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Abstract

This paper points out that the same

mathematical structure, called “super-

increasing sequence” appears in vari-

ous disguises in different areas such

as nonmonotonic reasoning (in relation

with the probabilistic representation of

default rules), cryptography (as an ap-

plication of the knapsack problem),

or uncertainty modeling (when deal-

ing with probability/possibility trans-

formations). Apart from bridging re-

search trends, which are usually consid-

ered separately, this note takes advan-

tage of this parallel for discussing dif-

ferent approaches to the learning of de-

fault rules.
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1 Introduction

Default reasoning, as a way of handling if-then

rules with potential exceptions, is a basic form of

reasoning for dealing with commonsense knowl-

edge. As such, it has been extensively studied in

the last 25 years in AI, and applied to inference

from expert rules, e.g. [8]. However, it is worth

noticing that default rules can be encountered in

other contexts such as algorithmic procedures,

or machine learning. Indeed, this note starts

from the remark that greedy algorithms are very

close in spirit to default reasoning. This can be

emphasized on the basis of a classical example

of a greedy procedure, namely the one for giving

the change for a given amount of money. The

efficiency of greedy methods on this problem

(which would be NP-complete in the general

case) relies on a particular mathematical property

of the distribution of the values of the money

units (coins or banknotes) that are available.

Interestingly enough, a similar mathematical

structure, known as “super-increasing sequence”

is at work in the knapsack crypto-systems used

for key encoding, and is also underlying a

finite probabilistic semantics, called big-stepped

probabilities, in nonmonotonic reasoning.

The paper is organized as follows. The next

section provides a short background on super-

increasing sequences and its link with greedy al-

gorithms, while Section 3 gives a brief reminder

on big-stepped probabilities, linear possibilities,

and their role in nonmonotonic reasoning seman-

tics. Section 4 illustrates the parallel between the

two contexts by presenting different approaches

to the learning of default rules either based on the

identification of a big stepped probability distrib-

ution, or on the use of possibilistic layered rules.

2 Super increasing sequences and

greedy algorithms

Optimization algorithms usually go through a se-

ries of steps, where choices between different

options must be made. Greedy algorithms al-

ways choose the best local option with the hope

that the algorithm will lead to an optimal solu-

tion. These algorithms are very efficient, from a

computational point of view, but do not find the

global optimum in general. Let us consider, as an

example, the standard versions of the knapsack



problem. Given an increasingly ordered sequence

X = x1, ..., xp and a value v, We can define two

different knapsack problems. The decision one

consists in determining if it exists a collection of

p binary variables δ1, ..., δp ∈ {0, 1} such that

p∑

i=1

δi ∗ xi = v.

This problem is NP-complete. The search one

is to determine a collection of p binary variables

δ1, ..., δp ∈ {0, 1} such that

p∑

i=1

δi ∗ xi ≤ v

and
p∑

i=1

δi ∗ xi

is maximal. In general, this problem is NP hard,

and then greedy algorithms are not optimal for

any of the two problems. It is known that with

some particular sequences X , called super in-

creasing sequences, the complexity of the deci-

sion problem becomes polynomial and even lin-

ear. These sequences are defined by :

Definition 1 Let X = x1, ..., xp be a sequence of

real numbers. X is a super increasing sequence

iff

∀1 < i ≤ p, xi >
i−1∑

j=1

xj .

In this case, the greedy procedure consists, at

each step, in choosing δi = 1 for i such that the
value xi that is immediately lower than the rest

of the value of v to be covered. At the end, if an i
is selected twice or no xi is lower than the rest of

the value of v there is no solution. Otherwise, the
greedy algorithm find the unique solution.

There are two well-known uses of super increas-

ing sequences for the knapsack problem. The

first one corresponds to the knapsack public

key crypto-system [7]. The designer publishes

a public key that is composed by a sequence

X = x1, .., xp. A message binary (δ1, ..., δp)
is encoded by mes = x1 ∗ δ1 + ... + xp ∗ δp.

So, knowing mes and X , decoding the message

is a knapsack problem which is NP-complete.

But the designer, who may receive such a

message, possesses two secret keys (obeying

some technical constraints) M and W such that

M ∗ x1, ..., M ∗ xp mod W is a super increasing

sequence. Then, the designer can easily decode

the message.

A second application is based on the unbound

search knapsack problem. In this case, we con-

sider an increasingly ordered sequence X =
x1, ..., xp and a value v and we search a collection
of integers n1, ..., np such that v =

∑p
i=1 ni ∗ xi

and
∑p

i=1 ni is minimal. The problem is NP-hard

in general, be it can be polynomially resolved by

the same kind of greedy algorithm than the one

described previously when X is a complete su-

per increasing sequence, whose definition is now

recalled.

Definition 2 Let X = x1, ..., xp be a sequence of

real numbers. X is a complete super increasing

sequence iff x1 = 1 and X is a super increasing

sequence and it exists no x and i such that X =
x1, ..., xi, x, xi+1, ..., xp is still a super increasing

sequence.

The direct application of complete super increas-

ing sequences corresponds to the problem of giv-

ing the change for a given amount of money v
with a minimum number of money units. This

problem is a typical unbound search knapsack

problem. It is the reason why, in general, money

units constitute complete super increasing se-

quences. Other classical examples of the use of

super increasing sequences is the writing of num-

bers in base 2, 10,...Each step of a greedy algo-

rithm can be represented as a set of default rules.

Conversely, reasoning with sets of default rules

can be viewed as a greedy procedure, since it con-

sists in always applying the most specific applica-

ble rule. Let us take the example of a machine

providing change. LetX = x1, ..., xp be the com-

plete increasing sequence of values of the money

units that are available and v be the change to give
back.

while v>0

v>xp -> give back xp and v=v-xp

...

v>xi -> give back xi and v=v-xi



...

v>x1 -> give back x1 and v=v-x1

end

Clearly the rules are presented here in a decreas-

ing specificity ordering. If x1 = 1 the algorithm

terminates for any integer v. If X is a super in-

creasing sequence, as it is the case in practice

for money, the above algorithm always provides

an optimal solution in terms of a minimal num-

ber of money units that are given back. For in-

stance, with the non super increasing sequence

X = {300, 250, 249, 1} and v = 499, the above
algorithm gives back 200 money units (one time

300 + 199 times 1), while the optimal solution

only uses 2 money units (250 and 249).

3 Big-stepped probabilities and

nonmonotonic reasoning

Kraus, Lehmann and Magidor [6] have proposed

an approach to nonmonotonic reasoning based

on postulates that a nonmonotonic consequence

relation should satisfy. On the basis of these

postulates, a preference entailment system has

been defined (called system P ). Several seman-

tics have been proposed for this system. Among

them, a probabilistic, finite semantics, and a

possibility theory-based one have been provided

in [3].

More precisely, it has been proved that a default

rule α → β belongs to the inference closure of

system P iff for all probability measures Prob be-
longing to a set of a so-called big-stepped proba-

bilities we have Prob(β∧α) > Prob(¬β∧α)(or
equivalently Prob(β/α) > 1

2 ). Big-stepped

probabilities are defined by

Definition 3 Prob is a big-stepped probability

distribution on the ordered set of mutually exclu-

sive events ω1, ..., ωn iff

∀1 ≤ i < p, Prob(ωi) >

p∑

j=i+1

Prob(ωj)

In fact, it is allowed that the two last non-zero

terms be equal, when representing a non-

monotonic consequence relation. Big-stepped are

also known as atomic-bound probabilites [13].

Clearly, big-stepped probabilities corresponds to

a super increasing sequence in the sense of the

previous section (X = Prob(ωp), ..., P rob(ω1)).

Note that the following inequalities can be de-

rived from definition 3

∀i = 1, . . . , n − 2, P rob(ωi|Ai) > 0.5 (1)

with Ai = {ωi, . . . , ωn}.

Moreover, Π(ωi+1) =
∑p

j=i+1 Prob(ωj) for 1 ≤
i < p and Π(ωp) = Prob(ωp) defines a basic
probability/possibility transformation, first intro-

duced in [4], such that Π(ωi) > Prob(ωi) for all
i. Thus, we have the following bounds

Π(ωi) > Prob(ωi) > Π(ωi+1).

Then, the Π(ωi)’s form a linear possibility

distribution, which is the basis of another equiv-

alent semantics for system P , namely we have

Π(α ∧ β) > Π(α ∧ ¬β) for any default rule

α → β (with Π(α) = max{π(ω), ω |= α}).

Thus, a set of default rules can be equivalently

viewed as :

i) associated with big stepped probability dis-

tributions, which provide a statistical flavor

to them;

ii) associated with a layered possibilistic [2]

logic base, which may be assimilated to

a greedy reasoning procedure, viewing the

clauses as rules.

This provides two directions for learning or min-

ing default rules

4 Learning

Let us now consider the problem of finding of

set of default rules that cover a finite number of

examples.

We first recall a data mining approach based on

the building of big stepped probabilities from

the data. In this context, we can associate a

default rule with the probability corresponding



to the proportion of examples covered by the

rule. A default set of rules is optimal if the rules

cover all the examples and they are underlain

by big stepped probability distributions. In this

case, these rules are genuine default rules in

the sense of system P . This is the base for the

data mining algorithm described in [1]. We

consider a set of examples E = {w1, ..., wn}
where each wi =< l1, . . . , lq > is a binary vector

corresponding to q different attributes under

consideration. First, the algorithm determines

a partition of E = E1 ∪ . . . ∪ Ep such that

|E1|, . . . , |EP | is a super increasing sequence

(where || means cardinality). The partition

must be minimal, i.e. any subset of E cannot

be split while keeping the super increasing

properties. A partial order on partitions is defined

in order to express preference for partitions that

group examples having a maximal number of

identically valued attributes. When a partition

has been discovered, a set of default rules can

be identified. For identifying rules, the subsets

of E are considered from Ep to E1. The “if

then” rule associated with the subset Ei is such

that the attributes involved in its antecedent are

discriminant with respect to the examples in

Ej , j > i, while the attributes appearing in

conclusion are those which are identically valued

in Ei. By using a super increasing sequence

(which corresponds to a big stepped probability

when reasoning with proportion of examples),

the set of default rules found is granted to satisfy

the requirements of the system P . It means in

practice that the new default that could be de-

duced from the found default rules, using system

P would still agree with the database it start from.

The use of super increasing sequences would be

also worth investigating in the scope of machine

learning. In particular, it could be interesting in

relation with the recently developed algorithms

[11, 10] based on possibilistic logic in the frame-

work of inductive logic programming (ILP) [9].

However in the ILP settings, all the rules forming

the hypotheses to be induced are supposed to be

Horn clauses with the same predicate in their

head. It is still interesting to layer the rules in

order to handle inconsistency, even if it corre-

spond to a very special type of set of default rules.

4.1 Learning from a set examples to be

stratified

The authors of the present paper have proposed an

algorithm for learning from a possibilistic data-

base [11]. A possibilistic ILP database is com-

posed of two sets : Bp andEp. Bp is named back-

ground knowledge and contains ground facts and

formulas associated with necessity degrees. Ep is

the set of examples that describes the concept to

be learnt. It contains ground facts pertaining to

the same predicates (the one that appears in the

head of the rules to be induced), and are also as-

sociated with necessity levels. Theses necessity

levels are supposed to reflect the importance of

the example with respect to is nature, namely it is

more important to cover typical examples rather

than exceptional ones. The goal is then to find a

possibilistic hypothesis Hp such that

Bp ∪ Hp |=p Ep,

where |=p is the possibilistic entailment. Then,

the necessity levels on the examples correspond

to priority levels for covering them. The exam-

ples that have the highest level must be covered in

priority. On the contrary, the examples with a low

level of necessity are not covered in priority and

the rules may make error on them. The necessity

levels make a partition of E (and B in the same

way). Namely we have E = Eαi
∪ . . . ∪ Eαp

where α1 < . . . < αp and Eαp
contains all exam-

ples that have αi as necessity level. The method

is based on a classical ILP algorithm that learns

hypotheses from increasing sets of examples.

It starts with Eαp
and Bαp

for computing Hp,

then it computes Hp−1 from Eαp
∪ Eαp−1

and

Bαp
∪ Bαp−1

and so on. The hypotheses found

are merged and necessity levels are associated

with rules with respect to the levels of their

exceptions. This allows the algorithm to learn

both general rules with some exceptions with

respect to the less prioritized examples, and more

specific rules without exceptions. The major

limitation of this method is that we have to have

assigned the necessity levels of the examples.

They may be obtained from a set ∆ of expert

default rules (if available), by computing the

level of inconsistency of each example with the



set of stratified rules associated with ∆ using the

ranking procedure in [2]. Then, the priority of

the example would be all the greater as the level

of inconsistency is low.

In case no expert knowledge is available, as of-

ten, it would be interesting to assess the necessity

levels of the examples by determining a partition

associated with a super increasing sequence. This

would ensure, with a correct and complete ILP

algorithm, to find an hypothesis made of genuine

default rules. In this scope, the ideal partition of

the set of examples is the one that describes a par-

tition that corresponds to a super increasing se-

quence, with respect to the number of examples

in each set of the partition. Moreover, the idea

is also to build a partition E = E1 ∪ . . . ∪ Ep

of the examples, where the example in E1 are

as similar as possible, and then the examples in

E1 ∪ E2 remain similar as much as possible, and

so on for all
⋃i

j=1 Ej . Formally, let considerE =
E1 ∪ . . . ∪ Ep such that |Ep|, . . . , |E1| is a super
increasing sequence (i.e. ∀j, |Ej | ≥

∑p
i=j+1 |Ei|

and d is a distance between examples (in the case
of relational learning some distances have been

proposed, see [5] for instance). Given a set of ex-

ample Ei = {e1, . . . , en}, the average value of
the distance between examples in Ei is

D(Ei) =

∑n
k=1

∑n
j=k+1 d(ek, el)

|Ei|∗(|Ei|−1)
2

.

According to the above discussion, a good par-

tition for the sets of examples may be the super

increasing one that minimizes the value

p∑

i=1

|Ei| ∗ D(

i⋃

j=1

Ej). (2)

It is obvious that, without any information, find-

ing an optimal solution is a NP -complete prob-

lem. A possible heuristics may be first to fix the

shape of the super increasing sequence as the ”ex-

tremal” one in the sens of equation 1, i.e, |Ei| =
[ |E− i−1

j=1
Ej | ]

2 + 1 where [ ] denotes the integer
part. Then, as long as the criterion (eq. 2) de-

crease, we swap pairs of examples in between two

subsets of the partition (Alg 1). Remark that this

approach is not optimal. Better results with re-

spect to the criterion could be achieved by also al-

lowing the move of an example from one subset to

another subset; this will require the use of meta-

heuristics such as simulated annealing or genetic

algorithms.

Alg. 1 Building a partition

Require: E the set of examples

Require: d a distance between examples
1: let E = E1 ∪ . . . ∪ Ep a random ”extremal”

sequence

2: improvement=true

3: while improvement do

4: for all possible pairs of examples (ei ∈
Ei, ej ∈ Ej) do

5: if it exists a pair (ei, ej) that decreases
the criterion when they are swapped

then

6: choose the pair (ei, ej) that minimizes
the criterion

7: swap ei and ej

8: else

9: improvement=false

10: end if

11: end for

12: end while

4.2 Learning stratified set of rules from

classical examples

In [10], possibilistic logic is used for dealing with

exceptions, assimilated as inconsistency, in a clas-

sical ILP setting. Due to the monotonicity of first

order logic consequence relation, hypotheses in

ILP cannot deal with exceptions (misclassifica-

tion). In particular, classical hypotheses accumu-

late all exceptions of the rules that appear in them

and if a rule has an exception, there is no way

to compensate by with another rule. In [10], We

have proposed to use possibilistic logic in order

to manage the exceptions. Thus, given a classical

background knowledge B and a set of examples

E, a stratified set of rulesHp is to be induced such

that it exists a stratification of E, named Ep, such

that

B ∪ Hp |=p Ep.

By contrast with the previously described ap-

proach, the stratification of the examples is

not given and depends on the hypothesis. The

stratification of rules allows the algorithm to

deal with multiple classification of examples



and to compensate the errors of a rule at a given

level by rules at higher levels. The possibilistic

hypothesis are learned directly by adapting an

ILP algorithm based on simulated annealing [12].

The stratification is induced in maximizing the

accuracy and does not take into consideration an

intended default rule meaning. In order to do that,

a measure could be introduced for guiding the

learning process in order to induce hypotheses

that describe super increasing sequences of

examples.

Given a stratified hypothesis Hp = h1, ..., hn (h1

is the most prioritized rule), we note supp(h)
the proportion of examples to which the rule

apply (even it leads to wrong classification). We

call effective support of a rule the proportion

of examples to which the rule effectivelly apply

when considering the priorities in possibilistic

logic. More formally, the effective support is then

suppEff(hi) = supp(hi) − suppEff(hi−1)
with suppEff(h1) = supp(h1). Thus,

a stratified hypothesis will be considered

as acceptable from the non monotonic

reasoning point of view, if the sequence

{suppEff(h1), . . . , suppEff(hn)} is a super

increasing sequence. In order to guide the algo-

rithm toward stratified hypothesis that describes

a super increasing sequence and that have an

high accuracy, we need to measure the distance

between the sequence of the effective supports

and the closest super increasing sequence (as

define in algorithm 2). Then the function to

maximize is

val(Hp) = acc(Hp) − c ∗ distIS(Hp)

where acc(Hp) is the accuracy of Hp and c is a
constant. The constant c is used for the control of
the relative weight of accuracy vs. the distance

of the hypothesis to the closest super increas-

ing sequence. We consider that the most general

hypothesis Hg (i.e. the hypothesis that classes

all examples in the majority class) is as accept-

able as the most specific hypothesis Hs (i.e. E).

Thus c =
acc(Hs)∗distIS(Hg)−acc(Hg)∗distIS(Hs)

distIS(Hs)−distIS(Hg) .

Since distIS(Hg) = 0, we can take c such as

c = acc(Hg).

Alg. 2 distIS

Require: Hp = h1, ..., hn a stratified hypothesis

1: cumulsupport = 1
2: diff = 0
3: ǫ = 1

|E|
4: i = n
5: while cumulsupport > 0 do
6: if i > 0 then
7: currentsupport = suppEff(hi)
8: else

9: currentsupport = 0
10: end if

11: if currentsupport ≤ (1 −
cumulsupport)/2 then

12: diff = diff + (1 −
cumulsupport)/2−currentsupport+
ǫ

13: currentsupport = (1 −
cumulsupport)/2 + ǫ

14: end if

15: cumulsupport = cumulsupport −
currentsupport

16: i = i − 1
17: end while

18: return diff



5 Conclusion

In this paper, we have outlined the links that exists

between non-monotonic reasoning and greedy al-

gorithms by pointing out the similarity of the two

mathematical structures underlying them : super

increasing sequences and big-stepped probabili-

ties. This link echoes the two-sided nature of the

representation of default rules either in statistical

terms or as properly layered sets of classical for-

mulas. It suggests that learning a minimal default

rules coverage of a set examples amounts to iden-

tify hypotheses that induce super increasing se-

quences of subsets of examples.
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