Hanwei Zhang

Yannis Avrithis

Teddy Furon

Laurent Amsaleg

Patch Replacement: A Transformation-based Method to Improve Robustness against Adversarial Aacks

Keywords: Adversarial robustness, transformation, product quantization

Deep Neural Networks (DNNs) are robust against intra-class variability of images, pose variations and random noise, but vulnerable to imperceptible adversarial perturbations that are well-crafted precisely to mislead. While random noise even of relatively large magnitude can hardly aect predictions, adversarial perturbations of very small magnitude can make a classier fail completely.

To enhance robustness, we introduce a new adversarial defense called patch replacement, which transforms both the input images and their intermediate features at early layers to make adversarial perturbations behave similarly to random noise. We decompose images/features into small patches and quantize them according to a codebook learned from legitimate training images. This maintains the semantic information of legitimate images, while removing as much as possible the eect of adversarial perturbations.

Experiments show that patch replacement improves robustness against both white-box and gray-box attacks, compared with other transformation-based defenses. It has a low computational cost since it does not need training or ne-tuning the network. Importantly, in the white-box scenario, it increases the robustness, while other transformation-based defenses do not.

INTRODUCTION

Adversarial perturbations are modications of small magnitude on images, almost imperceptible to human eyes, which lead classiers to make erroneous predictions [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. They reveal the vulnerability of Deep Neural Networks (DNNs) and the potential danger in machine learning-based applications, for instance, trac sign detection in self-driving cars.

Based on dierent assumptions on adversarial perturbations, dierent defenses are proposed to address the security problem and enhance the robustness of networks against adversarial attacks. Considering the lack of corresponding data, adversarial training [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] includes adversarial images as part of training data. It improves the robustness against adversarial attacks, but decreases the accuracy of legitimate images and is very expensive to train.

Several works improve the architecture of networks, assuming that attackers take advantage of weaknesses in model design [START_REF] Hao-Yun Chen | Improving adversarial robustness via guided complement entropy[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Lyu | A unied gradient regularization family for adversarial examples[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF][START_REF] Papernot | Distillation as a defense to adversarial perturbations against deep neural networks[END_REF][START_REF] Ra | Barrage of random transforms for adversarially robust defense[END_REF][START_REF] Tramèr | Ensemble Adversarial Training: Attacks and Defenses[END_REF]. Instead of using the image labels, distillation defenses [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Papernot | Distillation as a defense to adversarial perturbations against deep neural networks[END_REF] train a small network on the probability vectors predicted by a large network. To reduce the sensitivity of networks Relative distortion of random noise, adversarial perturbation and our patch replacement on input images (layer 0) vs.

ResNet-50 layer, averaged over the ImageNet test set. Random noise follows a normal distribution and adversarial perturbations are generated by Decoupling Direction and Norm (DDN) attack [START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF]. G: original input image; =: random noise; A : adversarial perturbation; &: our patch replacement quantizer.

to their input, one may constrain e.g. each layer to be a Lipschitz function [START_REF] Gu | Towards Deep Neural Network Architectures Robust to Adversarial Examples[END_REF][START_REF] Tsuzuku | Lipschitz-margin training: Scalable certication of perturbation invariance for deep neural networks[END_REF]. However, these defenses are either expensive to train or not practical due to their mathematical hypotheses.

Considering adversarial perturbations as a special kind of noise is a simple and practical perspective. Motivated by this, a number of defenses detect the adversarial image and/or pre-process input images to remove the eect of the adversarial perturbation [START_REF] Guo | Countering Adversarial Images using Input Transformations[END_REF][START_REF] Liang | Detecting adversarial image examples in deep neural networks with adaptive noise reduction[END_REF][START_REF] Lu | Safetynet: Detecting and rejecting adversarial examples robustly[END_REF][START_REF] Prakash | Protecting JPEG images against adversarial attacks[END_REF][START_REF] Xu | Feature squeezing: Detecting adversarial examples in deep neural networks[END_REF]. For instance, MagNet [START_REF] Meng | Magnet: a two-pronged defense against adversarial examples[END_REF] uses auto-encoders to project the input image to the manifold of natural images. However, these approaches are complicated to train, attack-specic or vulnerable in white-box settings.

It is well-known that DNNs, such as AlexNet [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF], Inception [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] and ResNet-50 [START_REF] He | Identity mappings in deep residual networks[END_REF], are robust to random noise and transformations such as cropping, reshaping, and rotation but vulnerable to adversarial perturbations, even when the are of much smaller magnitude than random noise. By considering adversarial perturbations as a special kind of noise, a fundamental question arises:

What is the dierence between random noise and adversarial perturbations?

To answer this question, we consider images with random noise and adversarial perturbations as inputs to a ResNet-50 classier.

For adversarial perturbations, we use the DDN attack [START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF], which is known for its very low distortion. The network generalizes to random noise despite an accuracy drop of around 3%, but is completely deceived by adversarial perturbations. We measure the magnitude of the noise or perturbations relative to intermediate features and observe its evolution through network layers. In particular, given input G and noise/perturbation A , we measure the relative distortion in layer ! as k5 ! (G + A) 5 ! (G)k /k5 ! (G) k, where 5 ! (•) is the part of network from the input to layer ! and layer 0 is the input.

As shown in Figure 1, the relative distortion of random noise increases fast at the beginning because max pooling amplies the distortion by taking the maximum values locally, and decreases at the end because average pooling weakens the eect of noise. By contrast, the relative distortion of adversarial perturbations increases slowly at the beginning and faster at the end.

In image space, random noise is of much larger relative distortion than adversarial perturbations (0.044 vs. 0.003). However, the situation is reversed at the logit layer (0.251 vs. 0.457). We speculate that adversarial perturbations at the logit layer focus on a particular class, resulting in misclassication. We conrm this by measuring the entropy of the output distribution as 0.76 on clean inputs, 0.73 on images with random noise but 0.69 on adversarial images.

Based on these observations, we propose to transform inputs and features such that adversarial perturbations behave more like random noise. To do so, we split them into patches, both spatially and over channel dimensions, and replace them with nearest neighbors in a codebook learned from clean training data. This introduces quantization noise that reduces the eect of adversarial perturbations, while having little eect on legitimate images. Codebook learning is independent of network training and patch replacement is ecient at inference time.

We nd that it is most eective to apply patch replacement to the early layers of the network, including the input image. By doing so, we achieve indeed a behavior similar to random noise, even when the input is adversarial, as shown in Figure 1. This improves signicantly the robustness against adversarial attacks, while slightly reducing the accuracy on legitimate images.

Contributions Our contributions can be summarized as follows:

• we introduce a relatively simple and ecient defense, without network training or using any attack, which can be easily adapted to networks of dierent architecture; • we investigate experimentally the impact of patch replacement in dierent layers and the inuence of codebook quality; • we apply patch replacement on images as well as features at dierent layers, nding a good trade-o between accuracy and robustness; • we outperform other transformation-based defenses in both gray-box and white-box settings; and • we achieve better accuracy than adversarial training and even better robustness under attacks of low distortion.

The rest of the paper is organized as follows. Section 2 briey recaps defenses against adversarial perturbations. Section 3 presents our patch replacement defense, and section 4 provides experimental analysis and comparisons. Conclusions are drawn in section 5.

RELATED WORK

Existing defenses are either reactive [START_REF] Guo | Countering Adversarial Images using Input Transformations[END_REF][START_REF] Liang | Detecting adversarial image examples in deep neural networks with adaptive noise reduction[END_REF][START_REF] Lu | Safetynet: Detecting and rejecting adversarial examples robustly[END_REF][START_REF] Prakash | Protecting JPEG images against adversarial attacks[END_REF][START_REF] Xu | Feature squeezing: Detecting adversarial examples in deep neural networks[END_REF], i.e. adding an extra element to detect or remove adversarial perturbation, or proactive [START_REF] Hao-Yun Chen | Improving adversarial robustness via guided complement entropy[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Lyu | A unied gradient regularization family for adversarial examples[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF][START_REF] Papernot | Distillation as a defense to adversarial perturbations against deep neural networks[END_REF][START_REF] Ra | Barrage of random transforms for adversarially robust defense[END_REF][START_REF] Tramèr | Ensemble Adversarial Training: Attacks and Defenses[END_REF], i.e. making the network intrinsically robust against adversarial attacks. Reactive methods are easy to compute and adapt to dierent networks but vulnerable in white-box settings, while proactive methods are more robust but expensive and hard to integrate into a new model since they train the network, either from scratch or by ne-tuning.

Transformation-based defenses [START_REF] Guo | Countering Adversarial Images using Input Transformations[END_REF][START_REF] Prakash | Protecting JPEG images against adversarial attacks[END_REF][START_REF] Sun | Adversarial Defense by Stratied Convolutional Sparse Coding[END_REF][START_REF] Xie | Mitigating adversarial eects through randomization[END_REF] are reactive defenses that attempt to reform adversarial examples while not changing their semantics. Basic transformations, such as cropping, rescaling, bit-depth reduction, jpeg compression, total variance minimization, and image quilting, succeed in removing adversarial eects to some extent [START_REF] Guo | Countering Adversarial Images using Input Transformations[END_REF]. Inspired by this result, feature squeezing [START_REF] Xu | Feature squeezing: Detecting adversarial examples in deep neural networks[END_REF] detects adversarial perturbations by comparing features of given inputs and their ltered versions. However, these defenses fail to defend against strong attacks [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF].

To make the transformation-based defenses more robust, pixel deection [START_REF] Prakash | Deecting adversarial attacks with pixel deection[END_REF] redistributes pixels according to a robust activation map generated by Class Activation Maps (CAM) [START_REF] Zhou | Learning deep features for discriminative localization[END_REF] and softens the introduced noise and adversarial perturbations by a subsequent wavelet-based denoising operation. Inspired by pixel deection, CIIDefence [START_REF] Gupta | Ciidefence: Defeating adversarial attacks by fusing class-specic image inpainting and image denoising[END_REF] reconstructs the small and carefully selected image areas that are most inuential to the current prediction according to the class activation map obtained for multiple top-ranking class labels. These works achieve good performance in gray-box settings but are still relatively vulnerable in white-box settings.

Another class of transformation-based methods attempts to map inputs to a latent space, such that legitimate images and their adversarial versions share the same representations [START_REF] Vishaal Munusamy Kabilan | Vectordefense: Vectorization as a defense to adversarial examples[END_REF][START_REF] Moosavi-Dezfooli | Divide, denoise, and defend against adversarial attacks[END_REF][START_REF] Ramanathan | Robustness of saak transform against adversarial attacks[END_REF][START_REF] Sun | Adversarial Defense by Stratied Convolutional Sparse Coding[END_REF]. These defenses are normally more expensive than other transformationbased methods, but require less computation cost than proactive methods. For instance, Divide, Denoise and Defend (D3) [START_REF] Moosavi-Dezfooli | Divide, denoise, and defend against adversarial attacks[END_REF] encodes the input according to multiple sparse dictionaries for dierent sparsity levels. It divides the input into multiple patches and denoises each one with sparse reconstruction. It builds a set of dictionaries greedily by selecting important and diverse patches.

Adversarial perturbations are amplied through the layers of a network and introduce noise in otherwise at areas of their features. Based on this observation, a new architecture design, i.e. denoising block [START_REF] Xie | Feature denoising for improving adversarial robustness[END_REF], reduces their eect by feature denoising. BlurNet [START_REF] Ravi | Blurnet: Defense by ltering the feature maps[END_REF] proposes to remove high frequencies via a depthwise convolution layer of standard blur kernels after the rst layer and is eective against the Robust Physical Perturbations (RP 2) [START_REF] Eykholt | Robust physicalworld attacks on deep learning visual classication[END_REF] attack. Asadi et al. [START_REF] Asadi | Diminishing the eect of adversarial perturbations via rening feature representation[END_REF] propose a method based on whitening coloring transform to diminish the misrepresentation of any desirable layer caused by adversaries. These works indicate the importance of intermediate features in augmenting robustness.

Inspired by these approaches, we introduce patch replacement, a transformation-based method that removes the adversarial eect from both input images and features. Patch replacement shares a similar principle with D3 [START_REF] Moosavi-Dezfooli | Divide, denoise, and defend against adversarial attacks[END_REF]. However, to our knowledge, it is the rst transformation-based defense on both images and intermediate features, achieving a good trade-o between accuracy and robustness. Also, as a variant of matching pursuit, D3 is expensive. Our approach is more ecient, both at learning (by :-means) and at inference (by directly quantizing). Since the code of D3 is not published, we cannot compare to it experimentally.

METHODOLOGY

Patch replacement is a transformation-based defense against adversarial perturbations. It reduces the adversarial eect not only from images but also from feature maps, i.e. intermediate representations of convolutional, pooling, and fully connected layers. We rst decompose inputs and feature maps into patches and replace them with their nearest neighbor according to a codebook learned on training data. To understand the approach, we rst discuss preliminary concepts of features, slices, and patches. We then explain how we build the codebook and introduce a number of replacement strategies to limit the loss of information incurred by quantization.

Preliminaries

A Convolutional Neural Network (CNN) processes images into a sequence of feature maps obtained by learnable convolutional layers. As shown in Figure 2(a), a feature map has depth ⇡, the number of lter channels, as well as height and width , , which depend on the input size and the stride and padding of convolutional layers. We denote the feature map of layer ! by tensor

:= 5 ! (G) 2 R , ⇥ ⇥⇡ ,
where G is the input image, 5 ! denotes the part of network from the input to layer ! and layer 0 is the input (5

! (G) = G).
To combat the curse of dimensionality, we rst decompose features into slices. That is, a feature is represented as a concatenation of slices over lter channels, i.e. = [1 , 2 , • • • , <] where : denotes a slice. As shown in Figure 2(b), slice : := (: 1)3+1::3 2 R , ⇥ ⇥3 contains channels (: 1)3 + 1 to :3 of feature map , where 3 is the depth of the slice and 3 ⇥ < = ⇡.

Each slice : is then decomposed into sub-tensors with same depth but smaller width and height over spacial locations. Each sub-tensor is called a patch % 8 9: where 8, 9 denote the horizontal and vertical location and : denotes the slice. More precisely, patch % 8 9: := : (8 0 : 8 + 0, 9 0 : 9 + 0) is a sub-tensor of size (20 + 1) ⇥ (20 + 1) ⇥ 3, centered at location (8, 9) of slice : . Patches can be sampled densely or sparsely. In the sparse case, patch centers are sampled on a spatial grid with cell size 2. When 2 = (20 + 1), there is no overlapping among patches, as shown in Figure 2(c); while for 2 < (20 + 1), patches overlap.

Codebook

To be able to replace patches, we learn a codebook from patches of training data. For each slice : , we learn a quantizer @ : , whose objective is to quantize patches obtained from this particular slice. Each quantizer @ : has its own codebook ⇠ : with codewords, learned by -means. At inference, we decompose the feature map of a test image into slices and patches and use the corresponding quantizer to nd their nearest neighbors in the training data and replace them.

The set of codebooks ⇠ : for all slices : can be seen as a codebook [START_REF] Jegou | Product quantization for nearest neighbor search[END_REF]. PQ allows a codebook size that is exponential in the number < of slices, while both training and inference are linear in <. The number of centroids per slice and the depth 3 of slices control the quality of the codebook ⇠. To maintain classication accuracy of legitimate images, we need a ne codebook; whereas, to remove the eects of adversarial perturbations, we need a coarse codebook. To handle this trade-o, we introduce replacement strategies as follows.

⇠ := ⇠ 1 ⇥ • • • ⇥ ⇠ < according to product quantization (PQ)

Replacement Strategies

When the codebook is coarse, quantization incurs a signicant loss of information. To limit the loss, we introduce a number of quantization strategies. Those are functions of a given quantizer that are continuous in a given parameter. For the sake of simplicity, we denote a general patch (in any spatial location or slice) as % and a general quantizer (in any slice) as @ in this subsection. The nearest patch of % is then denoted as @(%).

Plain strategy As shown in Figure 3(a), the baseline strategy refers to directly replacing patches by their nearest codewords, i.e. % 0 = @(%). ! 2 strategy As shown in Figure 3(b), we limit quantization of % within the ! 2 ball of radius n > 0 centered at %. If the nearest codeword is inside this ! 2 ball, we replace % with @(%); otherwise, we project @(%) on the ball:

@ ! 2 (%) := (@(%) k@(%) % k < n % + nn(@(%) %) otherwise, (1)
where n(%) := %/k% k for any patch %.

! 1 strategy As shown in Figure 3(c), we limit quantization of % within the ! 1 ball of radius n > 0 centered at %. If the nearest codeword is inside this ! 1 ball, we replace % with @(%), otherwise we project @(%) on the ball (clip element-wise):

@ ! 1 (%) := % + clip [n,n] (@(%) %). (2
)
Linear strategy As shown in Figure 3(d), we use a linear interpolation between the original patch % and its nearest codeword @(%):

@ lin (%) := % + _(@(%) %), (3)
where _ 2 [0, 1]. ! 2 and ! 1 strategies limit the distortion within n but according to dierent norms. When n = 0, the patch % is not replaced. When n is large enough, both strategies are equivalent to the plain strategy. Instead of setting a limit on the distortion, the linear strategy interpolates between the original patch % and its nearest codeword @(%) with interpolation factor _. When _ = 0, the patch is not replaced. When _ = 1, the linear strategy is equivalent to the plain strategy.

Reconstruction

After quantizing the patches % into % 0 according to a replacement strategy, we reconstruct a feature map 0 from these patches. For every slice, we concatenate all patches % 0 over spatial locations, applying linear interpolation if patches are overlapping. We then concatenate all slices over channels, i.e.

0 = [0 1 , 0 2 , • • • , 0 <].
As a whole, we denote the patch replacement operation, including quantization and reconstruction, as 0 = & ().

We then feed the reconstructed feature map 0 through the remaining part of the network to obtain a prediction for the original input. Since the reconstructed feature 0 consists of the nearest patches in the learned codebook, 0 preserves the semantic information of the original input, while reducing the adversarial eect.

When we reconstruct features, the stride 2 determines whether patches are overlapping or not. The example of Figure 4 shows that with overlap (2 < 20 + 1), the reconstructed features F 0 are smoother than without (2 = 20 +1). We prefer the smoother features since it works slightly better in all experiments.

Multi-layer patch replacement

Depending on the size of images and feature maps, codebooks with similar parameters on dierent layers have dierent qualities. To further investigate the trade-o between accuracy and robustness, we propose to apply patch replacement on multiple layers. We rst apply patch replacement on a chosen layer, then reconstruct the new feature map, feed it to the network and apply patch replacement on another layer. On one hand, patch replacement on multiple layers provides more space to search for the optimal trade-o, allowing to progressively remove the adversarial eect at multiple layers. On the other hand, it increases the complexity as a defense, so that it is more dicult to be attacked.

EXPERIMENTS

We evaluate our method patch replacement (PR) and compare it to existing defenses under the gray-box setting and white-box setting.

Experimental setup

Dataset We use the ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] dataset. We randomly sample 50, 000 images (50 per class) from the training set to learn a codebook and 1, 000 images (one per class) from the validation set for testing.

Networks All experiments are carried out on PyTorch1 . We use the pre-trained ResNet-50 [START_REF] He | Identity mappings in deep residual networks[END_REF] from PyTorch-Torchvision models2 , whose accuracy is 75.7% on the test set. As robust network, we take ResNet-50 as pre-trained by adversarial training 3 on adversarial examples generated by Projected Gradient Descent (PGD) attack with ! 1 upper bound n = 8 [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF].

Attacks For the gray-box setting, we employ the target success attack DDN [START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF] with 20 iterations, which achieves a 0.999 success rate on the test set against ResNet-50, and the target distortion attacks Fast Gradient Sign Method (FGSM) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], PGD [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF], and Basic Iterative Method (BIM) [START_REF] Kurakin | Adversarial examples in the physical world[END_REF] with 20 iterations for PGD and BIM. The implementation of DDN [START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF] is from its authors 4 and the implementation of FGSM, PGD, and BIM is from foolbox 5 .

For the white-box setting, we use Backward Pass Dierentiable Approximation (BPDA) [2] 6 , a smart attack for transformation-based defenses, using 20 iterations. It is also a target distortion attack that is equivalent to PGD when there is no defense.

The distortion bound n for target distortion attacks is discussed with evaluation metrics below.

Competitors We compare patch replacement to other defense methods, including adversarial training and other transformationbased defenses. For adversarial training, we use ResNet-50 pretrained with PGD [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] as discussed above. As transformation-based defenses, we use bit-depth reduction to 3 bits and 5 bits, denoted as bit3 and bit5 [START_REF] Guo | Countering Adversarial Images using Input Transformations[END_REF]; median smoothing lter with a kernel size of two and three, denoted as ms2 and ms3 [START_REF] Xu | Feature squeezing: Detecting adversarial examples in deep neural networks[END_REF]; pixel deection [START_REF] Prakash | Deecting adversarial attacks with pixel deection[END_REF] with CAM as a robust activation map 7 .

Evaluation metrics In ablation, we evaluate patch replacement by accuracy on both legitimate images (original accuracy) and adversarial images (adversarial accuracy). At testing, we also use success rate and distortion. For accuracy and distortion, higher is better; for success rate, lower is better.

Given a test set of # 0 images, we only consider its subsetof # images that are classied correctly without attack. The accuracy of the classier on legitimate images is thus # /# 0 . Letsuc be the subset ofwith # suc := |suc | where the attack succeeds and let ⇡ (x) := kx yk be the distortion for image x 2suc , where y is the closest adversarial example the attack succeeds to forge. The global statistics are the success probability (rate) % suc and conditional average distortion ⇡

% suc := # suc # , ⇡ := 1 # suc ' x2-suc ⇡ (x). (4)
Here, ⇡ is conditioned on success. Indeed, distortion makes no sense for a failure. For target success attacks, the attack is only performed once per image, which yields success/failure and a distortion result.

For target distortion attacks, we use a xed distortion bound n = 0.03 when measuring adversarial accuracy and a set of values 8 for n when measuring success rate and distortion. In the latter case, we increase n until the attack succeeds, yielding a distortion measurement, or the attack fails for all n. We also use operating characteristics [START_REF] Zhang | Smooth adversarial examples[END_REF][START_REF] Zhang | Walking on the edge: Fast, low-distortion adversarial examples[END_REF], which provide a more detailed picture of this process.

Ablation study: single layer

Codebook quality When applying patch replacement to a single layer, we evaluate the eect of the quality of the codebook and the layer where we apply patch replacement.

The quantizers of all slices are trained independently. The quality of the codebook depends on the number of clusters for -means and the depth 3 of a slice. A larger or a smaller 3 results in a ner codebook, preserving more information but doing little against an attack. We vary from 392 to 785, 568 and 3 from 1 to 8. A compete list of values for and 3 we have explored in dierent layers is given in Table 1.

In Figure 5, points on the left have a coarse codebook (small / large 3) and points on the bottom right have a ne codebook (large / small 3). A coarse codebook improves the adversarial accuracy but 7 https://github.com/iamaaditya/pixel-deection 8 n 2 {0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.08, 0.1} Figure 5: Eect of codebook quality, as controlled by (number of clusters) and 3 (slice depth), applying patch replacement on dierent layers independently, using the plain strategy. We plot the accuracy in the same curve for varying , 3 per layer, ranking the points according to original accuracy.

drops the original accuracy. By contrast, a ne codebook maintains original accuracy but is of little help for adversarial accuracy. We further observe from Figure 5 that the deeper layer we choose, the worse performance we get overall (trade-o between original and adversarial accuracy). This can be attributed to the fact that the eect of the adversarial perturbation is amplied in deeper layers, as shown in Figure 1. It is thus best to apply the defense as early as possible. The best single-layer setting is in the top right corner of Figure 5, i.e. = 3927, 3 = 1 on images (layer 0). This gives original accuracy 71.7% (4% loss compared with baseline) and adversarial accuracy 64.2% (64.1% gain compared with baseline). For the rst layer, the best setting is = 235671, 3 = 4, giving original accuracy 65.7% and adversarial accuracy 53.7%.

Eect through network layers By selecting the best setting, i.e. = 3927, 3 = 1 on images, we study the eect or random noise and adversarial perturbation with and without patch replacement through the network layers. Figure 6 is an extension of Figure 1 and it conrms that our patch replacement changes the behavior of the adversarial perturbation through the network and makes it similar to random noise: the quantized original input & (G) and the quantized adversarial input & (G + A) (green and black line, respectively) are near identical and similar to random noise (blue line) when compared to the input G and give small distortion when compared to each other (brown line).

Replacement strategy When applying patch replacement to either the image or the rst network layer and xing the codebook quality, we evaluate the eect of the replacement strategy. We choose = 3927, 3 = 1 in the image layer and = 235671, 3 = 4 in the rst layer, as discussed in the previous paragraph. We control the replacement strategies by parameters n or _. We let n, _ 2 {0, 0.1, . . . , 0.9, 1} for ! 2 and linear strategies. For ! 1 strategy, we let n 2 {0, 0.01, . . . , 0.09, 0.1} on the image layer and n 2 {0, 0.01, . . . , 0.19, 0.2} on the rst layer.

In Figure 7, points in the bottom right corner correspond to n = 0 or _ = 0. In this case, any replacement strategy other than plain strategy is equivalent to the original network (no defense). Points in the top left corner correspond to the maximum value of n for ! 2 strategy (n = 1) and ! 1 (n = 0.1), and _ = 1 for the linear strategy. These cases are equivalent to the plain strategy.

As shown in Figure 7, the behavior of all strategies is similar and there is no clear winner. In general, points in the top right corner are more interesting. These points correspond to strategies improving the original accuracy comparing to the plain strategy, while maintaining the adversarial accuracy or even improving it slightly. We highlight three particular settings:

• Image layer, ! 1 strategy with n = 0.1: original accuracy 72.0% (0.3% gain compared to plain strategy), adversarial accuracy 64.0% (0.2% loss compared to plain strategy). • Image layer, ! 1 strategy with n = 0.17: original accuracy 71.7% (zero loss), adversarial accuracy 64.5% (0.3% gain). • Layer 1, ! 1 strategy with n = 0.17: original accuracy 69.3%

(3.6% gain), adversarial accuracy 55.6% (1.9% gain). By comparing Figure 7(a) with Figure 7(b), it can be seen that replacement strategies in the rst layer improve the performance more than on images. This is possibly due to the fact that the codebook chosen from Figure 5 for images is ner than the codebook chosen for the rst layer.

Ablation study: multi-layer

From single layer experiments, we know that

• patch replacement on images works with a ne codebook, giving high original and adversarial accuracy; • patch replacement on features of the rst layer works with a coarse codebook; and • replacement strategies help patch replacement in the rst layer most, increasing original accuracy while maintaining or slightly improving adversarial accuracy. To benet from both ne and coarse codebooks, we investigate applying patch replacement on both the image layer and the rst layer. We take the setting of patch replacement on images with the plain strategy, i.e. = 3927, 3 = 1, losing 4% original accuracy but gaining 64.1% adversarial accuracy. We then apply patch replacement in the rst layer, where we nd that the best codebook with With codebooks being xed in both the image layer and the rst layer, we optimize the replacement strategy in the rst layer. In Figure 8, the bottom right point of the plots corresponding to layer 1, is obtained with n/_ = 0, such that patch replacement only applies to images. This is the same as the top left point of the image layer plot, which corresponds to the plain strategy for that layer. We observe that replacement strategies on layer 1 improve the adversarial accuracy while losing little or no original accuracy. Thus, the combination of patch replacement on both layers achieves a more interesting operating point in terms of both accuracies. We select the ! 1 strategy with n = 0.01, giving original accuracy 71.8% and adversarial accuracy 66.0%.

It is possible to apply patch replacement to more layers, xing the settings of the rst layers before optimizing the next. However, this process is expensive and increases the inference cost and required space for codebooks, while the improvement in performance is small. We thus apply patch replacement only to images and layer 1.

Comparisons

We investigate two kinds of attacks. Gray-box attacks have full knowledge of the original network but no knowledge of the defense. White-box attacks are aware of both the network and the transformation-based defense. Our defense as well as the other transformation-based defenses perform better on adversarial images with small distortion, DDN in particular. For adversarial images with large distortion, patch replacement still outperforms other transformation-based defenses. Focusing on success rate and distortion, all attacks need greater distortion for the same success rate close to 1, but the required distortion is greatest under patch replacement.

Gray-box attacks As shown in

Figure 9 provides an detailed view of the performance of patch replacement against gray-box attacks using operating characteristics [START_REF] Zhang | Smooth adversarial examples[END_REF][START_REF] Zhang | Walking on the edge: Fast, low-distortion adversarial examples[END_REF]. The plots with patch replacement are all below the plot without, meaning that attacks either need more distortion for the same success rate, or have less success rate for the same distortion. For example, when xing ⇡ = 5, all attacks achieve success rate 0.7 or more on the original network but roughly 0.5 or less against patch replacement. Conversely, when xing % suc = 0.5, a distortion around 2 is enough for all attacks to succeed against the original network, but against patch replacement, a distortion of more than 7 is needed.

White-box attacks

We use BPDA [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF] smart attack, which includes the transformation-based defense in the forward pass but replaces it with the identity function in the backward. We apply BPDA on patch replacement as well as the other transformation-based defenses but not adversarial training, as this would be equivalent to PGD.

As shown in the rightmost part of Table 2, for competing defenses, BPDA has near zero adversarial accuracy, success rate of 1 and small distortion, less than 2 on average. By contrast, for patch replacement, it has adversarial accuracy 48.3, success rate 0.89 and average distortion of more than 12. Patch replacement is thus an effective defense against this smart attack, while competing defenses are not.

Figure 10 elaborates on the previous results by using operating characteristics [START_REF] Zhang | Smooth adversarial examples[END_REF][START_REF] Zhang | Walking on the edge: Fast, low-distortion adversarial examples[END_REF]. Patch replacement not only outperforms all other transformation-based defenses by a large margin, but it also improves over the baseline of BPDA against the original network, while all other defenses are actually outperformed by the baseline. This means that in the white-box setting, patch replacement makes the network more robust even though the attacker is aware of the defense, while all other transformation-based defenses fail by making the network easier to attack.

CONCLUSION

Motivated by the fact that networks are robust against random noise but vulnerable to adversarial perturbations, we have introduced patch replacement, a transformation-based defense, which succeeds in making adversarial perturbations behave similarly to random noise and defending against adversarial attacks with at low training and inference cost.

We have found it most eective to apply patch replacement in the early stages of the network, in particular, to input images and the rst layer. This indicates that the eect of the perturbation is amplied in the deeper layers and is thus harder to remove. Applying patch replacement to both input images and the rst layer improves the trade-o between accuracy and robustness.

Patch replacement is more eective than other transformationbased defenses. Against a gray-box attack with lower distortion (DDN [START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF]) and a white-box attack (BPDA [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF]), it is even more eective than adversarial training, which is notoriously more expensive to train. In the case of the white-box attack, all other transformationbased defenses fail, making the network easier to attack.

A ⇢ 8 LATTICE CODEBOOK

Other than the product quantization codebook, we also use the ⇢8 lattice as a codebook. The ⇢8 lattice is a special lattice in R 8 that is not data-dependent and does not need training. Due to its denition, the ⇢8 lattice only deals with 8-dimensional vectors. This is not convenient for input images, but we do use it on features, attening each patch tensor and decomposing it into 8-dimensional subvectors. The parameter B controlling the scale of the lattice determines the density of codewords. We let B 2 {0.1, 0.2, . . . , 0.9}.

Results

As shown in Figure 11, the behavior is similar to PQ codebooks, in the sense that earlier layers work better and a ne codebook (small B) preserves original accuracy but loses in adversarial accuracy, as if patch replacement missing (bottom right). Since the ⇢8 lattice does not need training, it can be used to quickly explore the properties of patch replacement. However, the best ⇢8 codebook for layer 1 is worse (original 68.1%, adversarial 50.2%) than the best PQ codebook for layer 1 (original 65.7%, adversarial 53.7%) in Figure 5. Replacement strategies can partially recover original accuracy but not adversarial accuracy. Hence, after quick exploration, we switch to PQ codebooks for performance. Figure 11: Eect of ⇢8-lattice codebook quality, controlled by scale parameter B, applying patch replacement on dierent layers independently, using the plain strategy. We plot accuracy for varying B in the same curve per layer.

GFigure 1 :

 1 Figure 1: Making adversarial perturbation behave like noise.Relative distortion of random noise, adversarial perturbation and our patch replacement on input images (layer 0) vs. ResNet-50 layer, averaged over the ImageNet test set. Random noise follows a normal distribution and adversarial perturbations are generated by Decoupling Direction and Norm (DDN) attack[START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF]. G: original input image; =: random noise; A : adversarial perturbation; &: our patch replacement quantizer.

Figure 2 :

 2 Figure 2: (a) Feature map with width , , height and depth ⇡. (b) We decompose the feature map into slices along depth (over channels). (c) For each slice, we decompose the feature map into patches over spatial locations.

Figure 3 :

 3 Figure 3: Visualization of the four replacement strategies. Black: codewords; red: original patches; green: replaced patches. In (b), dashed circles indicate ! 2 balls with radius n. In (c), the dashed boxes indicate ! 1 balls with radius n.

Figure 4 :

 4 Figure 4: Reconstruction of rst layer features with overlap (2 < 20 + 1) and without overlap (2 = 20 + 1).

GFigure 6 :

 6 Figure6: Relative distortion of random noise, adversarial perturbation and our patch replacement on input images (layer 0) using the plain strategy vs. ResNet-50 layer, averaged over the ImageNet test set. Random noise follows a normal distribution and adversarial perturbations are generated by DDN[START_REF] Rony | Decoupling direction and norm for ecient gradientbased l2 adversarial attacks and defenses[END_REF]. G: original input image; =: random noise; A : adversarial perturbation; &: our patch replacement quantizer.

Figure 7 :

 7 Figure 7: Eect of replacement strategies for varying parameters n, _, applying patch replacement independently on (a) image layer with = 3927, 3 = 1; and (b) rst layer with = 235671, 3 = 4.

Figure 8 :

 8 Figure8: Based on the best codebook and strategy on the image layer, we add patch replacement on layer 1 with the best codebook, and nd the best strategy for this combination.

Figure 9 :

 9 Figure 9: Operating characteristics of gray-box attacks against ResNet-50, with patch replacement (PR) and without (baseline).

Figure 10 :

 10 Figure10: Operating characteristics of white-box attack BPDA[START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF] against dierent defenses or the original network (baseline). PR: patch replacement. % suc : success rate; ⇡: distortion.

Table 1 :

 1 The list of the number of clusters and slice depth 3 for dierent layers tested for codebooks. Depth ⇡ is the number of lter channels on the given layer.

			3 ⇡
	image 1 3	392, 785, 3927, 6284, 7855, 11783, 15711, 19639, 26185, 31422, 39278, 58917, 78557, 117835, 157114, 235671
	layer 1	4 64 39278, 78557, 117836, 157114, 235671, 314228, 785568 8 64 39278, 78557, 117836, 157114, 261856, 392784, 785568
			2 256	78557
	layer 4	4 256	78557, 785568
			8 256	78557
			2 256	78557
	layer 7	4 256	78557
			8 256	78557, 785568
			2 256	78557, 785568
	layer 10	4 256	78557, 785568
			8 256	78557, 785568
				image
		60		layer 1
	adversarial accuracy	20 40		layer 4 layer 7 layer 10
				50	60	70
				original accuracy

Table 2 ,

 2 adversarial training with PGD performs poorly on legitimate images (45.9%). It is vulnerable against DDN attack, but it defends well against FGSM, BIM, and PGD. Transformation-based defenses, like bit5 and ms2, have slightly higher original accuracy than patch replacement but signicantly lower adversarial accuracy. Comparing to bit5 and ms2, patch replacement gains around 20% on adversarial images obtained by BIM, PGD and DDN, while it loses around 3% on legitimate images. Comparing to pixel deection, patch replacement loses around 1.5% on legitimate images but gains around 8% on adversarial images of DDN and more on BIM and PGD.

Table 2 :

 2 Original accuracy, adversarial accuracy, success rate (% suc) and average distortion (⇡) for combinations of defenses (adversarial training and transformation-based) and attacks, including gray-box (FGSM, BIM, PGD, DDN) and white-box (BPDA).

	M	O A A % suc FGSM [6]	⇡	BIM [15] A % suc	⇡	PGD [19] A % suc	⇡	DDN [28] A % suc	⇡	BPDA [2] A % suc	⇡
	Baseline	75.7 12.1 0.95 5.13 1.20 1.00 2.50 3.80 1.00 3.12 0.10 1.00 0.53 3.80 1.00 3.12
	Patch replacement (ours) 71.8 23.2 0.92 7.98 30.1 0.99 6.10 46.4 0.83 7.21 66.0 0.08 0.57 48.3 0.89 12.89
	Adv. training [19]	45.9 44.3 0.69 6.25 44.1 0.67 5.07 44.3 0.65 3.81 19.0 0.58 0.32	-	-	-
	Bit3 [8]	64.7 17.8 0.94 6.66 17.5 1.00 4.53 32.9 0.98 6.30 55.1 0.15 0.49 0.9 1.00 1.00
	Bit5 [8]	74.9 12.2 0.95 5.42 1.70 1.00 2.93 6.50 1.00 3.81 18.9 0.75 0.53 1.9 1.00 1.00
	Ms2 [36]	74.2 21.2 0.93 7.71 13.1 0.99 4.57 26.5 0.92 5.62 47.9 0.33 0.51 3.3 1.00 1.76
	Ms3 [36]	71.8 21.0 0.95 7.66 17.8 0.98 4.76 34.2 0.84 5.45 55.6 0.23 0.53 1.6 1.00 1.25
	Pixel deection [23]	73.2 16.4 0.94 6.97 13.4 1.00 4.57 31.0 1.00 6.70 58.6 0.20 0.53 1.3 1.00 0.89

We use PyTorch1.4.0-py3.7 with CUDA 10.0.130.

https://github.com/Cadene/pretrained-models.pytorch

https://github.com/MadryLab/robustness

https://github.com/jeromerony/fast_adversarial

https://github.com/bethgelab/foolbox

https://github.com/Annonymous-repos/attacks-in-pytorch

http://www.genci.fr/?lang=en

Acknowledgements Experiments were performed using HPC resources of GENCI-IDRIS 9 (Grant 2019-AD011011287). This work is supported by ANR chaire IAD SAIDA (Grant ANR-20-CHIA-0011-01).