GPUs)[4], a combination of Hw/Sw Co-Design, and Field Programmable Gate

Arrays (FPGAs)[7] are expected to solve these challenges. In this work, we have used

the Zynq SoC FPGA-based platform, which presents better performance in terms of

energy efficiency compared to GPUs[4]. Zynq SoC FPGAs are a good candidate for

computer vision system development for their ability to exploit parallelism.

Additionally, the design flow of current FPGAs synthesis tools supports high-level

abstraction languages (C/C++) as input descriptions, in contrast to hardware description

languages (HDL: Verilog and VHDL). High-level synthesis (HLS) is used to simplify

the design process by transforming the algorithmic description into hardware while

satisfying the design constraints.

Given the importance of using the 2D-FFT algorithm in many applications, it could

be interesting to propose a different implementation of this algorithm. In this paper,

three implementations (one software and two Hw/Sw co-designs) of the 2D-FFT

algorithm using the Zynq SoC are proposed. The first is based on ARM Cortex-A9

processor to perform the software implementation using OpenCV functions. The second

is based on a hybrid platform combining an ARM Cortex-A9 processor with an FPGA

to perform a Hw/Sw co-design implementation. The Hw/Sw co-design implementation

provides less processing time and less power, which is the first contribution of this

paper. The second contribution is an innovative architecture for the 2D-FFT algorithm

using the Zynq SoC. It requires less processing time and less dedicated hardware blocks

(DSP, LUT, and FF) compared to the traditional algorithm. Particularly, we present two

different Hw/Sw co-design implementations of the 2D-FFT algorithm using the Zynq

SoC: (i) traditional Row-Column (RC) algorithm with transpose operation and (ii)

optimized RC algorithm without transpose operation. Both 2D-FFT algorithms were

compared in terms of processing time, memory, and dedicated hardware blocks.

Generally, the Radix-2 and Radix-4 architectures are the basic architectures used to

implement the FFT IP core. The decimation-in-frequency and non-discrimination are

often used for the pipelined streaming and burst I/O architectures, respectively.

Moreover, it is well known that N-point FFT using Radix-2 introduces log2 (N) steps,

each step containing N/2 Radix-2 butterflies. However, N-point FFT using Radix-4

introduces log4 (N) steps, each step containing N/4 Radix-4 butterflies. The butterfly

architecture used and the number of inputs and outputs are the main difference between

these architectures[8]. In this work, four architectures have been assessed in order to

select the best one. These architectures include Radix-4 Burst I/O, Radix-2 Burst I/O,

Pipelined Streaming I/O, and Radix-2 Lite Burst I/O. Vivado HLS tool is used to

generate the hardware description (at RTL level) from software-coded functions and

targeting Zynq SoC. This description serves to exchange data between the software part

and the hardware part. Many optimizations are introduced in order to develop suitable

hardware implementation. The contributions of this paper are as follows:

• Proposing a Hw/Sw co-design solution of the 2D-FFT algorithm, which

provides less processing time, and less power consumption using the Zynq

SoC.

• Innovative architecture for the 2D-FFT algorithm tested on Zynq Soc that

requires less processing time, memory, and less number of computational

blocks compared to the traditional algorithm.

• A comparative study between four existing architectures to select the best

one.

• Study the impact of directives on resource usage and performance.

The rest of the paper is organized as follows: Section 2, presents the different

applications of the 2D-FFT algorithm and platforms used for these implementations.

Section 3 describes our innovative architecture for the 2D-FFT algorithm using the

Zynq SoC. Section 4 describes the software implementation based on ARM Cortex-A9

processor. Section 5 presents the Hw/Sw co-design solution using the Zynq SoC and the

different optimizations for both 2D-FFT algorithms performed on ARM Cortex-A9

processor and the FPGA. Section 6 presents and discusses all implementations. The last

section concludes the work and gives future research directions.

2. RELATED WORK

Computer vision techniques are getting more and more popular in a variety of areas

in scientific research, such as identification [2][9] [7], classification [10][3][11][12], and

marking images [13]. Fast Fourier Transform (FFT) has been introduced in many of the

above-listed applications. Several applications for image processing are presented and

discussed to prove the importance of the 2D-FFT algorithm. For example, Lamas-Seco

et al. [14] implement a novel algorithm based on the Fourier Transform (FT) to extract

some spectral features of inductive signatures used in traffic management systems. In

addition, a variant of the 2D-FFT algorithm named Enhanced Partial Discrete Fourier

Transform (EP-DFT) is used to implement a multi-biometric system to improve

recognition accuracy and security [15]. A simplified correlation method based on the

2D-FFT is implemented to simplify the correlation setup[10]. Recognition with this

method is done without resorting to inverse 2D-FFT compared to the traditional

correlation application. In addition, some research work focuses on image preprocessing

to improve performance. Zhang et al.[16] proposes a system for face recognition with

Principal Component Analysis (PCA) approach, which applied the Fast Fourier

Transform (FFT) to combine the phase spectrum of one image with the amplitude

spectrum of another image as a mixed image. In addition, Khan et al.[17] develops a

computational method based on Particle Swarm Optimization (PSO) and the Discrete

Fourier Transform algorithm.

The different applications mentioned previously prove that either a combination

between 2D-FFT algorithm and other algorithms is used for objects recognition tasks.

The FFT algorithm is costly in terms of processing time and power consumption, many

researchers have studied efficient acceleration based on FPGAs and GPUs by exploiting

their high parallelism capabilities. Indeed, the heterogeneous multicore SoC includes

CPU, GPU and FPGA are proposed in many types of research. An example of the

heterogeneous multicore platform used to accelerate the vehicle detection process was

implemented by Cheng et al. [5]. This platform includes an Intel i5-2400 processor and

an AMD HD6670 GPU. Zhang et al.[18], proposes a novel method based on the CPU-

FPGA platform with coherent shared memory to accelerate state-of-art Convolutional

Neural Networks (CNNs). Ouerhani et al.[4] proposes an implementation of the

correlation technique based on the Nvidia Geforce 8400 GS GPU for facial recognition.

This technique is based on the 2D-FFT filter and the phase-only filter (POF). A mixed

radix FFT and hierarchical FFT algorithms for both power-of-two and non-power-of-

two sizes using GPUs are presented in [6]. The work in [19] exploits the similarity

between adjacent inputs and sparse input samples in stream processing to enhance the

efficiency of sparse FFT algorithm. The sparse FFT implementation is evaluated based

on Intel i7 CPU and three NVIDIA GPUs, i.e., NVIDIA GeForce GTX480, Tesla

C2070, and Tesla C2075. Hyun et al. [20] developed a Virtex-5 FPGA implementation

of signal processing of the vehicle FMCW radar systems with a two-step FFT. Smach et

al. [7] presented a hardware implementation using FPGA technology in order to

accelerate the computation of Fourier Descriptors (FD). The Support Vector Machine

(SVM) is used for classification. To optimize the radix-2 FFT FPGA implementation, a

novel algorithm is proposed to simplify the computation by Walid et al [21]. Raju et al.

[22] present two implementations of DFT/IDFT architectures on the FPGA. These

architectures are based on radix 2 butterfly because of its reduced computation time. Yu

et al. [26] develop a Multi-dimensional (MD) Discrete Fourier Transform (DFT)

algorithm based on Xilinx Virtex-5 FPGA. The proposed algorithm can support 2D, 3D,

and even higher dimensional DFT. Li and Wyrwicz [27] report the design and

implementation of a parallel 2D-FFT) algorithm on FPGA for real-time MR image

processing. The results indicate that the image-reconstruction acceleration is primarily

limited by the speed of the data transfer between the FPGA device and external sensors.

Ouerhani et al. [29] allow to optimize existing FFT algorithms for low-cost FPGA

implementations.

Finally, this paper focuses on FPGA-based platforms, which presents a better

performance in terms of energy efficiency compared to GPU platforms. The FPGA

shows better results in terms of performance with low power consumption. GPU

platforms, also, provide high-performance results but consume more power [4]. Unlike

the different implementations introduced in relation to the FPGAs, this work contributes

with a Hw/Sw co-design of the 2D-FFT algorithm using the Zynq SoC respecting real-

time execution and memory consumption constraints. As a result, the FPGA is widely

used as an accelerator for image processing due to the possibility of reducing execution

time and extracting parallel computations. However, this accelerator requires a thorough

knowledge of hardware description languages (HDL) such as VHDL and Verilog. These

languages are used to describe and synthesize at the Register-Transfer Level (RTL)

levels. Today, high-level synthesis tools (HLS) is used to synthesize hardware

description (RTL) from a high-level language such as C/C ++ and SystemC. In addition,

HLS tools can not directly transform high-level language into RTL levels. As a result, it

needs to be optimized and restructured to be suitable and synthesizable for a specific

hardware platform.

Vivado HLS reduces design time and makes complex algorithms much easier than

to use HDL. However, Vivado HLS does not support the compilation of all C/C ++

command structures. So, Xilinx provides many popular libraries and model templates

for programming users. The hls_fft.h and ap_fixed.h libraries are used to implement our

proposed FFT IP core. The float data type is used for the default implementation of FFT

IP core. Then, to reduce the processing time and the resources number, it is better to

transfer the input data to fixed-point data. Once compiled into HDL, modules on Vivado

HLS produces an FFT IP core, which can be instantiated and simulated with other

software such as Matlab, ISE. Besides, this FFT IP core subject to various optimizations

in order to improve performance and reduce memory requirements. The design process

using Vivado HLS is shown in Fig. 1.

C/C++ Algorithm

Vivado HLS

Synthesis/Export RTL Design

hls_fft.h and

ap_fixed.h

Library

New IP 2D-

FFT creating

Hardware Plaform

Directive

Fig.1: Design Process on Vivado HLS

3. 2D-FFT Algorithms

The 2D-FFT algorithm can be used to identify any object by extracting in the

transform domain features that can be used for identification or recognition[10]. It

considered as a local descriptor to represent an object instead of the global descriptor.

The 2D-FFT and its inverse are defined as follows:

 () ()
N N vyuxu,v f x,y .W WN N

x 0 y 0
2D FFT F å= å

= =
- (1)

 () ()
N N1 vyuxF u,v .W WN N2N u 0 v 0

2D IFFT f x, y --å= å
= =

- (2)

when N indicates the number of sample points, f(x, y) indicates the pixel value of the

input image, F (μ, v) indicates coefficients of the output image, and �� = �����/� are

the twiddle factor, and x, y, u and v represent the coordinate of the input and

transformed image. Hence, to compute N-point FFT, we need respectively � ���2(�)

and (�/2) ���2(�) complex additions and complex multiplications. The traditional RC

algorithm is computed with three steps. Firstly, the input 2D frame is initially saved in

the local memory. After that, the 1D-FFT transform is applied along the columns.

Secondly, the result is saved in the local memory and transposed (columns to rows).

Thirdly, the second 1D-FFT transform is applied to columns another time.

However, the traditional RC algorithm is not efficient and has poor performance for

large image processing because the transpose operation requires more resources and

time to transfer data to and from memories [23]. To solve this problem, we introduce an

optimized RC algorithm without transpose operation, which computes with two steps:

1. In the first step, we perform the 1D-FFT algorithm on columns of the input

image. The intermediate results are written and stored inversely (i.e. stored in

rows not in columns) in two memories for real and imaginary parts.

2. In the second step, the 1D-FFT algorithm is reactivated on columns of the 1D-

FFT image obtained previously. The final results are stored as real and

imaginary data parts in two separate memories.

The optimized RC algorithm needs two reading and writing operations, while the

traditional RC algorithm requires three operations. Both implementations are depicted

in Fig. 2.

Write

Transpose columns To

rows

column-by-column

Write inversely

Traditional

RC

algorithm

Optimized

RC

algorithm

Read

Read

Write

Write

Interm
ediate S

torage

Interm
ediate S

torage

Read

1
D

-F
F

T
s

1
D

-F
F

T
s

column-by-column

1
D

-F
F

T
s

1
D

-F
F

T
s

column-by-column

column-by-column

Interm
ediate S

torage

Read

Interm
ediate S

torage

Interm
ediate S

torage

Write for

streaming access

Read for

streaming access

Interm
ediate S

torage

Interm
ediate S

torage

Read for

streaming access

Write for

streaming access

Output [i][j]= Input[j][i]

Fig.2. Traditional and optimized RC algorithms using Zynq SOC.

4. Software Implementation of the 2D-FFT Algorithm

The OpenCV library provides an implementation for many interesting applications

dedicated to software platforms. In addition, the 2D-FFT algorithm applied to image

reconstruction can be used for the validation of the software implementation based on

ARM Cortex 9 processor using the Zynq device. A SIMD architecture integrated into

the ARM Cortex 9 processor is used to accelerate the execution. The 2D-FFT algorithm

provided by the OpenCV library applied on the input frames stored in the DDR

memory. The data transfer between the ARM Cortex 9 processor and the DDR memory

is controlled with a Video Direct Memory Access (VDMA) core based on the High

Performance (AXI HP) port of the Zynq SoC[24]. Finally, the output result is forwarded

to the VGA output. The software implementation of the 2D-FFT algorithm is

configured to forward direction. We should notice that for a single high-resolution

frame 1920x1080, this implementation requires 229 ms, which is inefficient for real-

time applications. Two pre-processing steps are introduced to reduce the computation

time of the 2D-FFT algorithm based on OpenCV functions: grayscale conversion and

resizing. Fig. 3 shows the design of the software implementation based on ARM Cortex

9 processor.

• Resize Down

• Grayscale Conversion

• 2D-FFT Algorithm

• Resize Up

DDR

memory

ARM Cortex-A9

AXI HP

A
X

I In
te

rfa
c
e

Frame

1920*1080

Frequency

spectrum

AXI

VDMA

Programmable Logic (PL)

AXI Data FIFO

AXI - S2MMAXI – MM2S

Test-bench

Processing System (PS)

Fig.3: Software implementation based on ARM Cortex 9 processor.

4.1. Pre-processing

The goal of the pre-processing step is to reduce the complexity and the amount of

processed data. The input frame is first affected by a resizing up followed by gray-scale

conversion. Generally, reducing the size of the frame does not substantially affect the

important details. The spectrum Nearest-Neighbor interpolation algorithm is used to

resize down/up a frame. After reducing the frame, the gray-scale conversion is

applied[25]. The above-mentioned optimizations are combined to obtain the best system

performance and to decrease the computation time. The complete system steps are

presented in Fig. 4.

Input Frame Resizing Down
Gray-scale
Conversion

2D-FFT Resizing Up Output Frame

Fig. 4 A complete system steps.

4.2. Evaluation

The optimization used (resizing up / down, grayscale conversation) reduce the

complexity and the computation time of the 2D-FFT algorithm due to the decreasing of

the pixels to be treated. An image of resolution 1920x1080 is used as input. Fig. 5

presents the resize scale and the processing time in function with the PSNR of the

software implementation of the 2D-FFT algorithm based on ARM Cortex-A9 processor.

Fig. 5(a) presents the PSNR variation with the resize scale down for a high-resolution

image, and Fig. 5(b) presents the processing time in function with resizing scale down

for the whole 2D-FFT algorithm.

Fig. 5: Resize downscale in function with PSNR and processing time based on ARM Cortex-A9

processor of the 2D-FFT algorithm for different size of image.

The output spectrum quality is analyzed for different scaling parameters by using

the PSNR parameter. At the same time, the processing time is assessed for the same

scaling parameters. The typical value of the PSNR used in signal processing to measure

the quality is bigger than 35 dB. It is found that the processing time obtained with the

resized image at 256x256 pixels is more than 29 times lower than that obtained with the

size 1920x1080 pixels with a PSNR value equal to 40.12 dB. By these simulations, we

emphasize the need to resize the images in order to dramatically decrease the processing

time without a significant decrease in the quality. As a result, we have resized the input

frame at 256x256 pixels to reduce the amount of processed data.

54.66 53.22 51.16
49.21

40.12

33.23

30.5

0

10

20

30

40

50

60

1280x1280 1024x1024 768x768 512x512 256*256 128x128 64x64

P
S

N
R

Resize scale
(a)

Resize scale in function with the PSNR

229

109

82.46

44.54

21.9

7.9 4.81 3.92

0

50

100

150

200

250

1920x1080 1280x1280 1024x1024 768x768 512x512 256*256 128x128 64x64

P
ro

ce
ss

in
g

ti
m

e(
m

s)

Resize scale
(b)

Resize scale in function with the processing time

5. Hw/Sw Co-Design Implementation of the 2D-FFT Algorithms

This section presents 2D-FFT algorithm implementation tested on hybrid processing

units: ARM Cortex-A9 processor and FPGA. The advantage of the Zynq SoC from

Xilinx is the ability to generate any algorithm written with High-Level Language: C,

C++, and SystemC. Some other tools can generate RTL description using python

language. The HLS tool is used to reduce design time and greatly facilitate the

deployment of complex algorithms in the FPGA. However, the functions written with

C/C++ can be optimized and specified based on many directives in order to enhance the

performance and reduce the processing time using the HLS tools. The Zynq SoC can

automatically manage the exchange of data between the software part and the hardware

part. Traditional and optimized RC algorithms will be accelerated on FPGA. Fig. 6

presents an overview of the Hw/Sw co-design of the traditional RC algorithm based on

a hybrid platform combining an ARM processor with an FPGA.

Read Image (PS)

OpenCV2AXIvideo (PS To PL)

Traditional RC algorithm (PL)

AXIvideo2Mat (PL)

Mat2AXIvideo (PL)

AXIvideo2OpenCV (PL To PS)

Write Image (PS)

Resize down (PS)

Resize up (PS)

Cray scale conversion image

1D-FFTs by column

Transpose columns To rows

1D-FFTs by column

Read input Data

Applied the FFT IP
core

Write input Data

Read for

streaming access

Write for

streaming access

Conversion Matrix

To Real and

Imaginary Inputs

Conversion Real and

Imaginary Outputs

To Matrix

 Streaming Data

 Streaming Data

Fig. 6 Overview of the Hw/Sw co-design of the traditional RC algorithm using Zynq SoC.

An FPGA-based implementation is used processed the traditional RC algorithm

into hardware acceleration to achieve real-time implementation. As shown in Fig. 6, the

algorithms that are processed as hardware part are gray-scale conversion, 1D-FFT

algorithm on columns, transpose operation, and the second 1D-FFT algorithm on

columns, while the read/write frame and resizing down/up are processed as software.

This choice is made because reading and writing processes do not require any arithmetic

operations. Generally, the ARM processor is well optimized for this kind of operations.

The hls::AXIvideo2Mat IP-Core is used to converts data stored in hls::Mat format to an

AXI4 video stream format. While hls::Mat2AXIvideo IP-Core is used to perform the

inverse of the hls::AXIvideo2Mat IP-Core.

More specifically, traditional or optimized RC algorithms are built with two

blocks 1D-FFT core. Local memory is used to read and to write the input and the output

data for each block. Each block has three steps: read the input data via the local

memory, apply the proposed FFT IP core, write the output data and transfer it to the

local memory, respectively. The proposed FFT IP core is formed by 32 radix-2

butterflies: 32 FIFOs with 32 bits constituting the real part, 32 FIFOs with 32 bits

constituting the imaginary part, FIFO logic for routing outputs to the input, and complex

twiddle factor with 24 bits. The real and imaginary output parts are fixed-point data

with 32bits. Fig. 7(a) shows a diagram of the proposed 1D-FFT IP core.

B0

32 bits

24 bits

FIFO_Real

FIFO_Imag

32 bits

32 bits

B1

B30

B31

Input Data

64 bits

32-Butterfly

structure

32 bits

32 bits

Output Data

32 bits

Local Memory

For Read

Local Memory

For Write

Twiddle Factor

Memory

FIFO logic

1D-FFT

1-D FFT IP

core

 PS

 PL

Write

Buffer

Read

Buffer

AXI4-

Stream

(a)

(b)

External Memory

MM2S S2MM

AXI DMA
Controller

Input Data Output Data

1D-FFT IP core

Process Memory

24 bits

Fig. 7. (a) Diagram of the proposed 1D-FFT IP core, (b) hierarchical sequence of memories between

the PS and the PL for the 1D-FFT accelerator.

However, when saving the input frame in the local memory, the amount of BRAM

resources is increased. An AXI bus interface can be used for communication between

the PS and the PL. Vivado HLS provides three types of AXI communication: AXI4-Lite

bus, AXI4 interface, and AXI4-Stream. The first type is used to transfers the mapped

data in low-rate memory. The second type is suited for high-performance memory-

mapped operations, which is for sending and receiving bigger data. The third type is

AXI4-Stream will be used for this project, it is suitable for streaming a large amount of

data at high speed, such as video streaming. Row buffers save the input data in the local

memory and transmitted it to AXI VDMA. These buffers introduced by the class HLS::

stream. The VDMA allows transferring data between the ARM and the FPGA or

conversely. The interface of each buffer is controlled with the #pragma directives.

Fig. 7 (b) shows the hierarchical sequence of memories between the PS and the PL

for the 1D-FFT IP core. The scatter-gather mode of AXI DMA is used to configure each

interface and to transfer data to DDR memory. AXI DMA controls direct data transfers

between AXI4-Stream target devices and system memory. From the DDR memory, the

data is read and write via an AXI4 stream master. Memory-mapped to AXI4 stream

(MM2S) master and AXI stream to memory-mapped (S2MM) slave are respectively two

channels provided by AXI DMA for reading and writing data. The MM2S bus reads the

data from DDR memory and transmits them to PL, while S2MM bus writes the data

from PL and transmits them to DDR memory. As a result, AXI DMA core controls the

data transfers, the address generation, and the transaction planning in memory between

the DDR memory and PL.

5.1. Optimization

The 2D-FFT algorithm needs a high amount of resources and should be optimized.

Using the Vivado HLS device, we can handle FPGA implementation constraints by

several optimization techniques, known as synthesis pragmas or directives. The

performance of the hardware implementation varies depending on the configurations of

directives. Here, we can analyze the impact of some of them:

DATAFLOW: this directive is introduced to enhance the design throughput by allowing

the data to be transformed in sequential order from one loop flow to the next loop. If a

next loop uses the data generated in the previous loop, it is not necessary to wait for the

end of the previous loop. They will immediately move to the next loop when the data is

generated. This directive parallels the communication between different functions. In

this paper, FIFO memory is the default port type of FFT IP core. Two sequential loops

are required to transfer the data from BRAM to FIFO (Read) and to load the data from

FIFO to BRAM (Write).

PIPELINE: while the DATAFLOW directive orients the parallel communication

between the different functions, the PIPELINE directive orients the parallel

communication between the different operations of the same function. The

DATAFLOW and the PIPELINE directives allow executing all operations

simultaneously. In this paper, for each FFT IP core, the PIPELINE directive is used to

map data from BRAM to FIFO, but it is necessary to use with the DATAFLOW

directive, otherwise, it would not benefit. In addition, the pipeline directive in this

project can be implemented using the #pragma HLS PIPELINE directive [II = <N>]

where N is the number of clock cycles per pipeline. Fig.8 presents how dataflow and

pipeline optimizations works.

Read data FFT columns Write data

Read data

FFT columns

Write data

Latency 4 cycles

Without dataflow

With dataflow

op1 op2 op3

op1

op2

op3

Latency 4 cycles

Without pipeline

With pipeline

Read data1D-FFT

(a) (b)

Fig. 8. (a) Hierarchy of the dataflow optimization and (b) Hierarchy of the pipeline optimization.

UNROLL: this directive allows alliterations to run in parallel. This directive has the

ability to perform each iteration in one clock cycle when the loop is complete unrolled,

and in a separate clock cycle when the loop is rolled. More directive need to be used in

order to target real-time applications and to cover more complex designs. Table 1

presents the key features of six widely-used synthesis directives provided by Vivado

HLS[30].

Table 1 Configuration of synthesis directives.

Directives Target Configuration

Dataflow Top loop/function Enabled/Disabled

Pipeline Each loop level Enabled/Disabled

Loop unroll Each loop level Unrolling factors

Function inline Each function Yes/No

Loop flatten Inter loop levels Yes/No

Function pipeline Each function Enabled/Disabled

5.2. Evaluation

Table 2 presents the resources utilization of the hardware implementation for the

Traditional and the optimized RC algorithms based on Zynq 7z020 FPGA for frame at a

resolution of 256x256 pixels. The maximum frequency that can be achieved for this

design is 166.67 MHz. Vivado HLS was used to get these resources.

Table 2 Resource utilization of the hardware implementation for the Traditional RC and the

optimized RC algorithms based on Zynq 7z020 FPGA with frequency 166.67 MHz.

Functions/ Resources BRAM DSP FF LUT

Traditional RC Algorithm
Total 290 79 33516 27232
Available 280 220 106400 53200
Utilization (%) 103 35 31 51

Optimized RC Algorithm
Total 30 73 32805 26514
Available 280 220 106400 53200
Utilization (%) 10 33 30 49

In general, lower resources utilization means lower design cost. To determine

the surface usage of an FPGA design, the use of resources is a critical metric. Therefore,

a better design should use less resources. According to the comparison, the optimized

RC algorithm uses less resource than the traditional RC algorithm. The most obvious

difference between both algorithms is that the optimized RC algorithm is introduced

without transpose operation, which requires a high number of BRAM and DSP.

Consequently, the utilization ratio is greater than 100%. After the first 1D-FFT

algorithm, the data stored in the local memory are transposed and stored for another

time. This caused an increase in the number of memories used by the transposition

operation (256 BRAMs are used). DSPs show the complexity of each algorithm in

terms of the number of arithmetic operations, logic operations, and shift operations. The

optimized RC algorithm needs one reading/writing transaction between the local

memories for each block 1D-FFT, while the traditional algorithm needs three

reading/writing transaction between the local memories: two transactions for the two

blocks 1D-FFT and one transaction for transposition operation. Thus, the traditional

algorithm requires more resources, which increases complexity. Besides, Table 3

introduces the two performance parameters Latency and Timing. They used to measure

the effectiveness of any vision application. These two parameters are used to verify the

hardware acceleration performance based on the FPGA. Timing represents the

processing time, while the latency represents the number of iterations necessary to

process a frame. Therefore, it is possible to compute the processing time of each step for

hardware implementation. As well as, the processing time is computed as follows:

 framet MaxLatency*MaxTi min g= (3)

Table 3 Performance of the hardware implementation for Traditional RC and optimized RC

algorithms based on Zynq 7z020 FPGA.

Functions/ Resources Latency Max Timing

(ns) min max

Traditional RC Algorithm 3215 65556 5.55
Optimized RC Algorithm 3550 8422 5

The results show a required clock period of 5.55ns and 5ns for the traditional

and the optimized RC algorithms, respectively. In addition, the traditional and

optimized algorithms require respectively 65556 and 8422 number of cycles to process

a frame at a resolution of 256x256 pixels. Thus, the traditional RC algorithm needs high

number of cycles and more resources caused by the transpose operation. According to

the comparison, the optimized RC algorithm requires less number of cycles and less

resources than the traditional RC algorithm. Therefore, it is better to choose an

algorithm that needs less number of cycles and less resources to respect real-time

execution and memory consumption constraints. As a result, the optimized RC

algorithm should be made applicable to FPGA.

Four architectures are used to implement the FFT IP: Radix-4 Burst I/O, Radix-2

Burst I/O, Radix-2 Lite Burst I/O, and Pipelined Streaming I/O. Table 4 shows a

comparison between these architectures in order to choose the best architecture in terms

of resources used and processing time for the hardware implementation of the optimized

RC algorithm to process frame at a resolution of 256x256 pixels.

Table 4 Comparison between the four architectures used for the hardware implementation of the

optimized RC algorithm in terms of resource used and the number of cycles.

Functions/ Resources BRAM DSP FF LUT Latency

min max

Radix-4 Burst I/O

Total 56 49 32803 26514
3788

8660 Available 280 220 106400 53200

Utilization (%) 20 22 30 49

Radix-2 Burst I/O

Total 40 17 32803 26514
7686

12558 Available 280 220 106400 53200

Utilization (%) 14 7 30 49

Radix-2 Lite Burst

Total 40 9 32803 26514
12680

17552 Available 280 220 106400 53200

Radix-4 Burst I/O architecture loads and processes the data separately. This

architecture uses an iterative approach to process data with a large number of butterflies.

It takes latency (8660 number of cycles) but uses more resources (20% of BRAM). The

Radix-2 Burst I/O architecture uses the same principle as Radix-4, but with a smaller

butterfly, which increases the latency (12558 latency). The Radix-2 Lite Burst I / O

architecture is a variant of the Radix-2 Burst I / O, which uses a time-multiplexed

approach. This architecture used on butterflies that are composed of a smaller core. It

means that it uses less resources (4% of DSP), but with higher latency (17552 number

of cycles). Finally, Pipelined Streaming I/O architecture provides continuous data

processing. This architecture connects many Radix-2 butterflies to produce a higher

throughput and uses less resources. The resources used with the Pipelined Streaming

I/O architecture are less than the other three architectures including Radix-4 Burst I/O,

Radix-2 Burst I/O, and Radix-2 Lite Burst I/O architectures. Pipelined Streaming I/O

architecture requires less resources and less latency. Therefore, it has been used for the

hardware implementation of the optimized RC algorithm. Based on the pipelined

streaming architecture, the DATAFLOW and PIPELINE directives, the inputs data

processed in sequential order from the FIFOs, also, the outputs data of each radix-2

butterfly are written in sequential order. Table 5 presents the effects of the directives

based on the Pipelined Streaming I/O architecture on the use of resources and the

performance.

The real contribution is to find the best trade-off between FPGA cost and gained

performances in term of latency. The the number of resources consumed is a crucial

metric to determine the area usage of an FPGA design. The directives effects on BRAM

and DSP usage are shown in Fig. 9.1, while dircetives effects on FF and LUT usage are

shown in Fig. 9.2. The increase in resource utilization is probably due to several

simultaneous function calls, caused by the multiple directives optimization. However,

Fig.9.3. show the effectiveness of our included multiple directives optimization solution

in term of decreasing latency over than 356x. Table 5 presents the number of resources

used of each step for the hardware implementation of the optimized RC algorithm based

on FPGA to generate one frame at a resolution of 256x256 pixels. Also, it introduces

the Timing and Max Latency.

I/O Utilization (%) 14 4 30 49

Pipelined

Streaming I/O

Total 30 73 32805 26514
3550

8422 Available 280 220 106400 53200

Utilization (%) 10 33 30 49

Fig.10 introduces the processing time of each step for the software and the

Hw/Sw Co-design implementations. The Hw/Sw co-design implementation of the

optimized RC algorithm is accelerated by integrating the grayscale conversion function

and the 2D-FFT algorithm into the FPGA.

Fig. 9: Analysis of the directives effects: Fig.(9.1) Directives effects on BRAM and DSP usage, Fig.(9.2)

dircetives effects on FF and LUT usage, Fig.(9.3) Directives effects on latence.

Table 5 Resource utilization and timing of each step for the hardware implementation of the optimized

RC algorithm based on FPGA.

0

10

20

30

40

50

60

70

80

Dataflow Inline Flatten Unroll Resouce InterfaceTrip count Pipline

Directives effects BRAM and DSP usage

BRAM

DSP

0

5000

10000

15000

20000

25000

30000

35000

Dataflow Inline Flatten Unroll Resouce Interface Trip count Pipline

Directives effects on FF and LUT usage

FF

LUT

3005453

8422

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Dataflow Inline Flatten Unroll Resouce Interface Trip count Pipline

L
a

te
n

cy

Directives effects on latence

Functions/ Resources BRAM DSP FF LUT Timing (ns) Max Latency

AXIvideo2Mat 0 0 259 245 3.66 67331
Gray scale conversion 0 3 671 676 5. 55 69633
Matrix To Real part 0 0 35 46 5 66305

First 1D-FFT
Read data (In columns) 0 0 62 58 5 1121
Proposed FFT IP core (In columns) 5 36 16104 12805 5 3196

Fig.10 The processing time of each step for the 2D-FFT algorithm based on ARM Cortex-A9 processor, and a hybrid platform
ARM combining an ARM processor with an FPGA.

The hardware acceleration of the gray-scale conversion function and 2D-FFT

algorithm achieve a speedup of 10.62x and 72.59x, respectively, compared to the

software implementation based on the ARM Cortex 9 processor. The hardware

implementation based on FPGA means higher performance than software

implementation. This higher performance presents the interest of a high-level synthesis

using Zynq SoC. In addition, the software implementation of the 2D-FFT function can

take advantage of the SIMD engine.

The results of the test bench obtained with HLS will be compared to the

MATLAB implementation of each step of the optimized RC algorithm to verify that the

Hw/Sw co-design implementation works correctly. A similar implementation of the 2D-

FFT algorithm has been introduced in Matlab. Due to the simplicity and benefits of

implementing multidimensional arrays, the implementation with Matlab was much

shorter and easier in terms of development time. Note that the optimized RC algorithm

has been computed is a pipeline which processes the input frame as a continuous stream

of pixel values. When calculating PSNR between the results of the MATLAB

implementation with the proposed architecture using Vivado HLS must be the same.

Therefore, it is proven that the hardware implementation of the optimized RC algorithm

works correctly. To compute the PSNR, we use an image of 256x256 pixels. The

optimized RC algorithm has been introduced. The (���(�)) is the 2D-FFT exact with a

1.16

0.255

2.965

1.205

0

0.5

1

1.5

2

2.5

3

3.5

Resize Down RGB2GRAY FFT2D Resize Up

P
ro

ce
ss

in
g
 T

im
e(

m
s)

Execution times of each step for Sw implementaion

of 2D-FFT algorithm

1.16

0.024 0.042

1.205

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Resize Down RGB2GRAY

(FPGA)

FFT2D (FPGA) Resize Up
P

ro
ce

ss
in

g
 T

im
e(

m
s)

Execution times of each step for Hw/Sw Co-design

implementaion of the optimized 2D-FFT algorithm

Write data (In rows) 0 1 121 144 4.8 4101

Second 1D-FFT
Read data (In rows) 0 0 62 58 5 1121
Proposed FFT IP core (In columns) 5 36 16104 12805 5 3196
Write data (In columns) 0 0 117 47 4.8 1121

Real and Imaginary parts To Matrix 0 0 35 46 5 66305
Mat2AXIvideo 0 0 131 116 2.57 66561

floating-point arithmetic obtained by Matlab 64-bit precision. The (���(�)) is obtained

with the proposed architecture. Table 6 shows the comparison between PSNR obtained

by the hardware implementation and the MATLAB implementation. The PSNR is

defined by:

 ()

()

() ()

2

fk
k

2 2

fl fx
k k

dbPSNR 10 log10

X k

X k X k

=

æ ö÷ç ÷ç ÷÷çè ø
æ ö÷ç - ÷ç ÷÷çè ø

å

å å
 (4)

Table 6 Comparison results between Hw/Sw co-design implementation with Matlab for Lena image at

256*256 resolution.

Functions Optimized RC algorithm (PSNR)

Abs(2D-FFT) 36,1576
2D-IFFT ∞

The original and reconstructed images obtained using the Hw/Sw co-design

implementation for the optimized RC algorithm based on a hybrid platform combining

an ARM Cortex 9 processor and an FPGA using Zynq SoC are shown in Fig. 11. It can

be seen that the PSNR value between the Hw/Sw co-designs for the optimized RC

algorithm using Zynq SoC and the 2D-FFT algorithm using Matlab is greater than 36

dB and ∞ when compared the inverse 2D-FFT.

(a) (b) (c)

Fig. 11 (a) shows the Lena image, (b) shows the spectrum image obtained by the optimized RC algorithm

using Zynq SoC, and (c) shows the reconstructed Lena image.

6. Discussion

In this work, three implementations (one software and two Hw/Sw co-designs) are

used to assess the performance of the 2D-FFT algorithm: software implementation

based on ARM Cortex-A9 processor and two Hw/Sw Co-design implementations based

on a hybrid platform combining an ARM processor and FPGA circuit. Many

optimizations are used to improve the evaluation for each implementation. The software

implementation based on ARM Cortex-A9 processor provides advantages in terms of

flexibility of the programmability based on the well-known OpenCV libraries.

However, the HW/SW co-design flow of the traditional or optimized RC algorithms

needs an intermediate evaluation of sub-program, which would be very fastidious in

terms of programmability. Then, we should mention that numerous directives have been

used to get parallel processing. Consequently, the Hw/Sw co-design implementation

provides a better compromise between the performance and the programmability.

Moreover, an RTL simulation for the Hw/Sw Co-design solution is evaluated to give

detailed information about the number of resources used, Max Latency, and the timing.

In addition, many optimizations were introduced. The resizing down/up and the

grayscale conversion functions from the OpenCV are used to reduce the number of

pixels treated. Consequently, the complexity and the processing time of the 2D-FFT

algorithm are reduced.

Since the traditional RC algorithm requires more memory and more dedicated

hardware blocks due to the transpose operation. In this paper, an innovative architecture

namely, “optimized RC algorithm” using the Zynq SoC is proposed. It implemented

without transpose operation. As a result, the optimized RC algorithm uses less memory

and less dedicated hardware blocks and requires less Latency, which is suitable for the

implementation in FPGA. In addition, many directives such as DATAFLOW,

PIPELINE, and LOOP UNROLL are used to improve the performance. Hence, these

directives are used to make the optimized RC algorithm more suitable for real-time

implementation. The combination of pipelined streaming architecture and the

DATAFLOW and PIPELINE directives provides real-time constraints. Table 7

summarizes the results obtained from the different implementations.

Table 7 Processing time for different implementations.

Functions/ Resources Optimizations Processing Time

(ms)

Frame Size

Softawre
implementation

Original implementation without optimizations(ARM) 229 1980x1020

Original implementation with optimizations (ARM) 7.9 1980x1020

 Gray scale conversion + 2D-FFT algorithm (ARM) 3.22 256x256

First HW/SW Co-

design implementation

HW/SW Co-design implementation with optimizations (ARM+FPGA) 2.7 1980x1020

Gray scale conversion + traditional RC algorithm (FPGA) 0.384 256x256

Second HW/SW Co-
design implementation

HW/SW Co-design implementation with optimizations (ARM+FPGA) 2.38 1980x1020

Gray scale conversion + optimized RC algorithm (FPGA) 0.066 256*256

The experiment results demonstrate that the proposed Hw/Sw co-design

implementation based on the optimized RC algorithm is 1.13x, 3.31x and 96.21 faster

than the Hw/Sw co-design implementation based on the traditional RC algorithm, pure

software implementations with and without optimizations, respectively. The hardware

implementation of the grayscale conversion function and the Optimized RC algorithm

performed on FPGA is 48.78x faster than the corresponding functions performed on

ARM Cortex-A9 processor for a frame of 256x256 pixels. While the hardware

implementation of the grayscale conversion function and the Traditional RC algorithm

provide an acceleration of 8.38x. In addition, the hardware implementation of the

Optimized and the Traditional RC algorithms produces an acceleration of 70.59x and

8.23x, respectively, compared to the corresponding functions performed on ARM

processor. Therefore, the optimized architecture for the 2D-FFT algorithm significantly

improves the resources uses (BRAM, DSP, FF, and LUT) and the processing time

(Timing and Latency). As depicted in table 8, the proposed design of the 2D-FFT

algorithm takes less number of clock cycles for execution and requires less processing

time compared to existing FPGA-based implementations for an image at a resolution of

256x256 pixels.

 Table 8 2D FFT performance comparison with existing FPGA-based implementations for an image at a

resolution of 256x256 pixels.

7. Conclusion

This work presents three implementations (one software and two Hw/Sw co-

designs) of the 2D-FFT algorithm introduced by Cooley and Tukey. All of them have

been implemented on ARM Cortex-A9 processor and FPGA using the Zynq SoC. The

design was realized using the Vivado HLS. To begin, a software implementation of the

2D-FFT algorithm is introduced on ARM Cortex-A9 processor. After that, a Hw/Sw co-

design solution of the traditional 2D-FFT algorithm is introduced on a hybrid platform

References FPGA used Architecture Frequency (MHz) Clock cycles Processing time

[26] (2010) Xilinx Virtex-5 Pipelined Streaming 100 605,000 6.05 (ms)

[29] (2011) Spartan -3 Radix-4 91 --- 10.1(s)

[8] (2013) Spartan-3 Radix-4 103 --- 3.4 (s)

[27](2018) XC7K410T --- 80 --- 1.24 (ms)

Proposed (2019) Zynq 7z020 Pipelined Streaming 166.67 8422 0.042 (ms)

combining an ARM Cortex-A9 processor with an FPGA. The traditional 2D-FFT

algorithm uses more resources and more processing time due to the transpose operation.

Therefore, to respect real-time execution and memory consumption constraints, an

optimized architecture for the 2D-FFT algorithm using the Zynq SoC is proposed on

FPGA. It provides an acceleration of 70.59x, while the traditional 2D-FFT algorithm

provides an acceleration of 8.23x compared to the corresponding functions performed

on ARM processor. Several directives are applied to improve the performance. About

the processing time of the whole system, the proposed Hw/Sw co-design

implementation based on the optimized RC algorithm is 1.13x, 3.31x and 96.21 faster

than the Hw/Sw co-design implementation based on the traditional RC algorithm, pure

software implementations with and without optimizations, respectively.

References

[1] Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex

Fourier series. Mathematics of computation, 19(90), 297-301.

[2] Yan, Y., Wang, H., Li, C., Yang, C., & Zhong, B. (2013). An effective unconstrained correlation

filter and its kernelization for face recognition. Neurocomputing, 119, 201-211.

[3] Wang, Q., Alfalou, A., & Brosseau, C. (2017). New perspectives in face correlation research: a

tutorial. Advances in Optics and Photonics, 9(1), 1-78.

[4] Ouerhani, Y., Jridi, M., & Alfalou, A. (2010, July). Fast face recognition approach using a

graphical processing unit “GPU”. In 2010 IEEE International Conference on Imaging Systems

and Techniques (pp. 80-84). IEEE.

[5] Cheng, K. M., Lin, C. Y., Chen, Y. C., Su, T. F., Lai, S. H., & Lee, J. K. (2013, October). Design

of vehicle detection methods with opencl programming on multi-core systems. In The 11th IEEE

Symposium on Embedded Systems for Real-time Multimedia(pp. 88-95). IEEE.

[6] Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., & Manferdelli, J. (2008, November).

High performance discrete Fourier transforms on graphics processors. In Proceedings of the 2008

ACM/IEEE conference on Supercomputing (p. 2). IEEE Press.

[7] Smach, F., Miteran, J., Atri, M., Dubois, J., Abid, M., & Gauthier, J. P. (2007). An FPGA-based

accelerator for Fourier Descriptors computing for color object recognition using SVM. Journal of

Real-Time Image Processing, 2(4), 249-258.

[8] Ouerhani, Y., Jridi, M., & Alfalou, A. (2012). Area-Delay Efficient FFT Architecture Using

Parallel Processing and New Memory Sharing Technique. Journal of Circuits, Systems, and

Computers, 21(06), 1240018.

[9] Jothi, R. A., & Palanisamy, V. (2018). Performance Enhancement of Minutiae Extraction Using

Frequency and Spatial Domain Filters. International Journal of Pure and Applied

Mathematics, 118(7), 647-654.

[10] Jridi, M., Napoléon, T., & Alfalou, A. (2018). One lens optical correlation: application to face

recognition. Applied optics, 57(9), 2087-2095.

[11] Ouerhani, Y., Alfalou, A., & Brosseau, C. (2017, August). Road mark recognition using HOG-

SVM and correlation. In Optics and Photonics for Information Processing XI (Vol. 10395, p.

103950Q). International Society for Optics and Photonics.

[12] Napoléon, T., & Alfalou, A. (2014, May). Local binary patterns preprocessing for face

identification/verification using the VanderLugt correlator. In Optical Pattern Recognition

XXV (Vol. 9094, p. 909408). International Society for Optics and Photonics.

[13] Yanqing, D., Guoqing, Y., & Yanjie, Z. (2017). Remote Sensing Image Content Retrieval Based

on Frequency Spectral Energy. Procedia Computer Science, 107, 448-453.

[14] Lamas-Seco, J., Castro, P., Dapena, A., & Vazquez-Araujo, F. (2015). Vehicle classification

using the discrete fourier transform with traffic inductive sensors. Sensors, 15(10), 27201-27214.

[15] Yang, W., Wang, S., Hu, J., Zheng, G., & Valli, C. (2018). A fingerprint and finger-vein based

cancelable multi-biometric system. Pattern Recognition, 78, 242-251.

[16] Dehai, Z., Da, D., Jin, L., & Qing, L. (2013, November). A PCA-based face recognition method

by applying fast fourier transform in pre-processing. In 3rd International Conference on

Multimedia Technology (ICMT-13). Atlantis Press.

[17] Zhang, D., Ding, D., Li, J., & Liu, Q. (2014). A novel way to improve facial expression

recognition by applying fast fourier transform. In Proceedings of the International

MultiConference of Engineers and Computer Scientists (Vol. 1).

[18] Zhang, C., & Prasanna, V. (2017, February). Frequency domain acceleration of convolutional

neural networks on CPU-FPGA shared memory system. In Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (pp. 35-44). ACM.

[19] Chen, S., & Li, X. (2014, June). Input-adaptive parallel sparse fast fourier transform for stream

processing. In Proceedings of the 28th ACM international conference on Supercomputing (pp.

93-102). ACM.

[20] Hyun, E., Kim, S. D., Ju, Y. H., Lee, J. H., You, E. N., Park, J. H., ... & Kim, S. G. (2011,

October). FPGA based signal processing module design and implementation for FMCW vehicle

radar systems. In Proceedings of 2011 IEEE CIE International Conference on Radar (Vol. 1, pp.

273-275). IEEE.

[21] Walid, K., & Sajed, M. (2006). Design and implementation of a RADIX-4 FFT using FPGA

technology. IFAC Proceedings Volumes, 39(21), 248-252.

[22] Raju, K. S., Sengar, V., Gangal, M., Tanwar, P., & Prasad, P. B. Hardware Implementation of

Discrete Fourier Transform and its Inverse Using Floating Point Numbers.

[23] Lenart, T., Gustafsson, M., & Öwall, V. (2008). A hardware acceleration platform for digital

holographic imaging. Journal of Signal Processing Systems, 52(3), 297-311.

[24] Crockett, L. H., Elliot, R. A., Enderwitz, M. A., & Stewart, R. W. (2014). The Zynq Book:

Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc.

Strathclyde Academic Media.

[25] Kortli, Y., Marzougui, M., Bouallegue, B., Bose, J. S. C., Rodrigues, P., & Atri, M. (2017,

March). A novel illumination-invariant lane detection system. In 2017 2nd International

Conference on Anti-Cyber Crimes (ICACC) (pp. 166-171). IEEE.

 [26] Yu, C. L., Chakrabarti, C., Park, S., & Narayanan, V. (2010, March). Bandwidth-intensive FPGA

architecture for multi-dimensional DFT. In 2010 IEEE International Conference on Acoustics,

Speech and Signal Processing (pp. 1486-1489). IEEE.

[27] Li, L., & Wyrwicz, A. M. (2018). Parallel 2D FFT implementation on FPGA suitable for real-

time MR image processing. Review of Scientific Instruments, 89(9), 093706.

[28] Rios-Navarro, A., Tapiador-Morales, R., Jimenez-Fernandez, A., Amaya, C., Dominguez-

Morales, M., Delbruck, T., & Linares-Barranco, A. (2018, July). Performance evaluation over

HW/SW co-design SoC memory transfers for a CNN accelerator. In 2018 IEEE 18th

International Conference on Nanotechnology (IEEE-NANO) (pp. 1-4). IEEE.

[29] Ouerhani, Y., Jridi, M., & Alfalou, A. (2011, August). Implementation techniques of high-order

FFT into low-cost FPGA. In 2011 IEEE 54th International Midwest Symposium on Circuits and

Systems (MWSCAS) (pp. 1-4). IEEE.

[30] Zhao, J., Feng, L., Sinha, S., Zhang, W., Liang, Y., & He, B. (2019). Performance Modeling and

Directives Optimization for High Level Synthesis on FPGA. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems.

