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Abstract—Decision-making in the presence of contextual in-
formation is a ubiquitous problem in modern power systems.
The typical data-decisions pipeline comprises several forecasting
and optimization components deployed in sequence. However,
the loss function employed during learning is only a proxy for
task-specific costs (e.g. scheduling, trading). This work describes
a data-driven alternative to improve prescriptive performance in
conditional stochastic optimization problems based on nonpara-
metric machine learning. Specifically, we propose prescriptive
trees that minimize task-specific costs during learning, embedded
with a scenario reduction procedure to reduce computations,
and then derive a weighted Sample Average Approximation of
the original problem. We present experimental results for two
problems: storage scheduling for price arbitrage and network-
constrained stochastic market clearing, respectively associated
with electricity price and load forecasting. The empirical results
show significant improvements on deterministic and stochastic
lookahead policies, with the relative difference being more
pronounced when training data are limited.

Index Terms—Data-driven optimization, decision trees, elec-
tricity market, prescriptive analytics, value-oriented forecasting

I. INTRODUCTION

The ongoing transition towards the smart grid era is asso-
ciated with an influx of data from various sources. Making
informed decisions under uncertainty, entails leveraging such
contextual information (also known as explanatory data or
features) within the data-decisions pipeline. The conventional
modeling approach comprises a sequential process, where
forecasting models first estimate uncertain parameters (e.g.
load, market prices), which are subsequently input into an
optimization problem. However, learning is performed by min-
imizing a proxy loss function, without considering the impact
of forecasts on downstream costs. Assessing this impact and
designing algorithms that maximize forecast value, rather than
accuracy, constitute key challenges in energy forecasting [1]
for the coming years.

Conditional stochastic optimization departs from the clas-
sical approach to study decision-making under uncertainty in
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the presence of contextual information. The data-driven frame-
work put forward in [2] and extended in [3] integrates machine
learning with optimization by employing local learning (non-
parametric) algorithms to infer a weighted Sample Average
Approximation (SAA) of stochastic problems conditioned on
contextual information. A related stream of research proposes
learning under alternative loss functions to derive, possibly
biased, forecasts that explicitly minimize downstream costs
(or equivalently maximize forecast value) [4], termed cost-
/value-oriented forecasts. Relevant applications on wind [5]
and load [6] forecasting rely on a two-step approach that
involves first inferring a convex loss, then training the model,
which, however, does not directly leverage the optimization
component. In [7] authors prescribe value-oriented demand
forecasts to clear a day-ahead market, by considering forecast
impact on balancing costs during learning. A generic end-
to-end learning approach to train probabilistic forecasting
models to minimize task-specific costs for problems with a
smooth objective is described in [8], with applications in
storage and grid scheduling. The trading cost for a risk-aware
renewable producer is used as an alternative loss to forecast
market quantities in [9]. Lastly, empirical risk minimization
(ERM) can be applied to directly forecast decisions, see e.g.
data-driven solutions to the newsvendor problem [10], with
relevant applications on renewable trading found in [11], [12],
respectively involving linear decision rules and neural net-
works. A main drawback, however, is that the ERM approach
fails to guarantee the out-of-sample feasibility of decisions.
Considering a discrete set of actions circumvents this issue;
see e.g. mode-based control of storage posed as a supervised
classification problem [13].

The work presented here integrates the framework estab-
lished in [3] with learning under alternative loss functions,
describing a decision tree algorithm that directly minimizes
task-specific costs during learning and outputs decisions rather
than predictions (prescriptive trees), effectively learning a
policy from data. We extend our previous work [14] by
considering a multi-temporal setting, describing an embedded
scenario reduction procedure, and explicitly modeling recourse
actions when generating prescriptions. To illustrate the pro-
posed solution, we provide a comprehensive evaluation against
deterministic and stochastic lookahead solutions derived under
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the standard modeling approach in two applications: price ar-
bitrage with storage and network-constrained market clearing.
Further, we provide empirical evidence on the effect of training
sample size and regularization hyperparameters on the out-of-
sample optimization performance. Overall, the main contri-
bution of this paper is to propose and validate an effective
data-driven alternative to the standard ”forecast, then opti-
mize” modeling approach, offering a generalized perspective
that jointly examines value-oriented forecasts and decisions,
directly leverages the underlying optimization problem, and
ensures out-of-sample feasibility. The proposed approach is
generic and readily applicable to convex conditional stochastic
optimization problems.

The rest of the paper is organized as follows. Section II
details the prescriptive trees methodology. Section III describes
the applications and presents the results. Finally, we conclude
and provide directions for future research in Section IV.

II. METHODOLOGY

A. Prescriptive Analytics Problem

We consider optimization problems that involve uncertain
parameters of interest ξ ∈ Ξ ⊆ Rdξ (e.g. load), associated
with features γ ∈ Γ ⊆ Rdγ (e.g. weather conditions). Our
focus is on solving the prescriptive analytics problem

v = min
z∈Z

EP[c(z; ξ)|γ = γ] = min
z∈Z

Eξ∼Pγ̄ [c(z; ξ)], (1)

where v is the objective value, z ∈ Rdz is the decision
vector, Z is a convex set of feasible solutions, c(·) is a
cost function, γ = γ is a feature observation, P is the joint
distribution of γ and ξ, and Pγ is the marginal distribution
of ξ conditioned on γ. Typically, P,Pγ are unknown, thus we
want to infer a solution from a training data set {(ξi, γi)}ni=1

of n observations, by learning a policy ẑ that varies as a
function of γ. In this work, ξi typically represents a sample
path realization of a stochastic process, e.g. one day of load
observations. Further, we assume access to an oracle that
efficiently generates an SAA of (1) with off-the-shelf solvers.

The standard modeling approach, termed ”forecast, then
optimize” (FO), suggests first deploying forecasting models
to infer an approximation P̂γ of the marginal conditional
distribution of ξ (or its expectation), and then solving

ẑFO = arg min
z∈Z

Eξ∼P̂γ̄ [c(z; ξ)], (2)

which now defines a conventional stochastic optimization
problem, that can be tackled with standard methods. However,
as the forecasting and optimization components are separate,
the decision-maker cannot effectively hedge against miscali-
brated forecasting models. Integrating machine learning and
optimization offers a viable alternative in this case. Following
[3], we consider a weighted SAA of (1) as

ẑPP (γ) = arg min
z∈Z

n∑
i=1

ωn,i(γ)c(z; ξi), (3)

termed predictive prescription, where ωn,i(γ) ≥ 0 denotes
weights learned from a local learning algorithm, e.g. nearest

neighbors and decision trees, satisfying
∑n
i=1 ωn,i(γ) = 1.

Recall that for the standard SAA ωn,i(γ) = 1
n ; thus we

optimize over the empirical distribution of ξ without lever-
aging any contextual information. We extend this framework
by proposing a methodology to derive ωn,i(γ) by directly
minimizing expected costs (1). Following [15], we formally
define the problem of searching over functions f : Γ → Ξ
that improve prescriptive performance as

min
f ∈ F , zf (γi) ∈ Z

∑
i∈[n]

c(zf (γi); ξi) (4a)

s.t.

zf (γi) = arg min
z∈Z

∑
i∈[n]

ωfn,i(γi)c(z; ξi) ∀i ∈ [n], (4b)

where [n] := {1, . . . , n}. In the following, we focus exclu-
sively on decision tree ensembles, which generally outperform
other local learning algorithms.

B. Prescriptive Trees

The proposed tree algorithm follows the popular classi-
fication and regression trees (CART) [16] method, which
recursively applies locally optimal splits, leading to a set of
L leaves, R1:L. A node split defines a disjoint partition of
feature space at feature j ∈ dγ and point s: R1(j, s) = {i ∈
[n]|γij < s} and R2(j, s) = {i ∈ [n]|γij ≥ s}. Following
[16], the locally optimal split that minimizes task-specific loss
is derived from

min
j,s

min
z1∈Z

∑
γi∈R1(j,s)

c(z1; ξi) + min
z2∈Z

∑
γi∈R2(j,s)

c(z2; ξi)

 .
(5)

The inner minimization problems reflect the SAA solution
of each partition, where ẑ1, ẑ2 are locally constant decisions.
Decision trees are generally prone to overfitting, which hinders
their capacity. An effective way of mitigating the adverse
effects of overfitting, i.e., high variance, is via randomization-
based ensemble methods such as Random Forests [17] and Ex-
traTrees [18], which can be readily adapted to our framework
to grow ensembles of prescriptive trees (prescriptive forests).

Starting at the root node, we recursively partition the feature
space until either a stopping criterion is met or performance
cannot be further improved. Typical stopping criteria include
the maximum tree depth ∆max, the minimum number of
observations nmin per leaf, and a predefined threshold for
cost reduction. At each tree node, we apply perturbation
by selecting a subset of features and candidate split points
(and possibly bootstrapping samples), which is an integral
part of ensemble methods. The ExtraTree algorithm suggests
randomly selecting K features and a random candidate split
point per feature (without bootstrapping), while in the Random
Forest algorithm all candidate splits per selected feature are
evaluated (with bootstrapping). In this work, we opt for the
ExtraTree algorithm due to its reduced computations (fewer
splits are evaluated per node). After selecting K candidate
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splits, the aggregated cost (5) for each one is estimated and
compared with the cost at its parent node, updating the tree
structure accordingly. Algorithm 1 details the subroutine of
splitting a single tree node with a random split criterion.

Algorithm 1 NodeSplit

Input: Data {γi, ξi}n0
i=1, current partition R0, current depth

∆, hyperparameters {nmin,K,∆max}
Output: Local split (j, s)

1: Estimate cost v0 = min
z∈Z

∑
γi∈R0

c(z; ξi) and prescription

ẑ0 = arg min
z∈Z

∑
γi∈R0

c(z; ξi) at current node R0

2: if ∆ < ∆max and n0 ≥ 2nmin then
3: Select K random features { γ1,. . . , γK}
4: Select random split point sκ ∀ κ ∈ K from

U [γminκ , γmaxκ ] such that |R1|, |R2| ≥ nmin
5: Solve (5) ∀(κ, sκ) {Optional: apply ReducedSAA}
6: Find tuple (j∗, s∗) such that v(s∗) = min

κ=1,··· ,K
v(sκ)

7: if v(s∗) < v0 then
8: ∆←− ∆ + 1
9: return tuple (j∗, s∗) {Create new split}

10: else
11: return nothing {Node becomes leaf with output ẑ0}
12: end if
13: end if

Similarly to CART trees, for query γ the corresponding
weights ωn,i(γ) are derived as:

ωn,i(γ) =
I[γi ∈ R(γ)]

|R(γ)|
, (6)

where R(γ) denotes the target leaf that γ belongs to, | · |
denotes the set cardinality, and I[γi ∈ R(γ)] is an indicator
function to assess whether γi falls into R(γ). For an ensemble
of B trees the derived weights are

ωn,i(γ) =
1

B

B∑
b=1

I[γi ∈ Rb(γ)]

|Rb(γ)|
. (7)

Single trees are fully compiled, i.e., leaves provide prescrip-
tions without requiring further computations during implemen-
tation. For prescriptive forests, taking the average decision
might lead to infeasibility, thus an additional step of solving
(3) for a query γ is required.

Finally, it is straightforward to derive value-oriented fore-
casts as ξ̂ =

∑n
i=1 ωn,i(γ)ξi. The key difference is that the

internal tree structure is now dictated by local splits that
minimize the expected cost of a constrained problem, rather
than forecast error, as implemented in the CART method.

C. Embedded Scenario Reduction

Problem (5) is of a discrete nature and generally intractable
for all but the simplest problems, which motivates the applica-
tion of the ExtraTree algorithm, as it requires fewer evaluations
per node. We propose to further reduce computations by
accelerating individual split evaluations by means of applying

scenario reduction (the terms scenarios and sample paths are
used interchangeably). First, we select an upper threshold for
the number of scenarios nmax, such that nmax ≥ nmin, which
guarantees that scenario reduction will be applied in both
partitions. Next, we apply a scenario reduction method, solve
the SAA (5), and finally scale the expected cost back to aggre-
gated cost. The process is detailed in Algorithm 2. Naturally,
as we move down the tree structure, the average number of
observations per node decreases. Therefore, scenario reduction
mostly affects splits near the top of the tree, and is applied
progressively less frequently moving downwards. We refer the
reader to [19], and references therein, for an overview of the
literature on scenario reduction and a comparison of different
methods to a stochastic unit commitment problem. For this
work, we employ k-medoids clustering to select representative
samples.

Algorithm 2 ReducedSAA

Input: Data {ξi}n0
i=1, hyperparameter nmax

Output: SAA solution of subproblem with scenario reduc-
tion

1: Apply scenario reduction, generate new set of samples
ξ′ ∈ Ξ′, where |Ξ′| = nmax

2: Estimate cost v = min
z∈Z

1
|Ξ′|

∑
c(z; ξ′i) and prescription

ẑ = arg min
z∈Z

1
|Ξ′|

∑
c(z; ξ′i)

3: Scale cost to aggregate level vaggr = n0v
4: return (vaggr, ẑ)

III. APPLICATIONS

To illustrate the efficacy of the proposed method, we
compare it to the traditional modeling approach in two ap-
plications. The first considers scheduling a storage device to
perform price arbitrage in a day-ahead (DA) market. Next, we
consider stochastic market clearing with network constraints
and uncertain demand. Thus, the two applications are associ-
ated with electricity price and load forecasting, respectively.
To facilitate reproducibility of the results, we provide the code
for the experiments in [20].

A. Forecasting Models

As discussed, the standard modeling approach requires first
generating forecasts of uncertain parameters. Depending on
the optimization module, these forecasts range from point
forecasts, to probabilistic forecasts and trajectories (scenarios).
As the purpose of this work is not to provide a comprehensive
evaluation of forecasting models, but rather to showcase the
efficacy of an alternative approach, we select established
benchmarks. In the following, electricity prices and load
forecasts are generated using a Quantile Regression Forests
(QRF) model, which is a generalization of Random Forests.
The QRF is robust to overfitting, requires little tuning, and
can generate both point and probabilistic forecasts. Sample-
based approximations of multi-period stochastic optimization
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Fig. 1: Example of DA load forecasts: point forecasts, proba-
bilistic forecasts as prediction intervals (PI), and scenarios.

problems require modeling temporal correlations between suc-
cessive time periods; to this end, a Gaussian copula function is
employed, given the conditional marginal predictive densities
obtained from the QRF, following the procedure detailed in
[21]. For the sake of completion, comparisons with naive
benchmarks are also provided. For reference, Fig. 1 illustrates
different types of load forecasts for the DA horizon.

B. Storage Scheduling and Price Forecasting

1) Problem description: The first application concerns
scheduling a generic storage device, similar to [8]. The op-
erator of a grid-scale storage device decides the charging zin

and discharging zout actions, which consequently induce a
specific state of charge zsoc, for each period t of the forecast
horizon T . The operator wants to maximize profits via price
arbitrage, while also considering battery degradation costs, and
penalizing excessive deviations from the starting state. Here,
we assume that degradation costs and excessive deviations
(henceforth both referred to as penalties) are modeled as
quadratic regularization terms. The problem, which depends
on estimating the uncertain DA prices πda, is formulated as

min
zint , z

out
t , zsoct

Eπda

[∑
t∈[T ]

πdat (zint − zoutt ) + γ‖zsoc − z0‖22

+ε‖zout‖22 + ε‖zin‖22

]
(8a)

s.t.

zsoc ≤ zsoct ≤ zsoc ∀t ∈ [T ], (8b)

zin ≤ zint ≤ zin ∀t ∈ [T ], (8c)
zout ≤ zoutt ≤ zout ∀t ∈ [T ], (8d)

zsoct+1 = zsoct − 1

ηout
zoutt + ηinzint ∀t ∈ [T − 1], (8e)

zsoc1 = z0, zsocT − 1

ηout
zoutT + ηinzinT = z0, (8f)

TABLE I: Problem Parameters

Parameter Value

zsoc 1
zin 0.5
zout 0.2
zsoc, zin, zout 0
ηin 0.8
ηout 0.9
γ, ε {0.01, 0.05, 0.1, 0.5, 1}

where ηin, ηout denote the charging and discharging efficiency,
z0 the initial state of charge, z (resp. z) the lower (upper) limit
of decision variables, and [T ] := {1, . . . , T}. For simplicity,
the state of charge must be at the starting level at the end of
the day. Recourse actions are not considered. The following
approaches (policies) are compared:
• FO-Deterministic (FO-Det): Generate point price fore-

casts, then solve a deterministic optimization problem,
which is the standard modeling approach.

• Prescriptive Forest (PF): Generate predictive prescriptions
with the proposed prescriptive forest algorithm. This is
equivalent to solving a deterministic optimization prob-
lem with value-oriented forecasts.

• SAA: Determine an SAA of (8) given sample paths of
{πDA}ni=1, which minimizes in-sample cost. The SAA
serves as a naive benchmark, since it ignores contextual
information.

2) Experiment setup: This step employs a total of 3 years
of market data from France, obtained from the ENTSO-
E Transparency platform. Features γ include lagged prices,
predicted net load at the system level, and categorical variables
for month, weekday, and hour of the day. We consider a batch-
mode learning setting and vary the size of the training sample
n from 6 months to 2 years to assess the sensitivity of the
out-of-sample performance. We also examine the impact of
regularization parameters γ, ε (for simplicity assumed equal).
Table I presents the complete list of indicative parameter
values used. For all cases, evaluation is performed on the last
year of data. To train the PF, the hyperparameters are set as
{B = 50,K = dx, n

min = 10}, with individual trees being
maximally grown, and without scenario reduction.

3) Results: Fig. 2 summarizes the out-of-sample prescrip-
tive performance of all of the considered cases. Overall, the
PF consistently outperforms the other benchmarks, resulting
in the highest profit, while also setting the efficient frontier
in all cases (values towards the top and left are better). With
respect to the standard FO-Det, for a given value of γ, ε, the PF
generally incurs similar penalties combined with significantly
higher profits. Regarding sensitivity to sample size, in general,
larger samples translate into improved optimization perfor-
mance, which is expected as the learning component improves.
Regularization penalties remain fairly stable throughout; how-
ever, attained profit steadily increases with the sample size,
with results converging for 2 years of training data. The PF
and the SAA exhibit less sensitivity to sample size compared
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Fig. 2: Plots of aggregated profit versus penalties for the
various sample sizes. Marker size is analogous to the value
of γ, ε. Points towards the top and left are better.
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Fig. 3: Forecast accuracy for standard (FO-Det), value-oriented
(PT), and seasonal naive forecasts.

to the FO-Det approach, which fails to outperform the naive
SAA solution for the smallest sample examined (6 months).
Thus the SAA poses an attractive alternative for the case of
limited training data. For larger sample size, both the PF and
the FO-Det outperform the SAA, with results being more
pronounced for larger values of γ, ε. Finally, Fig. 3 examines
forecast accuracy under a standard loss function (from FO-
Det) and an alternative loss function (from PF), highlighting
that, in this case study, improved accuracy does not translate
into improved optimization performance.

C. Stochastic Market Clearing and Load Forecasting

1) Problem description: Next, we examine market clearing
mechanisms in conjunction with the different modeling ap-
proaches. We consider clearing a forward (day-ahead or DA)
market and a real-time (RT) market with network constraints

and uncertain demand. In the DA horizon, the system operator
sets the dispatch levels of controllable generators in order
to satisfy the uncertain demand, while respecting a set of
technical and network constraints. When uncertainty is real-
ized during the RT operation, corrective dispatch actions are
required to maintain the demand-supply equilibrium. A DC
linear approximation of network constraints is applied, as is
standard practice. For simplicity, the unit commitment problem
(start-up/shut-down actions) is not modeled. Note that in this
subsection we are primarily interested in improving the out-of-
sample prescriptive performance for a given market clearing
mechanism, rather than examining in detail its economic
properties. The following approaches are compared:
• Deterministic market clearing under FO (FO-Det): Gen-

erate point estimates of uncertain load, then solve a de-
terministic problem to clear the network-constrained DA
market. This defines a multi-period DC-OPF problem,
and serves as the base solution.

• Stochastic market clearing under FO (FO-Stoch): Gener-
ate probabilistic load forecasts and temporally correlated
trajectories, then clear the market with a two-stage linear
program with recourse actions, as proposed in [22]. Here,
the DA schedule considers the forecast uncertainty and
anticipates possible network congestion.

• Stochastic market clearing with PF (PF-Stoch): Derive
predictive prescriptions by embedding the two-stage lin-
ear program [22] within the proposed tree algorithm. The
key difference with the FO-Stoch is that scenarios are
now weighted based on prescriptive importance.

On a high level, the two-stage linear program with recourse
actions is formulated as

min
z, y(ξ)

Eξ

∑
t∈[T ]

c(zt, yt(ξ); ξ|γ = γ)


s.t.

DA and RT Nodal Balance ∀ξ ∈ Ξ, t ∈ [T ],

DA and RT Flow Limits ∀ξ ∈ Ξ, t ∈ [T ],

Generator Technical Limits ∀ξ ∈ Ξ, t ∈ [T ],

(9)

where zt are the first-stage (DA) decisions, and yt(ξ) the
recourse (RT) decisions that depend on the realization of
uncertainty ξ, for each period t. The detailed mathematical
formulation is provided in Appendix A.

For simplicity, we further assume that reserve capacity
procurement does not incur additional costs, therefore, all
flexible operators with spare capacity are eligible for providing
upward and downward regulation during RT operation (w.r.t
to technical constraints). As the stochastic market clearing
formulation co-optimizes energy and reserves, this mainly
affects the deterministic formulation, in order to avoid clearing
an additional reserve capacity market. Finally, we highlight
that our solution explicitly accounts for recourse actions, and
network and temporal constraints when generating predictive
prescriptions, which are not considered in relevant works [6],
[7].
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2) Experiment setup: The modified IEEE-24 bus system de-
scribed in [23] is used in this experiment. Regarding load, we
employ data from the Global Energy Forecasting Competition
2014 (GEFCom2014) [24]. A total of 2.5 years of load data
is selected, with the last year reserved for testing. Features γ
comprise day-ahead temperature forecasts (averaged over all
meteorological stations), historical lags and relevant calendar
variables. We assume a peak load of 2700MW and scale
the GEFCom data between the range of [0.20 × 2700, 2700].
The load is distributed to the respective nodes according to
the percentages provided in [23]. The cost of load shedding
is set at 500$/MWh. To avoid infeasible solutions during
RT operation, an additional slack is included for downward
regulation. The cost is set significantly lower than load shed-
ding, at 200$/MWh. Regarding model training, the PF-Stoch
hyperparameters are set at {B = 20,K = 5, nmin = 10},
with individual trees trained in parallel. Scenario reduction is
discussed when applicable.

3) Results: Table II presents the aggregated out-of-sample
costs as a function of sample size n, with PF-Stoch resulting
in the lowest overall costs. Further examination shows that
the PF-Stoch leads to the highest expected DA costs and
the lowest expected redispatch costs, as illustrated in Fig. 4.
Similarly to the previous experiment, the difference between
the PF-Stoch and the FO solutions is more pronounced for
smaller n, with all models converging for 1.5 year of data.
For a sample size of 6 months, the learning component of
the FO methods fails to generate adequate load forecasts.
The stochastic market clearing design (both FO-Stoch and
PF-Stoch) leads to lower aggregated costs, as a result of
reduced redispatch costs during RT operation which is to be
expected, as the stochastic formulation endogenously models
the forecast uncertainty. The deterministic market clearing
(FO-Det) consistently results in lower DA costs, also to be
expected.

To gain further insight, Fig. 5 examines a single day of
operation for the full training data. Fig. 5a presents the
aggregated DA production, which matches the respective load
forecast, and the actual aggregated demand. Note that both
approaches incur similar forecast error for the selected day. In
Fig. 5b, the DA dispatch schedule of the flexible generators
is presented for 7:00, 15:00, and 23:00. In all cases, the
PF-Stoch approach results in a larger number of generators
being scheduled, with fewer of them reaching their maximum
capacity. In turn, this leads to higher availability of regulation
services, in both directions, during RT operation. Interestingly,
this holds true even for 7:00 and 23:00, where the aggre-
gated scheduled production for the PF-Stoch is significantly
smaller than for the FO-Det and FO-Stoch approaches. This
is attributed to the PF assigning scenario weights according
to their prescriptive importance. In contrast, in the FO-Stoch
solution all scenarios are equiprobable; therefore, a scenario
that could possibly lead to large redispatch costs is considered
solely based on probability of occurrence, which mitigates
its impact on downstream costs. Overall, we conclude that
the proposed modeling approach improves the utility of the

TABLE II: Aggregated Operational Cost (106$)

Sample Size n FO-Det FO-Stoch PF-Stoch

6 months 119.39 115.69 80.04
1 year 83.49 81.90 73.84
1.5 years 82.20 81.70 73.77
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Fig. 4: Expected daily operating cost.

stochastic market clearing design.
Finally, we examine the impact of scenario reduction during

learning. The results presented in Table III are obtained using
a standard PC featuring Intel Core i7 CPU with a clock rate of
2.7 GHz and 16GB of RAM (no parallelization), for the full
dataset, and hyperparameters {B = 20,K = 5, nmin = 10}.
We observe that a higher reduction in CPU time correlates with
a larger performance decrease, with a maximum reduction of
around 81% in CPU time for nmax = 10. For nmax = 50,
a 43% reduction in CPU time is associated with a modest
2.87% decrease in performance. Note that increasing K, i.e.,
the number of splits evaluated per node, is expected to result
in even larger relative reductions in CPU time. Overall, the
embedded scenario reduction provides an attractive method to
improve scalability with a modest decrease in performance.

IV. CONCLUSIONS

This work presented a data-driven method for value-oriented
forecasting and decision-making in the presence of contextual
information. The proposed method is based on prescriptive
trees, trained under alternative loss function, that approximate
the solution to conditional stochastic optimization problems.

TABLE III: Impact of Scenario Reduction on Average CPU
Time and Performance

PF PF with Scenario Reduction, nmax

10 20 50

CPU time (min) 18.05 ±1.42 3.35 ±0.38 5.74 ±0.62 10.26 ±1.2
Cost increase (%) - 17.71% 7.46% 2.87%
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Fig. 5: DA schedule for a single day.

An internal scenario reduction methodology to facilitate train-
ing is also described. Experiments in two case studies exam-
ine the performance compared to deterministic and stochas-
tic lookahead policies derived under the standard ”forecast,
then optimize” approach. The results show that the proposed
method improves the out-of-sample prescriptive performance,
and is less sensitive to the training sample size. Overall,
the results validate the proposed approach as an effective
alternative to the standard modeling approach. Future work
could focus on adapting the proposed approach in an online
setting and tackling sequential decision-making problems.
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APPENDIX

A. Mathematical formulation for the market clearing problem

Let G denote the set of generators, L the set of inelastic
loads, Λ the set of transmission lines, and V the set of buses.
We further define B ∈ R|V|×|V| to be the bus susceptance
matrix, A ∈ R|Λ|×|V| to be the bus-branch incidence ma-
trix, bdiag ∈ R|Λ|×|Λ| to be a diagonal matrix with line
susceptances, and AG ∈ R|V|×|G| and AL ∈ R|V|×|L| to be
auxiliary matrices that map generators and loads to buses. The
generation p ∈ R|G| and the voltage angles θda ∈ R|V| define
the first-stage (DA) decision variables, while the uncertain
demand is denoted as d ∈ R|L|. All symbols are augmented
by index t to refer to a specific period. The forecast horizon
is T = 24, and [T ] is shorthand for {1, . . . , T}. Second-stage

https://hal.archives-ouvertes.fr/hal-03330017
https://github.com/akylasstrat/prescriptive_trees_power_apps
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(RT) decisions are further augmented by index ξ to refer to a
specific scenario.

1) Deterministic formulation: The deterministic formula-
tion of the market clearing problem with network constraints
(multi-period DC-OPF) is as follows

minimize
Z

∑
t∈[T ]

cᵀpt (10a)

subject to

AGpt −ALd̂t = Bθdat ∀t ∈ [T ], (10b)
0 ≤ pt ≤ p ∀t ∈ [T ], (10c)

−Rd ≤ pt − pt−1 ≤ R
u ∀t ∈ [T ], (10d)

− f ≤ bdiagAθdat ≤ f ∀t ∈ [T ], (10e)

θda,reft = 0 ∀t ∈ [T ], (10f)

where Z = {p, θda} the set of DA decisions and d̂t
the expected nodal demand (forecasts). The objective (10a)
minimizes the DA dispatch costs, subject to nodal balance
constraints (10b), generator technical limits (10c), ramping
constraints (10d), and line capacity limits (10e), with (10f)
setting the reference node.

2) Redispatch problem: When uncertainty is realized dur-
ing RT operation, the operator achieves the demand-supply
equilibrium by solving the redispatch problem. Here, the
optimal solutions (p∗t , θ

da∗
t ) define problem parameters. For

a specific realization ξ′ of uncertainty d, the problem is
formulated as follows

minimize
Ψ

∑
t∈[T ]

cᵀ〈ruξ′t, rdξ′t, suξ′,t, sdξ′t〉 (11a)

subject to

AG(ruξ′t − rdξ′t − sdξ′t)
+AL(suξ′t − dξ′t + d̂t) = B(θrtξ′t − θda∗t ) ∀t ∈ [T ], (11b)

0 ≤ ruξ′t ≤ min(p− p∗t , R
+

) ∀t ∈ [T ], (11c)

0 ≤ rdξ′t ≤ min(p∗t , R
−

) ∀t ∈ [T ], (11d)

0 ≤ sdξ′t ≤ p∗t − rdξ′t ∀t ∈ [T ], (11e)

0 ≤ suξ′t ≤ dξ′t ∀t ∈ [T ], (11f)

− f ≤ bdiagAθrtξ′t ≤ f ∀t ∈ [T ], (11g)

θrt,refξ′t = 0 ∀t ∈ [T ], (11h)

where Ψ = {ruξ′t, rdξ′t, suξ′t, sdξ′t, θrtξ′t} defines the set RT deci-
sions under scenario ξ′. Specifically, ru, rd ∈ R|G| denote the
generators upward/downward regulation, su ∈ R|L| denotes a
slack variable for upward regulation (i.e., load shedding), sd ∈
R|G| denotes a slack variable for downward regulation, and
θrt ∈ R|V| denotes the RT voltage angles. The RT redispatch
problem minimizes the linear balancing costs (11a), subject to
RT nodal balance constraints (11b), technical constraints for
the corrective actions (11c)-(11f), and RT flows (11g), (11h).
Slack sd is used to avoid infeasible solutions, by imposing

an additional cost for downward regulation exceeding the
maximum downward reserve capacity R

−
.

3) Stochastic Market Clearing: : The stochastic formula-
tion [22] explicitly models recourse actions, thus reserves are
estimated endogenously. For ξ ∈ Ξ, where Ξ = {ξi}ni=1 is a
finite set of scenarios, the two-stage linear program is defined
as

min
Z,Ψξ

∑
t∈[T ]

cᵀpt +
1

n

∑
ξ∈Ξ

cᵀ〈ruξt, rdξt, suξt, sdξt, suξt〉

 (12a)

s.t.

constraints (10b)− (10f) ∀t ∈ [T ] (12b)
constraints (11b)− (11h) ∀ξ ∈ Ξ, t ∈ [T ] (12c)

The predictive prescriptions generated with the proposed PF
approach are based on the same formulation, with the objective
(12a) being modified according to the learned weights ωn,i(x),
as follows

min
Z,Ψξ

∑
t∈[T ]

cᵀpt + ωn,i(x)
∑
ξ∈Ξ

cᵀ〈ruξt, rdξt, suξt, sdξt, suξt〉


(13a)

s.t.

constraints (10b)− (10f) ∀t ∈ [T ], (13b)
constraints (11b)− (11h) ∀ξ ∈ Ξ, t ∈ [T ]. (13c)
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