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Abstract
Wepresent amodified version of the Judd-Ofelt theory, which describes the intensities of f-f transitions
for trivalent lanthanide ions (Ln3+) in solids. In our model, the properties of the dopant are calculated
with well-established atomic-structure techniques, while the influence of the crystal-field potential
is described by three adjustable parameters. By applying our model to europium (Eu3+), well-
known to challenge the standard Judd-Ofelt theory, we are able to give a physical insight into
all the transitions within the ground electronic configuration, and also to reproduce quantitatively
experimental absorption oscillator strengths. Our model opens the possibility to interpret polarized-
light transitions between individual levels of the ion-crystal system.

1. Introduction
The Judd-Ofelt (JO) theory has been successfully ap-

plied since almost 60 years, to interpret the intensities of
absorption and emission lines of crystals and glasses doped
with trivalent lanthanide ions (Ln3+) [1–3]. Despite its re-
markable efficiency, this standard JO theory cannot repro-
duce some of the observed transitions, because of its strong
selection rules. It is especially the case for europium (Eu3+)
[4, 5], well known to challenge the standard JO theory [6].
Many extensions of the original model have been proposed
to overcome this drawback [7], including e.g. J-mixing [8–
10], the Wybourne-Downer mechanism [11, 12], velocity-
gauge expression of the electric-dipole (ED) operator [13],
relativistic or configuration-interaction (CI) effects [14–18],
purely ab initio intensity calculations [19]. In this respect,
Smentek and coworkers were able to reproduce experimental
absorption oscillator strengths with a very high accuracy,
with up to 17 adjustable parameters [20]. But in spite of
all these improvements, even the most recent experimental
studies use the standard version of the JO theory [21, 22].

In the standard JO theory, the line strength character-
izing a given transition is a linear combinations of three
parameters Ω� (with � = 2, 4 and 6), which are functions
of both the properties of the Ln3+ ion and the crystal-field
parameters [3, 6]. Since the Ω�-parameters are adjusted by
least-square fitting, those two types of contributions cannot
be separated. However, the properties of the impurity can
be investigated by means of free-ion spectroscopy. In this
respect, recent joint experimental and theoretical investiga-
tions have provided a detailed knowledge of some free-Ln3+
ion structure [23–26]. Although such a study has not been
made with Eu3+, the continuity of the atomic properties
along the lanthanide series opens the possibility to compute
the Eu3+ spectrum using a semi-empirical method, based on
adjusted parameters of neighboring elements [27].
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In this article, we present a modified version of the
JO theory in which the properties of the free Ln3+ ion,
i.e. energies and transition integrals, are computed using a
combination of ab initio and least-square fitting procedures
available in Cowan’s suite of codes [28, 29]. This allows us
to relax some of the strong assumptions of the JO theory, for
instance the strict application of the closure relation. The line
strengths appear as linear combinations of three adjustable
parameters which are only functions of the crystal-field
potential, giving access to the local environment around
the ion. We account for the spin-orbit (SO) interaction
responsible of spin-changing transitions by calculating the
line strengths at the third order of perturbation theory. Our
results on Eu3+ suggest that the spin-mixing transitions are
mainly due to the SO mixing within the ground electronic
configuration, in contradiction with the Wybourne-Downer
mechanism described in Ref. [11, 12]. In addition, our model
gives a simple physical interpretation of the transitions that
are forbidden in the framework of the standard JO theory,
including 7F0 ↔ 5D0, 7F0 ↔ 5DJ or 7FJ ↔ 5D0 with Jodd. To benchmark our model, we reproduce quantitatively
the set of experimental absorption oscillator strengths of
Babu et al. [30], although we overestimate the strength of
7F0 ↔ 5D0 transition.The paper is organized as follows. Section 2 contains our
analytical developments resulting in the ED line strengths,
which then allow for calculating oscillator strengths and
Einstein coefficients. Our model is based on the time-
independent perturbation theory, up to second and third
orders (see Subsections 2.1 and 2.2 respectively). Then in
Section 3, we apply our model to the case of europium,
describing first the free-ion properties required for ourmodel
in Subsections 3.1–3.4, and then the f-f transitions within the
ground configuration in Subsection 3.5. Section 4 contains
conclusions and prospects.
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Extending the Judd-Ofelt theory

2. Electric-dipole line strengths
The aim of the present section is to derive analytical

expressions for the electric-dipole (ED) line strengths, which
enable to characterize absorption and emission intensities of
Ln3+-doped solids. Unlike the magnetic-dipole (MD) and
electric-quadrupole (EQ) transitions [31], the ED ones are
activated by the presence of the host material, which relaxes
the free-space selection rules. We use similar hypotheses
as in the original JO model [1, 2]: the crystal-field (CF)
potential slightly admixes the levels of the ground config-
uration [Xe]4fw and those of the first excited configuration
[Xe]4fw−15d, where [Xe] denotes the ground configuration
of xenon, dropped in the rest of the article. In the resulting
perturbative expression of the ED line strength, we assume
that all the levels of the excited configuration have the same
energy. However, we relax some of the original hypothesis,
by accounting for the energies of the ground-configuration
levels, and by applying the closure relation less strictly.
Unlike the standard and most common extensions of the
JO model, we do not introduce effective operators, like the
so-called unit-tensor operator U (k) [28], but rather work
on the matrix elements of the CF or ED operators. To
calculate the line strength, we firstly use the second-order
perturbation theory (see subsection 2.1) and then the third-
order perturbation theory (see subsection 2.2), for which the
free-ion spin-orbit operator is within the perturbation.

The common starting point of those two calculations is
the multipolar expansion of the crystal-field potential,

VCF =
∑

kq
Akq

N
∑

j=1
rkjC

(k)
q (�j , �j) ≡

∑

kq
AkqP

(k)
q (1)

where k is a non-negative integer and q = −k, −k + 1,
..., +k, (rj , �j , �j) are the spherical coordinates of the j-th
(j = 1 to N) electron in the referential frame centered on
the nucleus of the Ln3+ ion, andC (k)q are the Racah spherical
harmonics of rank k and component q, related to the usual
spherical harmonics by C (k)q (�j , �j) =

√

4�∕(2k + 1) ×
Ykq(�j , �j), see for example Chap. 5 of Ref. [32]. In Eq. (1),
the quantities P (k)q represent the electric multipole moment
as defined in Chaps. 14 and 15 of Ref. [28]. The simplest
way of calculating the CF parameters Akq is to assume that
they are due to distributed charges inside the host material.
More elaborate models can be used, like distributed dipoles
resulting in the so-called dynamical coupling [7], or the
vibration of the ion center-of-mass. This would affect the
physical origin of the Akq coefficients, but not the validity
of the forthcoming results [1].
2.1. Second-order correction

In the theory of light-matter interaction, the ED ap-
proximation arises at the first order of perturbation theory.
Furthermore, the f-f transitions in Ln3+-doped solids are
only possible if the free-ion levels are perturbed by the CF
potential. Therefore, using the first-order correction on the
ion levels to calculate the matrix element of the ED operator
gives in total a second-order correction.

We call |Ψi⟩ the eigenvectors associatedwith the ion+crystalsystem (without electromagnetic field). In the framework of
perturbation theory, we express them as |Ψi⟩ = ∑

m |Ψ
m
i ⟩,where m denotes the order of the perturbative expansion. In

this subsection, we consider that the 0-th, i.e. unperturbed,
eigenvectors |Ψ0i ⟩ are the free-ion levels. Those belonging tothe ground configuration nlw (with nl = 4f for Ln3+ ions)
are written in intermediate coupling scheme [28]

|Ψ0i ⟩ =
∑

�iLiSi

c�iLiSi
|

|

nlw �iLiSiJiMi⟩ (2)

where Li, Si and Ji are the quantum numbers associated
with the orbital, spin and total electronic angular momentum
respectively, while Mi is associated with the z-projection
of the latter. The free-ion levels of energy E0i ≡ Ei aredegenerate inMi. Finally in Eq. (2), � is a generic notation
containing additional information like the seniority number
[28]. In the 4fw configuration of Ln3+ ions, the energy levels
are usually well described in the LS coupling scheme (see
Table 2).

In the first excited configuration nlw−1n′l′, with (nl, n′l′) =
(4f, 5d) for Ln3+ ions, we consider free-ion levels in pure
LS coupling,

|Ψ0t ⟩ = |nlw−1�LS, n′l′L′S′J ′M ′
⟩, (3)

where the overlined quantum numbers characterize the
nlw−1 subshell alone. As Table 4 shows, the LS coupling is
not appropriate for the energy levels of the excited configura-
tion. But since, in our EDmatrix element calculation, wewill
assume that all the levels of the excited configuration have
the same energy, the choice of coupling scheme is arbitrary,
and so we take the simplest one.

Now we express the ED transition amplitude D12 be-
tween eigenvectors |Ψ0i ⟩ + |Ψ1i ⟩ (i = 1, 2), perturbed by the
CF potential up to the first order,

D12 =
⟨

Ψ11
|

|

|

P (1)p
|

|

|

Ψ02
⟩

+
⟨

Ψ01
|

|

|

P (1)p
|

|

|

Ψ12
⟩

=
∑

t

⎡

⎢

⎢

⎣

⟨

Ψ01
|

|

|

VCF
|

|

|

Ψ0t
⟩

E1 − Et

⟨

Ψ0t
|

|

|

P (1)p
|

|

|

Ψ02
⟩

+
⟨

Ψ01
|

|

|

P (1)p
|

|

|

Ψ0t
⟩

⟨

Ψ0t
|

|

|

VCF
|

|

|

Ψ02
⟩

E2 − Et

⎤

⎥

⎥

⎦

, (4)

where the index p = 0 denotes � light polarization, and p =
±1 denote �± polarizations. We recall that ⟨Ψ01|P (1)p |Ψ02⟩ =
0, because in free space, there is no ED transition between
levels of the same electronic configuration. In what follows,
we assume that all the energies of the excited configuration
are equal, Et ≈ En′l′ . Rather than the center-of-gravity
energy of the excited configuration, Et can be regarded as
the mean energy for which the coupling with both levels 1
and 2 is significant (see Fig. 2).

Equation (4) contains matrix elements of P (1)p and VCF,
itself function of P (k)q as Eq. (1) shows. Being irreducible
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tensor operators, the matrix elements of P (k)q satisfy the
Wigner-Eckart theorem [32]

⟨

Ψ0i
|

|

|

P (k)q
|

|

|

Ψ0t
⟩

=
CJiMi
J ′M ′kq

√

2Ji + 1

⟨

Ψ0i
‖

‖

‖

P (k)‖‖
‖

Ψ0t
⟩

(5)

where CJiMi
J ′M ′kq = ⟨J ′M ′kq|J ′kJiMi⟩ is a Clebsch-Gordan

(CG) coefficient, and ⟨Ψ0i ‖P
(k)
‖Ψ0t ⟩ the reduced matrix

element given in Eq. (35), which is independent from Mi,
M ′ and q.

By contrast, the products of the kind ⟨Ψ0i |P
(k)
q |Ψ0t ⟩

×⟨Ψ0t |P
(1)
p |Ψ02⟩ are not irreducible tensors; still we overcome

this problem by expanding the product of two CG coeffi-
cients given in [32], which yields

⟨

Ψ01
|

|

|

P (k)q
|

|

|

Ψ0t
⟩⟨

Ψ0t
|

|

|

P (1)p
|

|

|

Ψ02
⟩

=
∑

��
(−1)J1+J2−�

√

2� + 1
2J1 + 1

C��kq1pC
J1M1
J2M2��

×
{

k 1 �
J2 J1 J ′

}

⟨

Ψ01
‖

‖

‖

P (k) ‖‖
‖

Ψ0t
⟩

⟨

Ψ0t
‖

‖

‖

P (1)‖‖
‖

Ψ02
⟩

(6)
where the quantity between curly brackets is a Wigner 6-
j symbol. Equation (6) is interesting because the only de-
pendence on quantum numbersMi is in the CG coefficient
CJ1M1
J2M2��

, whileM ′ is absent. The equation appears as a sum
of irreducible tensors of rank � and component � coupling
directly |Ψ01⟩ and |Ψ02⟩. The selection rules governing this
coupling are ΔJ = |J2 − J1| ≤ � ≤ J1 + J2 and M1 =
M2 + �. Moreover, the triangle rule associated with C��kq1pimposes � = k, k ± 1, � = p + q and −� ≤ � ≤ +�.

Applying the same reasoning for the third line of Eq. (4), we obtain the same result as Eq. (6) except the permutations of
the couples of indexes (k, q) and (1, p). Using the symmetry relation of CG coefficients C��1pkq = (−1)1+k−�C��kq1p, we get tothe final expression for the transition amplitude

D12 =
∑

�1L1S1

c�1L1S1
∑

�2L2S2

c�2L2S2
∑

kq
Akq

∑

��
(−1)J1+J2−�

√

2� + 1
2J1 + 1

C��kq1pC
J1M1
J2M2��

×
∑

J ′

({

k 1 �
J2 J1 J ′

}

(k1)
12,J ′ + (−1)

1+k−�
{

1 k �
J2 J1 J ′

}

(1k)
12,J ′

)

, (7)

where we have introduced the quantities

(k1)
12,J ′ =

1
E1 − En′l′

∑

�LS,L′S′J ′

⟨

nlw �1L1S1J1
‖

‖

‖

P (k)‖‖
‖

�LS, L′S′J ′
⟩⟨

�LS, L′S′J ′ ‖‖
‖

P (1)‖‖
‖

nlw �2L2S2J2
⟩

(8)

(1k)
12,J ′ =

1
E2 − En′l′

∑

�LS,L′S′J ′

⟨

nlw �1L1S1J1
‖

‖

‖

P (1)‖‖
‖

�LS, L′S′J ′
⟩⟨

�LS, L′S′J ′ ‖‖
‖

P (k)‖‖
‖

nlw �2L2S2J2
⟩

(9)

in which |�LS, L′S′J ′⟩ is a condensed representation of |Ψ0t ⟩, see Eq. (3). The superscripts (k1) and (1k) correspond to theorder in which the tensor operators P (k) and P (1) are written.

For eigenvectors |Ψ01,2⟩ belonging to the ground configuration and |Ψ0t ⟩ belonging to the first excited configuration, the
3-j symbol of Eq. (35) imposes that the CF potential matrix elements are non-zero for k = 1, 3 and 5, which, according to
Eq. (6), imposes � = 0, 1, ..., 6. By contrast, in the standard version of the JO theory, � = k + 1 = 2, 4 and 6. The � = 0
contribution in Eq. (6) comes from the dipolar term k = 1 of the CF potential; it is the only non-zero contribution when
J1 = J2 = 0, for instance the 5D0 ↔ 7F0 transition in Eu3+. Our odd-� contributions are responsible for the transitions
like 5D0 ↔ 7F3,5 and 5D3 ↔ 7F0; they arise because we consider distinct energies for levels 1 and 2, E1 ≠ E2, unlike thestandard JO theory. But since the energy difference |E2 − E1| is significantly smaller (although not negligible) compared to
En′l′ −E1,2, those transitions are weak. Finally, since the operators P (k) do not couple different spin states, the spin-changing
transitions are only due to the mixing of different spin states within the ground-configuration levels |Ψ01,2⟩, see Eq. (2). Inother words, Eq. (7) does not account for the so-called Downer-Wybourne mechanism [11].
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At present, we calculate the ED line strength ED =
∑

pM1M2
(D12)2. Expressing Eq. (7) twice gives many sums: in

particular on p,M1,M2, k, q, � and J ′, but also k′, q′, �′ and J ′′ (coming from the second expansion of D12). Focusing onthe sum involving CG coefficients, we have

∑

pqq′��′
C��kq1pC

�′�′
k′q′1p

∑

M1M2

CJ1M1
J2M2��

CJ1M1
J2M2�′�′

2J1 + 1
=

∑

pqq′��′
C��kq1pC

�′�′
k′q′1p

���′���′
2� + 1

=
���′
2� + 1

∑

pqq′�
C��kq1pC

��
k′q′1p =

���′�kk′�qq′
2k + 1

, (10)

where the Kronecker symbols come from the orthonormalization relation of CG coefficients. Plugging Eq. (10) into the line
strength gives

ED =
∑

�1aL1aS1a

c�1aL1aS1a
∑

�2aL2aS2a

c�2aL2aS2a
∑

�1bL1bS1b

c�1bL1bS1b
∑

�2bL2bS2b

c�2bL2bS2b
∑

kq

|Akq|2

2k + 1

×
∑

�
(2� + 1)

∑

J ′

({

k 1 �
J2 J1 J ′

}

(k1)
1a,2a,J ′ + (−1)

1+k−�
{

1 k �
J2 J1 J ′

}

(1k)
1a,2a,J ′

)

×
∑

J ′′

({

k 1 �
J2 J1 J ′′

}

(k1)
1b,2b,J ′′ + (−1)

1+k−�
{

1 k �
J2 J1 J ′′

}

(1k)
1b,2b,J ′′

)

. (11)

When expanded, the last two lines contain four terms: two of the kind

∑

�
(2� + 1)

{

k1 k2 �
J2 J1 J ′

}{

k1 k2 �
J2 J1 J ′′

}

(k1k2)
1a,2a,J ′

(k1k2)
1b,2b,J ′′ =

�J ′J ′′
2J ′ + 1

(k1k2)
1a,2a,J ′

(k1k2)
1b,2b,J ′ (12)

where the sum on � is actually the orthonormalization relation of 6-j symbols; and two terms of the kind

∑

�
(−1)k1+k2−� (2� + 1)

{

k1 k2 �
J2 J1 J ′

}{

k2 k1 �
J2 J1 J ′′

}

(k1k2)
1a,2a,J ′

(k2k1)
1b,2b,J ′′

= (−1)k1+k2+J
′+J ′′

{

k1 J1 J ′
k2 J2 J ′′

}

(k1k2)
1a,2a,J ′

(k2k1)
1b,2b,J ′′ (13)

where we use some properties of 6-j symbols (see Ref. [32], p. 305). The final expression of the line strength is

ED =
∑

�1aL1aS1a

c�1aL1aS1a
∑

�2aL2aS2a

c�2aL2aS2a
∑

�1bL1bS1b

c�1bL1bS1b
∑

�2bL2bS2b

c�2bL2bS2b
∑

kq

|Akq|2

2k + 1

×
∑

J ′

⎡

⎢

⎢

⎣

(k1)
1a,2a,J ′

(k1)
1b,2b,J ′ +(1k)

1a,2a,J ′
(1k)
1b,2b,J ′

2J ′ + 1
+
∑

J ′′
(−1)1+k+J

′+J ′′

×
({

k J1 J ′
1 J2 J ′′

}

(k1)
1a,2a,J ′

(1k)
1b,2b,J ′′ +

{

1 J1 J ′
k J2 J ′′

}

(1k)
1a,2a,J ′

(k1)
1b,2b,J ′′

)

⎤

⎥

⎥

⎦

. (14)
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Equation (14) looks very different from the standard
JO line strength ED =

∑

�Ω�⟨Ψ
0
1‖U

(�)
‖Ψ02⟩, especiallybecause it does not depend on �, but depends on J ′ and J ′′

(which are by contrast eliminated in the standard case). The
index � is still relevant in the ED transition amplitude D12,see Eq. (7), because it allows for deriving the selection rules,
but it disappears in the line strength, where we consider
unpolarized light and ions (that is to say sums on p, M1and M2). In Eq. (14), the influence of the CF potential
are only contained in the three parameters Xk = (2k +
1)−1

∑

q |Akq|
2, for k = 1, 3 and 5, which are q-averages

of the square of Akq . In what follows, they will be treated
as adjustable parameters, whereas all the atomic properties
will be computed using atomic-structure methods.

2.2. Third-order correction
In this section, we address the influence of spin-orbit

(SO) mixing in the excited configuration on spin-changing
f-f transitions. Contrary to the ground configuration, the LS
coupling scheme is by far not appropriate to interpret the
levels of the 4fw−15d configuration (see Table 4), because
the electrostatic energy between 4f and 5d electrons and the
SO energy of the 5d electron are comparable. Therefore one
can expect these excited levels to play a significant role in
the spin-changing transitions.

To check this hypothesis, we will investigate the effect of
the SO Hamiltonian of the ion HSO using perturbation the-
ory. Namely we define a perturbation operator V containing
SO and CF interactions,

V = HSO + VCF . (15)
In consequence, the new unperturbed eigenvectors related
to the ground configuration are called manifolds, i.e. atomic
levels for which the SO energy is set to 0. Those manifolds
|Ψ̃0i ⟩, of energy Ẽi are degenerate in Mi as previously, butalso in Ji, and they are characterized by one Li and one Siquantum number,

|Ψ̃0i ⟩ =
∑

�i

c̃�i
|

|

nlw �iLiSiJiMi⟩ . (16)

Some manifolds, like the lowest 5D one in Eu3+, are linear
combination of different terms having the same L and S but
different seniority numbers, hence the sum on � in Eq. (16).
For the excited configuration, the unperturbed eigenvectors
are those given in Eq. (3).

The selection rules associated with HSO and VCF are
very different. In particular,HSO couples unperturbed eigen-
vectors of the same configuration, whereas the odd terms
of VCF couple configurations of opposite parities. Therefore,the influence of both SO and CF potentials appears as prod-
ucts ofmatrix elements like ⟨Ψ̃01|HSO|Ψ̃0i ⟩⟨Ψ̃

0
i |VCF|Ψ

0
t ⟩, andwe need to go to the third order of perturbation theory to

calculate the transition amplitude,

D12 =
⟨

Ψ̃11
|

|

|

P (1)p
|

|

|

Ψ̃12
⟩

+
⟨

Ψ̃21
|

|

|

P (1)p
|

|

|

Ψ̃02
⟩

+
⟨

Ψ̃01
|

|

|

P (1)p
|

|

|

Ψ̃22
⟩

(17)
where the second-order correction of eigenvectors is given
in Eq. (38).

By expanding Eq. (17), we get six terms corresponding
to the six possible products of matrix element of HSO, P (1)p

and P (k)q . Since HSO couples states of the same configura-
tion, unlike P (1)p and P (k)q , we distinguish two kinds of terms:

• ⟨Ψ̃01|P
(k)
q |Ψ0t ⟩ × ⟨Ψ0t |HSO|Ψ0u⟩ × ⟨Ψ0u|P

(1)
p |Ψ̃02⟩ and

⟨Ψ̃01|P
(1)
p |Ψ0t ⟩ × ⟨Ψ0t |HSO|Ψ0u⟩ × ⟨Ψ0u|P

(k)
q |Ψ̃02⟩, forwhich the SO interaction mixes levels of the ex-

cited configuration, for example quintets and septets
in Eu3+;

• ⟨Ψ̃01|HSO|Ψ̃0i′1
⟩ × ⟨Ψ̃0

i′1
|P (k)q |Ψ0t ⟩ × ⟨Ψ0t |P

(1)
p |Ψ̃02⟩,

⟨Ψ̃01|HSO|Ψ̃0i′1
⟩ × ⟨Ψ̃0

i′1
|P (1)p |Ψ0t ⟩ × ⟨Ψ0t |P

(k)
q |Ψ̃02⟩,

⟨Ψ̃01|P
(k)
q |Ψ0t ⟩ × ⟨Ψ0t |P

(1)
p |Ψ̃0

i′2
⟩ × ⟨Ψ̃0

i′2
|HSO|Ψ̃02⟩ and

⟨Ψ̃01|P
(1)
p |Ψ0t ⟩ × ⟨Ψ0t |P

(k)
q |Ψ̃0

i′2
⟩ × ⟨Ψ̃0

i′2
|HSO|Ψ̃02⟩. In

those cases, the SO interaction mixes manifolds of the
ground configuration, for example in Eu3+, 7F with
5D, 5F and 5G.

Because HSO is a scalar, i.e. a tensor operator of rank 0, the application of the Wigner-Eckart theorem gives a CG
coefficients CJ ′M ′

JM00 = �JJ ′�MM ′ . So, applying the Wigner-Eckart theorem to P (k)q and P (1)p as in Eq. (5), the product of three
matrix elements can be expanded in a similar way to Eq (6). For example,

⟨

Ψ01
|

|

|

P (k)q
|

|

|

Ψ0t
⟩⟨

Ψ0t
|

|

|

HSO
|

|

|

Ψ0u
⟩⟨

Ψ0u
|

|

|

P (1)p
|

|

|

Ψ02
⟩

=
∑

��
(−1)J1+J2−�

√

2� + 1
2J1 + 1

C��kq1pC
J1M1
J2M2��

{

k 1 �
J2 J1 J ′

}

×
⟨

Ψ01
‖

‖

‖

P (k)‖‖
‖

Ψ0t
⟩

⟨

Ψ0t
|

|

|

HSO
|

|

|

Ψ0u
⟩

⟨

Ψ0u
‖

‖

‖

P (1)‖‖
‖

Ψ02
⟩

(18)
where |Ψ0t,u⟩ are two eigenvectors of the excited configuration with the same total angular momentum J ′. The other products
give similar results: the order of reduced matrix elements in the last line is of course the same as the order of matrix elements
in the first line; if P (1)p appears before P (k)q , the 1 and k are interchanged in the CG coefficients and 6-j symbols, like in Eq. (7).
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Gathering the six matrix-element products, we can write the ED transition amplitude as

D12 =
∑

�1�2

c̃�1 c̃�2
∑

kq
Akq

∑

��
(−1)J1+J2−�

√

2� + 1
2J1 + 1

C��kq1pC
J1M1
J2M2��

∑

J ′

[{

k 1 �
J2 J1 J ′

}

(

(0k1)
12,J ′ +(k01)

12,J ′ +(k10)
12,J ′

)

+ (−1)1+k−�
{

1 k �
J2 J1 J ′

}

(

(01k)
12,J ′ +(10k)

12,J ′ +(1k0)
12,J ′

)

]

, (19)

where the terms(k1k2k3)
12,J ′ are built in analogy to Eqs. (8) and (9): the order of the superscripts is the one in which the matrix

element of operators appear (the “0" standing forHSO). Firstly, the (0k2k3)
12,J ′ are such that

(0k2k3)
12,J ′ = 1

Δk2k3

∑

i′1�
′
1�
′
1L

′
1

c̃�′1 c̃�′1
Ẽ1 − Ẽi′1

×
⟨

�1L1S1J1 ||HSO
|

|

�′1L
′
1S2J1

⟩

×
∑

�LS,L′2

⟨

�′1L
′
1S2J1

‖

‖

‖

P (k2)‖‖
‖

�LS,L′2S2J
′
⟩⟨

�LS,L′2S2J
′ ‖
‖

‖

P (k3)‖‖
‖

�2L2S2J2
⟩

, (20)

with

Δlm =

{

Ẽ1 − En′l′ for (l, m) = (k, 1)
Ẽ2 − En′l′ for (l, m) = (1, k).

(21)

In Eu3+ for example, for |Ψ̃01⟩ in the lowest 5Dmanifold and |Ψ̃01⟩ in the 7F manifold,HSO couples |Ψ̃01⟩ to the 7L′1 manifolds
on the ground configuration (actually there is only one: 7F). The quantum numbers (�LS,L′2) characterize the septet levels(S2 = 3) of the excited configuration. Similarly,

(k1k20)
12,J ′ = 1

Δk1k2

∑

�LS,L′1

⟨

�1L1S1J1
‖

‖

‖

P (k1)‖‖
‖

�LS,L′1S1J
′
⟩

×
∑

i′2�
′
2�
′
2L

′
2

c̃�′2 c̃�′2
Ẽ2 − Ẽi′2

×
⟨

�LS,L′1S1J
′ ‖
‖

‖

P (k2)‖‖
‖

�′2L
′
2S1J2

⟩

⟨

�′2L
′
2S1J2 ||HSO

|

|

�2L2S2J2
⟩

, (22)

where Δk1k2 is given by Eq. (21). Here the SO Hamiltonian couples the 7F manifold to the various quintet manifolds, for
instance 5D, 5F and 5G manifolds, since L′2 − L2 = 0, ±1. Finally, the terms (k10k3)

12,J ′ correspond to the Wybourne-Downer
mechanism [11] whereHSO couples the quintet and septet levels of the excited configuration. Namely,

(k10k3)
12,J ′ = 1

Δ2k1k3

∑

�LS

∑

L′1L
′
2

⟨

�1L1S1J1
‖

‖

‖

P (k1)‖‖
‖

�LS,L′1S1J
′
⟩

×
⟨

�LS,L′1S1J
′|
|

|

HSO
|

|

|

�LS,L′2S2J
′
⟩⟨

�LS,L′2S2J
′ ‖
‖

‖

P (k3)‖‖
‖

�2L2S2J2
⟩

, (23)

where Δk1k3 is given by Eq. (21).If we assume that in Equations (20), (22) and (23), the spin-orbit interactions are of the same order of magnitude (see
Table 1), the main difference between them comes from the energy denominator. The quantity Δlm is on the order of several
tens of thousands of cm−1, while the differences Ẽ1− Ẽi′1 and Ẽ2− Ẽi′2 , which are the energies between different manifolds of
the ground configuration, are on the order of several thousand cm−1. This means that Eq. (23) is, roughly speaking, one order
of magnitude smaller than Eqs. (20) and (22). This fact is really a precious information that brings the third order correction.
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Combining Eqs. (14) and (19), we can see that the ED line strength ED now contains 36 terms, containing products of
the kind(k1ak2ak3a)

1a,2a,J ′ ×(k1bk2bk3b)
1b,2b,J ′′ . For the 18 terms in which k and 1 appear in the same order in (k1ak2ak3a) and (k1bk2bk3b),

we have the same prefactor as the second line of Eq. (14), that is (2J ′ + 1)−1. For the 18 other terms in which k and 1 appear
in different orders, we have the prefactors with the 6-j symbols as in the second and third lines of Eq. (14). Namely, we can
write the line strength as

ED =
∑

�1a�1b

c̃�1a c̃�1b
∑

�2a�2b

c̃�2a c̃�2b
∑

kq

|Akq|2

2k + 1
∑

�a�b

∑

J ′

[

�̃�a,(k1)�̃�b,(k1) + �̃�a,(1k)�̃�b,(1k)
2J ′ + 1

(�a)
1a,2a,J ′

(�b)
1b,2b,J ′

+
∑

J ′′
(−1)1+k+J

′+J ′′
({

k J1 J ′
1 J2 J ′′

}

�̃�a,(k1)�̃�b,(1k) +
{

1 J1 J ′
k J2 J ′′

}

�̃�a,(1k)�̃�b,(k1)

)

(�a)
1a,2a,J ′

(�b)
1b,2b,J ′′

]

(24)
where �a = (k1ak2ak3a) and �b = (k1bk2bk3b) designate the possible combinations of indices k, 1 and 0. The quantity
�̃�,(k1) = 1 if � is a combination in which k appears firstly and 1 secondly, namely � = (k10), (k01), (0k1), and 0 otherwise.
The quantity �̃�,(1k) corresponds to the inverse situation. Similarly to Eq. (14), the line strength (24) depends on the CF
potential through the three parameters Xk = (2k + 1)−1

∑

q |Akq|
2, which will be treated as adjustable in the next section.

3. Application to Europium
In this section, we aim at benchmarking our model

with experimental data. To this end, we have chosen the
measurements of absorption oscillator strengths by Babu et
al. [30], who performed a thorough spectroscopic study of
Eu3+-doped lithium borate and lithium fluoroborate glasses.
Because our model relies on free-ion properties, we start
with studying the free-ion energies of the two lowest Eu3+
electronic configurations 4f 6, of even parity, and 4f 55d, of
odd parity, and the free-space transitions between them.
3.1. Calculation of free-ion energy parameters

The calculations of the Eu3+ free-ion spectrum are
performed with the semi-empirical technique provided by
Robert Cowan’s atomic-structure suite of codes [29], whose
theoretical background is presented in Ref. [28]. In a first
step, ab initio radial wave functions Pnl for all the sub-
shells nl of the considered configurations are computed
with the relativistic Hartree-Fock (HFR) method. Those
wave functions are used to calculate energy parameters, for
instance center-of-gravity configuration energies Eav, direct
F k and exchange Gk electrostatic integrals, or spin-orbit
integrals �nl , that are the building blocks of the atomic
Hamiltonian. In a second step, the latter are treated as
adjustable parameters of a least-square fitting calculation,
in order to find the best possible agreement between the
Hamiltonian eigenvalues and the experimental energies. To
make some comparisons between different elements and
ionization stages, one often defines the scaling factor (SF)
fX = Xf it∕XHFR between the fitted and the HFR value of a
given parameter X.

In an attempt to improve the quality of the fit (and
therefore, the accuracy of the resulting eigenvectors), a va-
riety of “effective-operator" parameters, called �, � and 

and “illegal”-k F k, Gk have been introduced, representing
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Figure 1: Energy levels of the 4f 6 (blue) and 4f 55d (red)
configurations of Eu3+ as functions of the electronic angular
momentum J . The plot is restricted to energy values between
0 and 100000 cm−1.

corrections to both the electrostatic and the magnetic single-
configuration effects [28]. “Illegal”-k means that these are
the values of k for which k + l + l′ is odd. These effective
parameters, unlike other parameters, can not be calculated
ab initio. By contrast, we do not include the Mk, T k and
P k parameters that are sometimes used in Ln3+-ion ground
configuration. The general methodology for our fitting cal-
culations is as follows: (a) fitting the parameters with an ab
initio values while effective parameters are forced to be zero;
(b) fixing the parameters resulting from step (a) and fitting
the effective parameters; (c) using the final values of (b),
fitting all the parameters together.

Our fitting calculations require experimental energies.
For the Eu3+ ground configuration 4f 6, we find them on the
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Table 1
Scaling factors (SFs) of ab initio parameters (see text), values of Eav and fitted effective parameters Xf it (in cm−1) for two lowest
configurations of Nd3+, Er3+ and Eu3+, as well as all the fitted parameters for Eu3+. Here, for brevity, we use F k(fd) as F k(4f, 5d),
�f as �4f and �d as �5d .

Param. 4fw 4fw−15d
name

SF(Nd3+) SF(Er3+) SF(Eu3+) value (Eu3+) SF(Nd3+) SF(Er3+) SF(Eu3+) value (Eu3+)
Eav 24898.0 35577.1 65609.0 88430.0 133432.5 137500.0

F 2(ff ) 0.738 0.754 0.781 88732.0 0.759 0.756 0.758 91269.9
F 4(ff ) 0.825 0.919 0.950 67778.0 0.909 0.988 0.949 72029.8
F 6(ff ) 0.773 0.898 0.800 41060.7 0.870 0.798 0.834 45638.6
� 19.1 -0.2 22.6 22.6 32.4 22.6
� -558.5 -204.7 -605.0 -605.0 -668.4 -605.0

 1690.5 55.8 292.2 292.2 1409.8 292.2
�f 0.930 0.979 0.928 1313.6 0.947 0.995 0.971 1481.1
�d 0.972 0.916 0.945 1290.0

F 1(fd) 1025.3 1370.6 0
F 2(fd) 0.726 0.776 0.751 23046.8
F 3(fd) 111.5 2330.4 0
F 4(fd) 1.128 1.124 1.126 16815.7
G1(fd) 0.762 0.653 0.707 9113.2
G2(fd) 2199 411.1 0
G3(fd) 1.005 0.838 0.922 10103.2
G4(fd) 2016.0 0 0
G5(fd) 0.874 0.680 0.778 6603.8

NIST ASD database [33]. However, no experimental level
has been reported for the 4f 55d configuration. Because the
4fw configurations (with 2 ≤ w ≤ 12) and the 4fw−15d
ones (with 3 ≤ w ≤ 13) possess the same energy param-
eters, we perform a least-square fitting calculation of some
4fw−15d configurations for which experimental levels are
known, namely for Nd3+ (w = 3) and Er3+ (w = 11) [24–
26]. Then, relying on the regularities of the scaling factors
fX along the lanthanide series, we multiply the obtained
scaling factors given in Table 1 by the HFR parameters for
Eu3+ to compute the energies of 4f 55d.

The interpretation of Nd3+ and Er3+ spectra show that,
because CI mixing is very low, a one-configuration approx-
imation can safely be applied in both parities, which is done
here. For Nd3+, experimentally known levels are taken from
the article of Wyart et al. [24]. There are 41 levels for 4f 3
configuration and 111 for 4f 25d configuration. For Er3+,
38 experimental levels of the configuration 4f 11 and 58
of 4f 105d are taken from Meftah et al. [25]. For the 4f 6
configuration of Eu3+, the NIST database gives 12 levels
[33].

Table 1 shows a comparison of the final SFs (for ab initio
parameters) or the fitted values (for effective parameters), for
the two lowest configurations of the above mentioned ions. It
also shows the parameter values used in the Eu3+ spectrum
calculations of the next subsections. In the 4fw configu-
rations, the least-square fitting calculations, performed for
each element, illustrates the regularities of SFs for F k and
�f parameters. Regarding effective parameters, the negative
values of � are usual, while the small values of � and 
 of
Er3+ are not. The regularities are also visible between 4f 25d

and 4f 105d configurations of Nd3+ and Er3+ respectively.
Therefore, we calculate our Eu3+ parameters by multiplying
the HFR values by the average SF obtained for Nd3+ and
Er3+. The effective parameters are those obtained for Nd3+,
and the center-of-gravity energy of 4f 55d is calculated by
assuming that the difference Eav(4fw−15d) − Eav(4fw)increases linearly with w.

Figure 1 shows the levels computed with the parameters
of Table 1, whose energies are between 0 and 100000 cm−1,
for the 4f 6 and 4f 55d configurations. They will be analyzed
in details in the next two paragraphs.
3.2. Energy levels of the ground configuration 4f 6

For the 4f 6 configuration, values from theNIST database
[33] were taken as the experimentally known energy levels.
Because the free ion has not been analyzed yet, the energies
was determined by interpolation or extrapolation of known
experimental values or by semi-empirical calculation [35].
Table 2 shows a good agreement between these experimental
values, our computed values and the theoretical values
calculated by Freidzon and coworkers [34]. Our values are
closer to the experimental ones in the 5D manifold. Note
that a direct comparison with the article of Ogasawara and
coworkers [17] is difficult, as the authors do not give tables
of energy levels for Eu3+. In total, the 4f 6 configuration
contains 296 levels with J values ranging from 0 to 12.

Table 2 also illustrates that the ground-configuration
levels are well described by the LS coupling scheme. Some
levels are mainly characterized by a single term, like 7F or
5L, but others are shared between several terms with the
same L and S quantum numbers, but different seniority
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Table 2
Comparison between the experimental, computed and other theory [34] values for the levels of 4f 6 configuration of Eu3+, with
total angular momenta from J = 0 to 6 and energies up to 30000 cm−1, as well as first three LS-coupling eigenvectors with their
percentages. All energy values are in cm−1.

Exp. This work Other theory J First three eigenvectors and percentages

0 -21 0 0 7F 93.4 % 5D1 3.5 % 5D3 2.8 %
370 357 380 1 7F 94.7 % 5D1 2.8 % 5D3 2.2 %

1040 1022 1040 2 7F 96.3 % 5D1 1.9 % 5D3 1.4 %
1890 1880 1880 3 7F 97.4 % 5D1 1.1 % 5D3 0.7 %
2860 2860 2830 4 7F 97.9 % 5F2 0.5 % 5D1 0.4 %
3910 3912 3860 5 7F 97.6 % 5G1 0.8 % 5G3 0.8 %
4940 4998 4970 6 7F 96.4 % 5G1 1.5 % 5G3 1.5 %

17270 17257 17830 0 5D3 45.4 % 5D1 30.4 % 3P6 6.7 %
19030 19015 19450 1 5D3 50.6 % 5D1 33.5 % 7F 4.7 %
21510 21489 22140 2 5D3 54.3 % 5D1 36.1 % 7F 2.9 %
24390 24360 25370 3 5D3 55.2 % 5D1 37.7 % 5D2 2.0 %

25257 6 5L 88.7 % 3K5 3.0 % 3K1 2.2 %
26314 2 5G3 40.6 % 5G1 36.0 % 5G2 16.7 %
26622 3 5G3 37.8 % 5G1 33.3 % 5G2 16.4 %
26814 4 5G3 33.2 % 5G1 28.5 % 5G2 17.8 %
26913 5 5G3 30.2 % 5G1 24.9 % 5G2 20.2 %
26926 6 5G3 26.9 % 5G2 22.7 % 5G1 20.4 %

27640 27574 28960 4 5D3 52.8 % 5D1 37.6 % 5F2 2.3 %

numbers like 5D(1,2,3) or 5G(1,2,3), which are used to
indicate that these are coming from different parent terms
of 4f 5 (see subsection 2.1). The small deviations from LS
coupling are due to the SO interaction, for example, a small
5D component in the 7F levels. The terms coupled by SO
are such that ΔL = 0,±1 and ΔS = 0,±1 in agreement
with Eq. (36).

Finally, Table 3 contains the energy value and eigenvec-
tor of the manifolds with S = 2 and 3, calculated by setting
to 0 the spin-orbit parameter �f of Table 1. This information
is necessary to build our third-order theory, see Eq. (16).
Note that the first excited manifold is a superposition of 5D3,
5D1 and 5D2 terms. But due to its strong importance in Eu3+
spectroscopic studies, it will be denoted 5D in the rest of the
paper.
3.3. Energy levels of the first excited configuration

4f 55d
This subsection is devoted to the energy levels of the first

excited configuration 4f 55d. The parameters necessary for
the calculations are given in Table 1. The 4f 55d configu-
ration contains 1878 levels with J -values from 0 to 14, and
according to our calculations, with energies from 74438 to
243060 cm−1. The dominant eigenvector of the 74438-cm−1

level is 4f 5(6Ho) 5d(7Ko4) with 93.8 %. As examples, Table
4 shows the 20 lowest energy levels with J = 0, 1 and 2,
along with their three dominant eigenvectors.

Table 4 shows that the levels of the 4f 55d configuration
do not possess a strongly dominant eigenvector (or a group
of eigenvectors) characterized by the sameL andS quantum
numbers. This means that, unlike the ground configuration,
see Table 2, the LS coupling scheme is not appropriate for

the excited configuration. It can be shown that the jj cou-
pling scheme is not appropriate either, because the spin-orbit
energy of the 5d electron is of the same order of magnitude
as the electrostatic energy between 4f and 5d electrons. The
eigenvectors are therefore written in pair coupling, i.e. linear
combination of LS-coupling states.

In a given energy level, the L and S quantum numbers,
which characterize the parent term of the 4f 5 subshell, are
common to the majority of the eigenvectors. With increasing
energy, the levels mainly possess 6Ho, 6Fo and 6Po charac-
ters; then come the quartet and doublet parent terms. Indeed
the SO interaction within the 4f 5 subshell is too small to
significantly mix different L and S of the 4f 5 subshell. By
contrast, the totalL and S quantum numbers of the LS states
differ at most by one unity. For example, we notice the pairs
7H-5G (ΔS = 1 and ΔL = 1), 7G-7F (ΔS = 0 and ΔL = 1)
and 5F-7F (ΔS = 1 and ΔL = 0) for the level at 78744,
79541 and 80396 cm−1 respectively. In consequence, the
mixing between quintet and septet states of Eu3+ is mainly
due to the SO interaction of the 5d electron. That is why
we ignore the influence of the 4f electrons to account for
the Wybourne-Downer mechanism (see Subsection 2.2 and
Eq. (37)).
3.4. Free-ion transitions between the two

configurations
Equations (14) and (24) show that our f-f transition line

strengths require the reduced multipole moments of some
free-ion transitions which only occur between levels of the
ground and excited configurations. In this subsection, we
focus on the electric-dipole (ED) free-ion transitions (k =
1), that are the most intense.
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Table 3
Manifolds of quintet (S = 2) and septet (S = 3) multiplicities
of 4f 6 ground configuration of Eu3+. All energy values are in
cm−1.

Energy Eigenvector

3895 ∣7F⟩

24561
√

0.576 ∣5D3⟩ -
√

0.406 ∣5D1⟩ -
√

0.019 ∣5D2⟩

28212 ∣5L⟩

28268
√

0.408 ∣5G3⟩ -
√

0.328 ∣5G1⟩ -
√

0.264 ∣5G2⟩

32821
√

0.652 ∣5H1⟩ -
√

0.348 ∣5H2⟩

35683
√

0.970 ∣5I2⟩ -
√

0.03 ∣5I1⟩

35822
√

0.755 ∣5F2⟩ -
√

0.245 ∣5F1⟩

39329 ∣5K⟩

42446
√

0.732 ∣5G2⟩ -
√

0.159 ∣5G1⟩ -
√

0.109 ∣5G3⟩

43892
√

0.803 ∣5D3 ⟩ -
√

0.165 ∣5D1⟩ -
√

0.031 ∣5D2⟩

45888 ∣5P⟩

47553
√

0.652 ∣5H2⟩ -
√

0.348 ∣5H1⟩

57251 ∣5S⟩

62588
√

0.970 ∣5I1⟩ -
√

0.030 ∣5I2⟩

64164
√

0.755 ∣5F1⟩ -
√

0.245 ∣5F2⟩

75177
√

0.513 ∣5G1⟩ -
√

0.483 ∣5G3⟩ -
√

0.004 ∣5G2⟩

76112
√

0.430 ∣5D1⟩ -
√

0.392 ∣5D3⟩ -
√

0.177 ∣5D2⟩

A widely used quantity for the discussion of spectral
lines and transitions is the absorption oscillator strength
f12,ED, which is related to the ED line strength SED through
the expression

f12,ED =
2mea20(E2 − E1)

3ℏ2(2J1 + 1)
ED, (25)

where 1 (2) denotes the lower (upper) levels of energy E1(E2) and total angular momentum J1 (J2), ℏ is the reduced
Planck constant, me the electron mass, a0 = 4��0ℏ2∕mee2the Bohr radius, �0 the vacuum permitivity and e the electron
charge. In Eq. (25), the ED line strength is in atomic units
(units of e2a20). Because the oscillator strength for stimulated
emission is defined as f21 = − 2J1+12J2+1

f12, the so-called
weighted oscillator strength

gfED = (2J1 + 1)f12,ED = −(2J2 + 1)f21,ED (26)
does not depend on the nature of the transition. For ED free-
ion transitions, the line strength of Eq. (25) is the square of
the reduced ED matrix element, ED = |⟨Ψ1‖P (1)‖Ψ2⟩|2.In the rest of the article, we will focus on the absorption
oscillator strengths, and so will drop the “12" subscripts.

Figure 2 shows the dependence of the logarithm of the
weighted oscillator strengths given by Eq. (26) on the energy
of the excited-configuration level, for transitions involving
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Figure 2: Logarithm of the weighted ED oscillator strengths,
see Eq. (26), as functions of the energy of the excited-
configuration levels, for transitions implying the 7F1 (blue) and
5D1 (red) levels of the ground configuration.

two levels of the ground configuration. It shows that the
energy band with strong transitions is rather narrow and lies
in the range of 80000–100000 cm−1, while for larger excited-
level energies, the values of log(gf ) for the level 7F1 (bluedots) decrease faster than those for 5D1 (red dots). Indeed,
the total spin S of 4f 55d levels tends to decrease with
energy (see Table 4), the coupling with levels of the 4f 6 7F
manifold drops faster than the coupling with levels of the
quintet manifolds. Therefore, in the framework of the JO the-
ory, the excited-configuration energy En′l′ appearing in the
denominators of the line strengths, see Eqs. (14) and (24), is
not the center-of-gravity energy of the excited-configuration,
but rather the strong-coupling window between 80000 and
100000 cm−1: in practice, we take En′l′ = 90000 cm−1.

In addition to the free-ion ED reduced matrix elements,
the JO theory requires those for k = 3 (octupole) and
k = 5, which depend on the radial transition integral
⟨n′l′|rk|nl⟩ = ∫ ∞0 drPn′l′ (r)rkPnl(r), where nl = 4f
and n′l′ = 5d. We have calculated those integrals with
a home-made Octave code, reading the HFR radial wave
functions P4f and P5d computed by Cowan’s code RCN.
We obtain 1.130629 a0, -3.221348 a30 and 21.727152 a50 for
k = 1, k = 3 and k = 5, respectively, while the k = 1 value
calculated by Cowan is 1.130618 a0.
3.5. f-f transitions in Eu3+-doped solids

Now that we have all the necessary information about the
free-ion spectrum, in this subsection, we aim to validate our
model with experimental data. To that end, we have chosen
the thorough investigation of Babu et al. [30], who measured
absorption oscillator strengths and interpreted them with the
standard JO theory. Their study deals with transitions within
the ground manifold 7F and between the ground and first
excited manifold 5D for Eu3+-doped lithium fluoroborate
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Table 4
First 20 energy levels for 4f 55d configuration of Eu3+ with total angular momentum J = 0, 1 and 2, as well as first three
eigenvectors with their percentages. As an example, (6H) 7H is used for brevity for 4f 5(6Ho)5d 7Ho, where the superscript “o”
indicates odd parity. All energy values are in cm−1.

Energy J First three eigenvectors and percentages

78744 2 (6H) 7H 57.6 % (6H) 5G 14.1 % (6F) 7H 14.0 %
79541 1 (6H) 5F 52.9 % (6H) 7G 20.7 % (6H) 7F 10.1 %
80396 2 (6H) 5F 41.2 % (6H) 7F 23.7 % (6H) 7G 12.0 %
81171 0 (6H) 7F 91.5 % (4G) 5D 3.1 % (4G) 5D 2.0 %
81493 1 (6H) 7F 65.0 % (6H) 7G 23.1 % (6F) 7G 4.3 %
82105 2 (6H) 7G 48.6 % (6H) 7F 34.1 % (6F) 7G 9.5 %
83096 1 (6H) 7G 32.1 % (6H) 5F 26.6 % (6H) 7F 17.4 %
83849 2 (6H) 7F 31.6 % (6H) 5F 18.1 % (6H) 5G 14.7 %
84398 1 (6F) 7G 73.0 % (6H) 7G 18.5 % (6F) 5F 3.9 %
84785 2 (6F) 7G 75.1 % (6H) 7G 14.8 % (6F) 5F 2.4 %
85060 2 (6F) 7H 47.4 % (6H) 5G 18.3 % (6H) 5F 10.9 %
86736 0 (6F) 7F 81.5 % (6F) 5D 7.4 % (6H) 7F 2.6 %
87056 1 (6F) 7F 82.2 % (6F) 5D 6.7 % (6H) 7F 2.4 %
87134 2 (6H) 5G 37.2 % (6H) 7H 28.1 % (6F) 7H 18.1 %
87679 2 (6F) 7F 80.9 % (6F) 5D 5.9 % (6P) 7F 2.2 %
89165 1 (6F) 7D 84.2 % (6F) 5P 7.8 % (4F) 5P 1.8 %
89220 2 (6F) 7P 78.1 % (6F) 7D 6.0 % (6F) 5P 5.0 %
90024 2 (6F) 7D 81.8 % (6F) 7P 7.6 % (6F) 5P 2.0 %
91979 0 (6F) 5D 61.5 % (6F) 7F 7.9 % (6P) 5D 5.9 %
93243 2 (6F) 5D 47.0 % (6F) 5G 16.9 % (6F) 5F 5.6 %

glass. In the latter case, the transitions involve a change in
spin, well known to challenge the standard JO theory.
3.5.1. Description of our calculations

We have written a FORTRAN program which firstly
reads the energies and four leading eigenvectors of the
ground-configuration free-ion levels (see Table 2) and man-
ifolds (see Table 3). Then, the code performs a linear least-
square fitting of experimental line strengths Sexp and the EDpart of the theoretical ones SED given by Eqs. (14) and (24),
with the free adjustable parameters

Xk =
+k
∑

q=−k

|Akq|2

2k + 1
(27)

for k = 1, 3 and 5, which describes the electrostatic
environment at the ion position. During the least-square step,
we seek to minimize the standard deviation on line strengths

� =
⎡

⎢

⎢

⎣

∑Ntr
i=1

(

Sexp,i − SED,i
)2

Ntr −Npar

⎤

⎥

⎥

⎦

1
2

, (28)

where Ntr is the number of transitions included in the
calculation and Npar = 3 is the number of adjustable
parameters. The experimental line strengths are extracted
from the absorption oscillator strengths fexp by inverted
Eq. (25),

Sexp =
3(2J1 + 1)ℏ2

2mea20(E2 − E1)
nr
�ED

fexp (29)

where nr is the host refractive index, and �ED = (n2r + 2)∕9the local-field correction in the virtual-cavity model (see
for example Ref. [36]). In contrast with the free-ion case,
Eq. (29) takes into account the host material through its
refractive index nr; for lithium fluoroborate, nr = 1.57 is
assumed wavelength-independent. Note that our code can
also apply the fitting procedure to Einstein A coefficients,
as the latter are transformed in line strengths.

After the fitting, using these optimal Xk parameters, we
can predict line strengths, oscillator strengths and EinsteinA
coefficients, for other transitions. Of course, that procedure
only involves transitions with a predominant ED character;
magnetic-dipole (MD) transitions like 5D0 ↔ 7F1 and
5D1 ↔ 7F0 are therefore excluded from the fit. For them,
the MD line strength MD, oscillator strengths and Einstein
coefficients can be calculated from the free-ion eigenvectors
(see Table 2) [31].
3.5.2. Results of the least-square fitting

We have included 9 out of the 14 transitions measured
with the so-called L6BE glass in Table 3 of Ref. [30]. We
have excluded three predominant MD transitions, 5D0 ↔
7F1, 5D1 ↔ 7F0 and 5D2 ↔ 7F1, as well as the 5G4 ↔ 7F0and 5D0 ↔ 7F0 for which we observe large deviations
between theory and experiment. They are probably due to the
fact that the 5D0 and 5G4 are further from LS coupling than
the other levels. In particular, the four leading components
represent 88.4 and 86.9 % of the total eigenvectors respec-
tively.

Table 5 shows the results of our least-square calcula-
tions with the second- and third-order theory, in comparison
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Table 5
Transition labels, experimental oscillator strengths (× 10 −6)
[30] and ratios between theoretical and experimental line
strength for the standard Judd-Ofelt theory (r0), as well as
for our second-order (r1) and third-order (r2) corrections of
our theory. The last lines present the absolute and relative
standard deviations for each model (see text).

Tr. label Exp. o.s. r0 r1 r2

5D4 ↔
7F0 0.489 1.14 0.07 0.80

5G2 ↔ 7F0 0.523 0.82 0.59 0.28
5L6 ↔ 7F0 3.338 0.38 0.31 0.29
5L6 ↔ 7F1 1.383 0.17 0.33 0.29
5D3 ↔

7F1 0.302 0.87 0.12 1.10
5D2 ↔

7F0 0.333 1.41 1.66 0.88
5D1 ↔

7F1 0.450 0.99 1.00 1.00
7F6 ↔ 7F0 1.232 1.83 1.81 1.83
7F6 ↔ 7F1 1.983 0.93 0.95 0.94

� 0.266 0.252 0.258
�∕max 8.71 % 8.24 % 8.45 %

7F0-5D4

7F0-5G2

7F0-5L6

7F1-5L6

7F1-5D3

7F0-5D2

7F1-5D1

7F0-7F6

7F1-7F6

361 382 394 400 414 466 534 2087 2202
0

0.5

1

1.5

2

2.5

3

3.5

Experiment
Our theory (3rd order correction)
Standard Judd-Ofelt theory

Figure 3: Comparison between experimental [30] and theoret-
ical oscillator strengths of absorption, plotted as function of
the transition wavelength (not at scale). The transitions are
labeled with the LS-term quantum numbers of the Eu3+ free
ion.

with the standard JO theory used in Ref. [30]. For each
transition, the table contains the experimental values of the
oscillator strength (×10−6) [30] and the ratios rn between
the theoretical and experimental oscillator strengths, where
r0 is the ratio for the standard Judd-Ofelt theory, and the
r1 and r2 are the ratios, respectively, for second and third
order corrections of theory (see subsection 2.1 and 2.2).
For each model, we present the absolute � and relative
standard deviations, taken by dividing Eq. (28) by the largest
experimental line strength max = 3.057 × 10−4 for the
7F6 ↔ 7F1 transition. Figure 3 gives a visual insight into
the results of Table 5, with histograms of the experimental

Table 6
Fitted parameters from the absorption oscillator strengths of
Ref. [30]. The second column gives standard JO parameters
Ω2,4,6; the third and fourth ones give Xk obtained with Eqs. (14)
and (24), respectively.

Std. JO 2nd-order 3rd-order
k Ωk+1 (10

−20 cm2) Xk (a.u.) Xk (a.u.)
1 17.93 9.424 × 10−7 1.441 × 10−6
3 11.92 2.330 × 10−5 9.916 × 10−6
5 2.13 7.187 × 10−8 6.406 × 10−8

absorption oscillator strengths, and those resulting from the
standard JO theory and our third-order correction, plotted as
functions of the transition wavelength.

Globally, the three methods have similar performances.
That shows that the SO interaction in the excited config-
uration has little effect, since it is included in the third-
order correction and not in the second-order one. Our third-
order corrections better describes transitions between 7F and
5D manifolds. However, it predicts the smallest oscillator
strength for 5G2 ↔ 7F0, owing to the proximity between
the 5G3 and 5H1 manifolds (see Table 3), which puts into
question the use of SO interaction as a perturbation. On the
other hand, the second-order correction fails to describe the
5D4 ↔ 7F0 transition. The three methods tend to under-
estimate the oscillator strengths for high-energy transitions,
where the refractive index nr is larger than 1.57.

The final fitting parameters are given in Table 6 for the
standard JO calculation of Ref. [30] (see Set B of Table
4), as well as our second-order correction (14) and third-
order correction (24). The orders of magnitude of the Xkare the same for the two corrections. The parameter X3 arethe largest, then the X1 are roughly one order of magnitude
smaller than the X3, and the X5 are roughly two orders
of magnitude smaller than X3. It is hard to make direct
comparisons with the standard JO parameters given in Table
4 of Ref. [30] (data set B); but we see that that the Ω6parameter, responsible of the 7F6 ↔ 7F0,1 and 5L6 ↔
7F0,1 transitions just like X5 is respectively 9 and 6 times
smaller than Ω2 and Ω4. To give more insight values of the
parameter, we notice that the quantities√Xk×⟨nl|rk|n′l′⟩is the order-of-magnitude energy of the ion-field interaction:
in the third-order correction, they are respectively equal to
298, 2226 and 1207 cm−1 for k = 1, 3 and 5.
3.5.3. Transitions with a MD character

Now that we have the Xk parameters, we can calculate
oscillator strengths for transitions not present in the fit. In
particular, we can predict the percentage of ED and MD
characters for the transitions having both characters [37–
40], assuming that the total oscillator strength is equal to the
sum fED +fMD. The ED part can be calculated by inverting
Eq. (29) and replacing the subscripts “exp” by “ED”, while
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Table 7
Experimental absorption oscillator strengths, as well as ED and
MD theoretical ones, for transitions having both an ED and a
MD character (numbers in brackets are the powers of 10).

Tr. label fexp fth,ED fth,MD

5D1 ↔
7F0 7.8(-8) 2.74(-9) 2.67(-8)

5D0 ↔
7F1 5.7(-8) 7.70(-10) 3.93(-8)

5D1 ↔
7F1 4.50(-7) 4.50(-7) 1.92(-11)

5D2 ↔
7F1 2.48(-7) 1.74(-7) 4.96(-9)

the MD part reads [31]

fMD =
2mea20(E2 − E1)

3(2J1 + 1)ℏ2
nrMD (30)

where the MD line strength is written in units of e2a20 [28]

MD =
�2

4
|

|

⟨Ψ1‖‖L + gsS ‖‖Ψ2⟩||
2 (31)

with � the fine-structure constant and gs the electronic-sping-factor. Because the orbital L and spin S angular momenta
are even-parity tensors of rank one, MD transitions can
occur in free space or in solids, between levels of the same
configuration and with ΔJ ≤ 1 except (J1, J2) = (0, 0).Table 7 presents experimental and theoretical absorption
oscillator strengths for the transitions having in principle an
ED and a MD character. The MD oscillator strengths are
calculated by multiplying the free-ion one computed with
Cowan’s code by the host refractive index nr, see Eq. (30).The table clearly shows that the 5D1 ↔ 7F1 transition is
purely electric (at least 99.9 %), hence its inclusion in the
fit. The 5D2 ↔ 7F1 is also mainly electric, but to a lesser
extent, roughly at 95 %. The two others are mostly magnetic,
but the experimental and theoretical MD oscillator strengths
significantly differ from each other. Still, the ED character
looks larger for the 5D1 ↔ 7F0 transition (4-9 %) than for
the 5D0 ↔ 7F1 one (1-2 %).
3.5.4. The 5D0 ↔ 7F0 transitionSince the 5D0 ↔ 7F0 transition is forbidden by the
selection rules of the standard JO model, it has attracted a
lot of attention (see Ref. [5] and references therein), in order
to understand its origin. Even though it is not forbidden in
our model, we had to exclude it in the fit, because of a strong
discrepancy between the experimental and our computed os-
cillator strength. With our optimal parametersXk, we obtainan oscillator strength 1.25×10−7, that is 7.8 times larger than
the experimental value. In this paragraph, we investigate in
closer details the possible origin of that discrepancy and how
to reduce it.

Firstly, as mentioned in Subsection 2.2, the sums in
Eqs. (19) and (24) involves quintet and septet manifolds of
the ground configuration. But a closer look at the eigenvec-
tors shows that the 5D0 level contains 6.7 % of 3P6 character,
see Table 2, as well as 5.1 % of 3P3, while 7F0 contains

0.1 % of 3P6 character. These small components are likely
to contribute to the transition amplitude, and so they need
to be accounted for in a future work, through a complete
description of the free-ion eigenvectors.

The selection rules associated with Eq. (19) showmerely
the terms with k = 1 of the CF potential can induce a
transition of the kind (J1, J2) = (0, 0). This result seems
consistent because: (i) those terms are stronger in sites with
low symmetries, and (ii) observing the 5D0 ↔ 7F0 transitionis an indication of Cnv, Cn or Cs point groups at the ion site
[41–43].

Another frequently invoked mechanism to explain the
5D0 ↔ 7F0 transition is J -mixing [8–10], especially be-
tween levels of the lowest manifold 7F. However, because
this mixing is limited to 10 %, it cannot explain the strongest
0-0 transitions listed in Ref. [44]. Charge-transfer states are
also likely to play a role in the 0-0 transition, especially in
hosts with oxygen-compensating sites around by which the
CF tends to be strongly deformed [45]. However, those two
mechanisms are not present in our model.
3.5.5. Radiative lifetime of the 5D0 levelIn addition to absorption oscillator strengths, our model
alsomakes it possible to calculate the EDEinstein coefficient
for the spontaneous emission from level 2 to 1,

AED =
e2a20(E2 − E1)

3

3��0ℏ4c3(2J2 + 1)
nr�EDED, (32)

where c is the speed of light and ED is given by Eq. (24).
We can also compute the MD Einstein coefficients AMD, bymultiplying the free-ion value calculated with Cowan by n3r ;namely

AMD =
e2a20(E2 − E1)

3

3��0ℏ4c3(2J2 + 1)
n3rMD (33)

where MD is given by Eq. (31).
From them, we can deduce the radiative lifetime � of a

given level. In particular for the 5D0 level, it reads

�(5D0) =

( 6
∑

J=0
AED(5D0, 7FJ ) + AMD(5D0, 7F1)

)−1

. (34)

Transitions 5D0 ↔ 7FJ , where J = 1 to 6, are not
included in our fit, and so are considered as additional
transitions, for which our program calculated line strengths
and Einstein coefficients. For the transition 5D0 ↔ 7F1,the total Einstein coefficient is the sum of the electric and
the magnetic parts, calculated using Cowan code. The latter
is found to be AMD(5D0, 7F1) = 53.44 s−1. The sum of
Einstein coefficients for all other transitions, including the
electric part of transition 5D0 ↔ 7F1, is 500.529 s−1. That
sum includes the transition 5D0 ↔ 7F0, whose Einstein
coefficient (32) is calculated using the line strength deduced
from the experimental oscillator strength following Eq. (29).
This yields the very small value of 0.029 s−1. The resulting
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radiative lifetime is �(5D0) = 1805 �s, which is close to
the experimental value of 1920 �s reported in Ref. [30].
In principle, the relaxation limiting the lifetime is due to
radiative as well as nonradiative processes; however the
latter are expected to be unlikely for the 5D0 level [46], dueto the large gap between the 5D0 and 7F6 levels, see Table 2.

4. Conclusion
In this article, we have developed an extension of the

Judd-Ofelt model enabling to calculate intensities of ab-
sorption and emission transitions for Ln3+-doped solids. In
our model, the properties of the Ln3+ impurity are fixed
parameters calculated with free-ion spectroscopy, while the
crystal-field ones are adjusted by least-square fitting. In par-
ticular, the line strengths, oscillator strengths and Einstein
coefficients are functions of three least-square fitted crystal-
field parameters.

We have benchmarked ourmodel with a detailed spectro-
scopic study of europium-doped lithium borate glasses. Not
only our model allows for giving a simple physical insight
into the transitions which are not described by the standard
Judd-Ofelt theory, but it also reproduces measured oscillator
strengths with a similar accuracy to the standard theory [30].
Moreover, we demonstrate that the spin-changing transitions
in Eu3+ mainly result from the spin-orbit mixing within the
ground electronic configuration, even if its levels are well
described by the LS-coupling scheme.

In consequence, our model may be improved in the
future, by taking into account all the eigenvector compo-
nents of the free-ion levels, while the four leading ones
are taken into account in the current study. We expect this

improvement to give more a precise calculation of the 7F0 ↔
5D0 intensity. We also plan to account for the wavelength-
dependence of the refractive index of the host material.
Finally, the fact of separating the dopant and crystal-field
parameters opens the possibility to interpret transitions be-
tween individual crystal-field levels or involving polarized
light, which is especially relevant for nanometer-scale host
materials.

In contrast, spectroscopic studies of free Ln3+ ions in-
dicate that configuration-interaction mixing, between the
configurations 4fw and 4fw−16p on the one hand, 4fw−15d
and 4fw−16s on the other hand, does not have a strong role
in the energy spectrum [24, 25], and so shall not be included
in our model. However, in the case of Er3+ [26], the lowest
core-excited configuration of opposite parity compared to
the ground one, 5p54f 35d starts at 182000 cm−1. Assuming
a similar order of magnitude for the 5p54f 65d configuration
of Eu3+, and taking the relativistic Hartree-Fock value of
the radial integral ⟨5p|r|5d⟩ = 1.62 a0, we can expect the
excitation of the 5p core electrons toward the 5d orbital,
to have a sizeable effect on the crystal-field coupling to
opposite-parity configurations.
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Appendix: Useful relations
In the appendix, the LS-coupling basis functions of the ground and excited configurations are respectively written |�LSJ ⟩

and |�LS, L′S′J ′⟩. The reduced matrix element of the electric-multipole operator P (k)q are given by [28]
⟨

�LS, L′S′J ′ ‖‖
‖

P (k)‖‖
‖

�LSJ
⟩

= (−1)S+J+L+k
√

w (2J + 1) (2J ′ + 1) (2L + 1) (2L′ + 1) (2l + 1) (2l′ + 1)

× (nlw−1 �LS|}nlw �LS)
{

L S J
J ′ k L′

}{

l L L
L′ k l′

}

×
(

l′ k l
0 0 0

)

⟨

n′l′|
|

rk |nl⟩ , (35)

where (nlw−1 �LS|}nlw �LS) is a coefficient of fractional parentage introduced by Racah [47]. The matrix element of the
spin-orbit operator within the ground configuration is

⟨�1L1S1J1||HSO
|

|

�2L2S2J2⟩

= �J1J2 (−1)
L2+S1+J1 w�nl

√

l (l + 1) (2l + 1) s (s + 1) (2s + 1)
(

2L1 + 1
) (

2L2 + 1
)

×
√

(

2S1 + 1
) (

2S2 + 1
)
∑

�LS

(−1)l+s+L+S+L1+S1
{

l l 1
L1 L2 L

}{

s s 1
S1 S2 S

}

×(nlw−1 �LS|}nlw �1L1S1) × (nlw−1 �LS|}nlw �2L2S2) (36)
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In the excited configuration, we assume that the off-diagonal matrix elements are only due to the outermost n′l′ = 5d
electron,

⟨

�LS, L′1S
′
1J

′
1
|

|

|

HSO
|

|

|

�LS, L′2S
′
2J

′
2

⟩

= �J ′1J ′2 (−1)
l′+s+L+S+L′1+L

′
2+2S

′
1+J

′
1 �n′l′

√

l′ (l′ + 1) (2l′ + 1) s (s + 1) (2s + 1)

×
√

(

2L′1 + 1
) (

2L′2 + 1
) (

2S′1 + 1
) (

2S′2 + 1
)

{

L′1 S′1 J ′1
S′2 L′2 1

}{

l′ l′ 1
L′1 L′2 L

}{

s s 1
S′1 S′2 S

}

(37)

The second-order correction on the eigenvector |Ψ2i ⟩ is
|

|

|

Ψ2i
⟩

=
∑

t,u≠i

|

|

|

Ψ0t
⟩ VtuVui
ΔitΔiu

−
∑

t≠i

|

|

|

Ψ0t
⟩ VtiVii
Δ2it

− 1
2
|

|

|

Ψ0i
⟩
∑

t≠i

VitVti
Δ2it

(38)

where Vit = ⟨Ψ0i |V |Ψ
0
t ⟩ and Δit = Ei − Et.
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Highlights 

 
 

 An extension of the Judd-Ofelt theory is developed. 
 

 All transition intensities in europium-doped (Eu3+) solids are 
accounted for. 

 
 The model is based on accurate calculations of fee-ion properties. 

 
 Eu3+ transitions are from spin-orbit mixing in the ground electronic 

configuration. 
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