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Abstract

The present work studies models of oncolytic virotherapy without space
variable in which virus replication occurs at a faster time scale than
tumor growth. We derive the asymptotic of a three-species slow-fast
model and obtain a two-species dynamical system, where the vari-
ables are tumor cells and infected tumor cells. We fully characterize
the behavior of this system depending on the various biological param-
eters. In a second part we address the modelling of virus injection
and its expression in the two-species system, where the amount of
virus is not explicitly a variable. We prove that the injection can
be described by an instantaneous jump in the phase plane, where a
certain amount of tumors cells is transformed instantly into infected
tumor cells. This description allows to discuss qualitatively the timing
of different injections in the frame of successive treatment strategies.
This work is illustrated by numerical simulations. The timing and
amount of injected virus may have counterintuitive optimal values,
nevertheless the understanding is clear from the phase space analysis.

Keywords: oncolytic therapy, slow-fast system, boundary layer, asymptotic
system
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1 Introduction

Oncolytic virotherapy is an emerging cancer treatment. An oncolytic virus
(OV) is a virus that has potential to kill selectively tumor cells. OVs can either
be natural viruses, or be genetically engineered for that purpose. The key point
is that OV replicates in a tumor cell before lysis, and therefore a larger number
of virions are released to infect other cells. In the most favorable case, the
tumor is cured before the virus is eliminated by the immune system. The action
of OVs was reported as early as mid-twentieth century [1], and the first OV for
treatment of head-and-neck cancer was approved in 2005 in China and then in
2015 by FDA and EMA for Herpes Simplex Virus (HSV)-based virotherapy for
melanoma. To date, more than 1500 patients with cancer have been treated by
virotherapy, with few clinical success and no severe adverse secondary events.
However many questions remain open regarding the optimal parameters for an
OV to achieve its objective, and the design and experimentation of OVs are
an active field of research. More than 80 clinical trials were registered in the
review [2].

Different treatment protocols and options are described in the review [3],
where it is advocated that no consensus on optimal protocols has emerged due
to the lack of comparative studies.

We believe that a deeper mathematical understanding of the behavior
of the system would help research scientists and clinicians towards informed
therapeutic decisions. The present work is a contribution in this direction.

Over the last two decades, many mathematical models have been proposed
and a complete review is not possible here. The pioneering works in the domain
are [4, 5] where population dynamics methods were adapted to the specific field
of oncolytic therapy. The first reference does not consider a space variable—in
other words the tumor and the viruses are assumed to be well-mixed—while
the second reference assumes spherical symmetry, which reduces the domain to
a one-dimensional space. The determination of fixed points, together with their
stability analysis provides a first insight. A general framework was proposed
in [6], and in most models an endemic fixed point with reduced tumor burden
is present. The bifurcation study of the endemic fixed point was performed
in numerous studies with different variants of the models, see e.g. [7, 8], or
[9] in the case of macrophage-tumor interaction. A detailed study of the early
infection and the comparison with experimental data was proposed in [10].

The use of space variables leads to systems of partial differential equations
that can be investigated numerically, but theoretical insights are more difficult
to obtain. In [11] a stochastic model is simulated on a 2D lattice, and extensive
numerical simulations guide the discussion towards the most desirable virus
parameters. The key parameters describe the spatial spreading properties and
the oncolytic activity. A counterintuitive conclusion is that if the virus is too
aggressive (i.e., tumor cell lysis is fast) the treatment may fail, and an optimal
choice of parameters would combine fast spreading and slow lysis. The fact
that an optimal value for the viral cytotoxicity allows reaching the smallest
tumor burden was already a conclusion in the spaceless model studied in [4].
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Modeling biological processes requires to perform some simplifications,
since no model can account for every detail of a highly complex phenomenon.
One of the most frequent simplifications is to consider Ordinary Differential
Equations (ODE) models, where the space variable is not considered. This
eases the mathematical analysis, while introducing a simplifying assumption.
Nevertheless, the ODE study is a preliminary step towards the mathematical
understanding of spatial models. In [12] the infection is modeled by syncy-
tia e.g., cell-cell fusion following infection, and a three species ODE model is
analyzed and calibrated with data. It is proved that the system admits an equi-
librium with reduced tumor burden, and this equilibrium can undergo a Hopf
bifurcation leading to oscillating solutions. The work [13] considers a 4-species
ODE model which includes the infection of tumor cells both by free virus
and syncytia. This model allows reproducing total tumor volume observed in
animal experiments.

A number of contributions study the effect of treatment schedule, and
evaluate different therapeutic options. In [14] the administration of successive
doses of viruses is modeled, and a target is defined that consists in minimizing
a combination of tumor eradication and maximum tumor burden over a time
window [0, T ]. The choice of an optimal strategy of administration’s timing
is determined numerically. In [15] the timing of a second administration of
viruses was studied experimentally and numerically. The work [16] uses optimal
control methods to show that a combination of TNF-α inhibitors with oncolytic
therapy can be optimized using bang-bang control for the virus administration,
which means that the virus has to be injected at high doses during short time
intervals (in contrast with continuous administrations). In [17] the model is
calibrated with experimental data where mice have been administered virus
doses at regular time intervals.

All existing models account for the three following phenomena that are at
the root of oncolytic treatment: 1) the tumor cells follow a growth that may be
limited by a maximal load constrained by physical limits, which is termed the
carrying capacity 2) the tumor cells become infected when they encounter some
free virus or following cell-to-cell virus transmission (a cluster) 3) infected cells
release virus continuously during infection and massively when they are lysed.
These basic behaviors can be expressed by various mathematical equations,
and more complex phenomena can be accounted for, e.g., spatial configuration,
complex biological processes or complementary therapies.

In the present work, we aim at unveiling the mechanisms that govern the
optimal timing of successive administrations. For this purpose, the three basic
phenomena discussed above, are modeled as simply as possible, which leads
to a simple 3 species model similar to what was already proposed in [18]. The
variables are the number of tumor cells, the number of infected cells and the
quantity of free virus. We make the hypothesis that the infection by viruses
is faster than the tumor proliferation, more precisely we consider the ratio of
these two rates as a small parameter ε. Note that the validity of this hypoth-
esis largely depends on the viral strain, and our analysis does not apply to
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a case where virus cycle is slower than tumor cell proliferation, a “high-risk”
scenario that may be of interest to favor the production of high viral load
within tumors. The system becomes then a slow-fast system that can asymp-
totically be described with only 2 variables, following classical boundary layer
techniques [19]. The 2-species limit system obtained using singular pertur-
bation techniques is still realistic when ε=0.2 as we can see using numerical
experiments.

As a second contribution, we study the effect of virus administration in
the 2-species system. We show that this amounts to performing a singular
perturbation of the slow-fast system. The trajectory of the 2D limit system
in the phase plane is affected in an explicit way by each administration, and
the optimal timing of the administrations can be specified depending on the
therapeutic option: the aim can be either to eradicate the tumor (or to drive
the tumor burden under a small threshold), or to converge rapidly towards
the stable endemic equilibrium or attracting cycle. The choice between these
different options may be governed by the parameters of the particular system
that is considered, and by complementary therapies that may be available.
The main message is that the understanding of the effect of an administration
on the trajectory in the phase plane should be accounted for when deciding
the timing of successive administrations, and this understanding is backed by
an analysis of the 2 species limit system.

The present article is organized as follows. In Section 2 we present the mod-
els that we use: the 3-species model and the 2-species model that is obtained
when the infection rate is faster than tumor proliferation. Section 3 contains
the analysis of the 2-species model. In Section 4 we model the treatment that
consists of virus administration, and describe it in terms of the 2-species model
where no variable describes the quantity of free virus. Numerical simulations
are presented in Section 5, and Section 6 contains a discussion that summarizes
the results obtained. Appendices A.1, A.2 and A.3 contain technical material:
the detailed stability analysis of the equilibria, the bifurcation analysis and
the proof of the treatment modeling in the two species model (theorem 5).

2 The different models

We present here the different models that will be used. Our aim is to design
models that can reproduce the qualitative behavior observed in the experi-
ments and in-vivo, while depending on a few parameters, in order to allow for
qualitative discussion and possibly parameter identification. As noted in [20],
the domain of validity of such a model is necessary limited, and further events
like immune system response are not taken into account.

A model that is both rich enough and relatively lean was proposed in
[12, 14], describing the interplay between tumor cells, infected tumor cells and
free virus. We use a very close variant of this model as our first three species
model, and derive the reduction to a two species model under the assumption



Springer Nature 2021 LATEX template

Slow-fast model for oncolytic therapy 5

that infection is faster than tumor growth. This two species approximation
allows us to recover other well studied systems (see for e.g. [18]).

Let us emphasize that the model considered here does not take into account
any spatial dimension contrary to [5], but it allows to derive theoretical results
and approximations when the dynamics of viruses is faster than the dynamics
of cancer cells.

2.1 A three species model

We consider three populations that depend on the time variable t. We denote
by z(t) the quantity of free virus. We differentiate the cancer cells depending
on whether they are infected by viruses or not and denote by x(t) the quantity
of cancer cells not infected by the virus and y(t) the quantity of cancer cells
infected by the virus.

We assume that non infected cancer cells grow according to a logistic law,
with a growth rate of µ, and carrying capacity of 1. Thus the unit for the
tumor cells corresponds to the carrying capacity. These cells are then turned
to infected tumor cells, at a rate proportional to the quantity of free virus, and
we denote by λ the infection rate.
We assume that infected tumor cells y(t) are lysed at a rate γ. Finally, free
virus is consumed for the infection of cancer cells at rate proportional to the
quantity of cells. The unit to measure free virus was chosen so that the quantity
of virus required to infect one cell is 1, therefore a proportion λx(t) of viruses
disappear due to new infections. Free viruses are released into the system when
an infected cell is lysed and the parameter N scales the quantity released by
each lysed infected cell. We also assume that the viruses are cleared by the
immune system and diffusion at a rate δ.

The population dynamic (x(t), y(t), z(t))t≥0 is then solution of the following
system of ordinary differential equations

d

dt
x(t) = −λx(t)z(t) + µx(t)(1− x(t)),

d

dt
y(t) = λx(t)z(t)− γy(t),

d

dt
z(t) = −λx(t)z(t) +Nγy(t)− δz(t).

(1)

This system is very close to the system proposed in [12, 14], with a slightly
different term describing the logistic growth.

2.2 Slow-fast system and two species models

Slow-fast model

As mentioned before, the speed of infection is largely dependent on the viral
strain. Some ”lazy” viruses such as H-1PV take days (∼ 2-3) to actively infect
and propagate in cultures, while others, like vesicular stomatitis virus, have
an explosive behavior.
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In the sequel we will assume that the viruses’ dynamics is fast compared
with the tumor cells’ dynamic. We introduce a small parameter ε and consider
the modified system:

d

dt
xε(t) = −λxε(t)zε(t) + µxε(t)(1− xε(t)),

d

dt
yε(t) = λxε(t)zε(t)− γyε(t),

ε
d

dt
zε(t) = −λxε(t)zε(t) +Nγyε(t)− δzε(t).

(2)

We expect that as ε→ 0, the virus’ dynamics would be infinitely faster and the
system can be described by a two species system where the virus population
is always at equilibrium.

Reduced two species model

The reduced system is obtained by setting ε = 0 in (2). This implies

0 = −λx0(t)z0(t) +Nγy0(t)− δz0(t)

⇔ z0(t) =
Nγy0(t)

λx0(t) + δ
. (3)

By replacing in the other equations one obtains the following two species
model: 

d

dt
x0(t) = −λNγx0(t)y0(t)

λx0(t) + δ
+ µx0(t)(1− x0(t)),

d

dt
y0(t) =

λNγx0(t)y0(t)

λx0(t) + δ
− γy0(t).

(4)

In the sequel we will prove that this reduced two species model describes
adequately the complete three species model when ε→ 0 in the following sense:
in Proposition 1 we prove that the trajectories of the reduced system converge
towards the trajectories of the complete system when ε→ 0, uniformly on any
compact time interval. Moreover Theorem 5 states that the perturbation of
the complete system that describes the administration of a certain amount of
virus is approximated by a singluar perturbation of the reduced system.

Approximation of the slow-fast system by the two species system

We use Theorem 1.2 from [19] on the solutions of singularly perturbed dif-
ferential equations in order to derive a rigourous link between the slow-fast
system (2) and its reduced form (4).

Proposition 1 For any initial condition (x0, y0, z0) ∈ (0,∞)3 then uniformly on
any time interval [t0, t1] with 0 < t0 ≤ t1, the solutions (xε, yε, zε) of (2) and
(x0, y0, z0) solution of (4)-(3) satisfy

|xε − x0|+|yε − y0|+ |zε − z0|→ε→0 0.
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Proof Let us briefly verify that the assumptions of Theorem 1.2 from [19] are
satisfied. The algebraic part of the perturbed system consists of one equation, namely

ε
d

dt
zε(t) = g(xε(t), yε(t), zε(t)),

where
g(x, y, z) = −λxz +Nγy − δz.

Since
∂g

∂z
= −λx− δ ≤ −δ < 0,

the hypothesis H3 of [19] is satisfied. It follows that if ε is sufficiently small the
solution of the perturbed problem (2) are approximated by the solution of the singular
problem (4) uniformly on any interval that does not contain the initial time. �

We present in Figure 1 the comparison between the 2 and 3 species models
for different values of ε. Note that even for the value ε = 0.2 which is not so
small, the slow-fast model approximates reasonably the 3 species model for a
few pseudo-periods.

Fig. 1 The comparison between the 2 and 3 species models. The parameter ε is 10−2 (left)
and 0.2 (right).

3 Dynamical analysis of two species system

This section is devoted to the analysis of the solution of the 2 species dynamical
system. We focus on the stability of equilibria and the convergence of the
solutions.

3.1 Reducing the number of parameters

We first remark that the number of parameters of the two species model (4)
can be reduced. We set

β =
δ

λ
,

then the system becomes
d

dt
x(t) = −Nγx(t)y(t)

x(t) + β
+ µx(t)(1− x(t)),

d

dt
y(t) =

Nγx(t)y(t)

x(t) + β
− γy(t),

(5)
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x
•

x∗

•
Endemic eq.

•

y

Fig. 2 Phase portrait of the 2 species system. The equilibria are indicated by dots •. The
stability of the endemic equilibrium depends on the bifurcation parameter β, as discussed
in the text.

where we recall that the variables are:

• x: number of cancer cells,
• y: number of infected cancer cells.

In this form, the number of parameters is reduced to 4:

• µ: growth rate of cancer cells,
• γ: death rate of infected cancer cells,
• N > 1: number of viruses released at the lysis of an infected cell,
• β: ratio between the clearing rate of the virus and the infection rate of tumor

cells by the virus.

3.2 Equilibria and stability analysis

Proposition 2 Assume that N > 1. The system (5) admits three equilibria that are

• (0, 0): therapeutic success. This equilibrium is always unstable.
• (1, 0): therapeutic failure. This equilibrium is stable if and only if N−α ≤ β.
• (x∗, y∗) =

(
β

N − 1
,
µ

γ
x∗(1− x∗)

)
called endemic equilibrium. This equilib-

rium is stable if and only if β > βc = N−1
N+1 .

This proposition is proved in Appendix A.1. We illustrate in Figure 2 the
phase portrait of the system in the (x, y) plane. The region of interest is {0 ≤
x ≤ 1}. The derivative of y cancels for x = x∗, and the derivative of x cancels

for y =
µ

Nγ
(x+β)(1−x). These locii where the derivatives are along the axes

of coordinates are indicated by dotted lines.
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The endemic equilibrium (x∗, y∗) admits a Hopf bifurcation with respect
to the parameter β. From the previous computation we have

βc =
N − 1

N + 1
.

The following result can be proved using a standard bifurcation analysis [21],
see Appendix A.2 for the detailed calculations.

Proposition 3 The dynamical system (5) admits a supercritical Hopf bifurcation
associated with the parameter β. Namely if β < βc the the solution of the system
converges to a stable limiting cycle. Otherwise the endemic equilibrium (x∗, y∗) is
globally attractive for every positive initial condition.

Note that high values of β and therefore cycling behaviour of the system
correspond to viruses with low infection rate or which are easily eliminated by
the immune system.

4 Treatment modeling and optimization

In this section we focus on modeling treatment options associated with the
administration of free viruses in the tumor. First we justify that a sudden
administration of viruses at a time t0 can be modeled as a jump in the posi-
tion (x, y) of the reduced two species system.
Then we explore numerically different treatment options and discuss the
optimal timing of viruses’ administration.

4.1 Modeling the introduction of viruses in the slow-fast
model

The treatment amounts to add to the system a quantity V of viruses at
the time t0. A protocol composed of successive administrations of virus is
described by the administration of different quantities V0, V1, . . . Vk at the
instants t0, t1, . . . tk.

For the slow-fast system (2), the treatment is modeled by adding a source
term in the equation for zε that is a Dirac in time at t = t0. The system reads

d

dt
xε(t) = −λxε(t)zε(t) + µxε(t)(1− xε(t)),

d

dt
yε(t) = λxε(t)zε(t)− γyε(t),

ε
d

dt
zε(t) = −λxε(t)zε(t) +Nγyε(t)− δzε(t) +Dt=t0V,

where Dt=t0 denotes the Dirac distribution in time.
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An equivalent possibility is to consider that before the treatment the state
of the system tends to

(xε,0, yε,0, zε,0) = (xε(t
−
0 ), yε(t

−
0 ), zε(t

−
0 )),

and after the treatment, when t→ t+0 the state of the system tends to

(xε,0, yε,0, zε,0 + V/ε).

It remains to study the evolution of the system starting from such an initial
condition, and its behavior when ε→ 0. This is the object of the next section.

4.2 Treatment modeling in the 2 species system

The main issue in this part is that the amount of virus at initial time explodes
as ε → 0 such that standard results do not apply. We have do deal with a
singular perturbation (i.e. of order 1/ε) of a singular system. The strategy
here consist in proving that this burst induces in the limit system an instan-
taneous change in the amount of cancer cells, while the quantity of viruses
rapidly decreases towards its equilibrium value. This phenomenon is called a
boundary layer.

To simplify the notation we denote by (x̄ε, ȳε, z̄ε)t≥t0 the solutions of (2)
whose values at t0 are (xε,0, yε,0, zε,0 + V/ε).
We aim at comparing these solutions with the solutions (xε, yε, zε) of the
same system without treatment, i.e. with initial condition at t = t0 equal to
(xε,0, yε,0, zε,0). One writes

x̄ε = xε + ζ, ȳε = yε + η, z̄ε = zε + ξ.

By difference it comes
ζ ′(t) = −λζ(t)zε(t)− λξ(t)xε(t)− λζ(t)ξ(t) + µζ(t)(1− 2xε(t)− ζ)

η′(t) = λζ(t)zε(t) + λξ(t)xε(t) + λζ(t)ξ(t)− γη(t)

εξ′(t) = −λζ(t)zε(t)− λξ(t)xε(t)− λζ(t)ξ(t) +Nγη(t)− δξ(t).
(6)

together with the initial condition ζ(t0) = η(t0) = 0 and ξ(t0) = V/ε. This is
a singular source term since the amplitude tends to +∞ as ε→ 0. We want to
determine the behavior of the boundary layer, that is the transitory solutions.
For any t ≥ t0, we write

t = t0 + εu

with u ≥ 0 and consider the following change of variable:

ζ(t) = X

(
t− t0
ε

)
, η(t) = Y

(
t− t0
ε

)
, ξ(t) =

1

ε
Z

(
t− t0
ε

)
.
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We then deduce that the new variables (X,Y, Z) satisfy:
X ′(u) = −λxε(t0 + εu)Z(u)− λX(u)Z(u)

+ ε [−λX(u)zε(t0 + εu) + µX(u)(1− 2xε(t0 + εu)−X(u))]

Y ′(u) = λxε(t0 + εu)Z(u) + λX(u)Z(u) + ε [λX(u)zε(t0 + εu)− γY (u)]

Z ′(u) = (−λxε(t0 + εu)− δ)Z(u)− λX(u)Z(u) + ε [−λX(u)zε(t0 + εu) +NγY (u)]
(7)

and X(0) = Y (0) = 0, Z(0) = V . We will sometimes use the nota-
tion (Xε, Yε, Zε) in order to emphasize the dependence on ε. Let us remark
that xε(t0 + εu) → xε,0 for small ε since x is continuous. The first order
approximation readsX ′0(u)

Y ′0(u)
Z ′0(u)

 =

 −λx0(t0)Z0(u)− λX0(u)Z0(u)
λx0(t0)Z0(u) + λX0(u)Z0(u)

(−λx0(t0)− δ)Z0(u)− λX0(u)Z0(u)

 (8)

with initial conditions X0(0) = 0 = Y0(0) and Z0(0) = V > 0.

Proposition 4 As t → ∞ the solutions of (8) converge to (−Q,Q, 0) where the
positive constant Q is defined as

Q = V − δ
∫ ∞
0

Z0(s)ds. (9)

The proof is provided in Appendix A.3. This proposition gives the limiting
behaviour of the boundary layer. It allows to prove the following approximation
result which states that after a large input of virus, the system behaves as if
the amount of infected, resp. non infected, cancer cells are shifted from the
quantity plus, resp. minus, Q. In other words an amount Q of cancer cells have
been instantaneously infected.

Theorem 5 Let (x̄ε, ȳεz̄ε) be the solution of the slow-fast system (2) starting from

(x(t0), y(t0), z(t0)+V
ε ) and (xQ0 , y

Q
0 , z

Q
0 ) the solutions of (5)-(3) (x(t0)−Q, y(t0)+Q).

Then the difference
|(x̄ε, ȳεz̄ε)− (xQ0 , y

Q
0 , z

Q
0 )|

vanishes as ε→ 0 uniformly on any time interval [t, T ] with T > t > t0.

See Appendix A.3 for the proof. The amount Q is related to the quantity
V of viruses injected, but no simple algebraic relation can be provided. We
present in Figure 3 the equivalent amount Q computed at different starting
points (x0, y0) in the (x, y)-phase plane. Note that for a given V , the value of
Q depends on the initial position in the (x, y) plane.
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Fig. 3 Left: representation of one orbit in the phase space, together with the perturbed
orbit after the introduction of virus. Right: illustration of the different values of Q for a
given value of V = 0.1 in the phase space, together with an orbit. When the oncolytic virus
is introduced, the position in the phase space jumps from (x, y) to (x − Q, y + Q) and the
segments between these two points are represented in red at different locations in the phase
space.

4.3 Modeling multiple treatments

Without treatment, the evolution of cancer grows to its maximal size. In our
framework this is expressed by the fact that t 7→ x(t) is increasing and con-
verges towards 1. Here we aim at modeling a treatment which should avoid
this fatal outcome and in the perfect scenario cure the cancer, that is obtain
x = 0.

When cancer is treated through a viral administration, the 2 species system
state jumps from (x0, 0) to (x0 − Q,Q) (see Fig 3, right). Afterwards, the
amount of cancer cells evolves according to (4) along a new trajectory. This
allows to decrease the total amount of cancer cells.

We propose to explore how a second administration can contain the cancer
proliferation. More precisely we study the impact of the time interval between
the two administrations in the treatment of the patient. When changing the
timing of the second administration, the jump in the phase space will lead
to different orbits that are more or less desirable, and we discuss below the
options that are at hand.

Here we will consider that the first administration occurs at T1st = 0 and
that after that instant the state of the patient is described by (x0, y0) and
evolves according to the 2 species model (4). We denote by T2nd > 0 the time
of the second administration.

Strategy 1

The first possible objective is to cure completely the cancer, which amounts to
reach the equilibrium (0, 0). This is possible following a single precise orbit of
our model since this equilibrium is a saddle and that would require attaining
the attracting manifold for (0, 0) which is the line x = 0. In other words all
the cancer cells x should have been turned into infected cancer cells y at once,
which is highly unrealistic.
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A more realistic objective [14] would be to reach the region {x ≤ η} where
η is a small constant (say η = 10−8) so that x ≤ η in our continuous modeling
amounts to saying that the number of tumor cells is below 1, or the number
of tumor cells is so small that an alternative therapy such as tumor resection
should have a great probability of success. This therapeutic option is desirable.

In order to measure the efficiency of the second administration, we compute
the minimum value of x(t) for t ≥ t0. In practice we do not study the whole
time interval but we restrict ourselves to first pseudo-period of the system.
More precisely we call the pseudo-period the time to the second local maximum
for x after T1st.

Strategy 2

The second possible objective is to reach the endemic equilibrium (when it is
stable), or the limit cycle that loops around the endemic equilibrium (when
it is unstable). This amounts to control the volume of the tumor, so that it
stays at a reasonable load. This strategy is adapted when the tumor load at
the endemic equilibrium (x∗, y∗) is bearable, which means that x∗ is small.

We illustrate in Figure 4 the target zones for these different strategies.

Target strat.1

Target strat.2

x
•

x∗

y∗ •

•

y

Target strat.1

Target strat.2

x
•

x∗

y∗ •

•

y

Fig. 4 Target zones for the different strategies. Left: case of a stable endemic equilibrium
(x∗, y∗). Right: case of a stable cycle close to the unstable equilibrium (x∗, y∗).

5 Numerical simulations

We provide here test cases that document the strategies that were presented
in Section 4.3. We used two sets of parameters for the model, that are given
in Table 1. These parameters, excepted δ, were obtained by fitting in-vivo
experimental data for two different oncolytic virus strains (unpublished work),
and therefore may not be realistic in a clinical therapy. However we believe
that they exhibit diverse behaviors that reflect various situations.

The parameter δ was given different values, that allowed to study cases
where β > βc (stable endemic equilibrium) and β < βc (unstable endemic
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equilibrium, stable cycle). Instead of giving the value of δ, we provide the value
of β as a fraction of βc.

λ µ γ N δ
set 1 8.8.10−6 0.04 0.05 4 variable
set 2 1.53.10−7 0.1 10.7 1.76 variable

Table 1 The two sets of parameters that were used.

Effect on the timing for strategy 2, parameter set 1

We use parameter set 1, with β = 0.967βc (attracting cycle close to the endemic
equilibrium). The initial condition is x0 = 0.14 at time T1st = 0, and we apply
an administration of a quantity V = 0.1 of viruses. The evolution of the system
is then termed ”1 shot”.

The same quantity V is again injected at a later time T2nd, when T2nd = 10
we term the evolution ”2 shots (a)”, and when T2nd = 35 we term it ”2 shots
(b)”. All these cases are illustrated in Figure 5 both in the phase plane and in
the time domain. It is clear that the second option ”2 shots (b)” is preferable,
since the maximum reached by the tumor burden x is smaller than in the
option ”2 shots (a)”. The fact that the second administration is performed
later allows the jump in phase space provoked by this administration to be
more efficient in the sense that it allows to reach orbits that are closer to the
limit cycle, hence the maximal value of x that is attained is diminished.

Fig. 5 Different timings for strategy 2, for parameter set 1 and β = 0.967βc. Evolution in
the (x, y) plane (left) and x in the time domain (right).

In Figure 6 we present the same simulation excepted that β = 1.25βc, in
other words the endemic equilibrium is stable. The orbits revolve around the
equilibrium, and the two-shots strategy aims at minimizing the maximal value
reached by x. We have used the same parameters T2nd = 10 and T2nd = 35.

Note that for these values of the parameters, the maximal value of x reached
for β = 0.967βc is significantly smaller than the maximal value reached for
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β = 1.25βc (x ∼= 0.38 vs x ∼= 0.5). It is therefore not necessary easier to control
the tumor when the endemic equilibrium is stable than when it is unstable.

Fig. 6 Different timings for strategy 2, for parameter set 1 and β = 1.25βc. Evolution in
the phase space (left) and x in the time domain (right).

Effect on the timing for strategy 2, parameter set 2

We now discuss analogous strategies for the parameter set 2, with β = 0.8βc.
The equilibrium point (x?, y?) ∼= (0.29, 0.002) is located close to the horizontal
axis, and the attracting cycle reaches high values of x that are non desirable.

The strategy ”2 shots (a)”, with second shot at T2nd = 10 escapes rapidly
close to the attracting cycle, and reaches large values of x. The strategy ”2
shots (b)”, with a second shot at T2nd = 35 overshoots the equilibrium point,
and also escapes to high values of x although slower, see Figure 7.

Fig. 7 Different timings for strategy 2, for parameter set 2. Evolution in the phase space
(left) and x in the time domain (right).

In this case, we propose to inject a smaller quantity of virus 0.1V = 0.01
at the time T2nd = 35. This modified strategy termed ”2 shots (c)” allows to
hit a point closer to the equilibrium and therefore loop around the equilibrium



Springer Nature 2021 LATEX template

16 Slow-fast model for oncolytic therapy

for a longer time (however the limit cycle will be approached, but in a longer
time horizon). The results are presented in Figure 8.

Fig. 8 Different timings for strategy 2 (parameter set 2), with reduced virus quantity 0.1V
for strategy 2b. Evolution in the phase space (left) and x in the time domain (right).

Effect on the timing for strategy 1

Strategy 1 consists in reaching a position as close as possible from the vertical
axis x = 0, using jumps between orbits at instants of the virus administrations.
However it is not desirable that during the evolution the variable x takes a
high value.

We present illustrations with parameters set 1, and β = 0.967βc, as in the
first test case. In order to reach small values of x, it is desirable to jump to
outer trajectories w.r.t. the equilibrium point. Therefore the timing should be
modified accordingly.

We present in Figure 9 a case where the first administration T1st is later
than compared to Figure 5. The timing for the second administration is T2nd =
T1st + 45 for strategy ”2 shots (a)”, and T2nd = T1st + 75 for strategy ”2 shots
(b)”. It is clear that the strategy ”2 shots (a)” has no effect since the trajectory
jumps to almost the same orbit. The strategy ”2 shots (b)” has a better effect
since the minimal value of x obtained later is smaller. However note that it is
difficult to reach a really small value of x and for the parameters set at hand
it may not be desirable to follow strategy 1.

For parameter set 2, the orbits reach very high value of x and strategy 1
appears to be undesirable.

Discussion

This work studied different options to determine the optimal timing of the
second administration. The main findings are the following: the second admin-
istration should be determined differently according to the therapeutic goal,
that can be either to eliminate the tumor, or to reach a reasonable size in the
case the endemic equilibrium occurs at a bearable tumor load. Of course the
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Fig. 9 Different timings for strategy 1, for parameter set 1. Evolution in the phase space
(left) and x in the time domain (right). The strategy ”2 shots” does not modify the trajectory
but merely shifts the trajectory in time, this is due to an inadequate timing.

ideal goal is to eliminate the tumor, but a reduction in size can also be a first
step before alternative therapies like curative surgery.

We have shown that for the second administration, a larger dose does not
necessarily entail a more efficient treatment, see Figures 7 and 8. Another
experiment showed that inadequate timing of the second administration has
no effect on the trajectory of the system (but for a shift in time), see Figure 9.

These observations and numerical experiments were performed on a 2
species model that was derived from a 3 species slow-fast model, under the
assumption that the viral infection is faster than the tumor growth. The
ODE model that was used did not consider the spatial aspect of the question,
and therefore a more complete and realistic study should account for space
variables and ultimately tumor heterogeneity in composition (cell, matrix...).
However we believe that the illustration in the phase plane provides an original
understanding of the different outcomes of a multiple administrations strategy.

Appendix A Proofs

A.1 Proof of Proposition 2 (stability of equilibria)

Proof The fact that the system admits only the three equilibria (0, 0), (1, 0), (x∗, y∗)
follows from a simple computation. We now study the stability of these equilibria.
Equilibrium (0, 0) The Jacobian matrix is given by(

µ 0
0 −λ

)
,

it is a saddle equilibrium. The only possibility to converge towards this equilibrium
is to follow its stable manifold, which is the line x = 0. In other words all cancer cells
are infected.
Equilibrium (1, 0) The Jacobian matrix is given by−µ −Nγ

α+ β

0
Nγ

α+ β
− γ

 .
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This equilibrium is a saddle if and only if N − α > β, otherwise it is stable.

Endemic equilibrium The Jacobian matrix is given by−µλx∗(1 +
1

N
) + λµ 1

N −γ

(1− x∗)(1− 1

N
)µ 0

 .

The determinant is positive for N > 1 since x∗ < 1. Moreover the trace is negative
if and only if

1

N
< x∗(1 +

1

N
)⇔ β >

N − 1

N + 1
.

Therefore the endemic equilibrium is stable iff β > βc =
N − 1

N + 1
. �

A.2 Proof of Proposition 3 (Hopf bifurcation analysis)

Proof We study the following orbitally equivalent system obtained by changing the
time parametrization:{

x′0(t) = −x0y0Nγ + µx0(1− x0)(β + x0),

y′0(t) = x0y0γ(N − 1)− γηy0.
The equilibrium of interest is

x∗(β) =
β

N − 1
, y∗(β) =

µ

Nγ
x∗(1− x∗).

The Jacobian matrix of the system in (x∗, y∗) for β = βc is

A(βc) =

(
0 −Nγx∗c

(N − 1)γy∗c 0

)
.

Its eigenvalues are iω and −iω with

ω2 = Nγ2(N − 1)x∗cy
∗
c .

The following two eigenvectors p and q are such that Aq = iωq, AT p = −iωp and
〈p, q〉 = 1:

q =

(
Nγx∗c
−iω

)
, p =

1

2ωNγx∗c

(
ω

−iNγx∗c

)
.

The system in the appropriate basis is approximated by

ξ̇ = Aξ +
1

2
B(ξ, ξ) +

1

6
C(ξ, ξ, ξ) + . . .

where

B(ξ, η) = 2

(
−Nγ2 (ξ1η2 + ξ2η1) + ξ1η1(µ(1− β)− 3µx∗c)

1
2γ(N − 1)(ξ1η2 + ξ2η1)

)
and

C(ξ, η, ζ) = 6

(
−ξ1η1ζ1

0

)
.

Finally it remains to compute

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g2,1 = 〈p, C(q, q, q̄)〉.

The computations lead to

g20 = Nγx∗c
(
γ(N − 1) + µ(1− β)− 3µx∗c

)
+ iωNγ,
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g11 = Nγx∗c
(
µ(1− β)− 3µx∗c

)
, g21 = −3µN2γ2(x∗c)2.

The first Lyapunov exponent is then given by

l1 =
1

2ω2
<(ig20g11 + ωg12) =

−N2γ2µ(x∗)2

ω(N + 1)
.

The first Lyapunov exponent is thus negative, therefore the unique and stable limit
cycle bifurcates from the equilibrium via a supercritical Hopf bifurcation for β < βc.

�

A.3 Treatment approximation

Proof of Proposition 4 We consider the solutions (X0, Y0, Z0) of the first order
system (8): X ′0(u)

Y ′0(u)
Z′0(u)

 =

 −λx0(t0)Z0(u)− λX0(u)Z0(u)
λx0(t0)Z0(u) + λX0(u)Z0(u)

(−λx0(t0)− δ)Z0(u)− λX0(u)Z0(u)


with initial conditions X0(0) = 0 = Y0(0) and Z0(0) = V > 0.
Since Y ′0(u) = −X ′0(u) it suffices to study the couple (X0, Z0). From the last
equation, we deduce that Z0(u) > 0 for all u ≥ 0. Similarly we obtain that
X0(u) + x0(t0) > 0 for all u ≥ 0. Thus we deduce that

Z′0(u) < −δZ0(u).

This leads to
Z0(u) ≤ V exp(−δu). (A1)

As a consequence Z0(u)→ 0 as u→∞. Let us now remark that

X ′0(u) = Z′0(u) + δZ0(u)

and therefore by integration

X0(u) = −V +

∫ u

0
Z0(s)ds.

From (A1) we deduce that X0 converges as u→∞ towards a negative limit

−Q = lim
u→∞

X0(u) = −V + δ

∫ ∞
0

Z0(s)ds < 0.

�

Proof of Theorem 5
Step 1: Prove that the solutions of (8) are close approximations of (X,Y, Z).
To do so we first study the regularity of the solutions of (7) with respect to the
parameter ε as a parameter. Let us denote by G the function R × R3 × R → R3

such that the system (7) readsX ′(u)
Y ′(u)
Z′(u)

 = G(u, (X(u), Y (u), Z(u)), ε).

To study the dependency in ε, we consider the extended system for a fixed value
ε0 > 0 {

(X ′(u), Y ′(u), Z′(u), ε′(u)) = (G(u, (X(u), Y (u), Z(u), ε(u)), 0),

(X(0), Y (0), Z(0)) = (0, 0, V ), ε(0) = ε0.
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Let us denote by u 7→ ψ(u, (0, 0, V, ε0)) the flow associated with this differential
equation, then our aim is to control

ψ(u, (0, 0, V, ε0))−ψ(u, (0, 0, V, 0) =

∫ u

0
G̃
(
s, ψ(s, (0, 0, V, ε0)

)
−G̃
(
s, ψ(s, (0, 0, V, 0)

)
ds,

where G̃(s, (X,Y, Z, ε)) = (G(s,X, Y, Z, ε), 0). If G̃ has bounded derivatives with
respect to its second variable, then there exist a positive constant L such that

|ψ(u, (0, 0, V, ε0))− ψ(u, (0, 0, V, 0)|≤ L
∫ u

0
|ψ(s, (0, 0, V, ε0))− ψ(s, (0, 0, V, 0)|ds,

which leads using Grönwall lemma to

ψ(u, (0, 0, V, ε0))− ψ(u, (0, 0, V, 0) ≤ ε0eLu. (A2)

Step 2: Regularity of G̃.
We recall that:

G̃(u,X, Y, Z, ε) =


−λxε(t0 + εu)Z − λXZ + ε [−λXzε(t0 + εu) + µX(1− 2xε(t0 + εu)−X)]

λxε(t0 + εu)Z + λXZ + ε [λXzε(t0 + εu)− γY ]
(−λxε(t0 + εu)− δ)Z(u)− λXZ + ε [−λXzε(t0 + εu) +NγY ]

0


Clearly, G̃ is smooth, but its derivative are not uniformly bounded. We now prove
that the trajectories remain in a compact set, where G̃ has thus bounded derivatives.

Let us first prove that the solutions (xε, yε, zε) of (2) are bounded uniformly
in time, by a constant that depends only on the initial condition (and not on ε).
Clearly, all coordinates remain positive. The upper bound can be obtain since xε has
a logistic behavior, and xε + yε has negative derivative if yε ≥ µ

λxε(1 − xε) and zε

has negative derivative as soon as zε ≥ Nγyε
δ+λxε

. A similar argument shows that the
solutions (X,Y, Z) of (8) are uniformly bounded through times and for ε in some
compact [0, εmax] This allows to obtain (A2).
Step 3: Conclusion
Finally combining (A2) and (9), if (Xε, Yε, Zε) denote the solution of (7) for a given
value of ε, we obtain:

|Xε(u) +Q| ≤ |Xε(u)−X0(u)|+|X0(u) +Q|

≤ εeLu +

∫ ∞
u

Z0(s)ds

≤ εeLu +
V

δ
e−δu

Let us fix A > 0, then for a time uε = − 1
δ ln(εAδ/V ) we have that

|Xε(uε) +Q| ≤ εeLuε + εA

In particular if A satisfies that 1−AL/δ > 0 then it comes

lim
ε→0
|Xε(uε) +Q|= 0

which leads as εuε → 0 to

lim
ε→0

x̄ε(t0 + εuε) = x0 −Q.

Similarly we have that

lim
ε→0

ȳε(t0 + εuε) = y0 +Q.
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To conclude let us prove that limε→0 z̄ε(t0 + εuε) is finite. The naive bound given by
(A2) is not sufficient to conclude since uε →∞ and

1

ε
Zε(uε) ≤ eLuε →∞

Therefore, let us come back to the exact ODE satisfied by Zε:

Z′ε(u) = (−λ(xε(t0 + εu) +Xε(u))− δ)Zε(u) + ε [−λXεzε(t0 + εu) +NγYε]

From the previous computations we have that on the time interval [0, uε], there exists
a positive constant M independent of ε such that

Z′ε(u) ≤ −δZε(u) + εM.

As a consequence for all u ∈ [0, uε]

Zε(u) ≤ (V − εM

δ
)e−

δ
εM u +

εM

δ

Using this upper-bound, and the fact that z̄ε remains positive for all times, we deduce
that

z̄ε(t0 + εuε) = zε(t0 + εuε) +
1

ε
Zε(uε)

remains bounded as ε→ 0. We finally use Theorem 1.2 from [19] on the solutions of
singularly perturbed differential equations to conclude that for any T > t > t0, the
solution (x̄ε, ȳε) are asymptotically equal to the solution of the system (5) starting
from (x0 −Q, y0 +Q) on the interval [t, T ]. �
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[12] Bajzer, Ž., Carr, T., Josić, K., Russell, S.J., Dingli, D.: Modeling of can-
cer virotherapy with recombinant measles viruses. Journal of theoretical
Biology 252(1), 109–122 (2008)

[13] Dingli, D., Offord, C., Myers, R., Peng, K.-W., Carr, T., Josic, K., Russell,
S.J., Bajzer, Z.: Dynamics of multiple myeloma tumor therapy with a
recombinant measles virus. Cancer gene therapy 16(12), 873–882 (2009)

[14] Biesecker, M., Kimn, J.-H., Lu, H., Dingli, D., Bajzer, Ž.: Optimization of
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