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Abstract— The paper provides a discussion of the possibilistic
regression method originally proposed by H. Tanaka. This
method has the advantage of allowing the learning of an imprecise
model, in the form of an interval-valued function. It may lead
to an imprecise model even in presence of precise data, which
is satisfactory from a learning point of view. Indeed, finding a
precise model that perfectly represents the concept to be learned
is illusory, due to the existence of the bias caused by the choice
of a modeling representation space, the limited amount of data,
and the possibility of missing relevant data. However, what is
obtained with possibilistic regression is more an imprecise model
than a genuine fuzzy one. The paper illustrates and emphasizes
this point on environmental data and suggest two different

approaches for learning genuine fuzzy regression models from
precise data.

I. INTRODUCTION

Machine learning aims at building models that describe

concepts from data. If the concept to be learned consists in

being able to assign one of a finite number of classes to an

object, the problem is referred to classification. If the concept

takes the form of a continuous function, we face a regression

problem.

Classical regression methods provide a summarization of

data under the form of precise, linear or not linear, functions.

This approach has been extended to fuzzy data by adapting

the least square fitting criterion to the fuzzy case [2], [3] (see

also [12], [14], [1], [4] for overviews and general discussions).

These approaches handles fuzzy inputs and/or fuzzy outputs.

Besides, a possibilistic regression method has been

proposed [13], [9], [11], which aims at learning an imprecise

or fuzzy model even when the data are non-fuzzy. In this

way, the learning process does not force the building of a

model that is too precise, and thus provides a better account

of the data. This view fits quite well with the very nature of

learning, namely having a precise model that exactly describes

the data is illusory and may not be very efficient for prediction.

This paper first provides a discussion of the two types of

fuzzy regression methods. Then, we focus on the learning

of imprecise, or fuzzy models from precise data. We recall

the approach proposed by H. Tanaka and his colleagues and

illustrate it on an application on environmental data. It is

pointed out that what is computed in this type of approach

is an imprecise model rather than a genuine fuzzy one. This

observation motivates the two proposals made in the last two

sections. The first approach amounts to summarize precise

output data belonging to a sliding window, into fuzzy data

and then to apply an appropriate fuzzy regression algorithm.

This idea applies to time series data and uses fuzzy similarity-

based statistics for building fuzzy data from classical data. The

second approach proposes a general framework for learning

models together with their uncertainty and imprecision, here

specialized for fuzzy regression, and which is based on the

minimization of a criteria combining a measure of imprecision

of the obtained model together with a measure of accuracy

with respect to the data.

II. TWO TYPES OF FUZZY REGRESSION METHODS

In this section, we emphasize the difference between fuzzy

regression models that only reflect the fuzziness of the data

and fuzzy regression methods that account for a desired

imprecision of the resulting model. In the following data are

viewed as pairs of input data (which may be a vector made

of several components) and output data, which correspond to

what we want to be able to predict.

A. Classical regression adapted to fuzzy data

The first type of fuzzy regression deals with fuzzy output

data, and maybe fuzzy inputs, which have to be described by a

fuzzy regression function. This type of method has been pro-

posed for dealing with imprecise data by several authors [2],

[3]. The method proposed by Diamond [3] is based on fuzzy

least squares fitting. In this scope, Diamond define a metrics

for fuzzy sets. Having this metrics, the settings of regression

are the same than the classical one. The approach described

in [2] is based on a similarity measure. Such methods are

of interest when fuzzy data are available. Such fuzzy data

may be given as such, or may result from a preprocessing of

classical data. There are two types of preprocessing. We may

either change classical data into fuzzified data whose labels

are easier to interpret for the end-user, or obtain fuzzy data

from a fuzzy statistical analysis, as exemplified in section 4.



B. Possibilistic regression from non-fuzzy data

The second type of approach is named possibilistic

regression and handles ordinary data. A linear model [13] has

been initially proposed, that learns a fuzzy regression function

from crisp inputs and crisp or interval-valued outputs. In the

first step, a linear regression function that produces an interval

from crisp data is learned by solving a linear programming

problem. Then, an interval-valued linear regression function

is deduced. This function associates an interval (rather

than a crisp value) to a crisp input. This method has been

extended to non linear possibilistic regression in [9], [11].

The advantage of the method is that it is very efficient in

terms of computation time and that it can handle noise to

some extent.

In particular, the non-linear extension of possibilistic

regression based on neural networks [9] has several

advantages. First, in contrast with standard possibilistic

regression [13], it allows us to be more accurate with respect

to the data by inducing a non-linear function. Moreover, the

method in [13] was based on linear programming, which may

become very costly when dealing with a large amount of

data. However, the neural networks approach is more efficient

[9] in terms of computation time and the users can fix the

trade-off between the computation time and the accuracy

of the results. Moreover, it is known that neural networks

perform extrapolations that are statistically meaningful.

Nevertheless, the method has some limitations too. Neural

networks have difficulties for learning some types of functions

such as periodic ones. Neural networks are also very sensitive

to outliers (marginal points of the output). An extension based

on support vector machine [11], [10] has been proposed for

dealing with outliers.

III. DISCUSSION ON POSSIBILISTIC REGRESSION

We first recall the algorithm for learning neural networks.

Then we use this algorithm for possibilistic regression. Finally

we apply the possibilistic regression to environmental data and

we discuss the obtained results.

A. Non-linear possibilistic regression with neural networks

Neural networks are a general learning device that induces

a function from pairs of input-output data. The function that

is learned can then be used for classification or regression

purpose. A neural network is made of several nodes, organized

in layers, related by edges with weights. Each layer computes

a weighted sum of the results of a sigmoid function applied

to the outputs of the previous layer. Inputs of the first layer

are inputs of the function to be induced. For learning the

function, a pair of input-output data is chosen randomly in

the set of examples, and the output is compared with the

neural network output. Then, the neural network weights

are adjusted with respect to a discrepancy function between

the output data and the networks output [9]. This learning

step is repeated a number of times that is fixed by the user.

However, an excessive number of iterations could lead to

an over precise learning and maybe to extrapolation anomalies.

We consider m examples of the form −→x p =<
(xp1, ..., xpn), yp > where (xp1, ..., xpn) are the inputs for the

example p and yp is the output. The goal of a neural network

is to learn a function g that minimizes the error with respect

to the examples. So, we search a neural network that defines

the function g such that

m
∑

p=1

1

2
(yp − g(xp1, ..., xp1))

2

is minimized. For our purpose, we only need a neural network

with two layers. The first layer is the input unit, the second

layer is the hidden unit.

Input units is defined by n neurons O11, .., O1n. The value

of the neurons when a new example −→x p is presented is :

O1i(−→x p) = xpi

The hidden layer contains n′ neurons (n′ is a parameter

fixed by the user) O21, .., O2n′ . Each neuron of the input layer

O1i is linked with each neuron of the hidden layer O2j by the

synaptic weight wji. The value of the neurons when a new

example −→x p is presented is :

O2j(−→x p) = sig(netj(−→x p))

with

sig(x) =
1

1 + exp(−x)

and

netj(−→x p) =

n
∑

i=1

wji ∗O1i(−→x p) + θj

The value of the function g defined by the neural network

is given by the output neuron O which is linked with each

neuron O2j of the hidden layer by a synaptic weight wj . The

value of the function given by the output neuron for an input
−→x p is :

g(−→x p) = O(−→x p) = sig(net(−→x p))

with

netj(−→x p) =

n′

∑

j=1

wj ∗O2j(−→x p) + θ

At each step of the learning process an example is

randomly chosen in the training set. Then the error of g is

back propagated in the neural network. The values of the

synaptic weights wji,wj and the values θj and θ are updated

in order to minimize the error.

The possibilistic regression [9] learns two neural networks,

one for the upper bound regression, one for the lower bound

regression. Then, given any input data, an interval output

can be computed. More generally, it can interpreted as a



fuzzy interval, taking this interval, with some tolerance, as

the support of the fuzzy interval. The core of the fuzzy set

is given by the median value of the support. The level cuts

of the fuzzy sets can be viewed as confidence intervals.

However, this fuzzy reading of the interval found remains a

bit adhoc.

The upper bound function is denoted as g∗. For learning

this function, we learn a neural network that minimizes the

value :
m

∑

p=1

1

2
∗ ωp ∗ (yp − g

∗(−→x p))
2

where the value of ωp depends on whether yp is less or greater

than g∗(−→x p). More precisely, we use the following weighting

scheme :

ωp =

{

1 if yp > g
∗(−→x p)

ω if yp ≤ g∗(−→x p)

where ω is a small positive value in the open interval ]0, 1[.
If r is the number of learning steps of the algorithm, at step

t we have :

ω(t) =
1

1 + ( t
r/20 )

3

This weight allows us to have a function that is just greater

than the target function. In the same way, the lower bound g∗
is computed by considering the minimization of :

m
∑

p=1

1

2
∗ ωp ∗ (yp − g∗(−→x p))

2

where

ωp =

{

1 if yp < g∗(−→x p)
ω if yp ≥ g∗(−→x p)

Finally, given a new input −→x , possibilistic regression computes

an interval defined by [g∗(−→x ), g
∗(−→x )].

B. Illustration on environmental data

The problem considered here for illustrative purpose is to

learn the concentration of a polluting agent in a water spring.

Possibilistic regression is used since it handles crisp inputs

and outputs. The main benefits of possibilistic regression with

respect to classical regression is that possibilitic regression

both describes the general tendency of the function (as

classical regression does) and the amount of imprecision

around the general tendency. In this application, allowing for

imprecise models enables the user to know to what extent

the prediction can be made in a precise way. Thus an interval

that expresses the uncertainty of the prediction provides a

more valuable piece of information for a comparison with a

reference threshold (for firing alerts for instance).

In the first experiment (Fig. 1 and 2), input is time and

output corresponds to the observe concentration of atrazine

pollutant. For each output, results are presented for the

learning data period plus five years, the learning data period

plus twenty years. For each curve, we present the results

with crisp interval (the middle function represents the result

of classical non-linear regression) and its representation with

triangular fuzzy sets (the support is the interval and the

peak of the triangle is defined by the value of the classical

regression). In the second experiments (Fig 3 and 4), the

outputs is the concentration of deethylatrazine pollutant.

For the two experiments we use neural networks with

5 hidden neurons. Learning is made with 100, 000, 000 of

iterations. Data contains more than 300 pairs of input-output

pieces of data.

Several comments are in order. What is satisfactory here is

that the found models fit the data quite well as can be seen

on Figure 1. Moreover, what is predicted is an interval for the

pollution rate, which is more satisfactory than a precise value

as classical regression would provide. However, since the

upper and lower bounding functions are learned separately,

there is no guaranty that the two curves do not cut each other

outside the data period in the prediction area, which would

make no sense. We observe it in the Figure 2. Moreover, if

a standard regression function is learned separately, there is

also no guaranty that this function will be consistent with

upper and lower bound functions, see also Figure 2.

Besides, what is learned is just an imprecise model rather

than a fuzzy one. We may think of fuzzifying this interval by

associating the output result with a triangular fuzzy number

rather than keeping a crisp interval, as suggested by Tanaka.

The peak of the fuzzy number may be chosen as the center

of the interval or better as the corresponding point on a

standard regression curve (consistent with the upper and

lower bounds). The support of the fuzzy number is then the

interval we start with. Clearly, this is just a way of having

the result dressed in a fuzzy manner, which is not very

meaningful, and is not fully satisfactory.

In the following, we suggest two extensions where a fuzzy

interval function is more naturally obtained.

IV. TOWARD GENUINE FUZZY REGRESSION FOR TIME

SERIES LEARNING

In this section, we start from the remark that regression

methods aims at revealing the main tendency in a function,

e.g. in time series, while ignoring the small variations that

are not very meaningful.

Thus, the idea is to perform a preprocessing of the precise

data by summarizing them in a fuzzy way in order to get rid

of small variations. Then this fuzzily summarized data will

be processed by a fuzzy regression algorithm of the first type

described in section 2.A.

The summarization process can be described as follows.

Let us first consider an interval window W on the input data

domain (the time for instance). Let G be the graph of the



Fig. 1. Atrazine w.r.t. time with intervals

Fig. 2. Atrazine w.r.t. time with fuzzy sets

piecewise linear function obtained by relating each piece of

data with its immediate neighbors with respect to the input

domain that is used for defining W . Then for each value y of

the output data range we compute the cardinality

P (y) = |{x ∈ W |y = G(x)}|.

Once normalized, the histogram obtained from the P (y)’s
yields a probability distribution p. This probability distribution

p can be turned into a possibility distribution [6]

π(y) =

∫

R

min(p(y), p(z))dz.

This can be generalized by using a fuzzy window W with

membership function µW (e.g. triangular-shaped) in order to

give more importance to the close neighbors. Then P can be

written

P (y) =
∑

x∈W |y=G(x)

µW (x)

provided that W as a finite support and there is no horizontal

plateau in G, using the idea of fuzzy summarization first

expressed in [8].

Finally, we use a sliding window around each piece of input

data. Thus, each piece of data < x, y > is fuzzily summarized

into a pair < x, πx >.

One expected advantage of the approach is that the neigh-

borhood is taken into account for each example. Moreover,

performing this preprocessing of the data together with a



Fig. 3. Deethylatrazine w.r.t. time with intervals

Fig. 4. Deethylatrazine w.r.t. time with fuzzy sets

regression method for fuzzy data provides a meaningful way

of obtaining a fuzzy regression function from non-fuzzy data.

V. A GENERAL FRAMEWORK FOR IMPRECISE REGRESSION

In this section, we suggest a more general framework

for imprecise or uncertain regression from precise data, and

instantiate it in the fuzzy framework. Given a regression

problem, the goal of imprecise regression is to find a model

that makes as little error as possible and that is as precise as

possible. In this context, we assume that the error is related

to the imprecision, i.e., the more errors the model makes, the

more imprecise the model is.

This problem can be stated as follows. Given X the domain

of input data and R the range of output data, a fuzzy function

f is a function from X to (R → [0, 1]) that associates the

possibility distribution πx to the input x. Let us define Pr

a precision index from the set of possibility distributions to

[0, 1] with the following properties :

• Pr(π) = 1 iff ∃!y ∈ R such that π(y) = 1 and π(y′) = 0
for y′ 6= y.

• Pr(π) = 0 iff ∀y ∈ R, π(y) = 1.
• Pr(π) ≥ Pr(π′) iff π′ ≥ π.

The first property states that the only type of fully precise

function are classical ones, and the second property states that

the least precise function is the one that gives no information.

The last property states that precision ordering is reversed

with respect to fuzzy set inclusion.



Then the function that we are led to maximize is for a set

of m examples < xi, yi >, xi ∈ X , yi ∈ R :

m
∑

i=1

πxi
(yi) ∗ Pr(πxi

).

A possible choice for π can be triangular-shaped fuzzy sets

[5] and precision index could be (e.g. see [7]) :

Pr(π) =

∫ 1

0

1

|πα|
dα

with πα = {y, π(y) ≥ α}.

VI. CONCLUSION

The non-linear possibilistic regression method based only

on neural networks has been illustrated on environmental

data. Non linear regression seems to be able to both identify

the general tendency and the dispersion of the data. The

benefit with respect to standard regression methods is clear :

considering the upper bound curves that is induced, one can

more easily predict the risk of exceeding reference levels.

However, some limitations of possibilistic regression have

been identified. In particular, the possibilistic regression frame-

work only induces interval-valued functions rather than gen-

uine fuzzy functions. We have outlined two approaches that

cope with this limitation. In the first approach we propose to

turn the precise output data into fuzzy output data in time

series. This is done by using a statistical analysis around

the output data concerned. Then, fuzzy regression methods

that deal with fuzzy output data can be used. In the second

approach, we suggest a general framework for fuzzy learning

from crisp data. In the future, these two approaches need to

be experimented in order to compare them with possibilistic

regressions.
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