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Approximation of Conditional Preferences Networks “CP-nets” in

Possibilistic Logic

Didier Dubois, Souhila Kaci and Henri Prade

Abstract— This paper proposes a first comparative study of
the expressive power of two approaches to the representation
of preferences: conditional preferences networks (CP-nets)
and a logical preference representation framework, namely
possibilistic logic. It is shown that possibilistic logic, using a
method for handling symbolic priority weights, can always
provide complete preorders compatible with the partial CP-
net order. Although CP-nets provide an intuitive appealing
setting for expressing preferences, possibilistic logic appears to
be somewhat more flexible for that purpose.

I. INTRODUCTION

It is commonly known that preferences are very useful

in many real-life problems. Research in AI witnesses a

growing importance of the use of preferences if we refer to

the different events dedicated to preferences [2], [1], [4], [3].

Preferences between alternatives cannot be generally

explicitly expressed because of the large number of possible

alternatives or simply because the user is reluctant to express

such preferences. Such concerns motivated the development

of compact representations of preferences. In fact it is much

easier for users to say “I like p more than q” or “if p is

true then I prefer q to ¬q”, etc. Compact representations

of preferences can be roughly decomposed into three

categories: graphical representations (e.g. CP-nets [14],

[13]), weighted logical representations (e.g. possibilistic

logic [23], penalty logic [19]) and conditional logic of

preferences [9], [6], [7], [25], [26], [30].

A compact representation of preferences encodes a

partial/total (pre-)order on the set of possible alternatives.

Conditional preferences networks (CP-nets for short),

which constitute one of the most popular representation

formalisms for preference modeling, capture partial orders.

CP-nets are directed acyclic graphs based on the expression

of conditional ceteris paribus preferences. Possibilistic

logic offers another simple representation framework [23]

to capture complete preorders encoded by possibility

distributions. Preferences are encoded in this framework by

means of weighted logical formulas. Lastly, the conditional

logic of preferences allows for contextual comparative

preferences e.g. if the main dish is fish then I prefer white

wine to red wine independently of the other variables [25],

[30]. This framework also encodes complete preorders. It

has been shown that possibilistic logic can be encoded in the
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conditional logic of preferences and conversely [12], [21].

Other formalisms stemming from constraint satisfaction

networks and answer sets programming have also been

adapted to preference modeling [20], [29], [16].

The existence of various formalisms for preference

modeling is advantageous in the sense that we have a large

choice. However this is also problematic since the more

there are formalisms for preference modeling the more we

have difficulties to make a choice! Which formalism is the

best? On which criteria (complexity, expressiveness) can

the formalisms be compared? Is any total/partial (pre)order

representable in any corresponding formalism? Are the

different formalisms equivalent? Most existing works that

addressed some of these questions have mainly focused on

complexity issues [18]. However comparing whether the

formalisms are equivalent or could be approximated with

each other has encountered less interest if we except [20].

The aim of this paper is to go one step further in

preference modeling problem by comparing two formalisms,

namely CP-nets and possibilistic logic. As previously said

possibilistic logic encodes a total preorder while a CP-net

encodes a partial order. So these two formalisms cannot be

equivalent. The best we can do is to approximate a CP-net

in the possibilistic logic setting.

The remainder of this paper is organized as follows. The

next section restates the necessary background on CP-nets

and possibilistic logic. Section III presents a possibilistic

logic approximation of CP-nets. It is established that the ap-

proximation is fully compatible with the CP-net in the sense

that strict preferences induced by ceteris paribus statements

in the CP-net are preserved. In Section IV we show that

strict possibilistic preferences turn into strict preferences or

incomparabilities in CP-net setting. We show that in the case

where priority is given to parent nodes over child nodes,

possibilistic strict preferences and CP-net strict preferences

coincide. In Section V we consider the extension of CP-nets

to TCP-nets and briefly indicate its possibilistic counterpart.

We also suggest how the possibilistic framework can be used

for handling non-binary preferences referring to many-valued

attributes. The concluding remarks outline some directions

for future research.

II. FORMALISMS FOR PREFERENCE MODELING

Let V = {X1, · · · , Xl} be a set of l variables.

Each variable Xi takes its values in a domain denoted



Dom(Xi) = {xi
1, · · · , x

i
mi

}. Let V ′ be a subset of V .

An assignment of V ′ is the result of assigning a value in

Dom(Xi) to each variable Xi in V ′. Asst(V ′) is the set

of all possible assignments to variables in V ′. In particular

Asst(V ), denoted Ω, is the set of all possible assignments

of the variables in V . Each element in Ω, denoted ω, is

called an alternative.

A preorder on Ω is denoted �: ω � ω′ is interpreted as ω

is at least as preferred as ω′. ω ≻ ω′ means that ω is strictly

preferred to ω′, i.e. ω � ω′ holds but not ω′ � ω. ω ≃ ω′

means that ω and ω′ are equally preferred, i.e. both ω � ω′

and ω′ � ω hold. Lastly ω ∼ ω′ means that ω and ω′ are

incomparable, i.e. neither ω � ω′ nor ω′ � ω hold.

A preorder is complete (or total) if it is connected, i.e.

∀ω, ω′ ∈ Ω we have ω � ω′ or ω′ � ω.

A. Conditional preference networks

A conditional preferences network (CP-net for short) [14],

[13] is a directed graphical representation of conditional

preferences, where nodes represent variables and edges

express preference links between them. When there exists a

link from X to Y , X is said to be a parent of Y . Pa(X)
denotes the set of parents of a given node X . It determines

the user’s preferences over possible values of X . For the

sake of simplicity, we suppose that variables are binary.

We also consider acyclic CP-nets in order to ensure the

consistency of the CP-net [13].

Preferences are expressed at each node by means of a

conditional preference table (CPT for short) such that:

• for root nodes Xi, the conditional preference table

denoted CPT (Xi) provides the preference among xi

and its negation ¬xi other things being equal i.e. ∀y ∈
Asst(Y ), xiy ≻ ¬xiy where Y = V \{Xi}. This is the

ceteris paribus assumption.

• For other nodes Xj , CPT (Xj) describes the

preferences among xj and ¬xj other things being equal

given any assignment of Pa(Xj) i.e. xjzy ≻ ¬xjzy,

∀z ∈ Asst(Pa(Xj)) and ∀y ∈ Asst(Y ) where

Y = V \({Xj} ∪ Pa(Xj)).

A complete ordering ≻, called also preference ranking or

preference ordering, satisfies a CP-net N iff it satisfies each

conditional preference expressed in N . In this case, we say

that ≻ is consistent with N .

Definition 1 (Preference entailment): Let N be a CP-net

over a set of variables V , and ω, ω′ ∈ Ω be any two

alternatives. N entails that ω is strictly preferred to ω′,

denoted N |= ω ≻ ω′ or ω ≻N ω′, iff ω ≻ ω′ holds in

every preference ordering ≻ that satisfies N .

Example 1: (borrowed from [13]) Let N be a CP-net

presented in Figure 1 modeling preferences on an evening

suit. The CP-net is built on three variables J , P and S

Fig. 1. Evening suit.

representing respectively jacket, pants and shirt. The user

has an unconditional preference to black over white for

both jacket and pants, while her preference about red or

white shirt depends on the combination of jacket and pants’s

colours: if they have the same colour then she prefers a red

shirt otherwise she prefers a white shirt.

An important problem in preference representation is

to answer queries about the comparison of alternatives.

Let ω and ω′ be two alternatives. Queries consists in

asking whether N |= ω ≻ ω′ i.e. ω is preferred to ω′, or

N |= ω′ ≻ ω i.e. ω′ is preferred to ω, or N 6|= ω ≻ ω′

and N 6|= ω′ ≻ ω i.e. based on knowledge expressed by

the CP-net, we are able to prove neither N |= ω ≻ ω′

nor N |= ω′ ≻ ω. Note that CP-nets do not model

indifference so two alternatives cannot be equally preferred.

We distinguish two types of queries to compare alternatives

w.r.t. CP-nets [13]:

• Ordering queries consists in asking whether N 6|= ω′ ≻
ω. If this relation holds then this means that there exists

a preference ordering ≻ consistent with N in which ω ≻
ω′ i.e., this relation is consistent with the knowledge

expressed by N to prefer ω over ω′. In such a case ω is

said to be consistently orderable over ω′ with respect to

N . Ordering queries check the coherence ordering w.r.t.

N and allow thus to produce an ordering consistent with

N of any set of alternatives.

• Dominance queries consists in asking whether

N |= ω ≻ ω′. If this relation holds then ω is preferred

to ω′ and we say that ω dominates ω′ w.r.t. N .

Example 2: (Cont’d) The preference ordering JbPbSr ≻
JbPbSw ≻ JwPbSw ≻ JbPwSw ≻ JwPbSr ≻ JbPwSr ≻
JwPwSr ≻ JbPbSr is consistent with N . For exam-

ple JbPbSw is consistently orderable over JwPbSw. Also

JwPbSr is consistently orderable over JbPwSr. This ensures

that we have neither N |= JwPbSw ≻ JbPbSw nor N |=
JbPwSr ≻ JwPbSr. However this is not sufficient to say

that the reverse holds i.e. N |= JbPbSw ≻ JwPbSw and

N |= JwPbSr ≻ JbPwSr. Each preference should hold in

all complete orders satisfying N .



There are only four preference orderings consistent with N ,

namely the above one and the followings:

• JbPbSr ≻ JbPbSw ≻ JbPwSw ≻ JwPbSw ≻
JwPbSr ≻ JbPwSr ≻ JwPwSr ≻ JwPwSw,

• JbPbSr ≻ JbPbSw ≻ JwPbSw ≻ JbPwSw ≻
JbPwSr ≻ JwPbSr ≻ JwPwSr ≻ JwPwSw,

• JbPbSr ≻ JbPbSw ≻ JbPwSw ≻ JwPbSw ≻
JbPwSr ≻ JwPbSr ≻ JwPwSr ≻ JwPwSw.

Indeed we have N |= JbPbSw ≻ JwPbSw and N 6|=
JwPbSr ≻ JbPwSr.

Figure 2 gives the partial order associated with N . For the

Fig. 2. Partial order induced by N .

sake of simplicity we did not represent strict preferences

which can be induced by transitivity. An arrow from an

alternative ω to another alternative ω′ means that ω′ is strictly

preferred to ω.

B. Possibilistic logic

Preferences are encoded in possibilistic logic by means of

a set of weighted formulas of the form

Σ = {(φi, αi) : i = 1, · · · , n},

where φi is a propositional formula encoding an agent’s

goal and αi is a weight representing the priority associated

with φi.

Possibilistic logic [23] is a suitable framework to encode

complete preorders. When the “weights” αi (i = 1, · · · , n)

belong to a completely ordered scale finite or not, a complete

preorder is derived from Σ in the following way [23]:

Definition 2: Let Σ be a possibilistic base. A complete

preorder associated to Σ, denoted �Σ, is defined by:

∀ω, ω′ ∈ Ω,

ω ≻Σ ω′ iff max{αi : ω 6|= φi} < max{αi : ω
′ 6|= φi}.

Also ω ≃ ω′ iff max{αi : ω 6|= φi} = max{αi : ω
′ 6|= φi}.

III. APPROXIMATION OF CP-NETS IN POSSIBILISTIC

LOGIC

Since CP-nets encode partial orders while possibilistic

logic encodes a complete preorder, these two formalisms

cannot be equivalent. The best we can do is to approximate

CP-nets in possibilistic logic. A faithful approximation of a

CP-net in possibilistic logic consists in preserving all strict

preferences induced by the CP-net. This approximation is

useful since a weak information about the comparison of two

alternatives is sufficient in some applications [13]. Suppose

that user’s preferences are encoded by means of a CP-net

N . Let ω1 and ω2 be two alternatives. Then it may be that

the worst situation for the user is when N |= ω2 ≻ ω1 so

she asks whether N 6|= ω2 ≻ ω1. The user will be “relieved”

if we ensure that N 6|= ω2 ≻ ω1 and does not matter

whether N |= ω1 ≻ ω2 or ω1 and ω2 are incomparable

w.r.t N . Notice that such a query is simply an ordering

query from a CP-net. In this section we show that ordering

queries can be encoded in possibilistic logic. Moreover the

proposed encoding is a faithful approximation of CP-nets

since it recovers all strict preferences induced by ceteris

paribus statements in the CP-net. The obtained preorder

is indeed a linearization of the partial order induced by

the CP-net. The approximation technique follows three steps:

1) Local approximation:

We associate to each node Xi in N a possibilistic

base ΣXi
such that any ceteris paribus statement in

CPT (Xi) is recovered in the preorder associated to

ΣXi
. Let cik : x ≻ x′ be the preferences in CPT (Xi),

where cik ∈ Asst(Pa(Xi)). x and x′ are either equal

to xi or ¬xi since we consider binary variables. The

following possibilistic base is associated with Xi:

ΣXi
= {(

∨

k

(cik ∧ x), αi)},

where αi is a symbolic weight in the interval [0, 1].

The disjunction on k is justified by the fact that each

alternative satisfying cik should satisfy x and not x′.

This guarantees to recover ceteris paribus preferences

induced by CPT (Xi).

Example 3: (Cont’d) We have ΣJ = {(Jb, α1)},

ΣP = {(Pb, α1)}
1 and ΣS = {(JbPbSr ∨ JwPbSw ∨

JbPwSw ∨ JwPwSr, β1)}.

The possibilistic logic base ΣXi
associated with a

node Xi recovers all ceteris paribus statements given

in CPT (Xi). Formally we write:

Proposition 1: Let N be a CP-net over a set of vari-

ables V = {X1, · · · , Xl}. Let ΣXi
be the possibilistic

base associated with CPT (Xi) as described above.

1Since J and P are independent we can give them the same weight α1.



Then,

∀ω, ω′ ∈ Ω, if ω ≻CPT (Xi) ω
′ then ω ≻Σ ω′,

where ≻CPT (Xi) denotes the preference given by the

node Xi in N .

Example 4: (Cont’d) Let’s consider the base ΣJ .

Following Definition 2, we have �ΣJ
: JbPbSr ≃

JbPbSw ≃ JbPwSr ≃ JbPwSw ≻ JwPbSr ≃
JwPbSw ≃ JwPwSr ≃ JwPwSw. We can check that

we recover all ceteris paribus preferences induced by

CPT (J).

2) Aggregating parent’s bases:

On the basis of the results of step 1, we use techniques

for merging possibilistic knowledge bases [11], [8]

to merge the possibilistic bases associated with the

parents of each node. All possibilistic bases associated

with the parents of a node will be encoded on the

same scale α1 > · · · > αn.

Definition 3: [11] Let Σ1 = {(φi, αi) : i = 1, · · · , n}
and Σ2 = {(ψj , βj) : j = 1, · · · ,m}. Let ⊕
be a merging operator defined from [0, 1] × [0, 1]
into [0, 1]. The result of merging Σ1 and Σ2 using ⊕ is:

Σ⊕ = {(φi,⊕(αi, 0))} ∪ {(ψj ,⊕(0, βj))}
∪{(φi ∨ ψj ,⊕(αi, βj))}.

For the purpose of this paper we need a merging

operator which satisfies the following properties:

(i) associative,

(ii) 0 is the neutral element,

(iii) 1 is the absorbing element and

(iv) ⊕(α, β) > max(α, β) for (α, β) ∈]0, 1[2.

(v) ⊕ is strictly increasing in both places.

These operators are called strict co-norms [17]. An

example of these operators is the probabilistic

sum defined by ⊕(α, β) = α + β − αβ,

that we will use in this paper. Indeed

Σ⊕ = Σ1 ∪ Σ2 ∪ {(φi ∨ ψj , αi + βj − αiβj)}.

A nice property of the strict co-norm operators is that

they allow to order the alternatives in the following

way. Let Xi be a node having m parents. Following

this operator, the best alternatives are those which

satisfy all CPT (.) of Pa(Xi). Alternatives which are

immediately less preferred will be those which satisfy

(m − 1) CPT (.) of Pa(Xi) and so on. So the least

preferred alternatives are those which do not satisfy

any CPT (.) of Pa(Xi).

Example 5: (Cont’d) We merge ΣJ et ΣP using

the probabilistic sum operator. We get ΣJP =
{Jb ∨ Pb, γ1), (Jb ∧ Pb, α1)}, with γ1 > α1. We have

�JP : JbPbSr ≃ JbPbSw ≻ JbPwSr ≃ JbPwSw ≃

JwPbSr ≃ JwPbSr ≻ JwPwSr ≃ JwPwSw.

Indeed we get the expected ordering giving priority to

alternatives satisfying more parent nodes, as explained

above.

3) Aggregating parent’s bases and child’s base:

Lastly we combine the possibilistic base associated

to each node with the one pertaining to its parents

resulting from step 2. We follow the lexicographic

principle also called the dictatorship principle. Note

that in CP-nets the dictator is the possibilistic base

associated to the parent node. This follows from the

fact that when two alternatives are incomparable w.r.t.

a parent node in CP-nets, preferences associated to a

child node may be useful to distinguish between them.

In the possibilistic framework this means that when

two alternatives are equally preferred w.r.t. the dictator

base then they are compared w.r.t. the ”non-dictator”

base (associated with a child node). The following

proposition gives the possibilistic encoding of the

lexicographic principle:

Proposition 2: Let Σ1 = {(φi, αi) : i = 1, · · · , n}
and Σ2 = {(ψj , βj) : j = 1, · · · ,m} be two

possibilistic bases s.t. α1 > · · · > αn and

β1 > · · · > βm (where Σ1 is the dictator). The

result of merging Σ1 and Σ2 is:

Σ = {(φ1 ∨ ψ1, α11), · · · , (φ1 ∨ ψm, α1m),
(φ1, α1), · · · ,
(φn ∨ ψ1, αn1), · · · , (φn ∨ ψm, αnm),
(φn, αn), (ψ1, β1), · · · , (ψm, βm)},

where α11 > · · · > α1m > α1 > · · · > αn1 > · · · >
αn > β1.

The encoding described in these three steps is a top-down

approach namely we start with parent nodes and then

propagate the reasoning on child nodes. It is important to

note that this encoding holds for every acyclic CP-net.

Proposition 3: Let N be an acyclic CP-net. Let Σ be the

possibilistic base associated with N and �Σ be its associated

complete preorder. Then,

∀ω, ω′ ∈ Ω, if ω ≻N ω′ then ω ≻Σ ω′.

Example 6: (Cont’d) We merge ΣJP and ΣS following

the lexicographical-based principle, where ΣJP is the

dictator. We get:

Σ = {(Jb∨Pb∨D,σ1), (Jb∨Pb, σ2), ((Jb∧Pb)∨D,σ3), (Jb∧
Pb, σ4), (D,σ5)}, with σ1 > σ2 > σ3 > σ4 > σ5 and

D = JbPbSr ∨ JwPbSw ∨ JbPwSw ∨ JwPwSr.

The total preorder associated with Σ is:

JbPbSr ≻ JbPbSw ≻ JbPwSw ≃ JwPbSw

≻ JwPbSr ≃ JbPwSr ≻ JwPwSr ≻ JwPwSw.

We can check that all strict preferences induced by N are



preserved. See Figure 2.

Note that the complete preorder obtained in this example

recovers all complete orders consistent with N however this

is not always the case.

IV. EXTENDING CP-NETS WITH PARENT DOMINANCE

PROPERTY

Let us examine in this section what kind of comparisons

of alternatives the possibilistic encoding offers – except

the fact already established in the previous section that it

preserves all strict preferences induced by the CP-net.

Proposition 4: Let N be an acyclic CP-net and Σ be its

associated possibilistic logic base. Then,

• ∀ω, ω′ ∈ Ω, if ω ≻Σ ω′ then (ω ≻N ω′ or ω ∼N ω′),

• ∀ω, ω′ ∈ Ω, if ω ≃Σ ω′ then ω ∼N ω′.

It follows from this proposition that the possibilistic

encoding does not recover all CP-net incomparabilities.

Rather than being a limitation of the possibilistic setting this

facts leads us to discuss some of CP-net incomparabilities.

In fact following the CP-net of our running example the

two alternatives JbPwSr and JwPbSw are incomparable.

However JbPwSr falsifies preferences of P and S while

JwPbSw falsifies preferences of J . The nodes P and J

having implicitly the same priority (both are root nodes),

this suggests that one may wonder whether JwPbSw should

not be given preference over JbPwSr. This claim holds also

for JwPbSr and JbPwSw.

Indeed if we extend traditional CP-net semantics with the

requirement that the more an alternative falsifies prioritized

nodes, the less preferred it is, then we have the following

equivalence between possibilistic logic encoding and such

extended CP-nets:

Proposition 5: Let N be an acyclic CP-net where parent

nodes dominate child nodes. Let Σ be its associated possi-

bilistic logic base. Then, ∀ω, ω′ ∈ Ω,

• ω ≻N ω′ iff ω ≻Σ ω′, and

• ω ∼N ω′ iff ω ≃ ω′.

V. TCP-NETS AND NON-BINARY PREFERENCES

TCP-nets [15] have been introduced as an extension of

CP-nets for allowing the handling of information about the

relative importance of preferences, in order to refine the

partial orders induced by the ceteris paribus constraints.

For instance if a ≻ ¬a and b ≻ ¬b, the complete order

ab ≻ a¬b ≻ ¬ab ≻ ¬a¬b can be obtained as soon as priority

is given to the first preference, otherwise a¬b and ¬ab would

remain incomparable. TCP-nets allows also for making this

type of information context-dependent.

The possibilistic logic approach is based on the idea of

expressing relative importance via priority levels. Thus, in

possibilistic logic, having both goal a and goal b, the first

goal being more important writes Σ = {(a, α), (b, β)} when

α and β are symbolic priority weights such that α > β > 0.
This translates in the preorder ab ≻ a¬b ≻ ¬ab ≃ ¬a¬b,
which may be still refined by adding the further constraint

(a ∨ b, δ) with δ > α. If one wants to make the relative

importance of (a, α) with respect to (b, β) dependent on a

context c, i.e. having a¬bc ≻ ¬abc and ¬ab¬c ≻ a¬b¬c,
which expresses that in context ¬c (b, β) becomes more

important, it amounts to rewriting Σ as

{(a,max(min(α, [c]),min(β, [¬c]))),
(b,max(min(α, [¬c]),min(β, [c])))}

where [c] = 1 if c is true and 0 otherwise.

This indicates that the symbolic handling of possibilistic

formulas in Section III is also compatible with the

introduction of information about the relative importance of

preference constraints.

Moreover it is worth pointing out that the possibilistic

framework is liable to be extended to the handling of

preferences which involve alternatives evaluated by means

of non-binary criteria. Indeed, an approach for representing

preferences about multifactorial ratings can be proposed

in the possibilistic setting. Instead of defining a scale of

values and aggregation operations as in classical multiple-

criteria approaches, we can express rationality conditions

(such that compliance with Pareto ordering) and other generic

properties, as well as preferences between specific instances,

by means of constraints restricting a complete preordering

among tuples of values. The derivation of a single complete

preorder can then be based on possibility theory, using the

minimal specificity principle, already at work in possibilistic

logic, which amounts to preserve indifference between al-

ternatives for which there does not exist a strict preference

relation induced by the constraints. This approach looks

powerful enough to capture many aggregation modes, even

some violating the co-monotonic independence of Choquet

integrals [22].

VI. RELATED WORKS AND CONCLUDING REMARKS

We have shown how CP-net orders can be approximated

in the possibilistic logic framework, where preferences

are expressed in terms of goals with priority levels. This

approximation is equivalent to the one proposed in [20]

based on weighted CSP (Constraint Satisfaction Problem).

It is also equivalent to the approximation based on answer

set optimization [16]. The interest of this result is twofold.

First it has a theoretical flavor since it shows that the four

settings: possibilistic logic, CP-nets, CSP and answer set

optimization are closely related. Second this result shows

that preferences can be expressed in different formalisms

and thus can benefit from the advantages of each one.

Indeed the choice of a particular formalism to use should

also be based on other considerations such as complexity,

”conciseness”, etc [27], [18], [24].

The present work is only a first step towards a thorough

comparison of different CPnet-like approaches (including



developments by [31] or [28]) to the representation of

preferences, with the handling in the possibilistic framework.

The investigation of the role of qualitative independence

relations [5] in the possibilistic approach should be also

further explored.
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