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Abstract. Our understanding of climate and vegetation
changes throughout the Holocene is hampered by represen-
tativeness in sedimentary archives. Potential biases such as
production and preservation of the markers are identified by
comparing these proxies with modern environments. It is im-
portant to conduct multi-proxy studies and robust calibra-
tions on each terrestrial biome. These calibrations use large
databases dominated by forest samples. Therefore, includ-
ing data from steppe and desert–steppe sites becomes nec-
essary to better calibrate arid environments. The Mongolian
Plateau, ranging from the Baikal area to the Gobi desert,
is especially characterized by low annual precipitation and
continental annual air temperature. The characterization of
the climate system of this area is crucial for the understand-
ing of Holocene monsoon oscillations. This study focuses
on the calibration of proxy–climate relationships for pollen
and glycerol dialkyl glycerol tetraethers (GDGTs) by com-
paring large Eurasian calibrations with a set of 49 new sur-
face samples (moss polster, soil and mud from temporary
dry ponds). These calibrations are then cross-validated by
an independent dataset of top-core samples and applied to
four Late Holocene paleosequences (two brGDGT and two
pollen records) surrounding the Mongolian Plateau: in the

Altai mountains, the Baikal area and the Qaidam basin, to
test the accuracy of local and global calibrations. We show
that (1) preserved pollen assemblages are clearly imprinted
on the extremities of the ecosystem range but mitigated and
unclear on the ecotones; (2) for both proxies, inferred rela-
tionships depend on the geographical range covered by the
calibration database as well as on the nature of samples; (3)
even if local calibrations suffer from reduced amplitude of
climatic parameters due to local homogeneity, they better re-
flect actual climate than the global ones by reducing the lim-
its for saturation impact; (4) a bias in climatic reconstructions
is induced by the over-parameterization of the models by the
addition of artificial correlation; and (5) paleoclimate values
reconstructed here are consistent with Mongolia–China Late
Holocene climate trends and validate the application of lo-
cal calibrations for both pollen and GDGTs (closest fit to
actual values and realistic paleoclimate amplitude). We en-
courage the application of this surface calibration method to
reconstruct paleoclimate and especially consolidate our un-
derstanding of the Holocene climate and environment varia-
tions in arid central Asia.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Since the understanding of the interactions between the pale-
oclimate proxies, such as pollen or biomarker abundances,
and general circulation model outputs became a major is-
sue in future climate change modeling, resolving the is-
sue of climate proxy calibration is crucial (Braconnot et
al., 2012). Current climate changes in extremely cold envi-
ronments (Masson-Delmotte, 2018), such as Mongolia and
Siberia (Fig. 1), are amplified compared with other places
around the world (Tian et al., 2014), and the drivers of the
current degradation of Mongolian environments in diversity
and biomass production still need to be understood. From a
climatic point of view, Mongolia is at a junction between the
westerlies which are driven by the North Atlantic Oscilla-
tion (NAO) and the East Asian Summer Monsoon which is
linked to the El Niño–Southern Oscillation (ENSO) and the
Inter-tropical Convergence Zone (ITCZ; An et al., 2008). The
Mongolian Plateau is a hinge area: the high altitude of the Al-
tai range to the west and the Sayan range to the northwest of
the country partially block both the westerlies arriving from
the northern Atlantic ocean through the Baikal area and the
East Asian Summer Monsoon (EASM, Fig. 2; Chen et al.,
2009). The Mongolian system is thus driven by a mix of the
distant drag of these two main climatic cells. The understand-
ing of the complex interaction of these cells is necessary and
paleoclimate studies are needed to better document this re-
gion (Braconnot et al., 2012).

Lake sediment archives are commonly used to infer past
variations of these climate and environmental systems asso-
ciated with vegetation and human land use (Lehmkuhl et al.,
2011; Felauer et al., 2012; Wang and Feng, 2013). Among
the proxies available, pollen and geochemical biomarkers
are used as past temperature indicators (ter Braak and Jug-
gins, 1993; Weijers et al., 2007b), and the combination of
these proxies helps to polish lake sediment shift interpreta-
tions (Atahan et al., 2015; Watson et al., 2018; Martin et al.,
2020; Kaufman et al., 2020). For decades the pollen signal
has been used to display shifts in vegetation composition and
structure (Bennett and Willis, 2002) and has allowed quanti-
tative reconstructions of climate parameters such as precipi-
tation regime and temperatures (Birks et al., 2010; Ohlwein
and Wahl, 2012; Wen et al., 2013; Cao et al., 2014; Marsicek
et al., 2018). Since vegetation structure and pollen produc-
tion are mainly influenced by climatic parameters (Zheng
et al., 2008) in the absence of human influences, the pale-
opollen signal is very often interpreted as a response to the
climate variations through time (Kröpelin et al., 2008; Wag-
ner et al., 2019). Even if human activities influence pollen
rain as well (Hjelle, 1997; Hellman et al., 2009a), these em-
pirical observations of the pollen–climate relation lead to the
development of semi-quantitative (Ma et al., 2008) and quan-
titative calibrations (Brewer et al., 2008; Salonen et al., 2019)
of the signal. Different methods have been developed to re-
construct past climates (Chevalier et al., 2020): probability

density functions, assemblage approaches, transfer functions
(TFs) and methods based on vegetation models (Guiot et al.,
2000; Birks et al., 2010; Bartlein et al., 2011; Ohlwein and
Wahl, 2012). More precisely, these methods are as follows:
the inverse modeling method (IM; Guiot et al., 2000), the
weighted averaging partial least squares regression (WAPLS;
ter Braak and Juggins, 1993; Ter Braak et al., 1993), the arti-
ficial neural networks (ANNs; Peyron et al., 1998), the mod-
ern analogue technique (MAT; Overpeck et al., 1985; Guiot,
1990; Jackson and Williams, 2004), the response surface
technique (RST; Bartlein et al., 1986), probability density
functions (PDFs; Kühl et al., 2002; Chevalier, 2019), mod-
ified mutual climate range method (MMCRM; Klotz et al.,
2003, 2004), Bayesian hierarchical models (BHMs; Ohlwein
and Wahl, 2012), the boosted regression trees (BRTs; Salo-
nen et al., 2014), etc. For northern Europe and despite some
problems and pitfalls, Seppä et al. (2004) demonstrated that
pollen-inferred climate reconstructions are generally consis-
tent with other independent climatic reconstructions. This
study encourages us to lead multi-proxy studies to refine cli-
mate reconstruction understanding, and especially in tricky
and dry contexts such as the Mongolian Plateau (Rudaya et
al., 2009).

Among new promising proxies and from the three last
decades, biomarkers such as the glycerol dialkyl glycerol
tetraethers (GDGTs) have provided new perspectives on con-
tinental temperature reconstructions (Naafs et al., 2017a, b).
Among the GDGTs, we will focus on two major groups: the
isoprenoid-GDGTs (isoGDGTs; Hopmans et al., 2000) and
the branched-GDGTs (brGDGTs; Sinninghe Damsté et al.,
2000; Weijers et al., 2007a, b; Dearing Crampton-Flood et
al., 2020). BrGDGT assemblages reflect archaeal activity in
rivers (De Jonge et al., 2014b), soil (De Jonge et al., 2014a)
or lake water column (Dang et al., 2018). The GDGT input
origin could be traced using the BIT index (branched and
isoprenoid tetraether index, Hopmans et al., 2004; Pearson
et al., 2011) and the IIIa/IIa ratio (Xiao et al., 2016; Mar-
tin et al., 2019a; Cao et al., 2014). BrGDGT environmen-
tal drivers are linked to climate parameters (Weijers et al.,
2007b), soil typology and vegetation cover (Davtian et al.,
2016), which in turn imply land cover and land use. Accurate
determinations of the relationships between brGDGT assem-
blages and climate still need some improvements (Naafs et
al., 2018; Wang et al., 2019, 2020) and especially on local
to regional scales and in extreme environments. It has been
shown empirically (Weijers et al., 2004; Huguet et al., 2013)
on cultures of pure strains (Salvador-Castell et al., 2019) as
well as on meso- and microcosm experiments (Chen et al.,
2018; Martínez-Sosa et al., 2020) that organisms adjust their
membrane plasticity by the degree of methylation and cy-
clization of the compounds. Moreover, some studies have
focused on variations in the archaeal community structure
(Xie et al., 2015), the archaeal group responses to environ-
mental changes (Knappy et al., 2011) and the GDGT occur-
rences in different archaeal communities (Liu et al., 2012b)
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Figure 1. (a) Topographic map of Mongolia (from ASTER data) with the location of surface samples and weather stations considered in
the present study; (b) mean annual precipitation; (c) mean annual air temperature; (d) focus on the samples surrounding Taatsiin Tsagaan
Lake, Gobi desert; (e) focus on the samples along a valley in the Khentii range; (f) localization of Khangai surface samples; (g) focus on
the Baikal Lake transect following the Angara valley. The Mongolian GIS data are issued from the ASTER dataset (https://terra.nasa.gov/
about/terra-instruments/aster, last access: January 2018), the meteorological dataset from WorldClim2 and infrastructures from public dataset
(ALAGaC) (https://marine.rutgers.edu/~cfree/gis-data/mongolia-gis-data/, last access: January 2018).

to determine the potential effects of community structure on
GDGT relative abundances. To evaluate the provenance and
the climatic information brGDGTs bear, several indexes have
been proposed in the literature (Table S1 in the Supplement).
To monitor these changes, the cyclization ratio of branched
tetraethers (CBTs) and methylation of branched tetraether
(MBT) indexes linked to environmental factors such as cli-
mate and soil parameters have been proposed (Weijers et
al., 2007b; Huguet et al., 2013). In particular, with regard

to the methylation degree, the ratio of 5-, 6- (De Jonge et
al., 2013) and 7-methyl isomers (Ding et al., 2016) responds
to environment forcing: the 5-methyl brGDGTs mathemat-
ically correlate mainly with temperature (R2

= 0.76; Naafs
et al., 2017a), while 6- (R2

= 0.69) and 7-methyl brGDGTs
(R2
= 0.44) seem to correlates with moisture and pH (Yang

et al., 2015; Ding et al., 2016). More specific indexes have
been proposed by De Jonge et al. (2014a) to limit the multi-
correlation systems with the withdrawal of 5-methyl com-
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Figure 2. Eurasian map of all the pollen surface samples included in the database. The color code refers to the biome pollen inferred for each
site. The biomes are WAMX, warm mixed forest; WAST, warm steppe; TEDE, temperate deciduous forest; XERO, xerophytic shrubland;
COMX, cool mixed forest; HODE, hot desert; CLMX, cold mixed forest; PION, pioneer forest; TAIG, taiga forest; COST, cold steppe;
COCO, cold conifer forest; TUND, tundra; ANTH, anthropic environment; CLDE, cold deciduous forest; CODE, cold desert. The thickest
points underline the COST samples selected for this study to operate the transfer function method among all COST sites (shown by a lozenge
on map). The arrows indicate the main climatic system driving the Mongolian climate: in orange the Westerlies arriving from the North
Atlantic ocean and in blue the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). The dashed line represents
the EASM limit following Chen et al. (2010), Q. Li et al. (2018) and Haoran and Weihong (2007) for the northernmost part of the boundary.
The Mongolian Plateau (MP) is highlighted by the brown shaded area (Windley and Allen, 1993; Sha et al., 2015). The light blue crossed
circles localize the five cores used as test benches for the calibrations (top-core and paleosequences).

pounds such as MBT′5Me, which is independent of the pH,
and CBT5Me which is more representative of the soil pH
than the former version of the index (index formula in Ta-
ble S1). The statistical relevance of these indexes is a ma-
jor issue in brGDGT calibration (Dearing Crampton-Flood et
al., 2020). Some regional indexes for soil temperature such
as Index1 (De Jonge et al., 2014a) and Index2 for Chinese
soils (Wang et al., 2016) have been explored too, in the con-
text of a strong local calibration demand (Ding et al., 2015;
Yang et al., 2015). IsoGDGTs were first attributed to lake wa-
ter column production (Schouten et al., 2012), but they were
also described in significant but lower proportions in soils
(Coffinet et al., 2014). The ratio of isoGDGTs to brGDGTs
(Ri/b) has been proposed as a reliable aridity proxy (Yang et
al., 2014; Xie et al., 2012). It has been shown that a linear
relation exists between these GDGT indexes and some cli-
matic features at large regional scales (in the wide Chinese
biome range, from tropical forest to central arid plateau, for
instance; Yang et al., 2014; Lei et al., 2016).

Since multi-proxy studies become more and more accu-
rate in both temperature and precipitation reconstruction, lo-
cal to regional calibrations have been proposed for dry ar-
eas such as the arid central Asian (ACA) area: pollen semi-

quantitative climate reconstruction (Ma et al., 2008), pollen
transfer functions (Herzschuh et al., 2003, 2004; Cao et al.,
2014; Zheng et al., 2014) and brGDGT regression models
(Sun et al., 2011; Yang et al., 2014; Ding et al., 2015; Wang
et al., 2016; Thomas et al., 2017). Even if all of these stud-
ies focus on areas surrounding the EASM line (Fig. 2; Chen
et al., 2010; Q. Li et al., 2018), the understanding of the cli-
mate cells interaction and oscillation over time is still lacu-
nary, and especially on the ACA upper edge. In this con-
text, our study took place in the northernmost part of this
climatic system (Haoran and Weihong, 2007). Moreover, we
propose the first multi-proxy calibration exercise in the ACA
area based on pollen and brGDGT fractional abundances re-
trieved from modern samples (soil, moss litter, pond mud)
in semiarid to temperate conditions. The aim of this study is
to take advantage of new, modern surface sample datasets in
Baikal area and Mongolia to propose an adapted calibration
of pollen and archaeal biomarker proxies for cold and dry en-
vironments. For that purpose, local calibrations are compared
with global calibrations to infer the influence of calibration
scale and proxy types on derived climatic parameters. Our
approach is summarized in the following steps:
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1. collection of a new set of modern surface samples for
Mongolia with homogeneous characterization of their
bioclimate environment followed by pollen and GDGT
pattern characterization;

2. evaluation of the match between actual bioclimate envi-
ronments and the associated pollen rain and biomarker
assemblages based on mathematical criterion without
eco-physiological considerations;

3. creation of local Mongolian Plateau (MP) climate cali-
brations for pollen and GDGTs and comparison of local
and global calibrations in the Mongolian case study;

4. a posteriori validation of the inferred relationships be-
tween proxies and ecological likelihood based on the
currently developed evidences of brGDGT and pollen
rain ecological significance;

5. discussion of the implications of the calibration mis-
matches in terms of climatic reconstructions in arid and
cold environments;

6. testing of the new calibrations (pollen and brGDGTs)
through their application on four surrounding Late
Holocene records: two pollen records, Dulikha bog
(Baikal area; Bezrukova et al., 2005; Binney, 2017) and
Lake D3L6 (Altai; Unkelbach et al., 2019), and two
brGDGT records, NRX (Altai; Rao et al., 2020) and
XRD (Qaidam basin; Sun et al., 2019).

2 Mongolian and Baikal study area

2.1 Coring, sampling area and sample types

The study area lies from 52◦29′ to 43◦34′ N in latitude and
from 101◦00′ to 107◦06′ E in longitude (Fig. 1a). The sample
sites (n= 49) are listed in Table S2 with a description of the
sample type, the applied analyses, the coordinates and the as-
sociated ecosystem. For each site, the Garmin eTreX10 was
used to record GPS coordinates to 5 m accuracy. The sur-
face samples were collected throughout Mongolia in 2016
following four transects (n= 29): in the Khentii mountain
range (MMNT1 and MMNT2; Fig. 1e), in the Orkhon val-
ley (MMNT3), and in the Gobi desert and the Gobi–Altai
range (MMNT4; Fig. 1d). During the same field trip, a fifth
transect has been done in the Sayan range along the Angara
valley, Russia (MRUT1, n= 12; Fig. 1g). A Khangai moun-
tains field trip from spring 2009 enlarged this set of data
with a sixth transect of surface samples (MMNT5, n= 6,
in Fig. 1f) and two lake coring samples from Ayrag Nuur
(MMNT5C12) and Shargyl Nuur (MMNT5C11), both in
Fig. 1f. Both of these top-cores were added to the surface
pollen database, while only the MMNT5C12 core has been
used as cross-value to check the accuracy of the brGDGT

climate models. This core has been clipped into 62 sam-
ples of which the top-core has been replicated 6 times (sam-
ples MMNT5C12-1 to MMNT5C12-6). Into the MMNT5
transect, mud from two temporary dry ponds has been sam-
pled. These surface muds are referred in following figures as
mud. Into the other transects and depending on aridity and
vegetation at each site, a soil or a moss polster was sam-
pled. In figures, soil refers to the first 3–5 cm of the ground
in dry ecosystems, while moss is a mix between soil, litter
and a bryophyte (or Cyperaceae) layer in wetter environ-
ments. Moss acts as a pollen trap recording a 3- to 5-year
mean pollen signal (Räsänen et al., 2004). In drier areas, the
soil surface samples have the same function, in spite of a
lower pollen conservation and over-representation of some
taxa (Lebreton et al., 2010). In parallel with the GDGT anal-
ysis and following the calibration approaches presented in
De Jonge et al. (2014a), Davtian et al. (2016) and Naafs et
al. (2017a, 2018), mud from temporary ponds and soil sam-
ples as well as the soil part of moss litter were also used for
actual GDGT analysis. To summarize, this study is based on
49 sites, 48 samples in the pollen dataset, 44 in the brGDGT
dataset and 6 cross-validation samples to test the brGDGT
models. In terms of sample types, the dataset consists of
30 mosses, 15 soils, 2 pond muds and 2 top-cores.

To test the reliability of our modern calibrations, we have
finally selected four paleosequences within or close to the
MP used as test benches of the calibrations. For the pollen
analysis, the cores of D3L6 from Unkelbach et al. (2019)
located in the Mongolian Altai range and the Dulikha bog
(Fig. 1; Bezrukova et al., 2005; Binney, 2017) are com-
pared to the Xiangride section (XRD) used for the brGDGT
sequence from Sun et al. (2019), sampled in the Chinese
Qaidam Basin and the NRX peat bog (Chinese Altai, Fig. 2;
Rao et al., 2020). These two cores have recorded the pale-
oenvironmental changes of the Late Holocene period.

2.2 Vegetation and biomes

The central part of the Mongolian Plateau (MP) is charac-
terized by a dry and cold flat mosaic of steppes and deserts
with a 1220 ma.s.l. median elevation (Fig. 1a; Wesche et al.,
2016) and is intersected in its northern part by the Sayan and
Khentii ranges, in its southern part by the Gobi–Altai and
Qilian Shan ranges aligned along a NW–SE direction and
in the west by the Altai range (Windley and Allen, 1993;
Sha et al., 2015). A wet and cold highland in the Khangai
ranges culminates at 4000 ma.s.l., and a flatter and wetter
Mongolian area, the Darkhad basin, is located in the north,
close to the Russian border on the edge of the southern
Siberian Sayan range. In the northernmost part of the MP,
the Baikal lake area is characterized by a basin at a lower
altitude (around 600 ma.s.l., Fig. 1g; Demske et al., 2005).

The distribution of vegetation and biomes follows a lat-
itudinal belt organization: in the north the boreal forest
presents a mosaic of light taiga dominated by Pinus sylvestris
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mixed with riparian forest dominated by birches (Betula
spp.), alders (Alnus spp.) and willows (Salix spp.; Demske
et al., 2005). On the MP, the light taiga dominated by larches
(Larix sibirica) and a small amount of birches is mixed with
dark taiga composed of Siberian pines (Pinus sibirica) and
spruces (Picea obovata; Dulamsuren et al., 2005; Schlütz
et al., 2008). The Mongolian taiga is constrained to a re-
gion spanning from the Darkhad Basin to the Khentii range
(Fig. 1a). On the north face of the Khangai piedmont, the
vegetation is dominated by a mosaic of forest–steppe ecosys-
tems: the steppe is dominated by the Artemisia spp. associ-
ated with Poaceae, Amaranthaceae, Liliaceae, Fabaceae and
Apiaceae (Dulamsuren et al., 2005). On these open lands
there are some patches of taiga forest, following roughly the
broadside and the northern face of the crest leading on to
the grasslands in the valley (Dulamsuren et al., 2005). The
two last vegetation layers in Mongolia through the elevation
gradient are an alpine meadow dominated by Cyperaceae
and Poaceae with a huge floristic biodiversity and an alpine
shrubland with pioneer vegetation on the summits (Klinge et
al., 2018). On the southern slope of the range, the ecotone
between the steppe and the desert vegetation extends hun-
dreds of kilometers from the northern part of the Gobi desert
(with water supplied by the Gobi lake area in between) to the
Gobi–Altai range in the south (Klinge and Sauer, 2019). In
the southernmost part of the country, the warm and dry cli-
mate conditions favor desert vegetation dominated by Ama-
ranthaceae, Nitrariaceae and Zygophyllaceae. The vegetation
cover is lower than 25 % and is mainly composed of short
herbs, succulent plants and a few crawling shrubs.

2.3 Bioclimate systems

In the central steppe–forest biome, the vegetation is marked
by an ecotone with short grassland controlled by grazing in
the valley and larches on the slopes. The forest is gathered in
patches constituting between 10 % and 20 % of the total veg-
etation cover. There are also some patches of Salix and Be-
tula riparian forests among the sub-alpine meadows on the
upper part of the range. This vegetation is characteristic of
the northern border of the Palearctic steppe biome (Wesche
et al., 2016). This biome is characterized by a range of
800 to 1600 ma.s.l., a mean annual air temperature (MAAT;
Fig. 1c) between −2 and 2 ◦C, and a mean annual precipi-
tation (MAP; Fig. 1b) from 180 to 400 mmyr−1 (Wesche et
al., 2016 based on Hijmans et al., 2005). In Mongolia, even
if the MAP is very low (MAPMongolia ∈ [50;500]mmyr−1),
the major part of the water available for plants is delivered
during late spring and early summer, in contrast to Mediter-
ranean and European steppes (Bone et al., 2015; Wesche et
al., 2016). These seasons are the optimal plant growth peri-
ods. An unknown amount of precipitation is also brought in
winter as snowfall (Rudaya et al., 2020), which is not always
measured into the weather station MAP. The main part of the
MP MAP occurs during the summer (climate diagrams from

Dulamsuren et al., 2005). However, the precipitation origin
for Mongolia is still under debate (Piao et al., 2018). Mon-
golian summer precipitation up to the Baikal area (Shukurov
and Mokhov, 2017) seems to be controlled by the East Asian
Summer Monsoon (EASM) system instead of the Westerlies’
winter precipitation stocked onto the Sayan and Altai range
(Fig. 2; An et al., 2008). The alternating Westerlies/EASM
domination on the MP climate system appears to fluctuate
throughout the Holocene depending on the monsoon strength
(Zhang, 2021): the weaker is the monsoon, the further the
EASM brings precipitation up to the ACA hyper-continental
area. The EASM force may variate in function of the MP
snow cover (albedo effect on sun radiance impact; Liu and
Yanai, 2002) and/or the Pacific surface temperature (Yang
and Lau, 1998). Finally, Piao et al. (2018) insist on the im-
portance of the locally evaporated water recycling within the
Mongolian MAP amount.

3 Methods

3.1 Pollen analysis, modern pollen datasets and
transfer functions

Different chemical processes were performed on the sam-
ples: bryophytic parts of the moss samples were defloccu-
lated by potassium hydroxide (KOH) and filtered by 250 and
10 µm sieves to eliminate the vegetation pieces and the clay
particles. Then, acetolysis was performed to destroy biologi-
cal cells and highlight the pollen grains. For the soil and pond
mud samples, 2 steps of HCl and HF acid attacks were added
to the previous protocol to remove all the carbonate and sili-
cate components. All the residuals were finally concentrated
in glycerol and mounted between slide and lamella. The
pollen counts were carried out with a Leica DM1000 LED
microscope on a 40× magnification lens. The total pollen
count size was determined by the asymptotic behavior of the
rarefaction curve. This diagram was plotted during the pollen
count using PolSais 2.0, software developed in Python 2.7 for
this study. The rarefaction curve was fitted with a logarithmic
regression analysis. The counter was suspended whenever
the regression curve reached a flatter step (Birks et al., 1992).
A threshold for the local derivation at dx/dy = 0.05 was set.
For each sample, the total pollen count is usually around
n ∈ [350;500] grains for steppe or forest and n ∈ [250;300]
for drier environments such as desert and desert–steppe.

Among all of the pollen-inferred climate methods, the
MAT and the WAPLS were applied in this study on four dif-
ferent modern pollen datasets, and on the D3L6 and Dulikha
fossil pollen sequence to test the accuracy of these calibra-
tions (Unkelbach et al., 2019, Figs. 1a and 2). The MAT con-
sists of the selection of a limited number of analogue sur-
face pollen assemblages with their associated climatic values
(Guiot, 1990); while the WAPLS uses a weighted average
correlation method on a limited number of principal com-
ponents connecting the surface pollen fractional abundance
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to the associated climate parameters (ter Braak and Juggins,
1993; Ter Braak et al., 1993). The first dataset, called the
New Mongolian–Siberian Database (NMSDB), is composed
of pollen surface samples analyzed in this study (N = 49;
Figs. 2 and 3). The second one is the same subset aggregated
to the larger Eurasian Pollen Dataset (EAPDB) compiled by
Peyron et al. (2013, 2017). From this dataset of 3191 pollen
sample sites, a pollen–plant-functional-type method was ap-
plied to determine the biome for each sample according to the
actual pollen rain (Fig. 2; Prentice et al., 1996; Peyron et al.,
1998). Then, only the cold steppe (COST) dominant samples
were extracted from the main dataset and aggregated with the
NMSDB to produce the COSTDB (N = 430 sites, shown by
a lozenge in Fig. 2). Finally, a scale-intermediate dataset of
samples located within the Mongolian border merged with
the new Mongolian dataset is presented as MDB (N = 151
sites). The relation between each taxon and climate param-
eter was checked and then the MAT and WAPLS methods
were applied with the Rioja package from the R environment
(Juggins and Juggins, 2019).

3.2 GIS bioclimatic data

Because Mongolia and Siberia have relatively few weather
stations (Fig. 1a), climate parameters were extracted with R
from the interpolated climatic database WorldClim2 (Fick
and Hijmans, 2017). We used mean annual precipitation
(MAP; Fig. 1b) and mean annual air temperature (MAAT;
Fig. 1c), as well as temperatures and precipitation for spring,
summer and winter (Tspr, Pspr, Tsum, Psum, Twin and Pwin);
mean temperature of the coldest month (MTCO); and the
mean temperature of the warmest month (MTWA) in this
study to characterize the actual climate. Because the Mon-
golian Plateau is poor in weather stations, the WorldClim2
database suffers from interpolation errors. The surface sites
presenting inconsistent climate parameters (MAP < 0 or
MAP < season precipitation) were removed from the global
database. The elevation data and the topographic map origi-
nate from the ASTER imagery (Fig. 1a). The biome type for
each site derives from the LandCover database (Olson et al.,
2001), classification and field trip observations.

3.3 GDGT analysis and calibrations

For consistency with the sampling process and the model-
ing methodologies developed for pollen analysis, soil parts
of the moss polsters, soil samples and pond mud were treated
for GDGT analysis. After freeze drying, about 0.6 g of mate-
rial was sub-sampled. The total lipid extract (TLE) was mi-
crowave extracted (MARS 6 CEM) with dichloromethane
(DCM) / MeOH (3 : 1) and filtered on empty SPE car-
tridges. The extraction step was processed twice. Following
Huguet et al. (2006), C46 GDGTs (GDGTs with two glyc-
erol head groups linked by C20 alkyl chain and two C10
alkyl chains) were added as internal standard for GDGT

quantification. Then, apolar and polar fractions were sep-
arated on an alumina SPE cartridge using hexane / DCM
(1 : 1) and DCM / MeOH (1 : 1), respectively. Analyses were
performed in hexane / iso-propanol (99.8 : 0.2) by high-
performance liquid chromatography with atmospheric pres-
sure chemical ionization mass spectrometry (HPLC-APCI-
MS, Agilent 1200) in the laboratory of LGLTPE-ENS de
Lyon, Lyon, following Hopmans et al. (2016) and Davtian
et al. (2018).

Each compound was identified and manually integrated
according to its m/z and relative retention time following
the integration descriptions from Liu et al. (2012a), and
De Jonge et al. (2014a) for 5- and 6-methyl brGDGTs and
Ding et al. (2016) for 7-methyl brGDGTs (the peak chro-
matogram integration is displayed in Fig. S1 in the Sup-
plement). Statistical treatments on isoGDGT (Fig. 4a) and
brGDGT (Fig. 4b) abundances were treated following two
methods presented in Deng et al. (2016), Wang et al. (2016)
and Yang et al. (2019): compounds were gathered by chemi-
cal structures such as cycles (CBT) or methyl groups (MBT;
De Jonge et al., 2014a). brGDGTs were expressed as frac-
tional abundance [xi] (Fig. 4b; Sinninghe Damsté, 2016), as
follows:

f [x]i =
ni

NbrGDGT∑
j=1

xj

. (1)

To infer temperatures from brGDGT abundances, two
types of model were applied: linear relationships between
temperature and MBT–CBT indexes, and multiple regres-
sion (mr) models between one climate parameter and a
proportion of multiple brGDGT fractional abundances. For
the simple linear regression model, a correlation matrix be-
tween climate parameters and indexes was calculated us-
ing the corrplot Rcran library. For mr models, we devel-
oped in the R environment a stepwise selection model (SSM;
Yang et al., 2014) to determine the best-fitting model con-
necting climate parameters with brGDGT fractional abun-
dances. Then we gathered some of the climate–GDGT lin-
ear relations established in previous studies (De Jonge et
al., 2014a; Naafs et al., 2017a, b, 2018; Sinninghe Damsté,
2016; Yang et al., 2014, 2019) focusing on a single climatic
parameter, MAAT (Table S1). These models were clustered
into three categories, by sample type (mosses, soils or pond
muds), geographical area (regional or worldwide scale) and
the statistical model (MBT-CBT based on multiple regres-
sion models). According to the type of environment from
which the samples originated, there was peat, soil and lake-
inferred modeling. All these models were applied to the
Baikal area–Mongolian surface samples, compared with the
actual MAAT value at each site and applied to the brGDGT
XRD section (Fig. 2; Sun et al., 2019) and the NRX bog
(Figs. 1a and 2; Rao et al., 2020).
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Figure 3. Simplified surface pollen diagram, bioclimatically sorted, of the Siberian–Mongolian transect. The pollen taxa are expressed in
% TP. The ecosystem units were determined with a CONISS analysis. The left-hand colored dots represent the ecosystem for each sample
from light-taiga–riparian forest (deep blue), light/dark taiga–birch sub-taiga, steppe–forest, alpine meadow, steppe, steppe–desert and desert
(deep red). The color scale is presented in Fig. 5. The MAP and MAAT are extracted from Fick and Hijmans (2017).

Figure 4. Fractional abundances of (a) isoGDGTs and (b) brGDGTs for moss polsters (green), soil surface samples (orange) mud from
temporary dry ponds (blue) and the full sequence of the Lake MMNT5C12 as paleo-brGDGTs comparison (grey). The punctuation marks ′

and ′′ refer to 6- and 7-methyl, respectively.

3.4 Statistical analyses

GDGTs and pollen data were analyzed with a principal com-
ponent analysis (PCA) to determine the axes explaining the
variance within the samples. The biotic values (pollen and
GDGTs) were also compared to abiotic parameters (climate,

elevation, location and soil features) by the way of a re-
dundancy analysis (RDA). The regression models were run
with the p value < 0.05 (model relevance), the R2 (correla-
tion level between the variables), the root mean square devia-
tion (RMSE, error on parameter reconstruction) and Akaike’s
information criterion (AIC, effect of over-parameterization
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on multiple regression models; Arnold, 2010; Symonds and
Moussalli, 2011). A cross-validation test was performed for
all the brGDGT calibrations (from this study and from the
literature) using an independent set of six lacustrine sam-
ples from the lake MMNT5C12 top-core. Statistical analyses
were performed with the Rcran project, using the ade4 pack-
age (Dray and Dufour, 2007) for multivariate analysis. All
the plots were made with the ggplot2 package (Villanueva
and Chen, 2019) or the Rioja package (Juggins and Juggins,
2019) for the stratigraphic plot and the pollen clustering us-
ing the CONISS analysis method (Grimm, 1987).

4 Results

4.1 Pollen, climate and ecosystems relations

4.1.1 Modern pollen rain and vegetation representation

The pollen rain (Fig. 3) is dominated by six main pollen
taxa: Pinus sylvestris, Betula spp., Artemisia spp., Poaceae,
Cyperaceae and Amaranthaceae. The pollen diagram, sorted
by bioclimate from the wet and relatively warm Baikal area
on the upper part to the dry–warm Gobi desert on the bot-
tom, presents a net arboreal pollen (AP) decrease from 85 %
to 5 %. A total of 34.26 % of the variance is explained by PC1
extending from positive values associated with non-arboreal
pollen (NAP; Amaranthaceae, Poaceae and Artemisia spp.)
to negative values associated with AP (Pinus undet., Betula
spp. Picea obovata and Larix sibirica, in Fig. 5c). This trend
shows the transition between ecosystems, marked by the
seven main CONISS clusters (Fig. 3) and PC1 and PC2 vari-
ations (Fig. 5c). Below are the over-representative main taxa
for each of the Siberian–Mongolian transect ecosystems:

1. light taiga–riparian forest dominated by Pinus
sylvestris (> 70%), Pinus sibirica and very low NAP
(< 5%);

2. mixed light/dark taiga–birches sub-taiga with an as-
semblage of Larix sibirica, Picea obovata, Pinus
sylvestris and P. sibirica;

3. forest–steppe ecotone same AP assemblages that the
light/dark taiga ecosystem with 20 % of Artemisia spp.,
plus occurrence of Poaceae, Cyperaceae, Thalictrum
spp. and Convolvulus spp.;

4. steppe still dominated by Artemisia spp. (30 %) and ris-
ing Poaceae (25 %) and Brassicaceae;

5. alpine meadow overpowered by Cyperaceae up to 50 %,
Poaceae, Brassicaceae, Amaranthaceae and Convolvu-
lus spp.;

6. steppe–desert ecotone highlighting by the transition
between Amaranthaceae–Caryophyllaceae community
and Poaceae–Artemisia spp. assemblages;

7. desert dominated by Amaranthaceae (from 25 % to
65 %) and by rare pollen-type Caryophyllaceae, Thal-
ictrum spp., Nitraria spp. and Tribulus spp.

4.1.2 Pollen–climate interaction

The pollen rain trends follow similar variations to biocli-
mate parameters in MAP, MAAT and elevation (Fig. 3).
The highest AP values are correlated to large MAP (up
to 500 mmyr−1) and relatively high MAAT (around 1 ◦C),
in the low-elevation Baikal area. Then the transition be-
tween AP and NAP dominance is marked by decreases in
both MAAT (−1 ◦C) and MAP (300 mmyr−1) connected to
the high-elevation Khangai range. Finally, the dominance of
NAP in the Gobi desert area is linked to very arid condi-
tions (MAP < 150 mmyr−1) and relatively warm MAAT (up
to 4 ◦C). The correlation between the taxa themselves and
climate parameters is R2

= 0.38 (RDA; Fig. 5d). The rise in
MAAT is associated with that of Amaranthaceae, Poaceae,
Sedum-type and Caryophyllaceae percentages. On the con-
trary, the decrease in MAAT is associated with a rise in the
AP and Cyperaceae, Artemisia spp. and Brassicaceae per-
centages. MAP, closely related to RDA1, rises with AP and
decreases with NAP (Fig. 5d). Finally, the elevation gradient
favors Artemisia spp. and Cyperaceae for NAP and Salix spp.
and Larix sibirica for AP (Fig. 5d).

4.1.3 Pollen-inferred climate reconstructions: MAT and
WAPLS results

To reconstruct climate parameters from pollen data, MAT
and WAPLS methods were applied on the four scales, mod-
ern pollen datasets and the 10 climate parameters (Table 1).
All these methods can be run with n ∈ [1;10] parameters:
the number of analogues for MAT and the number of com-
ponents for WAPLS. The best transfer functions among all
of them were selected by the following approach: in a first
step, for each climate parameter the methods fitting with the
higher R2 and the lower RMSE were selected. Then, in case
the highest R2 and the lowest RMSE were not applied for
the same number of analogues or components, we chose the
method presenting the lower number of parameters. Despite
the small number of parameters relative to the number of
observations, the method fits well (Table 1, Arnold, 2010).
MAT method gives better R2 in bigger DB than in smaller
ones. Fitting increases with the diversity and the size of DB,
since MAT is looking for the closest value between climate
and pollen abundance. By contrast, WAPLS fits better on the
local scale and especially with a smaller number of sites. In
this case, the pull of data is largest and the variance is largest
(ter Braak and Juggins, 1993). WAPLS also leads to better
values of RMSE than R2, in contrast to MAT. For tempera-
ture, pollen fits better with Tspr or MTWA in Mongolia. Tem-
peratures of the warmest months indeed control both vegeta-
tion extension and pollen production (Ge et al., 2017; Li et
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Figure 5. Multivariate statistics for the proxies clustered by ecosystems: (a) principal components analysis (PCA) and (b) redundancy anal-
ysis (RDA) for brGDGT fractional abundances; (c) PCA and (d) RDA for pollen fractional abundances. The variance percentage explained
is displayed on the axis label; the size of the dataset (n) and the RDA linear regression (R2) are inserted in each plot area.

al., 2011) and especially in very cold areas such as Mongo-
lia. For precipitation, the significant season is the one associ-
ated with the summer monsoon system in Mongolia (Wesche
et al., 2016). Almost all the Mongolian precipitation falls
during the spring and the summer (Wang et al., 2010), and
the amount of precipitation controls, among other parame-
ters, the openness of the landscape in Mongolia (Klinge and
Sauer, 2019). To simplify the confrontation of the diverse
models, the MAAT and MAP were isolated from the rest of

the climate parameters. Even if these two climate parameters
are not the best-fitting pollen methods, they are the easiest
to interpret and are comparable with the GDGT regression
models commonly based on MAAT and MAP. In any case,
these models are mitigated by the spatial autocorrelation af-
fecting any models made on ecological database (Legendre,
1993) and especially the MAT method more than the WAPLS
(Telford and Birks, 2005, 2011).
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Table 1. Statistical results of the MAT and WAPLS methods applied to four surface pollen datasets and 10 climate parametersa. The lower
number of parameters leading to the best performance is highlighted in bold.

Database Climate WAPLS MAT
parameterb

k best k best k R2 RMSE k best k best k R2 RMSE
R2c RMSEc selectedd selectedd selectedd R2c RMSEc selectedd selectedd selectedd

NMSDB MAAT 2 2 2 0.65 1.18 3 13 3 0.58 1.45
(this study) MTWA 2 2 2 0.62 1.69 2 9 2 0.68 1.8

Tspr 2 2 2 0.71 1.26 2 13 2 0.63 1.63
MAP 2 1 1 0.79 61.22 2 6 2 0.88 55.73
Pspr 2 1 1 0.67 11.39 2 4 2 0.89 8.28
Psum 2 2 2 0.8 34.75 2 10 2 0.82 38.49

MDB MAAT 2 1 1 0.35 1.9 5 8 5 0.6 1.65
(Mongolia) MTWA 2 1 1 0.24 2.14 5 9 5 0.53 1.84

MTCO 2 1 1 0.27 2.75 5 7 5 0.66 2.05
MAP 3 1 1 0.23 95.05 9 11 9 0.38 88.73
Psum 1 1 1 0.47 47.02 8 12 8 0.54 46.17

COSTDB MAAT 2 2 2 0.54 4.09 7 10 7 0.73 3.34
(cold steppe) MTWA 3 2 2 0.48 3.55 8 10 8 0.67 3.01

MTCO 2 2 2 0.56 6.34 6 9 6 0.77 4.86
MAP 4 2 2 0.55 224.43 6 9 6 0.77 161.86
Psum 3 2 2 0.34 70.89 5 9 5 0.65 55.08

EAPDB MAAT 3 3 3 0.72 4.08 5 8 5 0.88 2.9
(Eurasia) MTWA 3 3 3 0.55 3.31 5 9 5 0.79 2.5

MTCO 3 3 3 0.72 6.49 4 8 4 0.89 4.46
MAP 3 3 3 0.43 239.6 4 10 4 0.74 181.21
Psum 2 2 2 0.52 62.33 4 8 4 0.8 44.66

a Only the five better-fitting regression models for each climate parameter are shown. b The climate parameters correspond to mean annual air temperature (MAAT), mean temperature of the
warmest (MTWA) and the coldest (MTCO) months, spring temperature (Tspr), mean annual precipitation (MAP), and precipitation for summer (Psum) and spring (Pspr).
c Corresponding to the number of parameters used in the model inferring the best R2 and RMSE. d Number of parameters, R2, RMSE of the finally selected model.

4.2 GDGT–climate calibration

4.2.1 GDGT variance in the dataset

In the MMNT5C12 sediments, isoGDGTs are dominated
by GDGT-0 and crenarchaeol (74.6 % and 9.8 % in relative
abundances, respectively, in Fig. 4a, grey boxplots). These
compounds, mainly lake-produced (Schouten et al., 2012),
are also present in the moss samples (32.7 % and 31.3 %,
green boxplots) and in soils (57.4 % and 26.7 %, orange box-
plots). The variations of their fractional abundance in our soil
and moss polster dataset are discrete and poorly linked to
climate parameters (Fig. 4a). IsoGDGT patterns in lake sed-
iments do not really diverge from soil samples which can
lead to postulation that the in situ production of isoGDGTs
in shallow and temporary lakes like MMNT5C12 is reduced
(Fig. 4a). At least, it may show that the archaeal community
both in lakes and in soils is dominated by methanogenic Eu-
ryarchaeota more than Thaumarchaeota (Zheng et al., 2015;
Y. Li et al., 2018; Besseling et al., 2018). Then, it appears
(Fig. 4a) that the isoGDGTs produced in soils are domi-
nated by crenarchaeol in accordance with studies on high
alkalinity of the soil (Y. Li et al., 2018) linked to the im-
pact of aridity (Zheng et al., 2015). However, no relation-

ship exists between the crenarchaeol concentration and MAP
(R2
= 0.14, p value > 0.005). The putative regio-isomer re-

sponse to MAP (Buckles et al., 2016) is not evidenced in
NMSDB.

The average [brGDGT]tot concentrations differ depending
on the sample type:

[brGDGTtot]sed = 25.8± 8.1 ng g−1
sed,

[brGDGTtot]moss = 23.2± 26.8 ng g−1
moss,

[brGDGTtot]soil = 0.3± 0.14 ng g−1
soil,

[brGDGTtot]all = 16.7± 23.6 ng g−1
sample. (2)

brGDGT fractional abundances are consistent with each
sample type: the predominant compounds are the Ia, II′a, IIa
and IIIa (Fig. 4b). These compounds mostly explain the to-
tal variance (Fig. 5a). Particularly, the PC1 represents 22.8 %
of the total variance and distinguishes two contrasted poles:
the 5-methyl group (mostly with PC1 >−0.3) associated
with steppe–forest and forest sites and the 6- and 7-methyl
group on the far negative PC1 values associated with steppe
and desert sites. Even if the 7-methyl brGDGTs appear to
have weak significance in the brGDGT variance explana-
tion (Fig. 5a), the surface sample 7-methyl average fractional
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abundance around 4.6 % is following the normal order of
magnitude (4.3 % in Cameroon lakes and 6.2 % for Chinese
lakes; Ding et al., 2016).

The sediment samples from the lake MMNT5C12, used
for past sequence comparison, are more homogeneous than
the surface samples, especially when compared with the
moss polsters that present a wide variability (Fig. 4b). On
this figure it appears that, globally, soil samples are more rel-
evant analogues to sediments than moss polsters (especially
the [III′a], [IIa] and [Ia] fractions in Fig. 4). This variabil-
ity shows an influence of the sample type on brGDGT re-
sponses. On the other hand, sample type also supports first-
order climate and environment information, since soil and
moss polsters originate mainly from steppe to desert envi-
ronments and forest/alpine meadows, respectively. About the
pond mud samples, the BIT and IIIa/IIa indexes (Fig. S2)
show that a coherent soil origin is leading the brGDGT input
instead of a lacustrine one (Pearson et al., 2011; Martin et al.,
2019a; Cao et al., 2020).

4.2.2 Climate influence on brGDGT indexes

The brGDGT/climate RDA shows that the brGDGT variance
is dominated by the MAP as the first component (Fig. 5b:
RDA1 = 10.01%). The negative values show higher pre-
cipitation and uncyclized 5-Methyl GDGTs, such as Ia, IIa
and IIIa, while the lower MAP match with 6- or 7-Methyl
GDGTs, such as III′a, II′a and II′′a in accordance with De Jonge
et al. (2014a). The RDA2 is slightly more connected to
MAAT as opposed to elevation, also clustering the methy-
lated and cyclized GDGTs to the higher MAAT. As in the
pollen-climate response, the elevation is a second driving
factor not to be neglected. The correlation between rela-
tive abundance of methylated and cyclized brGDGTs with
climate parameters was not strong (Weijers et al., 2004;
Huguet et al., 2013). All the MBT, MBT’, MBT′5Me and CBT,
CBT’, CBT5Me relations with climate parameters were tested
and showed a very low correlation with R2

∈ [0.1;0.35]
(Fig. S3b). Once the MBT (Fig. S4a) and the MBT′5Me in-
dexes (Fig. 6) are compared with the world database (Yang et
al., 2014; Naafs, 2017; Dearing Crampton-Flood et al., 2019)
it appears that the NMSDB set is consistent with known val-
ues instead of a wide sample dispersion.

4.2.3 Multi-regression models

The stepwise selection model (SSM) for climate–brGDGT
modeling was applied only on the 5- and 6-methyl, be-
cause 7-methyl brGDGTs show weak significance in the
variance explanation (PCA; Fig. 5a). To guarantee the ho-
mogeneity of the calibration, the SSM has been applied on
the total surface dataset excluding the two pond mud sam-
ples (even if their GDGT input seems to be validated by
the BIT and IIIa/IIa indexes in Fig. S2). The NSSM differ-
ent combinations of the 15 brGDGT compounds result in

NSSM = 215
= 32768 models possible for each climate pa-

rameter. Even the models including some minor compounds
([br]i < 5 %) have been considered since, in the NMSDB,
brGDGT fractional abundances are more fairly distributed
than in the global database, in which few compounds overlap
the majority of the compounds (Fig. S4b). Indeed, the cumu-
lative fractional abundance curve (Fig. S4c) is slightly faster
in reaching the asymptote line for the world peat (blue curve)
and the world soil (in brown) than in the NMSDB. The world
peat database needs only three brGDGTs to explain more
than 85 % of the fractional abundance against more than 10
compounds in the NDMSDB soils. Then, the better-fitting
equations (with low RMSE and AIC and high R2) were se-
lected for each number of parameters (number of brGDGTs
issued in the linear regression) for both MAAT and MAP.
Within the 15 models (one model for each parameter addi-
tion), the 9 more contrasted ones were selected for discus-
sion (Table S3). The models with the best statistical results
were comprised of between 5 to 12 parameters and present
a R2
∈ [0.62;0.76], a RMSE around 1.1 ◦C or 68 mmyr−1,

and an AICMAAT ∈ [149;156] or AICMAP ∈ [503.8;503.1].
The earlier a parameter is used in the mr models, the greater
is its influence. For both MAATmr and MAPmr models, IIIa,
III′a, IIIb and III′b are the most relevant compounds for the
climate reconstruction (Table 2) which is consistent with the
PCA and RDA observations displayed (Fig. 5a and b). Both
the MAATmr models infer a positive contribution of III′a and
a negative contribution of IIIa, which confirms these mod-
els as eco-physiologically consistent with the RDA results.
Moreover, except for II′b, all the compounds positively cor-
relate with MAAT and negatively with MAP, in accordance
with the MAP–MAAT anti-correlation. The 1T values clos-
est to 0 reveal the best-fitting model on each point (Fig. 7, left
panels). Then, the box plot (Fig. 7, right panels) summarizes
the best-fitting model at a regional scale.

5 Discussion

5.1 Issues in modeling Mongolian extreme bioclimate

5.1.1 Appraisal modeling in arid environments

According to Dirghangi et al. (2013) and Menges et
al. (2014), the commonly used brGDGT indexes (MBT
and CBT) are not relevant for arid areas with MAP <

500mmyr−1 because the relation between low soil water
content and soil brGDGT preservation and conservation in-
terferes in the brGDGT/climate parameters (Dang et al.,
2016). The MAAT models based on MBT and MBT’ in-
dexes provide colder reconstructions (Fig. 7c2) as shown by
De Jonge et al. (2014a), because arid soils favor 6-methyl
brGDGTs (by pH raising due to the low weathering effect
of the weak precipitation; Dregne, 1983; Haynes and Swift,
1989) and drive the MBT to decrease towards zero. This ex-
plains the colder MAATDing and MAATMBT′DJ

reconstructed
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Figure 6. MBT′5Me–MAAT relation comparison between the NMSDB surface samples and the world peat and soil database (Dearing
Crampton-Flood et al., 2019).

Table 2. Statistical values and equations of the best brGDGT MAATmr and MAPmr models.

Model Formula R2 RMSE AIC

MAATmr4 = 4.5× 1− 36.8×[IIIa] + 7.3×[III′a] − 37.2×[IIIc] − 24×[IIb] − 5.2×[Ia] 0.62 1.2 147.6
MAATmr5 = 4.8× 1− 38.5×[IIIa] + 7.9×[III′a] − 27.3×[IIIc] − 3.3×[II′a] − 26.3×[IIb] 0.66 1.1 149

+8.5×[II′b] − 5.6×[Ia]

MAPmr6 =−639+ 1617×[IIIa] + 3208.9×[IIIb] + 768.2×[IIa] + 1146.7×[II′a] + 2925.4×[IIb] 0.73 72.4 502.9
+3735.7×[II′b] + 2763×[IIc] + 1967.3×[II′c] + 1237.1×[Ia] − 1367.7×[Ic]

MAPmr7 =−502.2+ 1547.9×[IIIa] + 2569.8×[IIIb] − 2052.8×[III′b] + 622.8×[IIa] + 958.2×[II′a] 0.76 69.2 503.1
+2638.8×[IIb] + 3445×[II′b] + 2880.4×[IIc] + 1949.1×[II′c] + 1152.7×[Ia]
−1047.1×[Ib] − 2156.6×[Ic]

values compared to the modern ones. Moreover, the main
issue in climate modeling in Mongolia is the narrow rela-
tionship between MAAT and MAP. Because of the climatic
gradient from dry deserts in the southern latitudes to wet
taiga forests in the northern ones, MAAT and MAP maps are
strongly anti-correlated (Figs. 1b, c and S5). If this correla-
tion is not statistically determined on the range of the global
database (R2

= 0.35, p < 0.005), the impact is significant
on the range of the Mongolian sites (R2

= 0.91, p < 0.005).
This correlation could be a bias resulting from the interpo-
lation method of the WorldClim2 database. In fact, there
are very few weather stations (Fig. 1a; Fick and Hijmans,
2017), and their distribution on the large MP is interrupted
by mountain ranges. According to Fick and Hijmans (2017)
the interpolation model used in the ACA area(which includes
our study area) gives a strong correlation (R2

= 0.99) and

a little error (RMSE= 1.3 ◦C) for MAAT and R2
= 0.89

and RMSE= 23mmyr−1 for MAP. Whenever the Baikal
area–Mongolian calibrations are used for paleoclimatic re-
constructions, the RMSE of the climate parameters has to be
added to the RMSE model. Moreover, the relevance of the in-
terpolation models suffers from the transition threshold made
in Mongolia between the EASM and the Eurasian Westerlies
(Fig. 2; An et al., 2008) and reinforced by the topographic
break (Fig. 1a). Because the mr–GDGT models have been
compiled with the group of Baikal sites which are out of the
MAAT–MAP strong auto-correlation range (Fig. S5), the re-
liability of the independence of the MAAT and MAP models
seems to be guaranteed.

The topographic fence in Mongolia also affects the pollen
and brGDGT distributions by itself, as seen in both RDA
analyses (Fig. 5b and d) where elevation appears to be a
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Figure 7. Validation of brGDGT-climate models on the study sites: reconstructed values for literature MAAT (a), NMSDB mr–MAAT (b)
and MAP (c). Models are tested on the NMSDB sites (1) and the box-plot statistics (2) are provided. Sites are clustered in four groups:
cross-value on the six first samples of the independent core MMNT5C12, Arkhangai; moss polsters from Mongolian steppe–forest; Gobi
steppe–desert soil samples; and moss polsters from Baikal area. Values are plotted in anomaly.
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major ecophysiological parameter. Elevation affects vegeta-
tion and pollen rain not just because of its influence on lo-
cal MAAT and MAP but also because it drives other eco-
physiological parameters such as O2 concentration, wind in-
tensity, slopes and creeping soils, snow cover, and exposure
(Stevens and Fox, 1991; Hilbig, 1995; Klinge et al., 2018).
Elevation as one of the main brGDGT drivers could also be
explained by the archaeal community responses to pH, mois-
ture and soil compound variations along the altitude gradient
(Laldinthar and Dkhar, 2015; Shen et al., 2013; Wang et al.,
2015) and the vegetation shifts (Lin et al., 2015; Davtian et
al., 2016; Liang et al., 2019). In any case, a better under-
standing of the archaeal community’s response to ecophysi-
ological parameter variations will considerably improve the
brGDGT calibration process (Xie et al., 2015; Dang et al.,
2016; De Jonge et al., 2019).

5.1.2 Particularity of the southern-Siberian–Mongolian
climate system

Both GDGT and pollen calibrations show that the precipita-
tion calibrations are more reliable than temperature ones (Ta-
bles 1 and 2, Figs. 3, 8 and 7), reflecting that the southern-
Siberian–Mongolian system seems to be mainly controlled
by precipitation. This dominance of precipitation could be
due to seasonality. Even if the brGDGT production is consid-
ered to be mainly linked to annual temperature means (Wei-
jers et al., 2007a, b; Peterse et al., 2012), the high-pressure
Mongolian climate system (Zheng et al., 2004; An et al.,
2008) favors a strong seasonal contrast: almost all the pre-
cipitation and the positive temperature values happen dur-
ing the summer (Wesche et al., 2016). Consequently, for the
NMSDB pollen transfer functions, the seasonal parameters
such as MTWA, Tsum and Psum better describe the pollen
variability than MAAT and MAP climate parameters (bet-
ter R2 and RMSE in Table 1). The opposite is found for
EAPDB and COSTDB models and calibrations made on
large-scale databases. The Mongolian permafrost persists for
half of the year in the northern part of the country (Sharkhuu,
2003) and acts on vegetation cover and pollen production
(Klinge et al., 2018). Furthermore, the effects of frozen soils
on soil bacterial communities and GDGT production are
thought to be important (Kusch et al., 2019) since the ar-
chaeal community seems to be shifting with abrupt temper-
ature modifications (De Jonge et al., 2019). This seasonal-
ity leads to a quasi-equivalence between MAP and PSum (if
Pwin ≈ 0 then MAP≈ Psum) while MAAT is torn apart by
the large TSum− Twin contrast (because the MAAT is an av-
erage value and not a sum as for MAP). The mathematical
consequences of the seasonality on these two climate pa-
rameters are not the same. Finally, the MAP appears to be
the most reliable climate parameter for southern-Siberian–
Mongolian climate studies according to the NMSDB sites
(with MAAT < 5 ◦C). Even if the brGDGTs seem to respond
to summer temperature (Wang et al., 2016; Kusch et al.,

2019), the summer mr models are not significantly improv-
ing the calibration compared to the MAATmr ones. For in-
stance, the best Tsummr is selected by its AIC, and Tsummr6 is
inferred using 6 brGDGTs’ fractional abundance (R2

= 0.63
and RMSE= 1.53 ◦C). This lack of seasonality effect, ex-
pected in such cold areas, is consistent with temperate Chi-
nese sites (brGDGT reconstructions; Lei et al., 2016).

5.1.3 Extreme bioclimatic condition modeling lead to a
better global climate understanding

To reduce the signal / noise ratio, a wider diversity of sam-
ple sites should be added as initial inputs in the models.
This raises the question of the availability of reliable sam-
ples in desert areas. The soil samples in the steppe to desert
biomes are often very dry, and these over-oxic soil conditions
are the worst for both pollen preservation (Li et al., 2005;
Xu et al., 2009) and GDGT production (Dang et al., 2016).
brGDGT concentrations in moss polsters and temporary dry
pond muds are thus higher than in soils in our database (Eq. 2
and Fig. 4). The explanation of the signal difference between
the three types of samples could also originate from the in
situ production of brGDGTs inside the moss predominant
over the wind-derived particles brought to the moss net. As
well as this, it seems that the pool of moss polster is asso-
ciated with a similar trend to the worldwide peat samples
from Naafs et al. (2017b) (Figs. 6 and S4a). Moreover, in the
steppe or desert context of poor availability in archive sites,
the edge clay samples or top-cores of shallow and tempo-
rary lakes could be a solution for paleosequence studies. The
two pond mud samples of the NMSDB are included within
the soil–moss trend for all models (Figs. 5 and S4 and S3 in
the Supplement). Even if the brGDGT production and con-
centrations are different in soils than in lakes due to lake in
situ production (Tierney and Russell, 2009; Buckles et al.,
2014), this effect is a function of the lake depth (Colcord et
al., 2015) and consequently negligible for shallow lakes, and
almost absent for lake edge samples as shown by Birks, H. J.
B. (2012) for Lake Masoko in Tanzania.

The soils of the Gobi desert also have a high salinity level
which is also a parameter of control on brGDGT fractional
abundances (Zang et al., 2018). This taphonomic bias (also
climatically induced) could explain part of the histogram
variance of Fig. 4 related to the sample type as well as the
shift of the soil cluster from the regression line in the cross-
value plot of brGDGT MBT’/CBT models in Fig. S3 in the
Supplement. Even if the impact of salinity on sporopollenin
is not well understood, salt properties may affect pollen con-
servation in soils (Reddy and Goss, 1971; Gul and Ahmad,
2006).

Finally, the saturation effect of the proxies when they reach
the limits of their range of appliance is also to be taken into
consideration. Since both pollen and brGDGT signals are
analyzed in fractional abundance (i.e., percentage of the to-
tal count of concentration), these proxies evolve in a [0;1]
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Figure 8. Statistical values plotted against the number of parameters of the different mr–GDGT models: the R2, the RMSE normalized on
the highest RMSE value and the AIC also normalized. (a) Selection of the two best multi-regression models for each number of parameters;
(b) combination of the R2 (b) and the AIC (c) values for of all the mr models. The blue dots are for the MAP models, orange dots for the
MAAT one.

space. The saturation effect appears when extreme climatic
conditions are reached (Naafs et al., 2017a, b). For instance,
in a tropical context, temperature values are too high to be
linearly linked to fractional abundances (Pérez-Angel et al.,
2019). Considering pollen–climate relationships, the infe-
rior limit of pollen percentage is critical: for the majority of
pollen types, whenever MAAT or MAP reaches a very high
or low threshold, the pollen fractional abundance approaches
zero (Fig. 9). These limit areas need to be closely investi-
gated, which legitimizes the local calibration methods.

5.2 Statistical tools for best model selection

5.2.1 Over-parameterization and best models selection

Among the possible methods, statistical values help to se-
lect the most reliable paleoclimate reconstruction. However,
the correlation (R2) and errors (RMSE) are not informative
enough to discriminate between methods and to point to the
most suitable ones for paleoclimate modeling. This is espe-
cially true for the multi-parameter methods (such as brGDGT
multi-regression models and pollen transfer functions). In-
deed, the more input parameters in the method, the more ac-
curate it is (Tables 1 and S3 in the Supplement and Fig. 8a
and b). All the regression models improve with parameter
additions, and in particular the less well fitting methods im-
prove exponentially (lower limit of the R2 area; Fig. 8b). The
best R2 models for each parameter number (Fig. 8a) corre-
spond to the upper limit of the R2 area (Fig. 8b). This fig-
ure shows that the R2 vs. parameter number trend follows
a logistic regression (both for MAATmr and MAPmr mod-
els). However, and especially for MAATmr regression mod-
els, this logistic curve becomes asymptotic early, similar to
the RMSE decrease. The over-parametrization of the mod-
els has proven to produce artifacts in ecological modeling
(Arnold, 2010; Symonds and Moussalli, 2011). The issue is

thus to identify the threshold in the parameter numbers se-
lected. We used Akaike’s information criterion (AIC) to de-
termine the better model without over-parameterization for
brGDGT regression models: the lower the AIC, the better the
model (Tables 2 and S3). The trend of AIC vs. the parameter
number is, however, more complex (Fig. 8c). For MAATmr,
the regression model becomes more accurate from one to five
parameters rapidly but then slowly decreases. The AIC curve
takes an asymmetrical hollow shape around five parameters
with a steeper slope on the left side (Fig. 8a). The AIC values
for MAATmr6 and MAATmr7 are almost identical (Fig. 8a).
The MAPmr 6, 7, 8 have almost equivalent AIC values, while
the AIC curve shapes differ for the other MAPmr models
(asymmetrical hollow shape around five with a steeper slope
on the left side; Fig. 8a). To summarize, the most universal
models are MAATmr5 and MAPmr7 (Table 2), but the closed
models are also valuable in some local contexts, and espe-
cially in similar dry–cold regions. We need to determine the
cross-values of these models to select the appropriate ones
for the southern-Siberian–Mongolian context.

5.2.2 Assessment of the calibration feedback

The cross-values of the nine best MAATmr regression mod-
els (Fig. 7a1 and a2) and the best MAPmr regression models
(Fig. 7b1 and b2) were tested. The MAAT reconstructions
provide different responses to the three main bioclimate ar-
eas (parcel A1): if they properly estimate temperatures in
the Baikal area, they overestimate and underestimate them
for the center of the northern Mongolian mountains and the
Gobi desert, respectively. For precipitation (parcel B1), all
the MAPmr calculated with local to regional databases also
misrepresent the extreme values: precipitation values are too
high and too low for the Gobi desert and the Baikal area, re-

Clim. Past, 17, 1199–1226, 2021 https://doi.org/10.5194/cp-17-1199-2021



L. Dugerdil et al.: brGDGTs and pollen calibrations for cold–dry environments 1215

Figure 9. Relationships between the eight major pollen taxa (% TP) and MAP (mmyr−1, upper part of the facet plot) and MAAT (◦C, lower
part). The black line is the linear fitting for all samples (EAPDB), the orange for all the samples from steppe biome (COSTDB) and the blue
only for the NMSDB samples presented in this article.

spectively. To conclude, the wider the dataset extension, the
more alleviated the extreme values.

For both MAATmr and MAPmr models, the 95 % inter-
val shrinks with parameter addition, but the mean values do
not necessarily get closer to the measured value of the cli-
mate parameter (the dashed line in Fig. 7a2 and b2). There-
fore, if the tests on the AIC point toward the MAATmr4 and

the MAPmr6 regression models, the back-cross plots suggest
the MAATmr5, MAATmr6, MAPmr5 and MAPmr7 regression
models (Table S3 in the Supplement, colored in blue, and Ta-
ble 2) provide the best estimates for climate reconstruction in
lacustrine archives (1MAP= 0 and best-fitting temperature
for the mean value of all samples; Fig. 7b2 and b1).
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5.2.3 Global vs. local calibration

Whatever proxy is used, when reconstructing temperatures
and precipitation from past records in a given location, there
is the issue of basing reconstructions on calibrations based
on local or global datasets (among others; Tian et al., 2014;
Cao et al., 2014; Ghosh et al., 2017; Dearing Crampton-
Flood et al., 2019). We tested both approaches on our datasets
with a cross-value run on the NMSDB-independent set of
MMNT5C12 core samples. The global brGDGT–climate cal-
ibration artificially reaches higher R2 than local ones due to
the larger range of values of the involved climate parameters.
Since the world soil database in Naafs et al. (2017b, a) covers
a wide temperature range (MAAT ∈ [−5;30]), counter to the
NMSDB (MAAT ∈ [0;5]), then its signal / noise ratio gets
lower (Fig. 6). Despite the relatively lower R2 of 0.66 scored
by the MAATmr5 compared with world calibrations (Pearson
et al., 2011; De Jonge et al., 2014a; Naafs et al., 2017a, b),
the boxplots for all MAATmr calculated from the NMSDB
are mostly centered on the MAAT average value with the
shortest variance spreading for all the sites (Fig. 7c1 and c2).
These local calibrations fit best with the MAATDing from
Ding et al. (2015), which is also a local calibration made
on the Tibet–Qinghai plateau database. The global databases
made on worldwide sites (De Jonge et al., 2014b, a; Naafs
et al., 2017a, b) provide MAATmodel > MAATreal and large
standard deviation (SD). These global calibrations also atten-
uate the extreme MAAT values: the very cold MP sites are re-
constructed with temperatures up to +5 to +10 ◦C warmer,
while the warm Gobi desert sites are down by up to −3 to
−5 ◦C. On the other hand, local calibrations performed on
subtropical to tropical Chinese transects (Yang et al., 2014;
Thomas et al., 2017) have smaller SD but largely overesti-
mate MAAT values due to the warmer conditions of the ini-
tial database sites. In brief, the lake core sediment samples
match the best to the modern MAAT and MAP value with
the brGDGTs mr models, which invites us to consider that
these local brGDGT calibrations present a robust way to ap-
proach past climate.

Similarly, for pollen transfer functions, the geographic
range of the surface samples on which the calibration relies
is a relevant parameter to take into account for the reliability
of the paleoclimate reconstructions. The choice of the maxi-
mum value of this geographic range has been discussed pre-
viously for vegetation modeling, for example, the Relevant
Source Area of Pollen (RSAP; Prentice, 1985; Hellman et al.,
2009a, b; Bunting and Hjelle, 2010). For MAT and WAPLS
regression models, the same issue holds true. The responses
of the eight over-represented taxa to climate parameters are
different in the three geographic ranges (NMSDB, COSTDB
and EAPDB). The linear tendency allows for checking the
main trends between taxa distribution and climate parame-
ters, despite the weak linear regressions (p value > 0.005 and
R2 < 0.4, in Fig. 9). For the majority of these taxa, the trend
is the same, independent of the database size (Larix spp.

and Cyperaceae percentages increasing with weaker MAAT,
or Amaranthaceae and Pinus sylvestris percentages increas-
ing with higher MAAT). However, due to the shift between
pollen types and their associated vegetation (i.e., Poaceae-
pollen signal similar for a wide diversity of Poaceae commu-
nities with very contrasted ecophysiological features), trends
are controlled in some peculiar cases by the geographical
clipping of the DB. Thus, Poaceae have a positive response to
MAP on the global scale but not inside the Mongolian area.
The human influence on pollen rain is also dependent on the
biogeographical context; thus, Artemisia spp. are not consid-
ered to be influenced as much by human activity in the Asian
steppe environment (Liu et al., 2006) than in the European
one (Brun, 2011).

Concerning transfer functions, WAPLS performs better for
the local database than for the COST and EAP databases (Ta-
ble 1). On these subsets, the WAPLS RMSE and R-square
values are even higher than for the MAT approach. The ma-
jor difficulty resides in the reconstructions of precipitation.
Even if the RMSE and R2 values are higher for all models
of MAP than MAAT, the influence of precipitation on veg-
etation cover is not well understood. In Mongolia it is clear
that the precipitation controls the treeline in mountainous ar-
eas (Klinge and Sauer, 2019) and the global openness in the
steppe–forest ecotone (Wesche et al., 2016) as well as human
land use (Tian et al., 2014), but the risk of autocorrelation
between MAAT and MAP signals is important, even if the
RMSE and R2 values are higher for MAP regression mod-
els than for MAAT ones (Telford and Birks, 2009; Cao et al.,
2014). Tangibly, for the two proxies, even if the global cali-
brations can operate on our study area, the local calibrations
reach higher accuracy.

5.2.4 Test bench of the local calibrations on four
paleosequences

To test the reliability of our local calibrations, the pollen
transfer function and the brGDGT mr models have been
applied on four paleosequences. Because there is still no
available core analyzed for both pollen and brGDGTs ei-
ther in ACA area or in the MP, the Dulikha bog (pollen,
Baikal; Bezrukova et al., 2005; Binney, 2017), the D3L6 lake
(pollen, Altai; Unkelbach et al., 2019), the NRX bog (Al-
tai, GDGTs; Rao et al., 2020) and the XRD section (Qaidan,
GDGTs; Sun et al., 2019) are used. The actual values of the
climatic parameters are first compared to the top-core recon-
structed climatic parameters (Fig. 10, dashed lines). The am-
plitude of the variations through time has then to be assessed
with regards to the expected regional ranges (Zheng et al.,
2004). Finally, reconstructions on known short-term climate
events are tested for the last 5000 years. They are namely
the Little Ice Age, Warm Medieval Period, Dark Ages Cold
Period, Roman Warm Period, 3.5 ka cooling and 4.2 ka event
(respectively LIA, WMP, DACP, RWP, 3.5 and 4.2 ka; Zhang
et al., 2008; Chen et al., 2015; Aichner et al., 2015).
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Figure 10. ACA climate reconstruction for the 5000 yrcalBP. (a) Climate–pollen inferred for the Dulikha peat bog (Bezrukova et al., 2005;
Binney, 2017) and (b) Lake D3L6 (Unkelbach et al., 2019) comparing two transfer function methods (WAPLS and MAT) and the four
databases (EAPDB, COSTDB, MDB and NMSDB); (c) climate–brGDGT inferred from the XRD section (Sun et al., 2019) and (d) the NRX
peat bog (Rao et al., 2020) comparing local (NMSDB) and global calibrations (De Jonge et al., 2014a; Naafs et al., 2017a, b). The climate
periods correspond to Little Ice Age (LIA), Warm Medieval Period (WMP), Dark Ages Cold Period (DACP), Roman Warm Period (RWP),
3.5 and 4.2 ka event according to Zhang et al. (2008), Aichner et al. (2015) and Sun et al. (2019). Dashed lines represent the actual surface
climate parameters for each cores (from WorldClim2, Fick and Hijmans, 2017).
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For the pollen transfer function (Fig. 10a and b), the in-
ferred reconstruction approaches display similar trends dur-
ing the 5000 years with larger amplitude for MAT than for
WAPLS. MAT is also more sensitive to the initial calibration
dataset selected than WAPLS (Fig. 10a and b), which is in
agreement with previous multi-method studies (Brewer et al.,
2008). Indeed, the COSTDB and EAPDB are over-reactive
unlike the local calibration, while the WAPLS display the
same amplitude for each calibration with a different offset.
In particular, the NMSDB consistently displays the values
closest to the actual climate parameter values both for MAT
and WAPLS. For the D3L6 precipitation, all models seem to
drive away from the actual value. This shift highlights the
WorldClim2 interpolation issues in the Altai mountains (few
weather stations and not accounting for snow melt). For the
Dulikha bog precipitation, only the NMSDB has the same
trend for WAPLS and MAT. The other datasets are more sen-
sitive to the method used.

In Fig. 10c and d, with regard to brGDGTs, the local cali-
brations (NMSDB applied to XRD section and NRX peat)
provide the closest surface reconstructed temperature val-
ues to the actual (1MAAT < 2 ◦C; Fig. 10c and d in the
left panels) compared to the global calibration (1MAAT ∈
[6;10] ◦C; De Jonge et al., 2014a; Naafs et al., 2017a, b).
For the XRD section, this is explicable by the high similar-
ity between the type of sediment from the XRD section (dry
taphonomy) and a large proportion of the NMSDB surface
samples (especially from the Gobi desert). For NRX peat, it
is due to the similar high elevated and arid conditions for
both NRX and NMSDB. Moreover, the NMSDB calibra-
tions present a more realistic amplitude: 6 ◦C over 5000 years
(similar to pollen-inferred amplitude) as opposed to 10 to
20 ◦C amplitude for global calibrations in XRD and +4 ◦C
for NMSDB against around +7 ◦C for global databases in
NRX. With regard to the precipitation, the brGDGTs mr
models show a decreasing trend throughout the Holocene,
particularly well-marked between 1000 and 2000 BP fol-
lowed by a bounce on the last 1000 years in both brGDGT
records (tendency consistent with the WAPLS pollen MAP).
All brGDGT calibrations exhibit consistent shifts during the
LIA (cold–wet), the WMP (warm–dry) and the 4.2 ka event
(cold–wet). These variations are also exaggerated with global
calibrations. To conclude, general trends are consistent for all
calibration datasets, except for the drying–warming trend in-
ferred by the calibration from De Jonge et al. (2014a).

Even if the pollen-based and brGDGT-based climate re-
constructions were not conducted on the same core, the
D3L6 and NRX records (Fig. 10b and c) are close to
each other within the Altai range. These two signals al-
low the pollen/brGDGT difference in reconstruction output
to be discussed. Except for a few globally calibrated re-
constructions (MAPWAPLS-EAPDB for pollen and MAATmr-DJ
for brGDGT), the climate inferred follows a similar trend.
The main difference between the proxy is the amplitude of
the climate shifts: brGDGT-inferred models seem to provide

higher-amplitude responses for the Late Holocene trends
than for the centennial oscillations.

Figure 10 shows that realistic reconstructed surface val-
ues are consistent with literature Holocene trends and vali-
date the application of local calibrations for both pollen and
brGDGTs. Furthermore, abrupt oscillations and overall am-
plitudes of temperature and precipitation variations are real-
istic, in accordance with regional appraisal (Wu et al., 2020).
These results permit us to improve our understanding of
the MP and ACA Late Holocene climate variations. Over-
all, on the 5000-year period the climate appears to follow a
drier–warmer trend. More precisely, except for Dulikha bog,
the local calibration shows an anti-correlation between tem-
perature and precipitation short-period oscillations for both
pollen and brGDGTs: the LIA seems to be colder and wetter
than the warm and dry WMP. The same cold–wet behavior
is observed for the 4.2 ka event. This conclusion is impor-
tant and situates the Dulikha, D3L6, NRX and the XRD se-
quences in the same trend as the majority of the ACA pale-
osequences (Chen et al., 2010, 2015; Wu et al., 2020), con-
necting the Altai range and the Qaidam basin to the EASM
vs. Westerlies Holocene oscillations. In contrast, the Dulikha
bog in the Baikal area is connected with the Siberian Highs
and the northern part of the EASM front (Wang and Feng,
2013; Feng et al., 2017).

6 Conclusions

The paleoenvironmental and paleoclimatic signals may
present several uncertainties (differential production, preser-
vation, etc.) which can misguide the interpretation of past
variations. This study shows how both a multi-proxy ap-
proach and an accurate calibration are important in prevent-
ing these biases. We propose a new calibration for mean an-
nual precipitation (MAP) and mean annual air temperature
(MAAT) from brGDGTs as well as a new pollen surface
database available for transfer functions. The correlations be-
tween pollen rain and climate on the one hand and brGDGT
soil production and climate on the other are visible but are
still mitigated by the complex climate system of arid cen-
tral Asia and the diversity of soils and ecosystems. Precisely,
each of our proxies seems to be more narrowly linked to pre-
cipitation (MAP) than temperature (MAAT) counter to the
majority of calibrations in the literature. This is validated on
both modern and past sequences for pollen and brGDGTs.
The nature of the samples considered (soil, moss polster and
mud from temporary dry ponds) also greatly affected these
correlations. The calibration attempt for the extreme biocli-
mates of the MP is difficult because of the low range of cli-
mate values, despite the climate diversity ranging from cold
and slightly wet (north) to the arid and warm (south) condi-
tions. Even if global and regional calibrations could be ap-
plied in such a setting, local calibrations provide enhanced
accuracy and specificity. The MAAT and MAP values do
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not remarkably spread in the vectorial space, which makes
it harder to distinguish the linear correlation against variance
noise. Moreover, this range of values is close to the lower sat-
uration limit of the proxies, which makes the accurate local
calibration tricky but necessary. The local calibrations also
suffer from the reduced size and small geographic extent of
the dataset. The vegetation cover, extending from a high-
cover taiga forest to bare-soil desert cover, also buffers the
climate signal and the GDGT/pollen response. The correla-
tions between climate parameters and GDGT/pollen propor-
tion are therefore lower than they could be at global scale.
Nonetheless, and despite the lower correlation of the local
calibration, these local approaches appear to be more accu-
rate to fit the actual climate parameters than the global ones:
both for pollen transfer functions and brGDGT multiple re-
gression models. It is especially the case during the short
Late Holocene period which is not suffering from abrupt
ecosystem changes. These positive model results have to be
considered in light of over-parameterization limits. Too many
parameters in mr–brGDGT models or in pollen MAT or
WAPLS transfer function can add artificially to the linear re-
lation between climate and proxies and lead to misinterpreta-
tion of paleoclimate records. Akaike’s information criterion
combined with RMSE and R2 values is a fair way to select
the best climate model. These local calibrations applied to
Dulikha, D3L6, NRX and XRD paleosequences highlighted
the temperature and precipitation variation throughout the
Late Holocene. The next step will be to test our calibrations
on pollen and GDGT records available from the same core.
We encourage wider application of this local multi-proxy cal-
ibration for a more accurate constraint of these central Asian
climatic systems, a crucial improvement to properly model
the fluctuations of the monsoon line since the Holocene op-
timum.
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