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Abstract- The Two-Dimensional Fast Fourier Transform (2D-FFT) algorithm is used for 

the study of many modern systems applied for security and biometrics. The adoption of 

this algorithm, which is a compute intensive task, is limited due to its hardware design 

complexity. The first objective of this paper is to underline the effect of the 

hardware/software co-design (Hw/Sw co-design) for the reduction of the processing 

time and power consumption. Secondly, we propose an innovative architecture for the 

2D-FFT algorithm tested on Zynq Soc, which requires less processing time and memory 

compared to the traditional algorithm. Three implementations (one software and two 

Hw/Sw co-designs) of the 2D-FFT algorithm using the Zynq SoC are presented in this 

paper. The first is based on ARM processor. A speedup of 29x is obtained compared to 

the original implementation thanks to many optimizations. The second is a Hw/Sw co-

design solution of the traditional 2D-FFT algorithm introduced on a hybrid platform 

combining an ARM Cortex-A9 processor with an FPGA. The third is also a Hw/Sw co-

design solution using our optimized 2D-FFT algorithm to reach the real-time contraints 

for high-resolution images(1920×1080). It provides a speedup of 1.13x, 3.31x and 

96.21x faster than the Hw/Sw co-design implementation of the traditional RC 

algorithm, the pure software implementations with and without optimizations, 

respectively. 

Keywords: 2D-FFT algorithm; Embedded systems; Hw/Sw Co-design; High-level 

synthesis; Complexity. 

1. Introduction  

   The Fast Fourier Transform (FFT) algorithm was initially introduced by J. Cooley 
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and J.Tukey [1] in 1965 as a useful algorithm for image processing. It has become the 

most effective algorithm used for computer vision to obtain the frequency or the 

spectrum content of an image for many applications such as correlation filters and 

discrete convolution [2][3][4]. It is necessary to improve their performance to respect 

real-time and memory consumption constraints. However, the FFT algorithm is costly 

in terms of processing time and memory consumption [4][5][6]. More specifically, the 

traditional 2D-FFT algorithm is achieved by performing two 1D-FFT algorithms along 

rows or columns and transpose operation[1]. This affects the overall latency and could 

be designed differently. The use of embedded systems such as Graphics Processing 

Units (GPUs)[4], a combination of Hw/Sw Co-Design, and Field Programmable Gate 

Arrays (FPGAs)[7] are expected to solve these challenges. In this work, we have used 

the Zynq SoC FPGA-based platform, which presents better performance in terms of 

energy efficiency compared to GPUs[4]. Zynq SoC FPGAs are a good candidate for 

computer vision system development for their ability to exploit parallelism. 

Additionally, the design flow of current FPGAs synthesis tools supports high-level 

abstraction languages (C/C++) as input descriptions, in contrast to hardware description 

languages (HDL: Verilog and VHDL). High-level synthesis (HLS) is used to simplify 

the design process by transforming the algorithmic description into hardware while 

satisfying the design constraints. 

Given the importance of using the 2D-FFT algorithm in many applications, it could 

be interesting to propose a different implementation of this algorithm. In this paper, 

three implementations (one software and two Hw/Sw co-designs) of the 2D-FFT 

algorithm using the Zynq SoC are proposed. The first is based on ARM Cortex-A9 

processor to perform the software implementation using OpenCV functions. The second 

is based on a hybrid platform combining an ARM Cortex-A9 processor with an FPGA 

to perform a Hw/Sw co-design implementation. The Hw/Sw co-design implementation 

provides less processing time and less power, which is the first contribution of this 

paper. The second contribution is an innovative architecture for the 2D-FFT algorithm 

using the Zynq SoC. It requires less processing time and less dedicated hardware blocks 

(DSP, LUT, and FF) compared to the traditional algorithm. Particularly, we present two 

different Hw/Sw co-design implementations of the 2D-FFT algorithm using the Zynq 

SoC: (i) traditional Row-Column (RC) algorithm with transpose operation and (ii) 

optimized RC algorithm without transpose operation. Both 2D-FFT algorithms were 

compared in terms of processing time, memory, and dedicated hardware blocks.  



Generally, the Radix-2 and Radix-4 architectures are the basic architectures used to 

implement the FFT IP core. The decimation-in-frequency and non-discrimination are 

often used for the pipelined streaming and burst I/O architectures, respectively. 

Moreover, it is well known that N-point FFT using Radix-2 introduces log2 (N) steps, 

each step containing N/2 Radix-2 butterflies. However, N-point FFT using Radix-4 

introduces log4 (N) steps, each step containing N/4 Radix-4 butterflies. The butterfly 

architecture used and the number of inputs and outputs are the main difference between 

these architectures[8]. In this work, four architectures have been assessed in order to 

select the best one. These architectures include Radix-4 Burst I/O, Radix-2 Burst I/O, 

Pipelined Streaming I/O, and Radix-2 Lite Burst I/O. Vivado HLS tool is used to 

generate the hardware description (at RTL level) from software-coded functions and 

targeting Zynq SoC. This description serves to exchange data between the software part 

and the hardware part. Many optimizations are introduced in order to develop suitable 

hardware implementation. The contributions of this paper are as follows: 

• Proposing a Hw/Sw co-design solution of the 2D-FFT algorithm, which 

provides less processing time, and less power consumption using the Zynq 

SoC. 

• Innovative architecture for the 2D-FFT algorithm tested on Zynq Soc that 

requires less processing time, memory, and less number of computational 

blocks compared to the traditional algorithm. 

• A comparative study between four existing architectures to select the best 

one. 

• Study the impact of directives on resource usage and performance. 

The rest of the paper is organized as follows: Section 2, presents the different 

applications of the 2D-FFT algorithm and platforms used for these implementations. 

Section 3 describes our innovative architecture for the 2D-FFT algorithm using the 

Zynq SoC. Section 4 describes the software implementation based on ARM Cortex-A9 

processor. Section 5 presents the Hw/Sw co-design solution using the Zynq SoC and the 

different optimizations for both 2D-FFT algorithms performed on ARM Cortex-A9 

processor and the FPGA. Section 6 presents and discusses all implementations. The last 

section concludes the work and gives future research directions. 

2. RELATED WORK 

Computer vision techniques are getting more and more popular in a variety of areas 



in scientific research, such as identification [2][9] [7], classification [10][3][11][12], and 

marking images [13]. Fast Fourier Transform (FFT) has been introduced in many of the 

above-listed applications. Several applications for image processing are presented and 

discussed to prove the importance of the 2D-FFT algorithm. For example, Lamas-Seco 

et al. [14] implement a novel algorithm based on the Fourier Transform (FT) to extract 

some spectral features of inductive signatures used in traffic management systems. In 

addition, a variant of the 2D-FFT algorithm named Enhanced Partial Discrete Fourier 

Transform (EP-DFT) is used to implement a multi-biometric system to improve 

recognition accuracy and security [15]. A simplified correlation method based on the 

2D-FFT is implemented to simplify the correlation setup[10]. Recognition with this 

method is done without resorting to inverse 2D-FFT compared to the traditional 

correlation application. In addition, some research work focuses on image preprocessing 

to improve performance. Zhang et al.[16] proposes a system for face recognition with 

Principal Component Analysis (PCA) approach, which applied the Fast Fourier 

Transform (FFT) to combine the phase spectrum of one image with the amplitude 

spectrum of another image as a mixed image. In addition, Khan et al.[17] develops a 

computational method based on Particle Swarm Optimization (PSO) and the Discrete 

Fourier Transform algorithm.  

The different applications mentioned previously prove that either a combination 

between 2D-FFT algorithm and other algorithms is used for objects recognition tasks.  

The FFT algorithm is costly in terms of processing time and power consumption, many 

researchers have studied efficient acceleration based on FPGAs and GPUs by exploiting 

their high parallelism capabilities. Indeed, the heterogeneous multicore SoC includes 

CPU, GPU and FPGA are proposed in many types of research. An example of the 

heterogeneous multicore platform used to accelerate the vehicle detection process was 

implemented by Cheng et al. [5]. This platform includes an Intel i5-2400 processor and 

an AMD HD6670 GPU. Zhang et al.[18], proposes a novel method based on the CPU-

FPGA platform with coherent shared memory to accelerate state-of-art Convolutional 

Neural Networks (CNNs). Ouerhani et al.[4] proposes an implementation of the 

correlation technique based on the Nvidia Geforce 8400 GS GPU for facial recognition. 

This technique is based on the 2D-FFT filter and the phase-only filter (POF). A mixed 

radix FFT and hierarchical FFT algorithms for both power-of-two and non-power-of-

two sizes using GPUs are presented in [6]. The work in [19] exploits the similarity 

between adjacent inputs and sparse input samples in stream processing to enhance the 



efficiency of sparse FFT algorithm. The sparse FFT implementation is evaluated based 

on Intel i7 CPU and three NVIDIA GPUs, i.e., NVIDIA GeForce GTX480, Tesla 

C2070, and Tesla C2075. Hyun et al. [20] developed a Virtex-5 FPGA implementation 

of signal processing of the vehicle FMCW radar systems with a two-step FFT. Smach et 

al. [7] presented a hardware implementation using FPGA technology in order to 

accelerate the computation of Fourier Descriptors (FD). The Support Vector Machine 

(SVM) is used for classification. To optimize the radix-2 FFT FPGA implementation, a 

novel algorithm is proposed to simplify the computation by Walid et al [21]. Raju et al. 

[22] present two implementations of DFT/IDFT architectures on the FPGA. These 

architectures are based on radix 2 butterfly because of its reduced computation time. Yu 

et al. [26] develop a Multi-dimensional (MD) Discrete Fourier Transform (DFT) 

algorithm based on Xilinx Virtex-5 FPGA. The proposed algorithm can support 2D, 3D, 

and even higher dimensional DFT. Li and Wyrwicz [27] report the design and 

implementation of a parallel 2D-FFT) algorithm on FPGA for real-time MR image 

processing. The results indicate that the image-reconstruction acceleration is primarily 

limited by the speed of the data transfer between the FPGA device and external sensors. 

Ouerhani et al. [29] allow to optimize existing FFT algorithms for low-cost FPGA 

implementations. 

Finally, this paper focuses on FPGA-based platforms, which presents a better 

performance in terms of energy efficiency compared to GPU platforms. The FPGA 

shows better results in terms of performance with low power consumption. GPU 

platforms, also, provide high-performance results but consume more power [4]. Unlike 

the different implementations introduced in relation to the FPGAs, this work contributes 

with a Hw/Sw co-design of the 2D-FFT algorithm using the Zynq SoC respecting real-

time execution and memory consumption constraints. As a result, the FPGA is widely 

used as an accelerator for image processing due to the possibility of reducing execution 

time and extracting parallel computations. However, this accelerator requires a thorough 

knowledge of hardware description languages (HDL) such as VHDL and Verilog. These 

languages are used to describe and synthesize at the Register-Transfer Level (RTL) 

levels. Today, high-level synthesis tools (HLS) is used to synthesize hardware 

description (RTL) from a high-level language such as C/C ++ and SystemC. In addition, 

HLS tools can not directly transform high-level language into RTL levels. As a result, it 

needs to be optimized and restructured to be suitable and synthesizable for a specific 

hardware platform. 



Vivado HLS reduces design time and makes complex algorithms much easier than 

to use HDL. However, Vivado HLS does not support the compilation of all C/C ++ 

command structures. So, Xilinx provides many popular libraries and model templates 

for programming users. The hls_fft.h and ap_fixed.h libraries are used to implement our 

proposed FFT IP core. The float data type is used for the default implementation of FFT 

IP core. Then, to reduce the processing time and the resources number, it is better to 

transfer the input data to fixed-point data. Once compiled into HDL, modules on Vivado 

HLS produces an FFT IP core, which can be instantiated and simulated with other 

software such as Matlab, ISE. Besides, this FFT IP core subject to various optimizations 

in order to improve performance and reduce memory requirements. The design process 

using Vivado HLS is shown in Fig. 1. 
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Fig.1: Design Process on Vivado HLS 

3. 2D-FFT Algorithms 

The 2D-FFT algorithm can be used to identify any object by extracting in the 

transform domain features that can be used for identification or recognition[10]. It 

considered as a local descriptor to represent an object instead of the global descriptor. 

The 2D-FFT and its inverse are defined as follows: 

                        ( ) ( )
N N vyuxu,v f x,y .W WN N

x 0 y 0
2D FFT F å= å

= =
-                                                (1) 

                        ( ) ( )
N N1 vyuxF u,v .W WN N2N u 0 v 0

2D IFFT f x, y --å= å
= =

-                                   (2) 

when N indicates the number of sample points, f(x, y) indicates the pixel value of the 

input image, F (μ, v) indicates coefficients of the output image, and ��  =  �����/�  are 



the twiddle factor,  and x, y, u and v represent the coordinate of the input and 

transformed image. Hence, to compute N-point FFT, we need respectively � ���2(�) 

and (�/2) ���2(�) complex additions and complex multiplications. The traditional RC 

algorithm is computed with three steps. Firstly, the input 2D frame is initially saved in 

the local memory. After that, the 1D-FFT transform is applied along the columns. 

Secondly, the result is saved in the local memory and transposed (columns to rows). 

Thirdly, the second 1D-FFT transform is applied to columns another time. 

However, the traditional RC algorithm is not efficient and has poor performance for 

large image processing because the transpose operation requires more resources and 

time to transfer data to and from memories [23]. To solve this problem, we introduce an 

optimized RC algorithm without transpose operation, which computes with two steps: 

1. In the first step, we perform the 1D-FFT algorithm on columns of the input 

image. The intermediate results are written and stored inversely (i.e. stored in 

rows not in columns) in two memories for real and imaginary parts. 

2. In the second step, the 1D-FFT algorithm is reactivated on columns of the 1D-

FFT image obtained previously. The final results are stored as real and 

imaginary data parts in two separate memories. 

The optimized RC algorithm needs two reading and writing operations, while the 

traditional RC algorithm requires three operations. Both implementations are depicted 

in Fig. 2.  
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Fig.2. Traditional and optimized RC algorithms using Zynq SOC. 

4. Software Implementation of the 2D-FFT Algorithm 



The OpenCV library provides an implementation for many interesting applications 

dedicated to software platforms. In addition, the 2D-FFT algorithm applied to image 

reconstruction can be used for the validation of the software implementation based on 

ARM Cortex 9 processor using the Zynq device. A SIMD architecture integrated into 

the ARM Cortex 9 processor is used to accelerate the execution. The 2D-FFT algorithm 

provided by the OpenCV library applied on the input frames stored in the DDR 

memory. The data transfer between the ARM Cortex 9 processor and the DDR memory 

is controlled with a Video Direct Memory Access (VDMA) core based on the High 

Performance (AXI HP) port of the Zynq SoC[24]. Finally, the output result is forwarded 

to the VGA output. The software implementation of the 2D-FFT algorithm is 

configured to forward direction. We should notice that for a single high-resolution 

frame 1920x1080, this implementation requires 229 ms, which is inefficient for real-

time applications. Two pre-processing steps are introduced to reduce the computation 

time of the 2D-FFT algorithm based on OpenCV functions: grayscale conversion and 

resizing. Fig. 3 shows the design of the software implementation based on ARM Cortex 

9 processor. 
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Fig.3: Software implementation based on ARM Cortex 9 processor. 

4.1.     Pre-processing 

The goal of the pre-processing step is to reduce the complexity and the amount of 

processed data. The input frame is first affected by a resizing up followed by gray-scale 

conversion. Generally, reducing the size of the frame does not substantially affect the 

important details. The spectrum Nearest-Neighbor interpolation algorithm is used to 

resize down/up a frame. After reducing the frame, the gray-scale conversion is 

applied[25]. The above-mentioned optimizations are combined to obtain the best system 

performance and to decrease the computation time. The complete system steps are 

presented in Fig. 4. 
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Fig. 4 A complete system steps. 

 

 

4.2.     Evaluation 

The optimization used (resizing up / down, grayscale conversation) reduce the 

complexity and the computation time of the 2D-FFT algorithm due to the decreasing of 

the pixels to be treated. An image of resolution 1920x1080 is used as input. Fig. 5 

presents the resize scale and the processing time in function with the PSNR of the 

software implementation of the 2D-FFT algorithm based on ARM Cortex-A9 processor. 

Fig. 5(a) presents the PSNR variation with the resize scale down for a high-resolution 

image, and Fig. 5(b) presents the processing time in function with resizing scale down 

for the whole 2D-FFT algorithm.  

 

Fig. 5:  Resize downscale in function with PSNR and processing time based on ARM Cortex-A9 

processor of the 2D-FFT algorithm for different size of image. 

The output spectrum quality is analyzed for different scaling parameters by using 

the PSNR parameter. At the same time, the processing time is assessed for the same 

scaling parameters. The typical value of the PSNR used in signal processing to measure 

the quality is bigger than 35 dB. It is found that the processing time obtained with the 

resized image at 256x256 pixels is more than 29 times lower than that obtained with the 

size 1920x1080 pixels with a PSNR value equal to 40.12 dB. By these simulations, we 

emphasize the need to resize the images in order to dramatically decrease the processing 

time without a significant decrease in the quality. As a result, we have resized the input 

frame at 256x256 pixels to reduce the amount of processed data. 
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5. Hw/Sw Co-Design Implementation of the 2D-FFT Algorithms 

This section presents 2D-FFT algorithm implementation tested on hybrid processing 

units: ARM Cortex-A9 processor and FPGA. The advantage of the Zynq SoC from 

Xilinx is the ability to generate any algorithm written with High-Level Language: C, 

C++, and SystemC. Some other tools can generate RTL description using python 

language. The HLS tool is used to reduce design time and greatly facilitate the 

deployment of complex algorithms in the FPGA. However, the functions written with 

C/C++ can be optimized and specified based on many directives in order to enhance the 

performance and reduce the processing time using the HLS tools. The Zynq SoC can 

automatically manage the exchange of data between the software part and the hardware 

part. Traditional and optimized RC algorithms will be accelerated on FPGA. Fig. 6 

presents an overview of the Hw/Sw co-design of the traditional RC algorithm based on 

a hybrid platform combining an ARM processor with an FPGA.  
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Fig. 6 Overview of the Hw/Sw co-design of the traditional RC algorithm using Zynq SoC. 

An FPGA-based implementation is used processed the traditional RC algorithm 

into hardware acceleration to achieve real-time implementation. As shown in Fig. 6, the 



algorithms that are processed as hardware part are gray-scale conversion, 1D-FFT 

algorithm on columns, transpose operation, and the second 1D-FFT algorithm on 

columns, while the read/write frame and resizing down/up are processed as software. 

This choice is made because reading and writing processes do not require any arithmetic 

operations. Generally, the ARM processor is well optimized for this kind of operations. 

The hls::AXIvideo2Mat IP-Core is used to converts data stored in hls::Mat format to an 

AXI4 video stream format. While hls::Mat2AXIvideo IP-Core is used to perform the 

inverse of the hls::AXIvideo2Mat IP-Core. 

More specifically, traditional or optimized RC algorithms are built with two 

blocks 1D-FFT core. Local memory is used to read and to write the input and the output 

data for each block. Each block has three steps: read the input data via the local 

memory, apply the proposed FFT IP core, write the output data and transfer it to the 

local memory, respectively. The proposed FFT IP core is formed by 32 radix-2 

butterflies: 32 FIFOs with 32 bits constituting the real part, 32 FIFOs with 32 bits 

constituting the imaginary part, FIFO logic for routing outputs to the input, and complex 

twiddle factor with 24 bits. The real and imaginary output parts are fixed-point data 

with 32bits. Fig. 7(a) shows a diagram of the proposed 1D-FFT IP core. 
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Fig. 7. (a) Diagram of the proposed 1D-FFT IP core, (b) hierarchical sequence of memories between 

the PS and the PL for the 1D-FFT accelerator. 



However, when saving the input frame in the local memory, the amount of BRAM 

resources is increased. An AXI bus interface can be used for communication between 

the PS and the PL. Vivado HLS provides three types of AXI communication: AXI4-Lite 

bus, AXI4 interface, and AXI4-Stream. The first type is used to transfers the mapped 

data in low-rate memory. The second type is suited for high-performance memory-

mapped operations, which is for sending and receiving bigger data. The third type is 

AXI4-Stream will be used for this project, it is suitable for streaming a large amount of 

data at high speed, such as video streaming. Row buffers save the input data in the local 

memory and transmitted it to AXI VDMA. These buffers introduced by the class HLS:: 

stream. The VDMA allows transferring data between the ARM and the FPGA or 

conversely. The interface of each buffer is controlled with the #pragma directives. 

Fig. 7 (b) shows the hierarchical sequence of memories between the PS and the PL 

for the 1D-FFT IP core. The scatter-gather mode of AXI DMA is used to configure each 

interface and to transfer data to DDR memory. AXI DMA controls direct data transfers 

between AXI4-Stream target devices and system memory. From the DDR memory, the 

data is read and write via an AXI4 stream master. Memory-mapped to AXI4 stream 

(MM2S) master and AXI stream to memory-mapped (S2MM) slave are respectively two 

channels provided by AXI DMA for reading and writing data. The MM2S bus reads the 

data from DDR memory and transmits them to PL, while S2MM bus writes the data 

from PL and transmits them to DDR memory. As a result, AXI DMA core controls the 

data transfers, the address generation, and the transaction planning in memory between 

the DDR memory and PL. 

5.1.      Optimization 

The 2D-FFT algorithm needs a high amount of resources and should be optimized. 

Using the Vivado HLS device, we can handle FPGA implementation constraints by 

several optimization techniques, known as synthesis pragmas or directives. The 

performance of the hardware implementation varies depending on the configurations of 

directives. Here, we can analyze the impact of some of them: 

DATAFLOW: this directive is introduced to enhance the design throughput by allowing 

the data to be transformed in sequential order from one loop flow to the next loop. If a 

next loop uses the data generated in the previous loop, it is not necessary to wait for the 

end of the previous loop. They will immediately move to the next loop when the data is 

generated. This directive parallels the communication between different functions. In 

this paper, FIFO memory is the default port type of FFT IP core. Two sequential loops 



are required to transfer the data from BRAM to FIFO (Read) and to load the data from 

FIFO to BRAM (Write).  

PIPELINE: while the DATAFLOW directive orients the parallel communication 

between the different functions, the PIPELINE directive orients the parallel 

communication between the different operations of the same function. The 

DATAFLOW and the PIPELINE directives allow executing all operations 

simultaneously. In this paper, for each FFT IP core, the PIPELINE directive is used to 

map data from BRAM to FIFO, but it is necessary to use with the DATAFLOW 

directive, otherwise, it would not benefit. In addition, the pipeline directive in this 

project can be implemented using the #pragma HLS PIPELINE directive [II = <N>] 

where N is the number of clock cycles per pipeline. Fig.8 presents how dataflow and 

pipeline optimizations works. 

Read data FFT columns Write data

Read data 

FFT columns

Write data

Latency 4 cycles

Without dataflow

With dataflow

op1 op2 op3

op1

op2

op3

Latency 4 cycles

Without pipeline 
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Read data1D-FFT
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Fig. 8. (a) Hierarchy of the dataflow optimization and (b) Hierarchy of the pipeline optimization. 

UNROLL: this directive allows alliterations to run in parallel. This directive has the 

ability to perform each iteration in one clock cycle when the loop is complete unrolled, 

and in a separate clock cycle when the loop is rolled. More directive need to be used in 

order to target real-time applications and to cover more complex designs. Table 1 

presents the key features of six widely-used synthesis directives provided by Vivado 

HLS[30]. 

Table 1 Configuration of synthesis directives. 

Directives Target Configuration 

Dataflow Top loop/function Enabled/Disabled 

Pipeline Each loop level Enabled/Disabled 

Loop unroll Each loop level Unrolling factors 

Function inline Each function Yes/No 

Loop flatten Inter loop levels Yes/No 

Function pipeline Each function Enabled/Disabled 

 

5.2.   Evaluation 



Table 2 presents the resources utilization of the hardware implementation for the 

Traditional and the optimized RC algorithms based on Zynq 7z020 FPGA for frame at a 

resolution of 256x256 pixels. The maximum frequency that can be achieved for this 

design is 166.67 MHz. Vivado HLS was used to get these resources. 

 

Table 2 Resource utilization of the hardware implementation for the Traditional RC and the 

optimized RC algorithms based on Zynq 7z020 FPGA with frequency 166.67 MHz. 

Functions/ Resources BRAM DSP FF LUT 

Traditional RC Algorithm 
Total 290 79 33516 27232 
Available  280 220 106400 53200 
Utilization (%)  103 35 31 51 

Optimized RC Algorithm 
Total 30 73 32805 26514 
Available  280 220 106400 53200 
Utilization (%)  10 33 30 49 

In general, lower resources utilization means lower design cost. To determine 

the surface usage of an FPGA design, the use of resources is a critical metric. Therefore, 

a better design should use less resources. According to the comparison, the optimized 

RC algorithm uses less resource than the traditional RC algorithm. The most obvious 

difference between both algorithms is that the optimized RC algorithm is introduced 

without transpose operation, which requires a high number of BRAM and DSP. 

Consequently, the utilization ratio is greater than 100%. After the first 1D-FFT 

algorithm, the data stored in the local memory are transposed and stored for another 

time. This caused an increase in the number of memories used by the transposition 

operation (256 BRAMs are used). DSPs show the complexity of each algorithm in 

terms of the number of arithmetic operations, logic operations, and shift operations. The 

optimized RC algorithm needs one reading/writing transaction between the local 

memories for each block 1D-FFT, while the traditional algorithm needs three 

reading/writing transaction between the local memories: two transactions for the two 

blocks 1D-FFT and one transaction for transposition operation. Thus, the traditional 

algorithm requires more resources, which increases complexity. Besides, Table 3 

introduces the two performance parameters Latency and Timing. They used to measure 

the effectiveness of any vision application. These two parameters are used to verify the 

hardware acceleration performance based on the FPGA. Timing represents the 

processing time, while the latency represents the number of iterations necessary to 



process a frame. Therefore, it is possible to compute the processing time of each step for 

hardware implementation. As well as, the processing time is computed as follows:   

                           framet MaxLatency*MaxTi min g=                                                           (3) 

 

 

Table 3 Performance of the hardware implementation for Traditional RC and optimized RC 

algorithms based on Zynq 7z020 FPGA. 

Functions/ Resources Latency Max Timing 

(ns) min max 

Traditional RC Algorithm 3215 65556 5.55 
Optimized RC Algorithm 3550 8422 5 

The results show a required clock period of 5.55ns and 5ns for the traditional 

and the optimized RC algorithms, respectively. In addition, the traditional and 

optimized algorithms require respectively 65556 and 8422 number of cycles to process 

a frame at a resolution of 256x256 pixels. Thus, the traditional RC algorithm needs high 

number of cycles and more resources caused by the transpose operation. According to 

the comparison, the optimized RC algorithm requires less number of cycles and less 

resources than the traditional RC algorithm. Therefore, it is better to choose an 

algorithm that needs less number of cycles and less resources to respect real-time 

execution and memory consumption constraints. As a result, the optimized RC 

algorithm should be made applicable to FPGA.  

Four architectures are used to implement the FFT IP: Radix-4 Burst I/O, Radix-2 

Burst I/O, Radix-2 Lite Burst I/O, and Pipelined Streaming I/O. Table 4 shows a 

comparison between these architectures in order to choose the best architecture in terms 

of resources used and processing time for the hardware implementation of the optimized 

RC algorithm to process frame at a resolution of 256x256 pixels. 

Table 4 Comparison between the four architectures used for the hardware implementation of the 

optimized RC algorithm in terms of resource used and the number of cycles. 

Functions/ Resources BRAM DSP FF LUT Latency 

min max 

 

 

 

 

 

 

Radix-4 Burst I/O 

Total 56 49 32803 26514  
3788 

 
8660 Available  280 220 106400 53200 

Utilization (%)  20 22 30 49 

Radix-2 Burst I/O 

Total 40 17 32803 26514  
7686 

 
12558 Available  280 220 106400 53200 

Utilization (%)  14 7 30 49 

Radix-2 Lite Burst 

Total 40 9 32803 26514  
12680 

 
17552 Available  280 220 106400 53200 



Radix-4 Burst I/O architecture loads and processes the data separately. This 

architecture uses an iterative approach to process data with a large number of butterflies. 

It takes latency (8660 number of cycles) but uses more resources (20% of BRAM). The 

Radix-2 Burst I/O architecture uses the same principle as Radix-4, but with a smaller 

butterfly, which increases the latency (12558 latency). The Radix-2 Lite Burst I / O 

architecture is a variant of the Radix-2 Burst I / O, which uses a time-multiplexed 

approach. This architecture used on butterflies that are composed of a smaller core. It 

means that it uses less resources (4% of DSP), but with higher latency (17552 number 

of cycles). Finally, Pipelined Streaming I/O architecture provides continuous data 

processing. This architecture connects many Radix-2 butterflies to produce a higher 

throughput and uses less resources. The resources used with the Pipelined Streaming 

I/O architecture are less than the other three architectures including Radix-4 Burst I/O, 

Radix-2 Burst I/O, and Radix-2 Lite Burst I/O architectures. Pipelined Streaming I/O 

architecture requires less resources and less latency. Therefore, it has been used for the 

hardware implementation of the optimized RC algorithm. Based on the pipelined 

streaming architecture, the DATAFLOW and PIPELINE directives, the inputs data 

processed in sequential order from the FIFOs, also, the outputs data of each radix-2 

butterfly are written in sequential order. Table 5 presents the effects of the directives 

based on the Pipelined Streaming I/O architecture on the use of resources and the 

performance.  

The real contribution is to find the best trade-off between FPGA cost and gained 

performances in term of latency. The the number of resources consumed is a crucial 

metric to determine the area usage of an FPGA design. The directives effects on BRAM 

and DSP usage are shown in Fig. 9.1, while dircetives effects on FF and LUT usage are 

shown in Fig. 9.2. The increase in resource utilization is probably due to several 

simultaneous function calls, caused by the multiple directives optimization. However, 

Fig.9.3. show the effectiveness of our included multiple directives optimization solution 

in term of decreasing latency over than 356x. Table 5 presents the number of resources 

used of each step for the hardware implementation of the optimized RC algorithm based 

on FPGA to generate one frame at a resolution of 256x256 pixels. Also, it introduces 

the Timing and Max Latency.  

I/O Utilization (%)  14 4 30 49 

Pipelined 

Streaming I/O 

Total 30 73 32805 26514  
3550 

 
8422 Available  280 220 106400 53200 

Utilization (%)  10 33 30 49 



Fig.10 introduces the processing time of each step for the software and the 

Hw/Sw Co-design implementations. The Hw/Sw co-design implementation of the 

optimized RC algorithm is accelerated by integrating the grayscale conversion function 

and the 2D-FFT algorithm into the FPGA. 

 

  

 

Fig. 9: Analysis of the directives effects: Fig.(9.1) Directives effects on BRAM and DSP usage, Fig.(9.2) 

dircetives effects on FF and LUT usage, Fig.(9.3) Directives effects on latence. 

Table 5 Resource utilization and timing of each step for the hardware implementation of the optimized 

RC algorithm based on FPGA. 
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Functions/ Resources BRAM DSP FF LUT Timing (ns) Max Latency 

AXIvideo2Mat 0 0 259 245 3.66 67331 
Gray scale conversion 0 3 671 676 5. 55 69633 
Matrix To Real part  0 0 35 46 5 66305 
 

First 1D-FFT 
Read  data (In columns) 0 0 62 58 5 1121 
Proposed FFT IP core (In columns) 5 36 16104 12805 5 3196 



    

Fig.10 The processing time of each step for the 2D-FFT algorithm based on ARM Cortex-A9 processor, and a hybrid platform 
ARM combining an ARM processor with an FPGA. 

The hardware acceleration of the gray-scale conversion function and 2D-FFT 

algorithm achieve a speedup of 10.62x and 72.59x, respectively, compared to the 

software implementation based on the ARM Cortex 9 processor. The hardware 

implementation based on FPGA means higher performance than software 

implementation. This higher performance presents the interest of a high-level synthesis 

using Zynq SoC. In addition, the software implementation of the 2D-FFT function can 

take advantage of the SIMD engine.  

The results of the test bench obtained with HLS will be compared to the 

MATLAB implementation of each step of the optimized RC algorithm to verify that the 

Hw/Sw co-design implementation works correctly. A similar implementation of the 2D-

FFT algorithm has been introduced in Matlab. Due to the simplicity and benefits of 

implementing multidimensional arrays, the implementation with Matlab was much 

shorter and easier in terms of development time. Note that the optimized RC algorithm 

has been computed is a pipeline which processes the input frame as a continuous stream 

of pixel values. When calculating PSNR between the results of the MATLAB 

implementation with the proposed architecture using Vivado HLS must be the same. 

Therefore, it is proven that the hardware implementation of the optimized RC algorithm 

works correctly. To compute the PSNR, we use an image of 256x256 pixels. The 

optimized RC algorithm has been introduced. The (���(�)) is the 2D-FFT exact with a 
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Write data (In rows) 0 1 121 144 4.8 4101 
 

Second 1D-FFT 
Read  data (In rows) 0 0 62 58 5 1121 
Proposed FFT IP core (In columns) 5 36 16104 12805 5 3196 
Write data (In columns) 0 0 117 47 4.8 1121 

Real and Imaginary parts To Matrix  0 0 35 46 5 66305 
Mat2AXIvideo 0 0 131 116 2.57 66561 



floating-point arithmetic obtained by Matlab 64-bit precision. The (���(�)) is obtained 

with the proposed architecture. Table 6 shows the comparison between PSNR obtained 

by the hardware implementation and the MATLAB implementation. The PSNR is 

defined by: 

                  ( )
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Table 6 Comparison results between Hw/Sw co-design implementation with Matlab for Lena image at 

256*256 resolution. 

Functions  Optimized RC algorithm (PSNR) 

Abs(2D-FFT) 36,1576 
2D-IFFT ∞ 

 

The original and reconstructed images obtained using the Hw/Sw co-design 

implementation for the optimized RC algorithm based on a hybrid platform combining 

an ARM Cortex 9 processor and an FPGA using Zynq SoC are shown in Fig. 11. It can 

be seen that the PSNR value between the Hw/Sw co-designs for the optimized RC 

algorithm using Zynq SoC and the 2D-FFT algorithm using Matlab is greater than 36 

dB and ∞ when compared the inverse 2D-FFT. 

(a) (b) (c)  

Fig. 11 (a) shows the Lena image, (b) shows the spectrum image obtained by the optimized RC algorithm 

using Zynq SoC, and (c) shows the reconstructed Lena image. 

 

6. Discussion 

In this work, three implementations (one software and two Hw/Sw co-designs) are 

used to assess the performance of the 2D-FFT algorithm: software implementation 

based on ARM Cortex-A9 processor and two Hw/Sw Co-design implementations based 

on a hybrid platform combining an ARM processor and FPGA circuit. Many 

optimizations are used to improve the evaluation for each implementation. The software 



implementation based on ARM Cortex-A9 processor provides advantages in terms of 

flexibility of the programmability based on the well-known OpenCV libraries. 

However, the HW/SW co-design flow of the traditional or optimized RC algorithms 

needs an intermediate evaluation of sub-program, which would be very fastidious in 

terms of programmability. Then, we should mention that numerous directives have been 

used to get parallel processing. Consequently, the Hw/Sw co-design implementation 

provides a better compromise between the performance and the programmability. 

Moreover, an RTL simulation for the Hw/Sw Co-design solution is evaluated to give 

detailed information about the number of resources used, Max Latency, and the timing. 

In addition, many optimizations were introduced. The resizing down/up and the 

grayscale conversion functions from the OpenCV are used to reduce the number of 

pixels treated. Consequently, the complexity and the processing time of the 2D-FFT 

algorithm are reduced. 

Since the traditional RC algorithm requires more memory and more dedicated 

hardware blocks due to the transpose operation. In this paper, an innovative architecture 

namely, “optimized RC algorithm” using the Zynq SoC is proposed. It implemented 

without transpose operation. As a result, the optimized RC algorithm uses less memory 

and less dedicated hardware blocks and requires less Latency, which is suitable for the 

implementation in FPGA. In addition, many directives such as DATAFLOW, 

PIPELINE, and LOOP UNROLL are used to improve the performance. Hence, these 

directives are used to make the optimized RC algorithm more suitable for real-time 

implementation. The combination of pipelined streaming architecture and the 

DATAFLOW and PIPELINE directives provides real-time constraints. Table 7 

summarizes the results obtained from the different implementations. 

Table 7 Processing time for different implementations. 

Functions/ Resources Optimizations Processing Time 

(ms) 

Frame Size 

Softawre 
implementation  

Original implementation without optimizations(ARM) 229 1980x1020 

Original implementation with optimizations (ARM) 7.9 1980x1020 

 Gray scale conversion + 2D-FFT algorithm (ARM) 3.22 256x256 

 
First HW/SW Co-

design implementation 

HW/SW Co-design implementation with optimizations (ARM+FPGA) 2.7 1980x1020 

Gray scale conversion + traditional RC algorithm (FPGA) 0.384 256x256 
 

Second HW/SW Co-
design implementation 

HW/SW Co-design implementation with optimizations (ARM+FPGA) 2.38 1980x1020 

Gray scale conversion + optimized RC algorithm (FPGA) 0.066 256*256 



The experiment results demonstrate that the proposed Hw/Sw co-design 

implementation based on the optimized RC algorithm is 1.13x, 3.31x and 96.21 faster 

than the Hw/Sw co-design implementation based on the traditional RC algorithm, pure 

software implementations with and without optimizations, respectively. The hardware 

implementation of the grayscale conversion function and the Optimized RC algorithm 

performed on FPGA is 48.78x faster than the corresponding functions performed on 

ARM Cortex-A9 processor for a frame of 256x256 pixels. While the hardware 

implementation of the grayscale conversion function and the Traditional RC algorithm 

provide an acceleration of 8.38x. In addition, the hardware implementation of the 

Optimized and the Traditional RC algorithms produces an acceleration of 70.59x and 

8.23x, respectively, compared to the corresponding functions performed on ARM 

processor. Therefore, the optimized architecture for the 2D-FFT algorithm significantly 

improves the resources uses (BRAM, DSP, FF, and LUT) and the processing time 

(Timing and Latency).  As depicted in table 8, the proposed design of the 2D-FFT 

algorithm takes less number of clock cycles for execution and requires less processing 

time compared to existing FPGA-based implementations for an image at a resolution of 

256x256 pixels.  

 Table 8 2D FFT performance comparison with existing FPGA-based implementations for an image at a 

resolution of 256x256 pixels. 

 

7. Conclusion 

This work presents three implementations (one software and two Hw/Sw co-

designs) of the 2D-FFT algorithm introduced by Cooley and Tukey. All of them have 

been implemented on ARM Cortex-A9 processor and FPGA using the Zynq SoC. The 

design was realized using the Vivado HLS. To begin, a software implementation of the 

2D-FFT algorithm is introduced on ARM Cortex-A9 processor. After that, a Hw/Sw co-

design solution of the traditional 2D-FFT algorithm is introduced on a hybrid platform 

References FPGA used Architecture Frequency (MHz) Clock cycles Processing time 

[26] (2010) Xilinx Virtex-5  Pipelined Streaming 100 605,000 6.05 (ms) 

[29] (2011) Spartan -3 Radix-4 91 --- 10.1(s) 

[8] (2013) Spartan-3 Radix-4 103 --- 3.4 (s) 

[27](2018) XC7K410T --- 80 --- 1.24 (ms) 

Proposed (2019) Zynq 7z020  Pipelined Streaming 166.67 8422 0.042 (ms) 



combining an ARM Cortex-A9 processor with an FPGA. The traditional 2D-FFT 

algorithm uses more resources and more processing time due to the transpose operation. 

Therefore, to respect real-time execution and memory consumption constraints, an 

optimized architecture for the 2D-FFT algorithm using the Zynq SoC is proposed on 

FPGA. It provides an acceleration of 70.59x, while the traditional 2D-FFT algorithm 

provides an acceleration of 8.23x compared to the corresponding functions performed 

on ARM processor. Several directives are applied to improve the performance. About 

the processing time of the whole system, the proposed Hw/Sw co-design 

implementation based on the optimized RC algorithm is 1.13x, 3.31x and 96.21 faster 

than the Hw/Sw co-design implementation based on the traditional RC algorithm, pure 

software implementations with and without optimizations, respectively. 
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