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ABSTRACT
Deep Neural Networks (DNNs) are robust against intra-class vari-
ability of images, pose variations and random noise, but vulnerable
to imperceptible adversarial perturbations that are well-crafted
precisely to mislead. While random noise even of relatively large
magnitude can hardly a�ect predictions, adversarial perturbations
of very small magnitude can make a classi�er fail completely.

To enhance robustness, we introduce a new adversarial defense
called patch replacement, which transforms both the input images
and their intermediate features at early layers to make adversarial
perturbations behave similarly to random noise. We decompose
images/features into small patches and quantize them according to
a codebook learned from legitimate training images. This maintains
the semantic information of legitimate images, while removing as
much as possible the e�ect of adversarial perturbations.

Experiments show that patch replacement improves robustness
against both white-box and gray-box attacks, compared with other
transformation-based defenses. It has a low computational cost
since it does not need training or �ne-tuning the network. Impor-
tantly, in the white-box scenario, it increases the robustness, while
other transformation-based defenses do not.
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1 INTRODUCTION
Adversarial perturbations are modi�cations of small magnitude on
images, almost imperceptible to human eyes, which lead classi�ers
to make erroneous predictions [31]. They reveal the vulnerability of
Deep Neural Networks (DNNs) and the potential danger in machine
learning-based applications, for instance, tra�c sign detection in
self-driving cars.

Based on di�erent assumptions on adversarial perturbations,
di�erent defenses are proposed to address the security problem
and enhance the robustness of networks against adversarial at-
tacks. Considering the lack of corresponding data, adversarial train-
ing [6, 19] includes adversarial images as part of training data. It
improves the robustness against adversarial attacks, but decreases
the accuracy of legitimate images and is very expensive to train.

Several works improve the architecture of networks, assuming
that attackers take advantage of weaknesses in model design [3, 6,
11, 18, 19, 22, 25, 32]. Instead of using the image labels, distillation
defenses [11, 22] train a small network on the probability vectors
predicted by a large network. To reduce the sensitivity of networks
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Figure 1: Making adversarial perturbation behave like noise.
Relative distortion of random noise, adversarial perturba-
tion and our patch replacement on input images (layer 0) vs.
ResNet-50 layer, averaged over the ImageNet test set. Ran-
domnoise follows a normal distribution and adversarial per-
turbations are generated byDecoupling Direction andNorm
(DDN) attack [28]. G : original input image; =: random noise;
A : adversarial perturbation; & : our patch replacement quan-
tizer.

to their input, one may constrain e.g. each layer to be a Lipschitz
function [7, 33]. However, these defenses are either expensive to
train or not practical due to their mathematical hypotheses.

Considering adversarial perturbations as a special kind of noise
is a simple and practical perspective. Motivated by this, a number
of defenses detect the adversarial image and/or pre-process input
images to remove the e�ect of the adversarial perturbation [8, 16,
17, 24, 36]. For instance, MagNet [20] uses auto-encoders to project
the input image to the manifold of natural images. However, these
approaches are complicated to train, attack-speci�c or vulnerable
in white-box settings.

It is well-known that DNNs, such as AlexNet [14], Inception [30]
and ResNet-50 [10], are robust to random noise and transformations
such as cropping, reshaping, and rotation but vulnerable to adver-
sarial perturbations, even when the are of much smaller magnitude
than random noise. By considering adversarial perturbations as a
special kind of noise, a fundamental question arises:

What is the di�erence between random noise and ad-
versarial perturbations?

To answer this question, we consider images with random noise
and adversarial perturbations as inputs to a ResNet-50 classi�er.



For adversarial perturbations, we use the DDN attack [28], which is
known for its very low distortion. The network generalizes to ran-
dom noise despite an accuracy drop of around 3%, but is completely
deceived by adversarial perturbations. We measure the magnitude
of the noise or perturbations relative to intermediate features and
observe its evolution through network layers. In particular, given
input G and noise/perturbation A , we measure the relative distortion
in layer ! as k 5! (G + A ) � 5! (G)k /k 5! (G)k, where 5! (·) is the part
of network from the input to layer ! and layer 0 is the input.

As shown in Figure 1, the relative distortion of random noise
increases fast at the beginning because max pooling ampli�es the
distortion by taking the maximum values locally, and decreases
at the end because average pooling weakens the e�ect of noise.
By contrast, the relative distortion of adversarial perturbations
increases slowly at the beginning and faster at the end.

In image space, random noise is of much larger relative distor-
tion than adversarial perturbations (0.044 vs. 0.003). However, the
situation is reversed at the logit layer (0.251 vs. 0.457). We speculate
that adversarial perturbations at the logit layer focus on a particular
class, resulting in misclassi�cation. We con�rm this by measuring
the entropy of the output distribution as 0.76 on clean inputs, 0.73
on images with random noise but 0.69 on adversarial images.

Based on these observations, we propose to transform inputs and
features such that adversarial perturbations behave more like ran-
dom noise. To do so, we split them into patches, both spatially and
over channel dimensions, and replace them with nearest neighbors
in a codebook learned from clean training data. This introduces
quantization noise that reduces the e�ect of adversarial perturba-
tions, while having little e�ect on legitimate images. Codebook
learning is independent of network training and patch replacement
is e�cient at inference time.

We �nd that it is most e�ective to apply patch replacement
to the early layers of the network, including the input image. By
doing so, we achieve indeed a behavior similar to random noise,
even when the input is adversarial, as shown in Figure 1. This
improves signi�cantly the robustness against adversarial attacks,
while slightly reducing the accuracy on legitimate images.

Contributions Our contributions can be summarized as follows:

• we introduce a relatively simple and e�cient defense, with-
out network training or using any attack, which can be easily
adapted to networks of di�erent architecture;

• we investigate experimentally the impact of patch replace-
ment in di�erent layers and the in�uence of codebook qual-
ity;

• we apply patch replacement on images as well as features at
di�erent layers, �nding a good trade-o� between accuracy
and robustness;

• we outperform other transformation-based defenses in both
gray-box and white-box settings; and

• we achieve better accuracy than adversarial training and
even better robustness under attacks of low distortion.

The rest of the paper is organized as follows. Section 2 brie�y
recaps defenses against adversarial perturbations. Section 3 presents
our patch replacement defense, and section 4 provides experimental
analysis and comparisons. Conclusions are drawn in section 5.

2 RELATEDWORK
Existing defenses are either reactive [8, 16, 17, 24, 36], i.e. adding
an extra element to detect or remove adversarial perturbation, or
proactive [3, 6, 11, 18, 19, 22, 25, 32], i.e. making the network in-
trinsically robust against adversarial attacks. Reactive methods are
easy to compute and adapt to di�erent networks but vulnerable in
white-box settings, while proactive methods are more robust but
expensive and hard to integrate into a new model since they train
the network, either from scratch or by �ne-tuning.

Transformation-based defenses [8, 24, 29, 34] are reactive de-
fenses that attempt to reform adversarial examples while not chang-
ing their semantics. Basic transformations, such as cropping, rescal-
ing, bit-depth reduction, jpeg compression, total variance minimiza-
tion, and image quilting, succeed in removing adversarial e�ects
to some extent [8]. Inspired by this result, feature squeezing [36]
detects adversarial perturbations by comparing features of given
inputs and their �ltered versions. However, these defenses fail to
defend against strong attacks [2].

To make the transformation-based defenses more robust, pixel
de�ection [23] redistributes pixels according to a robust activation
map generated by Class Activation Maps (CAM) [39] and softens
the introduced noise and adversarial perturbations by a subsequent
wavelet-based denoising operation. Inspired by pixel de�ection,
CIIDefence [9] reconstructs the small and carefully selected image
areas that are most in�uential to the current prediction according
to the class activation map obtained for multiple top-ranking class
labels. These works achieve good performance in gray-box settings
but are still relatively vulnerable in white-box settings.

Another class of transformation-based methods attempts to map
inputs to a latent space, such that legitimate images and their adver-
sarial versions share the same representations [13, 21, 27, 29]. These
defenses are normally more expensive than other transformation-
based methods, but require less computation cost than proactive
methods. For instance, Divide, Denoise and Defend (D3) [21] encodes
the input according to multiple sparse dictionaries for di�erent spar-
sity levels. It divides the input into multiple patches and denoises
each one with sparse reconstruction. It builds a set of dictionaries
greedily by selecting important and diverse patches.

Adversarial perturbations are ampli�ed through the layers of a
network and introduce noise in otherwise �at areas of their features.
Based on this observation, a new architecture design, i.e. denoising
block [35], reduces their e�ect by feature denoising. BlurNet [26]
proposes to remove high frequencies via a depthwise convolution
layer of standard blur kernels after the �rst layer and is e�ective
against the Robust Physical Perturbations (RP2) [5] attack. Asadi
et al. [1] propose a method based on whitening coloring transform
to diminish the misrepresentation of any desirable layer caused by
adversaries. These works indicate the importance of intermediate
features in augmenting robustness.

Inspired by these approaches, we introduce patch replacement, a
transformation-based method that removes the adversarial e�ect
from both input images and features. Patch replacement shares a
similar principle with D3 [21]. However, to our knowledge, it is
the �rst transformation-based defense on both images and inter-
mediate features, achieving a good trade-o� between accuracy and
robustness. Also, as a variant of matching pursuit, D3 is expensive.
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Figure 2: (a) Feature map with width, , height � and depth
⇡ . (b)We decompose the featuremap into slices along depth
(over channels). (c) For each slice, we decompose the feature
map into patches over spatial locations.

Our approach is more e�cient, both at learning (by :-means) and
at inference (by directly quantizing). Since the code of D3 is not
published, we cannot compare to it experimentally.

3 METHODOLOGY
Patch replacement is a transformation-based defense against ad-
versarial perturbations. It reduces the adversarial e�ect not only
from images but also from feature maps, i.e. intermediate represen-
tations of convolutional, pooling, and fully connected layers. We
�rst decompose inputs and feature maps into patches and replace
them with their nearest neighbor according to a codebook learned
on training data. To understand the approach, we �rst discuss pre-
liminary concepts of features, slices, and patches. We then explain
how we build the codebook and introduce a number of replacement
strategies to limit the loss of information incurred by quantization.

3.1 Preliminaries
A Convolutional Neural Network (CNN) processes images into a
sequence of feature maps obtained by learnable convolutional layers.
As shown in Figure 2(a), a feature map has depth ⇡ , the number of
�lter channels, as well as height � and width, , which depend on
the input size and the stride and padding of convolutional layers.We
denote the feature map of layer ! by tensor � := 5! (G) 2 R, ⇥�⇥⇡ ,
where G is the input image, 5! denotes the part of network from
the input to layer ! and layer 0 is the input (5! (G) = G ).

To combat the curse of dimensionality, we �rst decompose fea-
tures into slices. That is, a feature is represented as a concatenation
of slices over �lter channels, i.e. � = [�1, �2, · · · , �<] where �:
denotes a slice. As shown in Figure 2(b), slice �: := � (:�1)3+1::3 2
R, ⇥�⇥3 contains channels (: � 1)3 + 1 to :3 of feature map � ,
where 3 is the depth of the slice and 3 ⇥< = ⇡ .

Each slice �: is then decomposed into sub-tensors with same
depth but smaller width and height over spacial locations. Each
sub-tensor is called a patch %8 9: where 8, 9 denote the horizontal
and vertical location and : denotes the slice. More precisely, patch
%8 9: := �: (8 � 0 : 8 + 0, 9 � 0 : 9 + 0) is a sub-tensor of size
(20 + 1) ⇥ (20 + 1) ⇥ 3 , centered at location (8, 9) of slice �: .

Patches can be sampled densely or sparsely. In the sparse case,
patch centers are sampled on a spatial grid with cell size 2 . When
2 = (20 + 1), there is no overlapping among patches, as shown in
Figure 2(c); while for 2 < (20 + 1), patches overlap.

3.2 Codebook
To be able to replace patches, we learn a codebook from patches
of training data. For each slice �: , we learn a quantizer @: , whose
objective is to quantize patches obtained from this particular slice.
Each quantizer @: has its own codebook ⇠: with  codewords,
learned by  -means. At inference, we decompose the feature map
of a test image into slices and patches and use the corresponding
quantizer to �nd their nearest neighbors in the training data and
replace them.

The set of codebooks⇠: for all slices �: can be seen as a codebook
⇠ := ⇠1 ⇥ · · · ⇥⇠< according to product quantization (PQ) [12]. PQ
allows a codebook size that is exponential in the number< of slices,
while both training and inference are linear in<. The number  of
centroids per slice and the depth 3 of slices control the quality of
the codebook ⇠ . To maintain classi�cation accuracy of legitimate
images, we need a �ne codebook; whereas, to remove the e�ects of
adversarial perturbations, we need a coarse codebook. To handle
this trade-o�, we introduce replacement strategies as follows.

3.3 Replacement Strategies
When the codebook is coarse, quantization incurs a signi�cant
loss of information. To limit the loss, we introduce a number of
quantization strategies. Those are functions of a given quantizer
that are continuous in a given parameter. For the sake of simplicity,
we denote a general patch (in any spatial location or slice) as %
and a general quantizer (in any slice) as @ in this subsection. The
nearest patch of % is then denoted as @(%).

Plain strategy As shown in Figure 3(a), the baseline strategy
refers to directly replacing patches by their nearest codewords, i.e.
% 0 = @(%).

!2 strategy As shown in Figure 3(b), we limit quantization of
% within the !2 ball of radius n > 0 centered at % . If the nearest
codeword is inside this !2 ball, we replace % with @(%); otherwise,
we project @(%) on the ball:

@!2 (%) :=
(
@(%) k@(%) � % k < n
% + nn(@(%) � %) otherwise,

(1)

where n(%) := %/k% k for any patch % .

!1 strategy As shown in Figure 3(c), we limit quantization of
% within the !1 ball of radius n > 0 centered at % . If the nearest
codeword is inside this !1 ball, we replace % with @(%), otherwise
we project @(%) on the ball (clip element-wise):

@!1 (%) := % + clip[�n,n ] (@(%) � %). (2)

Linear strategy As shown in Figure 3(d), we use a linear inter-
polation between the original patch % and its nearest codeword
@(%):

@lin (%) := % + _(@(%) � %), (3)

where _ 2 [0, 1].
!2 and !1 strategies limit the distortion within n but according

to di�erent norms. When n = 0, the patch % is not replaced. When n
is large enough, both strategies are equivalent to the plain strategy.
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Figure 3: Visualization of the four replacement strategies.
Black: codewords; red: original patches; green: replaced
patches. In (b), dashed circles indicate !2 balls with radius
n. In (c), the dashed boxes indicate !1 balls with radius n.

Instead of setting a limit on the distortion, the linear strategy
interpolates between the original patch % and its nearest codeword
@(%) with interpolation factor _. When _ = 0, the patch is not
replaced. When _ = 1, the linear strategy is equivalent to the plain
strategy.

3.4 Reconstruction
After quantizing the patches % into % 0 according to a replacement
strategy, we reconstruct a feature map � 0 from these patches. For
every slice, we concatenate all patches % 0 over spatial locations,
applying linear interpolation if patches are overlapping. We then
concatenate all slices over channels, i.e. � 0 = [� 01, � 02, · · · , � 0<]. As
a whole, we denote the patch replacement operation, including
quantization and reconstruction, as � 0 = & (� ).

We then feed the reconstructed feature map � 0 through the re-
maining part of the network to obtain a prediction for the original
input. Since the reconstructed feature � 0 consists of the nearest
patches in the learned codebook, � 0 preserves the semantic infor-
mation of the original input, while reducing the adversarial e�ect.

When we reconstruct features, the stride 2 determines whether
patches are overlapping or not. The example of Figure 4 shows
that with overlap (2 < 20 + 1), the reconstructed features F 0 are
smoother than without (2 = 20+1). We prefer the smoother features
since it works slightly better in all experiments.

3.5 Multi-layer patch replacement
Depending on the size of images and feature maps, codebooks with
similar parameters on di�erent layers have di�erent qualities. To
further investigate the trade-o� between accuracy and robustness,

(a) with overlap (b) without overlap

Figure 4: Reconstruction of �rst layer features with overlap
(2 < 20 + 1) and without overlap (2 = 20 + 1).

we propose to apply patch replacement on multiple layers. We �rst
apply patch replacement on a chosen layer, then reconstruct the new
feature map, feed it to the network and apply patch replacement
on another layer.

On one hand, patch replacement on multiple layers provides
more space to search for the optimal trade-o�, allowing to progres-
sively remove the adversarial e�ect at multiple layers. On the other
hand, it increases the complexity as a defense, so that it is more
di�cult to be attacked.

4 EXPERIMENTS
We evaluate our method patch replacement (PR) and compare it to
existing defenses under the gray-box setting and white-box setting.

4.1 Experimental setup
Dataset We use the ImageNet [4] dataset. We randomly sample
50, 000 images (50 per class) from the training set to learn a code-
book and 1, 000 images (one per class) from the validation set for
testing.

Networks All experiments are carried out on PyTorch1. We use
the pre-trained ResNet-50 [10] from PyTorch-Torchvision models2,
whose accuracy is 75.7% on the test set. As robust network, we take
ResNet-50 as pre-trained by adversarial training3 on adversarial
examples generated by Projected Gradient Descent (PGD) attack
with !1 upper bound n = 8 [19].

Attacks For the gray-box setting, we employ the target success
attack DDN [28] with 20 iterations, which achieves a 0.999 suc-
cess rate on the test set against ResNet-50, and the target distortion
attacks Fast Gradient Sign Method (FGSM) [6], PGD [19], and Ba-
sic Iterative Method (BIM) [15] with 20 iterations for PGD and
BIM. The implementation of DDN [28] is from its authors4 and the
implementation of FGSM, PGD, and BIM is from foolbox5.

For the white-box setting, we use Backward Pass Di�erentiable
Approximation (BPDA) [2]6, a smart attack for transformation-based
1We use PyTorch1.4.0-py3.7 with CUDA 10.0.130.
2https://github.com/Cadene/pretrained-models.pytorch
3https://github.com/MadryLab/robustness
4https://github.com/jeromerony/fast_adversarial
5https://github.com/bethgelab/foolbox
6https://github.com/Annonymous-repos/attacks-in-pytorch



defenses, using 20 iterations. It is also a target distortion attack that
is equivalent to PGD when there is no defense.

The distortion bound n for target distortion attacks is discussed
with evaluation metrics below.

Competitors We compare patch replacement to other defense
methods, including adversarial training and other transformation-
based defenses. For adversarial training, we use ResNet-50 pre-
trained with PGD [19] as discussed above. As transformation-based
defenses, we use bit-depth reduction to 3 bits and 5 bits, denoted as
bit3 and bit5 [8]; median smoothing �lter with a kernel size of two
and three, denoted as ms2 and ms3 [36]; pixel de�ection [23] with
CAM as a robust activation map7.

Evaluation metrics In ablation, we evaluate patch replacement
by accuracy on both legitimate images (original accuracy) and adver-
sarial images (adversarial accuracy). At testing, we also use success
rate and distortion. For accuracy and distortion, higher is better;
for success rate, lower is better.

Given a test set of # 0 images, we only consider its subset - of
# images that are classi�ed correctly without attack. The accuracy
of the classi�er on legitimate images is thus # /# 0. Let -suc be the
subset of - with #suc := |-suc | where the attack succeeds and let
⇡ (x) := kx � yk be the distortion for image x 2 -suc, where y is
the closest adversarial example the attack succeeds to forge. The
global statistics are the success probability (rate) %suc and conditional
average distortion ⇡

%suc :=
#suc
#

, ⇡ :=
1

#suc

’
x2-suc

⇡ (x) . (4)

Here,⇡ is conditioned on success. Indeed, distortionmakes no sense
for a failure. For target success attacks, the attack is only performed
once per image, which yields success/failure and a distortion result.
For target distortion attacks, we use a �xed distortion bound n =
0.03 when measuring adversarial accuracy and a set of values8
for n when measuring success rate and distortion. In the latter
case, we increase n until the attack succeeds, yielding a distortion
measurement, or the attack fails for all n . We also use operating
characteristics [37, 38], which provide a more detailed picture of
this process.

4.2 Ablation study: single layer
Codebook quality When applying patch replacement to a single
layer, we evaluate the e�ect of the quality of the codebook and the
layer where we apply patch replacement.

The quantizers of all slices are trained independently. The quality
of the codebook depends on the number of clusters  for  -means
and the depth 3 of a slice. A larger  or a smaller 3 results in a �ner
codebook, preserving more information but doing little against an
attack. We vary  from 392 to 785, 568 and 3 from 1 to 8. A compete
list of values for  and 3 we have explored in di�erent layers is
given in Table 1.

In Figure 5, points on the left have a coarse codebook (small  /
large3) and points on the bottom right have a �ne codebook (large 
/ small 3). A coarse codebook improves the adversarial accuracy but
7https://github.com/iamaaditya/pixel-de�ection
8n 2 {0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.08, 0.1}

����� 3 ⇡  

image 1 3 392, 785, 3927, 6284, 7855, 11783, 15711, 19639, 26185,
31422, 39278, 58917, 78557, 117835, 157114, 235671

layer 1 4 64 39278, 78557, 117836, 157114, 235671, 314228, 785568
8 64 39278, 78557, 117836, 157114, 261856, 392784, 785568

layer 4
2 256 78557
4 256 78557, 785568
8 256 78557

layer 7
2 256 78557
4 256 78557
8 256 78557, 785568

layer 10
2 256 78557, 785568
4 256 78557, 785568
8 256 78557, 785568

Table 1: The list of the number of clusters  and slice depth
3 for di�erent layers tested for codebooks. Depth ⇡ is the
number of �lter channels on the given layer.
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Figure 5: E�ect of codebook quality, as controlled by (num-
ber of clusters) and 3 (slice depth), applying patch replace-
ment on di�erent layers independently, using the plain
strategy. We plot the accuracy in the same curve for vary-
ing  ,3 per layer, ranking the points according to original
accuracy.

drops the original accuracy. By contrast, a �ne codebook maintains
original accuracy but is of little help for adversarial accuracy.

We further observe from Figure 5 that the deeper layer we choose,
the worse performance we get overall (trade-o� between original
and adversarial accuracy). This can be attributed to the fact that the
e�ect of the adversarial perturbation is ampli�ed in deeper layers,
as shown in Figure 1. It is thus best to apply the defense as early as
possible. The best single-layer setting is in the top right corner of
Figure 5, i.e.  = 3927,3 = 1 on images (layer 0). This gives original
accuracy 71.7% (4% loss compared with baseline) and adversarial
accuracy 64.2% (64.1% gain compared with baseline). For the �rst
layer, the best setting is  = 235671,3 = 4, giving original accuracy
65.7% and adversarial accuracy 53.7%.

E�ect through network layers By selecting the best setting,
i.e.  = 3927,3 = 1 on images, we study the e�ect or random noise
and adversarial perturbation with and without patch replacement
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Figure 6: Relative distortion of random noise, adversarial
perturbation and our patch replacement on input images
(layer 0) using the plain strategy vs. ResNet-50 layer, aver-
aged over the ImageNet test set. Random noise follows a
normal distribution and adversarial perturbations are gen-
erated byDDN [28]. G : original input image;=: randomnoise;
A : adversarial perturbation; & : our patch replacement quan-
tizer.

through the network layers. Figure 6 is an extension of Figure 1
and it con�rms that our patch replacement changes the behavior
of the adversarial perturbation through the network and makes
it similar to random noise: the quantized original input & (G) and
the quantized adversarial input & (G + A ) (green and black line,
respectively) are near identical and similar to random noise (blue
line) when compared to the input G and give small distortion when
compared to each other (brown line).

Replacement strategy When applying patch replacement to
either the image or the �rst network layer and �xing the codebook
quality, we evaluate the e�ect of the replacement strategy. We
choose  = 3927,3 = 1 in the image layer and  = 235671,3 = 4 in
the �rst layer, as discussed in the previous paragraph.

We control the replacement strategies by parameters n or _. We
let n, _ 2 {0, 0.1, . . . , 0.9, 1} for !2 and linear strategies. For !1
strategy, we let n 2 {0, 0.01, . . . , 0.09, 0.1} on the image layer and
n 2 {0, 0.01, . . . , 0.19, 0.2} on the �rst layer.

In Figure 7, points in the bottom right corner correspond to n = 0
or _ = 0. In this case, any replacement strategy other than plain
strategy is equivalent to the original network (no defense). Points
in the top left corner correspond to the maximum value of n for !2
strategy (n = 1) and !1 (n = 0.1), and _ = 1 for the linear strategy.
These cases are equivalent to the plain strategy.

As shown in Figure 7, the behavior of all strategies is similar
and there is no clear winner. In general, points in the top right
corner are more interesting. These points correspond to strategies
improving the original accuracy comparing to the plain strategy,
while maintaining the adversarial accuracy or even improving it
slightly. We highlight three particular settings:

• Image layer, !1 strategy with n = 0.1: original accuracy
72.0% (0.3% gain compared to plain strategy), adversarial
accuracy 64.0% (0.2% loss compared to plain strategy).
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Figure 7: E�ect of replacement strategies for varying param-
eters n, _, applying patch replacement independently on (a)
image layer with  = 3927,3 = 1; and (b) �rst layer with
 = 235671,3 = 4.

• Image layer, !1 strategy with n = 0.17: original accuracy
71.7% (zero loss), adversarial accuracy 64.5% (0.3% gain).

• Layer 1, !1 strategy with n = 0.17: original accuracy 69.3%
(3.6% gain), adversarial accuracy 55.6% (1.9% gain).

By comparing Figure 7(a) with Figure 7(b), it can be seen that
replacement strategies in the �rst layer improve the performance
more than on images. This is possibly due to the fact that the code-
book chosen from Figure 5 for images is �ner than the codebook
chosen for the �rst layer.

4.3 Ablation study: multi-layer
From single layer experiments, we know that

• patch replacement on images works with a �ne codebook,
giving high original and adversarial accuracy;

• patch replacement on features of the �rst layer works with
a coarse codebook; and

• replacement strategies help patch replacement in the �rst
layer most, increasing original accuracy while maintaining
or slightly improving adversarial accuracy.

To bene�t from both �ne and coarse codebooks, we investigate
applying patch replacement on both the image layer and the �rst
layer. We take the setting of patch replacement on images with the
plain strategy, i.e.  = 3927,3 = 1, losing 4% original accuracy but
gaining 64.1% adversarial accuracy. We then apply patch replace-
ment in the �rst layer, where we �nd that the best codebook with



66 68 70 72
60

62

64

66

original accuracy

ad
ve
rs
ar
ia
la
cc
ur
ac
y

image, !1
layer 1, !2
layer 1, !1
layer 1, Linear

Figure 8: Based on the best codebook and strategy on the im-
age layer, we add patch replacement on layer 1 with the best
codebook, and �nd the best strategy for this combination.

the plain strategy is  = 235671,3 = 4. To reduce the cost, we use
the same set of codebooks learned independently per layer, as in
the previous experiments.

With codebooks being �xed in both the image layer and the
�rst layer, we optimize the replacement strategy in the �rst layer.
In Figure 8, the bottom right point of the plots corresponding to
layer 1, is obtained with n/_ = 0, such that patch replacement
only applies to images. This is the same as the top left point of the
image layer plot, which corresponds to the plain strategy for that
layer. We observe that replacement strategies on layer 1 improve
the adversarial accuracy while losing little or no original accuracy.
Thus, the combination of patch replacement on both layers achieves
a more interesting operating point in terms of both accuracies. We
select the !1 strategy with n = 0.01, giving original accuracy 71.8%
and adversarial accuracy 66.0%.

It is possible to apply patch replacement to more layers, �xing the
settings of the �rst layers before optimizing the next. However, this
process is expensive and increases the inference cost and required
space for codebooks, while the improvement in performance is
small. We thus apply patch replacement only to images and layer 1.

4.4 Comparisons
We investigate two kinds of attacks. Gray-box attacks have full
knowledge of the original network but no knowledge of the de-
fense. White-box attacks are aware of both the network and the
transformation-based defense.

Gray-box attacks As shown in Table 2, adversarial training with
PGD performs poorly on legitimate images (45.9%). It is vulnera-
ble against DDN attack, but it defends well against FGSM, BIM,
and PGD. Transformation-based defenses, like bit5 and ms2, have
slightly higher original accuracy than patch replacement but signi�-
cantly lower adversarial accuracy. Comparing to bit5 andms2, patch
replacement gains around 20% on adversarial images obtained by
BIM, PGD and DDN, while it loses around 3% on legitimate images.
Comparing to pixel de�ection, patch replacement loses around 1.5%
on legitimate images but gains around 8% on adversarial images of
DDN and more on BIM and PGD.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

⇡

%
su
c

FGSM! PR FGSM! baseline
BIM! PR BIM! baseline
PGD! PR PGD! baseline
DDN! PR DDN! baseline

Figure 9: Operating characteristics of gray-box attacks
against ResNet-50, with patch replacement (PR) and with-
out (baseline).

Our defense as well as the other transformation-based defenses
perform better on adversarial images with small distortion, DDN
in particular. For adversarial images with large distortion, patch
replacement still outperforms other transformation-based defenses.
Focusing on success rate and distortion, all attacks need greater
distortion for the same success rate close to 1, but the required
distortion is greatest under patch replacement.

Figure 9 provides an detailed view of the performance of patch
replacement against gray-box attacks using operating characteris-
tics [37, 38]. The plots with patch replacement are all below the plot
without, meaning that attacks either need more distortion for the
same success rate, or have less success rate for the same distortion.
For example, when �xing ⇡ = 5, all attacks achieve success rate
0.7 or more on the original network but roughly 0.5 or less against
patch replacement. Conversely, when �xing %suc = 0.5, a distortion
around 2 is enough for all attacks to succeed against the original
network, but against patch replacement, a distortion of more than
7 is needed.

White-box attacks We use BPDA [2] smart attack, which in-
cludes the transformation-based defense in the forward pass but re-
places it with the identity function in the backward.We apply BPDA
on patch replacement as well as the other transformation-based
defenses but not adversarial training, as this would be equivalent
to PGD.

As shown in the rightmost part of Table 2, for competing de-
fenses, BPDA has near zero adversarial accuracy, success rate of 1
and small distortion, less than 2 on average. By contrast, for patch
replacement, it has adversarial accuracy 48.3, success rate 0.89 and
average distortion of more than 12. Patch replacement is thus an ef-
fective defense against this smart attack, while competing defenses
are not.

Figure 10 elaborates on the previous results by using operating
characteristics [37, 38]. Patch replacement not only outperforms all
other transformation-based defenses by a large margin, but it also
improves over the baseline of BPDA against the original network,
while all other defenses are actually outperformed by the baseline.
This means that in the white-box setting, patch replacement makes



M����� O�� FGSM [6] BIM [15] PGD [19] DDN [28] BPDA [2]
A�� A�� %suc ⇡ A�� %suc ⇡ A�� %suc ⇡ A�� %suc ⇡ A�� %suc ⇡

Baseline 75.7 12.1 0.95 5.13 1.20 1.00 2.50 3.80 1.00 3.12 0.10 1.00 0.53 3.80 1.00 3.12
Patch replacement (ours) 71.8 23.2 0.92 7.98 30.1 0.99 6.10 46.4 0.83 7.21 66.0 0.08 0.57 48.3 0.89 12.89

Adv. training [19] 45.9 44.3 0.69 6.25 44.1 0.67 5.07 44.3 0.65 3.81 19.0 0.58 0.32 – – –
Bit3 [8] 64.7 17.8 0.94 6.66 17.5 1.00 4.53 32.9 0.98 6.30 55.1 0.15 0.49 0.9 1.00 1.00
Bit5 [8] 74.9 12.2 0.95 5.42 1.70 1.00 2.93 6.50 1.00 3.81 18.9 0.75 0.53 1.9 1.00 1.00
Ms2 [36] 74.2 21.2 0.93 7.71 13.1 0.99 4.57 26.5 0.92 5.62 47.9 0.33 0.51 3.3 1.00 1.76
Ms3 [36] 71.8 21.0 0.95 7.66 17.8 0.98 4.76 34.2 0.84 5.45 55.6 0.23 0.53 1.6 1.00 1.25
Pixel de�ection [23] 73.2 16.4 0.94 6.97 13.4 1.00 4.57 31.0 1.00 6.70 58.6 0.20 0.53 1.3 1.00 0.89

Table 2: Original accuracy, adversarial accuracy, success rate (%suc) and average distortion (⇡) for combinations of defenses (ad-
versarial training and transformation-based) and attacks, including gray-box (FGSM, BIM, PGD, DDN) and white-box (BPDA).
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Figure 10: Operating characteristics of white-box attack
BPDA [2] against di�erent defenses or the original network
(baseline). PR: patch replacement. %suc: success rate; ⇡: dis-
tortion.

the network more robust even though the attacker is aware of
the defense, while all other transformation-based defenses fail by
making the network easier to attack.

5 CONCLUSION
Motivated by the fact that networks are robust against random noise
but vulnerable to adversarial perturbations, we have introduced
patch replacement, a transformation-based defense, which succeeds
in making adversarial perturbations behave similarly to random
noise and defending against adversarial attacks with at low training
and inference cost.

We have found it most e�ective to apply patch replacement in
the early stages of the network, in particular, to input images and
the �rst layer. This indicates that the e�ect of the perturbation
is ampli�ed in the deeper layers and is thus harder to remove.
Applying patch replacement to both input images and the �rst
layer improves the trade-o� between accuracy and robustness.

Patch replacement is more e�ective than other transformation-
based defenses. Against a gray-box attack with lower distortion

(DDN [28]) and a white-box attack (BPDA [2]), it is even more e�ec-
tive than adversarial training, which is notoriously more expensive
to train. In the case of the white-box attack, all other transformation-
based defenses fail, making the network easier to attack.
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A ⇢8 LATTICE CODEBOOK
Other than the product quantization codebook, we also use the
⇢8 lattice as a codebook. The ⇢8 lattice is a special lattice in R8
that is not data-dependent and does not need training. Due to its
de�nition, the ⇢8 lattice only deals with 8-dimensional vectors. This
is not convenient for input images, but we do use it on features,
�attening each patch tensor and decomposing it into 8-dimensional
subvectors. The parameter B controlling the scale of the lattice
determines the density of codewords. We let B 2 {0.1, 0.2, . . . , 0.9}.

Results As shown in Figure 11, the behavior is similar to PQ
codebooks, in the sense that earlier layers work better and a �ne
codebook (small B) preserves original accuracy but loses in adversar-
ial accuracy, as if patch replacement missing (bottom right). Since
the ⇢8 lattice does not need training, it can be used to quickly ex-
plore the properties of patch replacement. However, the best ⇢8
codebook for layer 1 is worse (original 68.1%, adversarial 50.2%)
than the best PQ codebook for layer 1 (original 65.7%, adversarial
53.7%) in Figure 5. Replacement strategies can partially recover

original accuracy but not adversarial accuracy. Hence, after quick
exploration, we switch to PQ codebooks for performance.
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Figure 11: E�ect of ⇢8-lattice codebook quality, controlled
by scale parameter B, applying patch replacement on di�er-
ent layers independently, using the plain strategy. We plot
accuracy for varying B in the same curve per layer.


