
HAL Id: hal-03363940
https://hal.science/hal-03363940v1

Preprint submitted on 4 Oct 2021 (v1), last revised 26 Aug 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stabilization of the Wave Equation through Nonlinear
Dirichlet Actuation

Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur

To cite this version:
Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur. Stabilization of the Wave Equation
through Nonlinear Dirichlet Actuation. 2021. �hal-03363940v1�

https://hal.science/hal-03363940v1
https://hal.archives-ouvertes.fr


ESAIM: Control, Optimisation and Calculus of Variations Will be set by the publisher

URL: http://www.emath.fr/cocv/

STABILIZATION OF THE WAVE EQUATION THROUGH NONLINEAR

DIRICHLET ACTUATION ∗

Nicolas Vanspranghe1, Francesco Ferrante2 and Christophe Prieur1

Abstract. In this paper, we consider the problem of nonlinear (in particular, saturated) stabilization
of the high-dimensional wave equation in the Dirichlet boundary condition. The wave dynamics are
subject to a dissipative nonlinear velocity feedback and generate a strongly continuous semigroup
of contractions on the optimal energy space L2(Ω) × H−1(Ω). It is first proved that any solution
to the closed-loop equations converges to zero in the aforementioned topology. Secondly, under the
condition that the feedback nonlinearity has linear growth around zero, polynomial energy decay rates
are established for solutions with smooth initial data. This constitutes new Dirichlet counterparts to
well-known results pertaining to nonlinear stabilization in H1(Ω) × L2(Ω) of the wave equation in the
Neumann boundary conditions.
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1. Introduction

Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with smooth boundary Γ. Given a relatively open nonempty
subset Γ0 of Γ, we consider the wave equation subject to non-homogeneous Dirichlet boundary condition:

∂ttu(x, t)−∆u(x, t) = 0 in Ω× (0,+∞), (1.1a)

u|Γ(σ, t) = −g(U(σ, t)) on Γ0 × (0,+∞), (1.1b)

u|Γ(σ, t) = 0 on Γ1 × (0,+∞), (1.1c)

where Γ1 , Γ \ Γ0, U represents a control input, and g is a real nondecreasing function fulfilling the following
assumption.

Assumption 1. The scalar mapping g satisfies the following properties:

(i) g is globally Lipschitz continuous and nondecreasing;
(ii) g(s) = 0 if and only if s = 0.
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Background. The general problem of this paper is the feedback stabilization of the control system (1.1) in
presence of a static pointwise nonlinearity g. Consider the velocity feedback

U(σ, t) = −∂ν [A−1u′](σ, t), (1.2)

where ∂ν denotes the outward normal derivative and A−1 is the inverse of the positive “minus Laplacian with
homogeneous Dirichlet boundary condition” operator. The corresponding linear feedback system (i.e., when g
is the identity) was first introduced by Lasiecka and Triggiani in [9], with initial data lying in the energy space

H , L2(Ω)×H−1(Ω). (1.3)

The choice of state space is motivated by optimal regularity results for second-order hyperbolic equations with
Dirichlet boundary data in L2(0,+∞;L2(Γ)) – see [11]. It was proved in [9] that the linear version of (1.1)-(1.2)
gives rise to an exponentially stable semigroup of operators on H under the assumption that the whole boundary
is actuated (i.e., Γ = Γ0) and that Ω satisfies suitable geometrical conditions. The proof relies on the analysis
of a new variable p defined as

p , A−1u′ (1.4)

which is smoother and solves a wave-type equation as well. The result was later refined by the same authors
in [10] where feedback acting only on a subset of the boundary is allowed and, most importantly, specific
geometrical conditions related to the analysis of the p-variable by multipliers are relaxed. This was achieved
by the mean of another change of variable operating at the level of pseudodifferential calculus. In short, after
transposing problem (1.1)-(1.2) to the half-space via partition of unity and truncating the solution with respect
to the time variable, one defines a new variable w by

F [w](ξ, ω;x) = λ(ξ, ω)F [u](ξ, ω;x), ξ ∈ Rd−1, ω ∈ R, x ≥ 0, (1.5)

where F denotes the Fourier transform in both tangential and time variables and λ is a carefully constructed
symbol. While transformations (1.4) and (1.5) are quite different in nature, both enable computations on
variables with H1(Ω)× L2(Ω)-regularity.

As far as we know, there has been no attempt to extend the stability analysis of the closed-loop system
(1.1)-(1.2) to the nonlinear case. Yet, one can see problem (1.1)-(1.2) as a natural Dirichlet counterpart to the
wave equation with nonlinear Neumann boundary dissipation

∂ttu(x, t)−∆u(x, t) = 0 in Ω× (0,+∞) (1.6a)

∂νu(σ, t) = −g(∂tu(σ, t)) on Γ0 × (0,+∞), (1.6b)

u|Γ(σ, t) = 0 on Γ1 × (0,+∞), (1.6c)

which, in contrast, have been extensively studied in the literature. To cite only a few, when the nonlinearity g
has linear growth at infinity, uniform decay of the H1(Ω)×L2(Ω)-energy of solutions to (1.6) can be achieved,
as in [20] or [12] – see also [8] and the references therein, or more recently [5]. In the one-dimensional settings,
arguments based on Riemann invariants are available, and the decay of the energy can be analyzed via ap-
propriate iterated sequences. See for instance [1], where g is allowed to be a multivalued monotone mapping,
or [18], where it is proved, in particular, that exponential or polynomial uniform decay cannot be achieved when
g represents a pointwise saturation mapping – see also [19] or [14] for a stability analysis in the saturated case.

Outline of the paper and contributions. This paper aims at bridging the gap between Neumann and
Dirichlet boundary conditions as far as nonlinear boundary stabilization is concerned. First, we prove that the
nonlinear dynamics (1.1)-(1.2) generate a strongly continuous semigroup of contractions on the energy space
H (Theorem 2.1) that is globally asymptotically stable around the zero equilibrium (Theorem 2.2). The proof
relies on LaSalle’s invariance principle and unique continuation for the wave equation.

Next, having in mind the more specific problem of saturated boundary stabilization, in Section 3, we work
under the assumption that g has linear growth around zero (see Assumption 2 below). Then, by analogy with
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the Neumann case, we focus on non-uniform decay rates for solutions with “smooth” initial data. We establish
a polynomial decay rate for smooth solutions (Theorem 3.1) that holds under standard geometrical conditions
– see Assumption 3 below, which is however always satisfied when Γ0 = Γ, i.e., the whole boundary is actuated.
To do so, we consider the change of variable (1.4) and we derive appropriate integral inequalities using suitable
multipliers. Note that the question of uniform stability when g has linear growth at infinity is out of the scope of
the paper – this is discussed in Section 4 below. Throughout the paper, one can think of the “hard” saturation
mapping satS with threshold S > 0, defined by

satS(s) ,


s if |s| ≤ S,

S
s

|s|
otherwise,

(1.7)

as a prototype nonlinearity satisfying Assumptions 1 and 2, highlighting the fact that no differentiability con-
dition on g is prescribed.

Notation and elements from elliptic theory. We end this section by introducing some notation and
recalling useful results from elliptic theory.

First, if H is a given Hilbert space, we denote by ‖ · ‖H its norm, and its scalar product is written (·, ·)H . For
T > 0, we denote by W 1,p(0, T ;H) the subspace of Lp(0, T ;H) composed of (classes of) H-valued functions φ

such that, for some ξ in H and ψ in Lp(0, T ;H), φ(t) = ξ +
∫ t

0
ψ(s) ds almost everywhere in (0, T ). Such class

φ is identified with its continuous representative and we say that φ′ = ψ in the sense of H-valued distributions.
Note that vector-valued integrals are intended in the sense of Bochner. Also, the space of bounded linear
operators between two normed spaces E and F is denoted by L(E,F ).

In this paper, all scalar functions are real-valued. The notation dx indicates the standard Lebesgue measure
on Rd while dσ denotes the induced surface measure on Γ. By Hs(Ω) (resp. Hs(Γ)) we denote the L2(Ω)-based
(resp. L2(Γ)-based) Sobolev space of order s. The space of compactly supported and infinitely differentiable
functions on Ω is written C∞c (Ω). We also recall that H1

0 (Ω) is defined as the closure of C∞c (Ω) in H1(Ω).
Furthermore, H−1(Ω) is the topological dual of H1

0 (Ω).
The unbounded operator A can be defined1 as follows: having set

D(A) , H2(Ω) ∩H1
0 (Ω), (1.8)

we let Au , −∆u ∈ L2(Ω) for all u ∈ D(A). Then, A is a strictly positive self-adjoint densely defined operator
on L2(Ω). Its domain D(A) is equipped with the norm ‖A · ‖L2(Ω), which is equivalent to the norm induced

by H2(Ω). As a positive operator, A possesses fractional powers As, s ∈ R – see for instance [17, Chapter II,
Section 2.1]. Those are also strictly positive self-adjoint operators. For s ≥ 0, D(As) are dense subsets of L2(Ω),
which we equip with the norm ‖As · ‖L2(Ω). In particular, we have D(A1/2) = H1

0 (Ω), with

‖∇w‖2L2(Ω)d = ‖A1/2w‖2L2(Ω) = ‖w‖2H1
0 (Ω) for all w ∈ H1

0 (Ω). (1.9)

Then, we let D(A−s) , D(As)′ and we can extend As as an isomorphism between L2(Ω) and D(A−s). Here,
H−1(Ω) is equipped with the scalar product

(v1, v2)H−1(Ω) , (A−1/2v1, A
−1/2v2)L2(Ω), (1.10)

which induces a norm equivalent to the dual one; we also recover D(A−1/2) = H−1(Ω). Throughout the paper,
we use the following chain of continuous embeddings:

D(A) ↪→ H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→ D(A−1). (1.11)

1Alternatively, A can be defined as a duality mapping between H1
0 (Ω) and H−1(Ω), in which case (1.8) is recovered a posteriori

by applying elliptic regularity theory.
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Finally, we define the Dirichlet map D, which is a right inverse for the trace operator. For any f in H1/2(Γ),

there exists a unique u in H1(Ω) solving −∆u = 0 and u|Γ = f ; and we let Df , u. The mapping D defined in

this way belongs to L(H1/2(Ω), H1(Ω)); also, we define its adjoint D∗ by (D∗u, f)L2(Γ) = (u,Df)L2(Ω) for all u

in L2(Ω) and f in L2(Γ). Extensions on fractional Sobolev spaces are denoted with the same symbols:

D ∈ L(Hs(Γ), Hs+1/2(Ω)), D∗ ∈ L(Hs(Ω), Hs+1/2(Γ)) for all s ∈ R. (1.12)

2. Well-posedness and asymptotic stability

In this section, we give the operator-theoretic formulation of the evolution problem (1.1a) with initial data in
L2(Ω)×H−1(Ω) and feedback control (1.2). After that, we state and prove the well-posedness and asymptotic
stability properties of the feedback system (1.1)-(1.2).

2.1. Operator model and well-posedness

We shall recast the closed-loop evolution equations (1.1)-(1.2) into a first-order abstract Cauchy problem on
the energy space H and state well-posedness results by relying on nonlinear semigroup theory.

With a little abuse of notation, we denote by g the (nonlinear) Lipschitz mapping on L2(Γ) defined by

g(f)(σ) , g(f(σ)) for any f in L2(Γ). We also define a projection operator P on L2(Γ) by [Pf ](σ) =
1Γ0

(σ)f(σ) for any f ∈ L2(Γ). From the Green formula, it follows that

−D∗Ap = ∂νp for all p ∈ D(A). (2.1)

Therefore, the boundary condition associated with the feedback law (1.2) can be rewritten as follows:

u|Γ = −Pg(D∗u′). (2.2)

Next, we introduce the unbounded nonlinear operator A associated with the closed-loop system (1.1)-(1.2).
Recalling the chain of embeddings (1.11) and that A maps L2(Ω) onto D(A−1), we define A by

D(A) ,
{

[u, v] ∈ H : v ∈ L2(Ω), A[u+DPg(D∗v)] ∈ H−1(Ω)
}

(2.3a)

A[u, v] , [−v,Au+ADPg(D∗v)]. (2.3b)

Equivalently, D(A) is the set of all [u, v] in L2(Ω)× L2(Ω) such that u+DPg(D∗v) belongs to H1
0 (Ω).

Note that the feedback law (1.2) appears as a natural choice when (formally) differentiating the energy
functional

E(u, v) ,
1

2
{‖u‖2L2(Ω) + ‖v‖2H−1(Ω)}, [u, v] ∈ H, (2.4)

along “trajectories” of the open-loop system (1.1). Indeed, this leads to the energy identity

d

dt
E(u, u′) =

∫
Γ0

g(U(t))∂ν [A−1u′] dσ (2.5)

and since g satisfies Assumption 1, we see that (1.2) renders the energy E nonincreasing along the trajectories.
In the sequel, we employ the standard nonlinear semigroup terminology: by a strong solution to (1.1)-(1.2),

we mean an absolutely continuous H-valued function [u, v] that satisfies [u(t), v(t)] ∈ D(A) for all t ≥ 0 and

d

dt
[u, v] +A[u, v] = 0 a.e. (2.6)

in the sense of strong differentiation in H; by a generalized solution to (1.1)-(1.2), we mean a continuous
H-valued function [u, v] that is, on each interval [0, T ], the uniform limit of some sequence of strong solutions.
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Theorem 2.1 (Hadamard well-posedness). The nonlinear operator A is densely defined and maximal monotone.
Thus, −A is the infinitesimal generator of a strongly continuous semigroup {St} of (nonlinear) contractions on
the energy space H. For all initial data [u0, v0] in H, there exists a unique generalized solution [u, u′] ∈ C(R+,H)
to (1.1)-(1.2). If [u0, v0] belongs to D(A), then [u, u′] is a strong solution to (1.1)-(1.2). Furthermore,

(i) Strong solutions satisfy the inequality

‖A[u(t), u′(t)]‖H ≤ ‖A[u0, v0]‖H for all t ≥ 0; (2.7)

(ii) Strong solutions satisfy the energy identity

d

dt
E(u, u′) = −

∫
Γ0

g(D∗u′)D∗u′ dσ =

∫
Γ0

g(−∂ν [A−1u′])∂ν [A−1u′] dσ (2.8)

in the scalar distribution sense on (0,+∞).

Remark 2.1. If we also assume that, say, |g(s)| ≥ α|s| for all s ∈ R and some α > 0, the energy identity (2.8)
provides an uniform estimate of the L2(0,+∞;L2(Γ0))-norm of ∂ν [A−1u′] for strong solutions. From there,
one can prove that (2.8) holds for generalized solution as well by passing to the limit and recovering the traces
u|Γ and ∂ν [A−1u′] in L2(0,+∞;L2(Γ0)) – see for instance [2] for similar arguments in the Neumann boundary
conditions.

Proof of Theorem 2.1. Once proven that A is maximal monotone, existence and uniqueness of strong and gen-
eralized solutions to (1.1)-(1.2), together with the appropriate semigroup properties, follow from Kato’s theorem
and standard nonlinear semigroup theory – see, e.g., [16, Chapter IV].

Step 1: Monotonicity. Let [u1, v1] and [u2, v2] in D(A). Then,

(A[u1, v1]−A[u2, v2], [u1, v1]− [u2, v2])H = −(v1 − v2, u1 − u2)L2(Ω)

+(A1/2[u1 − u2 +DPg(D∗v1)−DPg(D∗v2)], A−1/2[v1 − v2])L2(Ω).
(2.9)

Now we use that A−1/2[v1 − v2] belongs to D(A1/2) and that A1/2 is self-adjoint to obtain

(A[u1, v1]−A[u2, v2], [u1, v1]− [u2, v2])H = (DPg(D∗v1)−DPg(D∗v2), v1 − v2)L2(Ω)

= (Pg(D∗v1)− Pg(D∗v2), D∗v1 −D∗v2)L2(Γ)

= (g(D∗v1)− g(D∗v2), D∗v1 −D∗v2)L2(Γ0) ≥ 0,

(2.10)

the right-hand side being nonnegative by nondecreasingness of g, which proves that A is monotone.
Step 2: Range condition. Let λ > 0 and [f1, f2] ∈ H. To solve the equation A[u, v] + λ[u, v] = [f1, f2], it

suffices to find v ∈ L2(Ω) such that

λ−1v +DPg(D∗v) + λA−1v = A−1f2 − λ−1f1. (2.11)

This is seen by substituting −v + λu = f1 into the second coordinate of the equation and applying A−1 to the
result. If such v ∈ L2(Ω) is found, then [u, v] belongs to D(A) since A−1f2 ∈ H1

0 (Ω) and DPg(D∗v) ∈ H1(Ω).

We define a nonlinear operator Θ on L2(Ω) by Θ(v) , λ−1v +DPg(D∗v) + λA−1v for all v ∈ L2(Ω). Then,
Θ enjoys the following properties:

(i) Θ maps bounded sets into bounded sets;
(ii) (Θ(v1)−Θ(v2), v1 − v2)L2(Ω) ≥ 0 for all v1 and v2 in L2(Ω);

(iii) The scalar function t 7→ (Θ(v1 + tv2), v2)L2(Ω) is continuous for all v1 and v2 in L2(Ω).

Also, we have
(Θ(v), v)L2(Ω) ≥ λ−1‖v‖2L2(Ω) for all v ∈ L2(Ω). (2.12)



6 TITLE WILL BE SET BY THE PUBLISHER

Thus, it follows from [16, Lemma 2.1 and Theorem 2.1] that Θ is onto. Consequently, the equation A[u, v] +
λ[u, v] = [f1, f2] has a solution in D(A).

Step 3: Denseness of the domain. Let [u, v] ∈ H and ε > 0. Since A−1v ∈ H1
0 (Ω) and C∞c (Ω) is dense

in H1
0 (Ω), we can pick φ ∈ D(Ω) such that

‖A−1v − φ‖2H1
0 (Ω) ≤ ε, and thus ‖v −Aφ‖2H−1(Ω) ≤ Cε (2.13)

where C > 0 comes from A ∈ L(H1
0 (Ω), H−1(Ω)). Besides, there exists ψ ∈ C∞c (Ω) such that ‖u− ψ‖2L2(Ω) ≤ ε.

Since φ ∈ C∞c (Ω) ⊂ D(A), we have Aφ ∈ L2(Ω) and also, using (2.1), g(D∗Aφ) = g(−∂νφ) = 0. Thus,
[ψ,Aφ] ∈ D(A); also, we have ‖[u, v]− [ψ,Aφ]‖2H ≤ (1 + C)ε. It is now proved that D(A) is dense in H.

Step 4: Energy identity. Let [u, v] be a strong solution to (1.1)-(1.2). We recall that E(u, u′) = 1
2‖[u, u

′]‖2H.
Consequently, by the chain rule, E(u, u′) is an absolutely continuous scalar function and

d

dt
E(u, u′) = (A[u, u′], [u, u′])H a.e. (2.14)

Thus, the desired identity (2.8) follows from (2.10). �

2.2. Additional properties of the semigroup

Now, we establish some compactness and regularity properties that are useful in the proof of the stability
results presented in Subsections 2.3 and 3.1. We start by introducing the following proposition, which enables
us to prove asymptotic stability of the feedback system (1.1)-(1.2) using LaSalle’s invariance principle.

Proposition 2.1 (Compactness). For any λ > 0, the (nonlinear) resolvent operator (A+λid)−1 is well-defined
on H and compact. In particular, for all initial data [u0, v0] ∈ H, the (semi)trajectory {St[u0, v0]}t≥0 is relatively
compact in H.

Proof. Assume for a moment that (A+λid)−1 is well-defined and compact for some λ > 0. Then, since A(0) = 0,
relative compactness of the trajectories follows from [4, Theorem 3].

Let λ > 0. We already know from the proof of Theorem 2.1 that the equation

A[u, v] = [f1, f2] (2.15)

has a solution in D(A) for all [f1, f2] ∈ H.
Step 1: Uniqueness. Consider two solutions [u1, v1] and [u2, v2] to (2.15). Then, we recall from (2.11) in

the proof of Theorem 2.1 that

λ−1[v1 − v2] +DP [g(D∗v1)− g(D∗v2)] + λA−1[v1 − v2] = 0. (2.16)

Taking the scalar product in L2(Ω) of (2.16) with v1 − v2 yields

λ−1‖v1 − v2‖2L2(Ω) + (g(D∗v1)− g(D∗v2), v1 − v2)L2(Γ0) + λ‖v1 − v2‖2H−1(Ω) = 0. (2.17)

In particular, since g is nondecreasing, we infer from (2.17) that v1 = v2; thus, [u1, v1] = [u2, v2] and (A+λid)−1

is well-defined.
Step 2: Compactness of the resolvent operator. In what follows, we let [u, v] , (A + λid)−1[f1, f2]

and we look for estimates of [u, v] ∈ D(A) in stronger norms. First, as in the previous step, we obtain

λ−1‖v‖2L2(Ω) + (g(D∗v), v)L2(Γ0) + λ‖v‖2H−1(Ω) = (A−1/2f2, A
−1/2v)L2(Ω) − λ−1(f1, v)L2(Ω), (2.18)
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where it is used that A−1/2 is self-adjoint. From (2.18), using Cauchy-Schwarz and Young inequalities with
appropriate constants, we obtain the estimate

‖v‖2L2(Ω) ≤
1

2
‖f2‖2H−1(Ω) + ‖f1‖2L2(Ω). (2.19)

The remainder of the proof relies on elliptic regularity theory and in particular [13, Théorème 10.1]. Since
[u, v] ∈ D(A), we know that u+DPg(D∗v) belongs to H1

0 (Ω) and

u+DPg(D∗v) = A−1f2 − λA−1v. (2.20)

Picking an arbitrary test-function φ in C∞c (Ω) ⊂ D(A), taking the scalar product in L2(Ω) of (2.20) with
Aφ and using again that D∗Aφ = −∂νφ = 0 leads to −∆u = f2 − λv in the sense of distributions on Ω.
Besides, since −∆u ∈ H−1(Ω), u|Γ is well-defined in H−1/2(Γ); then, we infer from u + DPg(D∗v) ∈ H1

0 (Ω)

that u|Γ = −Pg(D∗v) ∈ L2(Γ). Applying the aforementioned theorem, we obtain u ∈ H1/2(Ω) along with the
estimate

‖u‖2H1/2(Ω) ≤ C1

{
‖Pg(D∗v)‖2L2(Γ) + ‖f2 − λv‖2H−1(Ω)

}
(2.21)

where C1 > 0 is solution independent. Since P and g are Lipschitz continuous on L2(Γ), g(0) = 0 and D∗ is
linear continuous from L2(Ω) into L2(Γ), plugging (2.19) into (2.21) yields

‖u‖2H1/2(Ω) ≤ C1C2‖v‖2L2(Ω) + 2C1λ
2‖v‖2H−1(Ω) + 2C1‖f2‖2H−1(Ω), (2.22)

where C2 > 0 is some other constant.
Combining (2.19) and (2.22), we see that (A + λid)−1 maps bounded sets of H = L2(Ω) × H−1(Ω) into

bounded sets of H1/2(Ω)×L2(Ω), the latter being compactly embedded into H. Thus, the result is proved. �

The next proposition is meant for use in Section 3, where we work under additional assumptions on Ω;
however, since it is a direct continution of the proof of Proposition 2.1, we introduce it here.

Proposition 2.2 (Regularity). Suppose that Γ0∩Γ1 = ∅. Then, the following explicit characterization of D(A)
holds:

D(A) =
{

[u, v] ∈ H : v ∈ L2(Ω), u ∈ H1(Ω), u|Γ = −1Γ0
g(D∗v)

}
. (2.23)

Thus, strong solutions [u, u′] take values in H1(Ω) × L2(Ω). Furthermore, there exists a constant K > 0 such
that any strong solution to (1.1)-(1.2) satisfies

‖[u(t), u′(t)]‖H1(Ω)×L2(Ω) ≤ K‖A[u(0), u′(0)]‖H for all t ≥ 0. (2.24)

Remark 2.2. In particular, (2.24) implies that for some constant K ′ > 0,

‖[u0, v0]‖H ≤ K ′‖A[u0, v0]‖H for all [u0, v0] ∈ D(A). (2.25)

Proof of Proposition 2.2. Let us prove the left inclusion in (2.23). Recalling calculations made in Proposition
2.1, we already know that elements [u, v] in D(A) satisfy −∆u ∈ H−1(Ω) and u|Γ = −Pg(D∗v). Therefore, in

comparison with the proof of Proposition 2.1, it suffices to show that u|Γ belongs to H1/2(Γ) instead of L2(Γ)
and apply the elliptic regularity theorem to gain the desired extra half-unit of regularity. By virtue of (1.12),
we have D∗v ∈ H1/2(Γ).
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First, recall that pointwise Lipschitz nonlinearities such as g map bounded sets of H1/2(Γ) into bounded
sets of H1/2(Γ). Indeed, using the definition of Sobolev spaces on manifold by local charts and the Sobolev-
Slobodeckij characterization of the fractional spaces Hs(Rd−1) (see [6]), we know that for a given f in H1/2(Γ),

g(f) ∈ H1/2(Γ) if and only if

∫∫
Rd−1×Rd−1

|φi(x1)g([f ◦ ψi](x1))− φi(x2)g([f ◦ ψi](x2))|2

‖x1 − x2‖d
dx1 dx2 < +∞,

(2.26)
for all suitable (φi, ψi), where the functions φi ∈ C∞c (Rd−1) are chosen from a partition of unity subordinate to
some (finite) covering of Γ and the functions ψi are corresponding local representations of the surface.

The integral term in (2.26) is finite because g and φi are globally Lipschitz continuous; hence, g(f) ∈ H1/2(Ω).
Furthermore, taking the square root of ‖·‖2L2(Rd−1) plus the integral term in (2.26) defines a norm on H1/2(Rd−1)

equivalent to the one given by interpolation. Thus, after coming back to functions on Γ, it follows from (2.26)
that

‖g(f)‖H1/2(Γ) ≤ K‖f‖H1/2(Γ) for all f ∈ H1/2(Γ), (2.27)

where K is some positive constant coming from the Lipschitz continuity of g and norm equivalence.
Next we have to check that P ∈ L(H1/2(Γ)). Again, this is a consequence of (2.26): we observe that since

Γ0 ∩ Γ1 = ∅, there exists m > 0 such that ‖x1 − x2‖ > m whenever (ψi(x1), ψi(x2)) ∈ [Γ0 × Γ1] ∪ [Γ1 × Γ0].
Finally, combining (1.12) for s = 1/2, the estimate (2.27), the fact that P ∈ L(H1/2(Γ)) together with the

elliptic regularity theorem, we obtain the stronger estimate

‖u‖H1(Ω) ≤ C
{
‖∆u‖H−1(Ω) + ‖v‖L2(Ω)

}
= C

{
‖A[u+DPg(D∗v)]‖H−1(Ω) + ‖v‖L2(Ω)

}
≤ C ′‖A[u, v]‖H

(2.28)

where C and C ′ are some positive constants that do not depend on [u, v]. The property (2.24) readily follows
from (2.28) and (2.7). �

2.3. Asymptotic stability

Next, we state the second main result of the section, which asserts that the zero equilibrium of the closed-loop
system (1.1)-(1.2) is globally asymptotically stable.

Theorem 2.2 (Asymptotic stability of the closed-loop system). Let [u0, v0] ∈ H. Then,

‖St[u0, v0]‖H → 0 as t→ +∞. (2.29)

Together with the contraction property of {St}, (2.29) implies that 0 is a globally asymptotically stable equilibrium
point for the feedback system (1.1)-(1.2).

Proof. By the contraction property of the semigroup {St} and denseness of D(A) in H, it suffices to prove (2.29)
for initial data [u0, v0] in D(A).

To do so, we use a Lasalle-type invariance approach. Let us recall the classical line of arguments. We consider
the ω-limit set ω([u0, v0]) of [u0, v0], which can be characterized as follows: [w0, z0] ∈ H belongs to ω([u0, v0])
if there exists an increasing sequence {tn} ∈ RN such that tn → +∞ and

Stn [u0, v0]→ [w0, z0] in H as n→ +∞. (2.30)

Recall that {St[u0, v0]}t≥0 is relatively compact in H. Therefore, ω([u0, v0]) is a nonempty (positively) invariant
compact set, and dist(St[u0, v0], ω([u0, v0])) → 0 as t → +∞ – see [7, Théorème 1.1.8]. Moreover, since
t 7→ ‖A(St[u0, v0])‖H is bounded, it follows from [3, Lemma 2.3] and (2.30) that ω([u0, v0]) ⊂ D(A). Besides,
since E(St[u0, v0]) is bounded and nonincreasing with respect to t, it must converge to some E∞ ≥ 0 as t goes
to +∞. By (2.30) and continuity of E , we have E(w0, z0) = E∞ for any [w0, z0] ∈ ω([u0, v0]).
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The remainder consists in proving that ω([u0, v0]) is reduced to {0}. Let [w0, z0] ∈ ω([u0, v0]); we write
[w(t), w′(t)] = St[w0, z0] and we notice that E(w(t), w′(t)) = E∞ for all t ≥ 0. Furthermore, [w,w′] is a strong
solution to (1.1)-(1.2) and we infer from the energy identity (2.8) that∫ τ

0

∫
Γ0

g(−∂ν [A−1w′])∂ν [A−1w′] dσ dt = 0 for all τ ≥ 0. (2.31)

Letting p , A−1w′ ∈ C(R+, H1
0 (Ω)) ∩ L∞(0,+∞;D(A)), (2.31) together with the properties of g leads to

∂νp(σ, t) = 0 for a.e. (σ, t) ∈ Γ0 × (0,+∞). (2.32)

Next, we recall that w′ ∈ W 1,∞(0,+∞;H−1(Ω)) and, using (2.32) together with the operator-theoretic for-
mulation of (1.1)-(1.2), we obtain w′′ + Aw = 0. Hence, p ∈ W 1,∞(0,+∞;H1

0 (Ω)) satisfies p′ + Ap = 0,
which in turn implies that p ∈ W 2,∞(0,+∞;H−1(Ω)) and solves p′′ + Ap = 0 in H−1(Ω), i.e., the standard
variational formulation of the wave equation with homogeneous Dirichlet boundary condition. In particular,
p ∈ C1(R+, L2(Ω)) and solves the following boundary value problem:

∂ttp−∆p = 0 in Ω× (0,+∞), (2.33a)

p|Γ = 0 on Γ× (0,+∞), (2.33b)

∂νp = 0 on Γ0 × (0,+∞). (2.33c)

The subset Γ0 being relatively open in Γ, a unique continuation argument for waves yields p = 0 – for instance,
one can directly apply [15, Théorème 2]. Therefore, w′ = 0, Aw = 0 and finally w = 0, which concludes the
proof. �

3. Polynomial decay rates for strong solutions

This section is dedicated to the analysis of the decay rate of strong solutions under additional assumptions
on the feedback nonlinearity and the geometry of the problem.

3.1. Statement of the result and outline of the proof

In what follows, we work under stronger assumptions that are given next.

Assumption 2. There exist positive constants S, α1 and α2 such that

α1|s| ≤ |g(s)| ≤ α2|s| for all |s| ≤ S. (3.1)

Assumption 3. The domain Ω ⊂ Rd with smooth boundary Γ = Γ0 ∩ Γ1 satisfies the following conditions:

(1) The boundary is such that
Γ0 ∩ Γ1 = ∅; (3.2)

(2) There exists a point x0 ∈ Rd such that, setting h(x) , x− x0,

h · ν ≤ 0 on Γ1. (3.3)

Then, we can estimate the decay rate of each strong solution.

Theorem 3.1 (Non-uniform polynomial decay rate). Let r ≥ max{d − 1, 2}. Under Assumptions 2 and 3,
strong solutions [u, u′] to (1.1)-(1.2) satisfy

E(u(t), u′(t)) ≤ Cut−
2
r−1 for all t ≥ 0. (3.4)

where Cu is a positive constant depending only on ‖A[u0, v0]‖H.
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Theorem 3.1 is a Dirichlet counterpart to non-uniform polynomial decay results that are well-known in the
Neumann boundary conditions – see, e.g., [8, Theorem 9.10]. Let us introduce the following notation: if [u, u′]
is a given solution to (1.1)-(1.2), we define a (continuous) function Eu over R+ by

Eu(t) , E(u(t), u′(t)). (3.5)

Here, polynomial decay rate is obtained by applying the following classical lemma to the (nonincreasing) energy
Eu of each solution – see [8, Theorem 9.1] for a proof.

Lemma 3.1. Let E : R+ → R+ be a nonincreasing function. Assume that there exist two positive constants γ
and T such that ∫ +∞

τ

Eγ+1(t) dt ≤ TE(0)γE(τ) for all τ ≥ 0. (3.6)

Then,

E(t) ≤ E(0)

(
T + γt

T + γT

)−1/γ

for all t ≥ T. (3.7)

We already know from Section 2 that Eu(t) converges to 0 as t goes to +∞. Our subsequents efforts focus
on estimating ∫ τ2

τ1

E(r+1)/2
u (t) dt for arbitrary 0 ≤ τ1 ≤ τ2, (3.8)

where we recall that

Eu(t) =
1

2
{‖u‖2L2(Ω) + ‖u′‖2H−1(Ω)}. (3.9)

As mentioned in the introduction, the proof is based on an analysis of the variable p defined by

p = A−1u′ (3.10)

which solves, at least formally, the following boundary-value problem:

∂ttp−∆p = −∂t[DPg(−∂νp)] in Ω× (0,+∞), (3.11a)

p|Γ = 0 on Γ× (0,+∞). (3.11b)

If u′ takes values in L2(Ω), recalling the formula (2.1), we have

− ∂νp = −∂ν [A−1u′] = D∗Ap = D∗u′. (3.12)

To alleviate notation, in the sequel we denote by Φ the term

Φ(t) , DPg(D∗u′(t)). (3.13)

In regards to (2.2), we see that −Φ is the harmonic extension of the trace u|Γ. As mentioned earlier, the
p-variable is smoother, which permits, in regards to the wave-type equation (3.11a) satisfied by p, the use of a
differential multiplier technique to obtain estimates of the integral over time of

1

2

∫
Ω

‖∇p‖2 + |p′|2 dx (3.14)

premultiplied by an appropriate power of Eu. The quantity (3.14) is the natural energy of [p, p′] at the H1(Ω)×
L2(Ω)-level (i.e., the standard variational framework); from there, we will be able to deduce a suitable integral
estimate of the energy Eu associated with the less regular u-variable.



TITLE WILL BE SET BY THE PUBLISHER 11

Remark 3.1. In fact, since we want to avoid differentiating terms involving g so that our results remain valid
when the nonlinearity is only continuous, we will rather multiply an integrated version of (3.11a), namely the
formula u = −[p + Φ], by the time derivative of the multiplier – see Lemma 3.2 below. In particular, p′ need
not be continuous.

3.2. The multiplier identity

In this subsection, we give more precise properties of the p-variable and derive an expression of (3.8) in
the form of a identity obtained by applying an appropriate multiplier to (3.11a). We recall that D(A) is
H2(Ω) ∩H1

0 (Ω) equipped with the norm ‖A · ‖L2(Ω), which is equivalent to the one induced by H2(Ω).

Lemma 3.2. Let [u, u′] be a strong solution. The corresponding functions p and Φ enjoy the regularity

p ∈ L∞(0,+∞;D(A)) ∩W 1,∞(0,+∞;H1
0 (Ω)), Φ ∈ L∞(0,+∞;H1(Ω)), (3.15)

Also, the following identity holds:
u = −[p′ + Φ] ∈ C(R, L2(Ω)). (3.16)

Proof. We infer from Proposition 2.2 that [u, u′] ∈ L∞(0,+∞;H1(Ω)×L2(Ω)). As a consequence, since A−1 is
continuous from L2(Ω) into D(A), we get

p = A−1u′ ∈ L∞(0,+∞;D(A)). (3.17)

Besides, u′ : R+ → H−1(Ω) is absolutely continuous and

u′′ +Au = −ADPg(D∗u′) in H−1(Ω) a.e. (3.18)

Thus, applying A−1 to(3.18) yields

p′ = A−1u′′ ∈ L∞(0,+∞;H1
0 (Ω)), (3.19)

and also
u = −[p′ + Φ], and Φ ∈ L∞(0,+∞;H1(Ω)), (3.20)

which concludes the proof. �

Define the usual wave multiplier as follows:

Mp , 2h · ∇p+ (d− 1)p, (3.21)

where h(x) = x−x0 as defined in Assumption 3 and d is the space dimension. Since p satisfies a wave equation,
we know that

∫ τ2
τ1

∫
Ω
‖∇p‖2 + |p′|dxdt can be estimated by multiplying (3.11a) by Mp and integrating over

Ω× (τ1, τ2). Since we are looking for estimates of Eu at the power (r + 1)/2, we premultiply Mp by Eu at the
power (r − 1)/2. Thus, we shall multiply (3.11a) by

E(r−1)/2
u (t)Mp(x, t). (3.22)

The resulting identity is given in the next lemma.

Lemma 3.3 (Multiplier identity). The following equality holds for any 0 ≤ τ1 ≤ τ2:

2

∫ τ2

τ1

E(r+1)/2
u dt = E(r−1)/2

u

∫
Ω

uMp dx

∣∣∣∣τ2
τ1

+

∫ τ2

τ1

E(r−1)/2
u

∫
Γ

(h · ν)|∂νp|2 dσ −
∫

Γ0

(h · ν)|g(D∗u′)|2 dσ dt

−
∫ τ2

τ1

E(r−1)/2
u

∫
Ω

(d+ 1)Φu+ Φ[2h · ∇u] dxdt− (r − 1)

2

∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMp dxdt.

(3.23)
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Proof. The proof is split into four steps.
Step 1: Integration by parts with respect to time. First, by linearity and continuity of M, Mp

belongs to W 1,∞(0,+∞;L2(Ω)). On the other hand, recall that Eu is bounded and absolutely continuous with

E ′u = −
∫

Γ0

g(D∗u′)D∗u′ dσ a.e., E ′u ∈ L∞(0,+∞), (3.24)

because strong solutions are Lipschitz continuous with respect to time. Thus, E(r−1)/2
u belongs to W 1,∞(0,+∞)

and E(r−1)/2
u Mp belongs to W 1,∞(0,+∞;L2(Ω)) with

[E(r−1)/2
u Mp]′ = E(r−1)/2

u Mp′ +
(r − 1)

2
E ′uE(r−3)/2

u Mp a.e. in L2(Ω). (3.25)

Now, it follows from (3.16) that p′ + Φ belongs to W 1,∞(0,+∞;L2(Ω)) and

− [p′ + Φ]′ = u′ = Ap. (3.26)

Let 0 ≤ τ1 ≤ τ2. Recall that, since p ∈ D(A), Ap = −∆p ∈ L2(Ω). Thus, taking the scalar product of (3.26)

with E(r−1)/2
u Mp in L2(τ1, τ2;L2(Ω)) and using the integration by parts formula in W 1,2(τ1, τ2;L2(Ω)) leads to

−
∫ τ2

τ1

E(r−1)/2
u

∫
Ω

∆pMp dx dt = E(r−1)/2
u

∫
Ω

uMp dx

∣∣∣∣τ2
τ1

−
∫ τ2

τ1

E(r−1)/2
u

∫
Ω

uMp′ dxdt

− (r − 1)

2

∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMp dxdt.

(3.27)

Step 2: Multiplier technique for the wave equation. In what follows, we apply classical vector calculus
identities to recover the H1

0 (Ω)×L2(Ω)-energy of [p, p′]. Since p takes values in H2(Ω), Rellich’s identity yields∫
Ω

∆p[2h · ∇p] dx = (d− 2)

∫
Ω

‖∇p‖2 dx+

∫
Γ

∂νp[2h · ∇p] dσ −
∫

Γ

(h · ν)‖∇p‖2 dσ. (3.28)

Furthermore, p|Γ = 0; thus

∇p = (∂νp)ν on Γ. (3.29)

Combining (3.28) and (3.29), we obtain∫
Ω

∆p[2h · ∇p] = (d− 2)

∫
Ω

‖∇p‖2 dx+

∫
Γ

(h · ν)|∂νp|2 dσ. (3.30)

On the other hand, ∫
Ω

∆p(d− 1)p dx = −(d− 1)

∫
Ω

‖∇p‖2 dx, (3.31)

where we use again that p vanishes on the boundary. Summing (3.30) and (3.31) yields∫
Ω

∆pMp dx = −
∫

Ω

‖∇p‖2 dx+

∫
Γ

(h · ν)|∂νp|2 dx. (3.32)
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Coming back to (3.27) and recalling (3.16), let us write∫
Ω

uMp′ = −
∫

Ω

p′Mp′ dx−
∫

Ω

ΦMp′dx

= −
∫

Ω

p′[2h · ∇p′] + (d− 1)|p′|2 dx−
∫

Ω

ΦMp′ dx

=

∫
Ω

|p′|2 dx−
∫

Ω

ΦMp′ dx,

(3.33)

where we use the identity∫
Ω

φ[2h · ∇φ] dx =

∫
Γ

(h · ν)(φ|Γ)2 dσ −
∫

Ω

(φ)2 div hdx for all φ ∈ H1(Ω) (3.34)

together with div h = d and p|Γ = 0. Therefore, combining (3.27) with (3.32) and (3.33) leads to

∫ τ2

τ1

E(r−1)/2
u

∫
Ω

‖∇p‖2 + |p′|2 dx dt = E(r−1)/2
u

∫
Ω

uMp dx

∣∣∣∣τ2
τ1

+

∫ τ2

τ1

E(r−1)/2
u

∫
Ω

ΦMp′ dxdt

+

∫ τ2

τ1

E(r−1)/2
u

∫
Γ

(h · ν)|∂νp|2 dσ dt− (r − 1)

2

∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMpdx dt.

(3.35)

Step 3: Additional terms. Here, we put the terms involving Φ into a form suitable for further estimation.
It follows from (3.16) that ∫

Ω

ΦMp′ dx = −
∫

Ω

ΦMudx−
∫

Ω

ΦMΦ dx. (3.36)

Applying (3.34) to Φ, similarly to (3.33), we obtain

−
∫

Ω

ΦMΦ dx =

∫
Ω

|Φ|2 dx−
∫

Γ

(h · ν)(Φ|Γ)2

=

∫
Ω

|Φ|2 dx−
∫

Γ0

(h · ν)|g(D∗u′)|2 dσ,

(3.37)

where we use that, by definition,

Φ|Γ = g(D∗Ap) = g(D∗u′) on Γ0, Φ|Γ = 0 on Γ1. (3.38)

On the other hand, we recall that

−
∫

Ω

ΦMudx = −
∫

Ω

Φ[2h · ∇u] + (d− 1)Φudx. (3.39)

Plugging (3.37) and (3.39) into (3.35) leads to∫ τ2

τ1

E(r−1)/2
u

∫
Ω

‖∇p‖2 + |p′|2 dxdt = E(r−1)/2
u

∫
Ω

uMp dx

∣∣∣∣τ2
τ1

− (r − 1)

2

∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMp dxdt

+

∫ τ2

τ1

E(r−1)/2
u

∫
Γ

(h · ν)|∂νp|2 dσ −
∫

Γ0

(h · ν)|g(D∗Ap)|2 dσ −
∫

Ω

Φ[2h · ∇u] + (d− 1)Φu− |Φ|2 dxdt.

(3.40)



14 TITLE WILL BE SET BY THE PUBLISHER

Step 4: Conclusion. We finish the proof by rewriting (3.40) as an estimate of
∫ τ2
τ1
E(r+1)/2
u dt. This is done

as follows. First, by definition of the p-variable,∫
Ω

‖∇p‖2 dx = ‖A1/2p‖2L2(Ω) = ‖A−1/2u′‖2L2(Ω) = ‖u′‖2H−1(Ω). (3.41)

On the other hand, it immediately follows from u = −[p′ + Φ] that∫
Ω

|p′|2 dx =

∫
Ω

|u|2 dx+

∫
Ω

2Φu+ |Φ|2 dx a.e. (3.42)

Summing (3.41) and (3.42) yields∫
Ω

‖∇p‖2 + |p′|2 dx = 2Eu +

∫
Ω

2Φu+ |Φ|2 dx a.e. (3.43)

Plugging (3.43) into (3.40), we get the desired identity.
�

3.3. Estimates of the right-hand side and conclusion

Our goal in this subsection is to establish an integral inequality in the form of

(1− µ)

∫ τ2

τ1

E(r+1)/2
u dt ≤ Ku{Eu(τ1) + Eu(τ2)} for all 0 ≤ τ1 ≤ τ2, (3.44)

where Ku is a constant that may depend on the initial data and µ is a sufficiently small constant that may
depend on u as well. Assuming that (3.44) holds, we let τ2 go to +∞ to obtain∫ +∞

τ

E(r+1)/2
u dt ≤ Ku

1− µ
Eu(τ) for all τ ≥ 0. (3.45)

Then, Theorem 3.1 follows readily from Lemma 3.1 if we choose

γ =
(r − 1)

2
and T =

Ku

1− µ
Eu(0)−(r−1)/2. (3.46)

To prove (3.44), we shall examine each term in the multiplier identity (3.23) and derive estimates in terms of

• Either directly Eu(τ1) or Eu(τ2);
• Or the boundary dissipation term

∫ τ2
τ1

∫
Γ0
g(D∗u′)D∗u′ dσ which is nonnegative and can be integrated,

since

− E ′u =

∫
Γ0

g(D∗u′)D∗u′ dσ = −
∫

Γ0

g(−∂νp)∂νp dσ; (3.47)

• And also
∫ τ2
τ1
E(r+1)/2
u dt premultiplied by small µ so that it can be absorbed in the left-hand side.

Remark 3.2. In what follows, we shall denote by K, K ′, etc. generic constants that do not depend on the initial
data.

In practice, we can write estimates in terms of
∫ τ2
τ1

∫
Γ0
|g(D∗u′)|2 dσ dt instead of

∫ τ2
τ1

∫
Γ0
g(D∗u′)D∗u′ dσ dt

since

0 ≤
∫

Γ0

|g(D∗u′)|2 dσ ≤ K
∫

Γ0

|g(D∗u′)D∗u′|dσ = K

∫
Γ0

g(D∗u′)D∗u′ dσ (3.48)

by Lipschitz continuity and nonincreasingness of g, together with g(0) = 0.
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Moreover, recalling (3.3) in Assumption 3 and looking at the sign of each term, we observe that |∂νp| in
(3.23) need not be estimated on the uncontrolled boundary Γ1.

That being said, let us start by estimating the term involving 2h · ∇u in (3.23). This is done in the following
lemma.

Lemma 3.4. Suppose that r ≥ 2. Then, there exists a positive constant K such that∣∣∣∣∫ τ2

τ1

E(r−1)/2
u

∫
Ω

Φ[2h · ∇u] dx dt

∣∣∣∣ ≤ K‖A[u0, v0]‖1/2H
{∫ τ2

τ1

1

µ

∫
Γ0

|g(D∗u′)|2 dσ + µE(r−2)/2
u (0)E(r+1)/2

u dt

}
(3.49)

for all τ2 ≥ τ1 ≥ 0 and µ > 0.

Proof. We start by writing

(Φ, 2h · ∇u)L2(Ω) = (DPg(D∗u′), 2h · ∇u)L2(Ω) = (g(D∗u′), D∗[2h · ∇u])L2(Γ0). (3.50)

Thus, applying the Cauchy-Schwarz inequality yields∣∣∣∣∫
Ω

Φ[2h · ∇u] dx

∣∣∣∣ ≤ ‖g(D∗u′)‖L2(Γ0)‖D∗[2h · ∇u]‖L2(Γ0) ≤ ‖g(D∗u′)‖L2(Γ0)‖D∗[2h · ∇u]‖L2(Γ). (3.51)

Next, recall from (1.12) that

D∗ ∈ L(H−1/2(Ω), L2(Γ)). (3.52)

Therefore, it follows from (3.51) that∣∣∣∣∫
Ω

Φ[2h · ∇u] dx

∣∣∣∣ ≤ K‖g(D∗Ap)‖L2(Γ0)‖2h · ∇u‖H−1/2(Ω). (3.53)

Linear interpolation between the Sobolev spaces L2(Ω) and H−1(Ω) leads to

‖2h · ∇u‖H−1/2(Ω) ≤ K‖2h · ∇u‖
1/2
L2(Ω)‖2h · ∇u‖

1/2
H−1(Ω) (3.54)

First, by Proposition 2.2,

‖2h · ∇u‖1/2L2(Ω) ≤ K‖h‖
1/2

L∞(Ω)d
‖∇u‖1/2

L2(Ω)d
≤ K ′‖A[u0, v0]‖1/2H . (3.55)

Besides, since 2h · ∇u belongs to L2(Ω), we have

〈2h · ∇u,w〉H−1(Ω),H1
0 (Ω) = (2h · ∇u,w)L2(Ω) for all w ∈ H1

0 (Ω). (3.56)

Let us write ∫
Ω

[2h · ∇u]w dx = 2

d∑
i=1

∫
Ω

hi∂xiuw dx

= −2

d∑
i=1

∫
Ω

u[w∂ihi + hi∂iw] dx+

d∑
i=1

∫
Γ

νihiuw dσ

= −2

∫
Ω

u[w div h+ h · ∇w] dx,

(3.57)

where hi (resp. νi) denotes the i-th coordinate of the vector field h (resp. the outward normal vector ν). Recall
that h ∈ C1(Ω). Then, using the Poincaré inequality on w, we obtain that for some K > 0,∣∣(2h · ∇u,w)L2(Ω)

∣∣ ≤ K‖u‖L2(Ω)‖w‖H1
0 (Ω). (3.58)
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By norm equivalence between H−1(Ω) and H1
0 (Ω)′, we infer from (3.58) that

‖2h · ∇u‖H−1(Ω) ≤ K‖u‖L2(Ω). (3.59)

Coming back to (3.53), combining (3.55) and (3.59) yields∣∣∣∣∫
Ω

Dg(D∗u′)[2h · ∇u] dx

∣∣∣∣ ≤ K‖A[u0, v0]‖1/2H ‖g(D∗u′)‖L2(Γ0)‖u‖
1/2
L2(Ω)

≤ K ′‖A[u0, v0]‖1/2H ‖g(D∗u′)‖L2(Γ0)E1/4
u .

(3.60)

Therefore, since Eu ≥ 0, we have∣∣∣∣E(r−1)/2
u

∫
Ω

Dg(D∗u′)2h · ∇udx

∣∣∣∣ ≤ K‖A[u0, v0]‖1/2H ‖g(D∗u′)‖L2(Γ0)E(r−1)/2+1/4
u . (3.61)

Applying Young’s inequality with a parameter µ > 0, we obtain

‖g(D∗u′)‖L2(Γ)E(r−1)/2+1/4
u ≤ 1

2µ
‖g(D∗u′)‖2L2(Γ) +

µ

2
Er−1/2
u . (3.62)

It is assumed that r ≥ 2. Thus, letting η , (r − 1/2)− (r + 1)/2 ≥ 0, by nonincreasingness of Eu, we have

Er−1/2
u = EηuE(r+1)/2 ≤ Eηu(0)E(r+1)/2

u . (3.63)

Plugging (3.63) into (3.62) and integrating over (τ1, τ2) yields the desired result.
�

Next, we deal with the term involving |∂νp| = |D∗u′| on the controlled boundary Γ0. Here, the arguments are
very similar to those employed in the case of saturated Neumann feedback – see [8, Theorem 9.10] or [19, Theorem
3].

Lemma 3.5. Suppose that r ≥ d− 1. Then, there exists K > 0 and η ∈ (0, 1) such that∣∣∣∣∫ τ2

τ1

E(r−1)/2
u

∫
Γ0

|∂νp|2 dσ dt

∣∣∣∣ ≤ K‖A[u0, v0]‖2−ηH
{
µ1/η

∫ τ2

τ1

∫
Γ0

g(D∗u′)D∗u′ dσ dt+ µ−1/(1−η)

∫ τ2

τ1

E(r+1)/2
u dt

}
+K

∫ τ2

τ1

∫
Γ0

|g(D∗u′)|2 dσ dt

(3.64)
for all 0 ≤ τ1 ≤ τ2 and µ > 0.

Proof. For each t ≥ 0, we set

Γ1
t , {σ ∈ Γ0 : |∂νp(σ, t)| ≤ S} and Γ2

t , Γ0 \ Γ1
t . (3.65)

Then, ∣∣∣∣∫
Γ0

(h · ν)|∂νp|2 dσ

∣∣∣∣ ≤ K ∫
Γ0
t

|∂νp|2 dσ +K

∫
Γ1
t

|∂νp|2 dσ. (3.66)

Using (3.1) in Assumption 2, we estimate the first term in (3.66) as follows:∫
Γ0
t

|∂νp|2 dσ ≤ α−2
1

∫
Γ0
t

|g(−∂νp)|2 dσ ≤ α−2
1

∫
Γ0

|g(−∂νp)|2 dσ = α−2
1

∫
Γ0

|g(D∗u′)|2 dσ. (3.67)



TITLE WILL BE SET BY THE PUBLISHER 17

Let us examine the second term in (3.66). Setting a parameter η ∈ (0, 1) to be tuned later on, we have∫
Γ1
t

|∂νp|2 dσ =

∫
Γ1
t

|D∗u′|2 dσ =

∫
Γ1
t

|D∗u′|2−η |g(D∗u′)D∗u′|η

|g(D∗u′)|η
dσ. (3.68)

Equation (3.68) makes sense since |g(D∗u′)| ≥ min{g(S),−g(−S)} > 0 on Γ1
t . In fact, we have∫

Γ1
t

|D∗u′|2 dσ ≤ min{g(S),−g(−S)}−η
∫

Γ1
t

|D∗u′|2−η|g(D∗u′)D∗u′|η dσ

≤ K
∫

Γ0

|D∗u′|2−η|g(D∗u′)D∗u′|η dσ.

(3.69)

Using Hölder’s inequality with conjugates 1/η and 1/(1− η), we infer from (3.69) that

∫
Γ1
t

|D∗u′|2 dσ ≤ K
(∫

Γ0

|D∗u′|
2−η
1−η

)1−η (∫
Γ0

g(D∗u′)D∗u′ dσ

)η
. (3.70)

Now, [u, u′] being a strong solution to (1.1)-(1.2), we recall from Proposition 2.2 that u′ takes values in L2(Ω)
and ‖u′(t)‖L2(Ω) ≤ K‖A[u0, v0]‖H for all t ≥ 0. The continuity property (1.12) yields

‖D∗u′(t)‖H1/2(Γ) ≤ K‖A[u0, v0]‖H for all t ≥ 0. (3.71)

In what follows, we rely on (fractional) Sobolev inequalities – see [6, Theorem 6.5 and Theorem 6.9]. First, we
consider the case d ≥ 3, where we recall that d denotes the space dimension. We have the continuous embedding

H1/2(Γ0) ↪→ Lq(Γ0) for all q ∈
[
2,

2(d− 1)

d− 2

]
, Id. (3.72)

Furthermore, since r + 1 ≥ d, if we choose η = 2/(r + 1), some computations yield (2− η)/(1− η) ∈ Id; hence

H1/2(Γ0) ↪→ L
2−η
1−η (Γ0). (3.73)

If d = 2, then the embedding (3.72) holds in fact for any q ∈ [2,+∞); therefore, (3.73) is valid as well. Coming
back to (3.70), combining (3.73) with (3.71) yields

E(r−1)/2
u

∫
Γ1
t

|D∗u′|2 dσ ≤ K‖A[u0, v0]‖2−ηH E(r−1)/2
u

(∫
Γ0

g(D∗u′)D∗u′ dσ

)η
. (3.74)

Applying the Young inequality with conjugates 1/η and 1/(1− η), we get

E(r−1)/2
u

∫
Γ1
t

|D∗u′|2 dσ ≤ K‖A[u0, v0]‖2−ηH
{
µ−

1
1−η E

r−1
2(1−η)
u + µ

1
η

∫
Γ0

g(D∗u′)D∗u′ dσ

}
for all µ > 0. (3.75)

Since (r−1)/2(1−η) = (r+1)/2, we conclude the proof by combining (3.75) and (3.67) together with (3.66). �

At this point, the proof of Theorem 3.1 is almost complete. Estimates of the remaining terms in (3.23) are
given in the next lemmas. Following our remarks at the beginning of the subsection, we claim that Theorem
3.1 is proved once those are established.
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Lemma 3.6. There exists a positive constant K such that∣∣∣∣∣
[
E(r−1)/2
u

∫
Ω

uMpdx

]τ2
τ1

∣∣∣∣∣ ≤ KE(r−1)/2
u (0){Eu(τ1) + Eu(τ2)} for all 0 ≤ τ1 ≤ τ2. (3.76)

Proof. Let τ ≥ 0. Then,∣∣∣∣E(r−1)/2
u (τ)

∫
Ω

u(τ)Mp(τ) dx

∣∣∣∣ ≤ E(r−1)/2
u (τ)‖u(τ)‖L2(Ω)‖Mp(τ)‖L2(Ω)

≤ KE(r−1)/2
u (τ)‖u(τ)‖L2(Ω)‖p(τ)‖H1

0 (Ω)

≤ KE(r−1)/2(τ)‖u(τ)‖L2(Ω)‖u′(τ)‖H−1(Ω)

≤ KE(r−1)/2
u (0)Eu(τ),

(3.77)

where it used that Eu is nonincreasing. Equation (3.76) readily follows from the triangular inequality. �

Lemma 3.7. There exists a positive constant K such that∣∣∣∣∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMp dxdt

∣∣∣∣ ≤ KE(r−1)/2
u (0){Eu(τ1) + Eu(τ2)} for all 0 ≤ τ1 ≤ τ2. (3.78)

Proof. Again, we write ∣∣∣∣∫
Ω

uMp dx

∣∣∣∣ ≤ KEu. (3.79)

Therefore,∣∣∣∣∫ τ2

τ1

E ′uE(r−3)/2
u

∫
Ω

uMp dxdt

∣∣∣∣ ≤ K ∫ τ2

τ1

(−E ′u)E(r−1)/2
u dt = −K

∫ τ2

τ1

[
2

r + 1
E(r+1)/2

]′
dt

=
2K

r + 1
{E(r+1)/2
u (τ1)− E(r+1)/2

u (τ2)}.
(3.80)

The desired inequality follows from the nonincreasingness of Eu and (3.80). �

Lemma 3.8. There exists a positive contant K such that∣∣∣∣∫ τ2

τ1

E(r−1)/2
u

∫
Ω

Φudxdt

∣∣∣∣ ≤ K { 1

µ

∫ τ2

τ1

E(r+1)/2
u dt+ µE(r−1)/2

u (0)

∫ τ2

τ1

∫
Γ0

|g(D∗u′)|2 dσ dt

}
(3.81)

for all 0 ≤ τ1 ≤ τ2 and µ > 0.

Proof. First, using Cauchy-Schwarz and Young inequalities, we obtain∣∣∣∣∫ τ2

τ1

E(r−1)/2
u

∫
Ω

Φudxdt

∣∣∣∣ ≤ ∫ τ2

τ1

E(r−1)/2
u ‖Φ‖L2(Ω)‖u‖L2(Ω) dt

≤ 1

2µ

∫ τ2

τ1

E(r−1)/2
u ‖Φ‖2L2(Ω) dt+ µ

∫ τ2

τ1

E(r+1)/2
u dt.

(3.82)

Next, recall that Φ = DPg(D∗u′) and that D continuously maps L2(Γ) into L2(Ω). Therefore,

‖Φ‖2L2(Ω) ≤ K‖Pg(D∗u′)‖2L2(Γ) = K‖g(D∗u′)‖2L2(Γ0) (3.83)

and we conclude the proof by plugging (3.83) into (3.82) and using that Eu is nonincreasing. �
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4. Concluding remarks

In this section, we discuss the results of our paper and give some comments and perspectives.

• Theorem 3.1 deals with the decay rate of strong solutions to (1.1)-(1.2), which remain bounded in a
stronger norm (here, in H1(Ω) × L2(Ω)). In particular, this enables the use of Sobolev embeddings to
obtain estimates of the boundary term ∂ν [A−1u′] in L∞(0,+∞;Lq(Γ)) for some appropriate q. In view
of the energy identity (2.8), and as done in Lemma 3.5, we can then derive an estimate involving only
the “dissipation term” g(−∂ν [A−1u′]) and lower-order energy terms, even though no lower bound on
nonlinearity g is prescribed at infinity. Here, using the terminology of [18], the feedback is allowed to
be weak, i.e., g(s)/s can go to 0 as |s| goes to infinity, as it is the case when g represents a saturation
mapping; then, loss of uniformity is to be expected. More precisely, coming back to the Neumann prob-
lem, the one-dimensional version of (1.6) with g given by (1.7) is known to possess weak solutions that
decay to zero (in the natural energy space H1(Ω)×L2(Ω)) slower than any exponential or polynomial,
whereas strong solutions decay exponentially to zero but in a non-uniform way – see [18, Theorem 4.1]
or also [1, Theorem 59]. Proving a similar result in our Dirichlet case would be interesting.

• Putting aside the matter of saturated feedback and assuming if needed that g has linear growth at
infinity, we see that, unfortunately, the strategy followed here is not sufficient to prove uniform decay
of solutions to (1.1)-(1.2). Indeed, while estimating the term (Φ, 2h · ∇u)L2(Ω) as in Lemma 3.4 is good
enough for the purpose of proving Theorem 3.1, it requires, again, that solutions remain bounded in a
norm stronger than that of the energy space H. If, instead of (3.49), one manages to prove something
in the likes of∫ τ

0

∫
Ω

Φ[2h · ∇u] dx dt ≤ K(τ)

∫ τ

0

|g(D∗u′)|2 dσ dt+K ′{Eu(0) + Eu(τ)}+ ε

∫ τ

0

Eu dt (4.1)

for some τ > 0, where K(τ) is allowed to depend on τ and ε can be chosen sufficiently small, then, by
remarking that the multiplier identity (3.23) is still valid with the time-varying weight E(u, u′)(r−1)/2

replaced by the constant 1, one could easily adapt the rest of our proof to obtain exponential uniform
stability. By following the proof of [9, Lemma 3.3], we can prove such estimate when g is the identity, at
least under some specific geometrical conditions; however, the argument breaks down in the nonlinear
case. Therefore, as mentioned in the introduction, the problem of uniform stability is still open.
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