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ON RADIUS OF CONVERGENCE OF q-DEFORMED REAL NUMBERS

LUDIVINE LECLERE, SOPHIE MORIER-GENOUD, VALENTIN OVSIENKO, AND ALEXANDER VESELOV

Abstract. We study analytic properties of “q-deformed real numbers”, a notion recently introduced
by two of us. A q-deformed positive real number is a power series with integer coefficients in one formal

variable q. We study the radius of convergence of these power series assuming that q ∈ C. Our main

conjecture, which can be viewed as a q-analogue of Hurwitz’s Irrational Number Theorem, provides a
lower bound for these radii, given by the radius of convergence of the q-deformed golden ratio. The

conjecture is proved in several particular cases and confirmed by a number of computer experiments.

For an interesting sequence of “Pell polynomials”, we obtain stronger bounds.

1. Introduction

There is a famous result due to Hurwitz [6], which roughly claims that the golden ratio ϕ = 1+
√
5

2 is
the most irrational number. More precisely, for any real number x ∈ R one can define as the measure of
irrationality the Markov constant µ(x), which is the infimum of c, for which the inequality |x− p

q | <
c
q2

holds for infinitely many integer p, q. Hurwitz’s Irrational Number Theorem claims that for every x ∈ R

(1.1) µ(x) ≤ µ(ϕ) =
1√
5

with equality holding only for x which are PSL(2,Z)-equivalent to the golden ratio.
In this paper we discuss a possible q-analogue of this classical result. Namely, we consider the q-

deformations (or “q-analogues”) of real numbers, which have been recently introduced in [12, 13] and
studied further in [10, 14, 8]. They have several nice properties and connections, including theory of
Conway-Coxeter friezes and knot invariants.

For a rational x = r
s > 0 the q-deformation is a rational function

(1.2)
[r
s

]
q

=
R(q)

S(q)
,

where R(q) and S(q) are polynomials with positive integer coefficients both depending on r and s. When
x ≥ 1 is an irrational, the q-deformation of x is defined as a power series in q:

(1.3) [x]q = 1 + κ1q + κ2q
2 + κ3q

3 + · · ·
with coefficients κk ∈ Z. To obtain the series (1.3), one chooses an arbitrary sequence of rationals (xi)i∈Z
converging to x. It turns out that the Taylor series of the rational functions [xi]q stabilize, as i grows;

see [13]. Moreover, the stabilized series depends only on x (and not on the approximating sequence of
rationals). The series [x]q is defined as the stabilization of the Taylor series of [xi]q. It is unknown, in
general, how to characterize the class of power series that represent q-deformed real numbers. One of
the goals of this paper is to show that series arising in this context are not arbitrary. In particular, they
must have non-zero radius of convergence.

We study analytic properties of q-deformed real numbers. Considering the parameter of deformation q
as a complex variable, q ∈ C, we study the radius of convergence of the series (1.3).

The following conjecture can be considered as a possible q-analogue of the Hurwitz claim.

Conjecture 1.1. For every real x ≥ 1, the radius of convergence R(x) of the series [x]q satisfies

(1.4) R(x) ≥ R∗ := R(ϕ) =
3−
√

5

2

and the equality holding only for x which are PSL(2,Z)-equivalent to ϕ = 1+
√
5

2 .
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Recall that the inverse ρ = R−1 of the radius of convergence of power series (1.3) can be given by the
standard formula (see e.g. [3])

(1.5) ρ(x) = lim sup
n→∞

|κn|
1
n

and thus describes the growth of the coefficients κn. Conjecture 1.1 can be reformulated in the form,
more similar to Hurwitz, as the inequality

(1.6) ρ(x) ≤ ρ(ϕ) =
3 +
√

5

2

holding for every real x, and thus means that [ϕ]q has the fastest growth of the coefficients among all

q-deformed real numbers. In other words, the series [x]q always “converges better” than [ϕ]q, whenever
x is not equivalent to ϕ. In the particular case where x = r

s is rational, Conjecture 1.1 means that the
polynomial S(q) in (1.2) has no roots q with |q| < R∗ ≈ 0.381966.

We should mention that the analogy with the Diophantine analysis here cannot be extended to the
celebrated Markov theorem [9], claiming that the set of all possible Markov constants µ = µ(x) > 1

3 is
discrete (see e.g. [1]). The situation might be more similar to the Lyapunov spectrum of Markov and
Euclid trees, which fills the whole segment [0, lnϕ], see [16]. In particular, for every R such that R∗ <
R < 1, there exists a number x, such that R(x) ≤ R.

Conjecture 1.1 was checked by a long series of computer experimentation, and will be proved in several
particular cases. Provided it is correct, this gives a restriction for the series (1.3) that can appear as a q-
deformed real number. However, it is quite clear that the radius of convergence is not the only condition.
It would be interesting to obtain more information about this class of power series.

Let us give here an idea about the approach we use to prove the main statements. Our main analytical
tool is the classical Rouché theorem (see [3, 17]) that states the following. Let f and g be two functions
of one complex variable q, holomorphic inside a disc D and continuous on the bound ∂D. Suppose that
f(q) > g(q) on ∂D, then f and f + g have the same number of zeros inside D. We will usually suppose
that f has no zeros inside D, and conclude that the same is true for f + g.

The paper is organized as follows.
In Secion 2, we briefly recall the notion of q-rationals and q-irrationals. Following [8], we emphasize

the role of the modular group PSL(2,Z). We also give explicit formulas in terms of continued fractions.
In Section 3, we consider the important example of q-deformed golden ratio. Its approximation by the

quotients of consecutive Fibonacci numbers leads to interesting “Fibonacci polynomials”. We check the
statement of Conjecture 1.1 in this particular case.

In Section 4, we consider the q-number
[√

2
]
q
, and its approximation by the quotients of consecutive

“Pell polynomials”. We strengthen the statement of Conjecture 1.1 in this case, replacing R∗ by another,
greater value.

Finally, in Section 5 we prove the statement of Conjecture 1.1 for a large class of irrational numbers
with a certain restriction (that, as we believe, is technical and can perhaps be removed). We give two
more interesting examples.

2. Definition and explicit formulas for q-reals

We start with recalling an axiomatic definition of q-deformed rational numbers. For more equivalent
definitions; see [12, 14].

2.1. An axiomatic definition. Recall that every rational can be obtained from 0, by applying a se-
quence of the operations x 7→ x+ 1 and x 7→ − 1

x .
The following two recurrences (see [8], and also [14]) suffice for calculation of q-rationals.

Definition 2.1. The q-deformation sends every rational number x = r
s to a rational function in q

x 7−→ [x]q =
R(q)

S(q)
,
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in such a way that the following two recurrent formulas are satisfied

(2.1) [x+ 1]q = q [x]q + 1,

[
− 1

x

]
q

= − 1

q [x]q
.

Recurrences (2.1) determine the q-deformation of a rational in a unique way, starting from the “initial”
trivial deformation [0]q = 0.

Example 2.2. The following examples are easy to obtain applying (2.1).
(a) The q-deformation of integers corresponds to the standard formulas of Euler and Gauss. For n ∈ N,

one has

[n]q = 1 + q + q2 + · · ·+ qn−1, [−n]q = −q−n − q1−n − q2−n − · · · − q−1.

Both cases can be written as [x]q = 1−qx
1−x , where x is integer.

(b) Already the simplest example of 1
2 shows that the q-deformation is not the quotient of the q-

deformed integers appearing in numerator and denominator:[
1

2

]
q

=
q

1 + q
,

[
−1

2

]
q

= − 1

q (1 + q)
.

The above expression [x]q = 1−qx
1−x is no longer true.

(c) The next examples[
5

2

]
q

=
1 + 2q + q2 + q3

1 + q
,

[
5

3

]
q

=
1 + q + 2q2 + q3

1 + q + q2

illustrate the fact that the numerator and denominator in (1.2) depend simultaneously on r and s. Indeed,
the “quantized 5” in the numerator depends on the denominator.

Remark 2.3. In the case of q-rationals, one also has the formula for the negation and inverse:

(2.2) [−x]q = −
[x]q−1

q
,

[
1

x

]
q

=
1

[x]q−1

.

2.2. The action and a central extension of PSL(2,Z). We briefly mention here a more conceptual
way of understanding Definition 2.1. This observation will not be used in the sequel, and will be part of
a separate work.

Recurrences (2.1) can be reformulated as a statement that “q-deformation commutes with PSL(2,Z)-
action”. Indeed, recurrences (2.1) define an action of the modular group PSL(2,Z) on q-deformed ratio-
nals. This action is given by fractional-linear transformations and is generated by the matrices

(2.3) Tq =

(
q 1

0 1

)
, Sq =

(
0 −1

q 0

)
which are q-deformations of the standard generators, T, S, of PSL(2,Z) corresponding to q = 1 in (2.3).

The relations S2 = Id and (TS)3 = Id, defining PSL(2,Z), become

S2
q = q Id, (TqSq)

3
= q3Id,

The matrices Tq, Sq generate an interesting non-trivial central extension of PSL(2,Z), which is different
from the braid group B3, yet contains it as a subgroup. The centre, {qnId | n ∈ Z}, of the extended mod-
ular group acts trivially of q-deformed rationals, so that one still has the well-defined action of PSL(2,Z).

Remark 2.4. (a) Let us stress on the fact that emergence of a central extension of the symmetry group
is a usual situation in geometry; see [7]. However, the centre of the extended group usually acts trivially
on quantized objects.

(b) The matrix Sq arose in the context of quantum groups; see [2], while Tq can be viewed as a
“standard” matrix connected to quantum integers. However, we did not find in the literature simultaneous
appearance of Tq and Sq.
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2.3. q-deformed continued fractions. Every rational number r
s > 0 , where r, s ∈ Z>0 are coprime,

has a standard finite continued fraction expansion

r

s
= a1 +

1

a2 +
1

. . . +
1

a2m

,

where ai ≥ 1 (except for a1 ≥ 0). It is usually denoted by r
s = [a1, . . . , a2m]. Note that, choosing an

even number of coefficients, one removes the ambiguity [a1, . . . , an, 1] = [a1, . . . , an + 1] and makes the
expansion unique.

There is also a unique continued fraction expansion with minus signs, often called the Hirzebruch-Jung
continued fraction:

r

s
= c1 −

1

c2 −
1

. . . −
1

ck

,

where cj ≥ 2 (except for c1 ≥ 1). The notation used by Hirzebruch is r
s = Jc1, . . . , ckK. The coefficients ai

and cj of the above expansions are connected by the Hirzebruch formula; see, e.g., [5, 11] and Section 5.1.

Definition 2.5. (a) The q-deformed regular continued fraction is defined by

(2.4) [a1, . . . , a2m]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . .

[a2m−1]q +
qa2m−1

[a2m]q−1

where [a]q is the Euler q-integer.
(b) The q-deformed Hirzebruch-Jung continued fraction is

(2.5) Jc1, . . . , ckKq := [c1]q −
qc1−1

[c2]q −
qc2−1

. . .

. . .

[ck−1]q −
qck−1−1

[ck]q

For every rational r
s written in two different ways:

r

s
= [a1, . . . , a2m] = Jc1, . . . , ckK,

the rational functions (2.4) and (2.5) coincide, and also coincide with the rational function
[
r
s

]
q

provided

by Definition 2.1; see [12].

2.4. Stabilization phenomenon, q-irrationals. The notion of q-deformed rational was extended to
irrational numbers in [13]. Let x ≥ 1 be an irrational number, and choose a sequence of rationals (xn)n≥1,
converging to x. Consider the corresponding sequence of q-rationals [x1]q , [x2]q , . . . It turns out that this
sequence of rational functions also converge, but in the sense of formal power series.
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Consider the Taylor expansions at q = 0 of the rational functions [xn]q, that, abusing notation, we

also denote by [xn]q:

[xn]q =
∑
k≥0

κn,k qk.

One has the following stabilization property.

Theorem 2.1 ([13]). (i) For every k ≥ 0, the coefficients κn,k of the Taylor series of the functions [xn]q
stabilize, as n grows.

(ii) The limit coefficients, κk := limn→∞ κn,k, do not depend on the choice of the sequence of rationals,
but only on the irrational number x.

The q-deformation, [x]q, is the limit power series in q, which has the form (1.3) (i.e., the coefficient of

degree 0 is equal to 1). Furthermore, the recurrence (2.1) also holds for the series [x]q, and allows one to

extend the q-deformation to the case of x < 0. The resulting series in q is a Laurent series (with integer
coefficients):

[x]q = −q−N + κ1−N q
1−N + κ2−N q

2−N + · · ·
where N ∈ Z>0 such that −N ≤ x < 1−N .

Remark 2.6. Let us mention that the stabilization phenomenon fails when a sequence of rationals (xn)n≥1,
converges to another rational, cf. [13].

3. Convergence radius of q-golden ratio and roots of the Fibonacci polynomials

The simplest example of q-irrational is the q-deformation of the celebrated golden ratio, ϕ = 1+
√
5

2 . The
series [ϕ]q is obtained as stabilized Taylor series of the q-deformed quotients of the consecutive Fibonacci

numbers
[
Fn+1

Fn

]
q

(see [12, 13]). We call the polynomials in the numerator and the denominator of these

rational functions the Fibonacci polynomials.

We prove that the radius of convergence of [ϕ]q is R∗ = 3−
√
5

2 , and that all roots of the Fibonacci

polynomials belong to the annulus bounded by the circles with the radius R∗ = 3−
√
5

2 and R−1∗ = 3+
√
5

2 .
This result is in an accordance with Conjecture 1.1.

3.1. The q-deformed golden ratio. The q-deformation of the golden ratio, ϕ = 1+
√
5

2 , was considered
in [13]. The series [ϕ]q can be written as an infinite continued fraction:

(3.1) [ϕ]q = 1 +
q2

q +
1

1 +
q2

q +
1

. . .

= 1 +
1

q−1 +
1

q2 +
1

q−3 +
1

. . .

The series starts as follows

[ϕ]q = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 185q10

−423q11 + 978q12 − 2283q13 + 5373q14 − 12735q15 + 30372q16

−72832q17 + 175502q18 − 424748q19 + 1032004q20 · · ·
The sequence of coefficients in [ϕ]q coincides (up to the alternating sign) with the remarkable sequence

A004148 of [15] called the “generalized Catalan numbers”.
The series [ϕ]q is a solution of the functional equation

(3.2) q X2 =
(
q2 + q − 1

)
X + 1,

which can be deduced from (3.1).

Proposition 3.1. The radius of convergence of the series [ϕ]q is equal to R∗.
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Proof. It follows from (5.2), that the generating function of [ϕ]q can therefore be written in radicals:

(3.3) GF[ϕ]q
=
q2 + q − 1 +

√
(q2 + 3q + 1)(q2 − q + 1)

2q
,

and the series [ϕ]q is the Taylor expansion of GF[ϕ]q
at q = 0. The number R∗ is the modulus of the

smallest (i.e., closest to 0) root of the polynomials under the radical in (3.3). Indeed,

q2 + 3q + 1 = (q +R∗)
(
q +R−1∗

)
,

and therefore the Taylor series of (3.3) converges for |q| < R∗. �

Remark 3.2. Observe that formula (3.1) has a certain similarity with the celebrated Rogers-Ramanujan
continued fraction

R(q) = 1 +
1

1 +
q

1 +
q2

1 +
q3

. . .

but the deformation (3.1) has very different properties.

3.2. The Fibonacci polynomials. The most natural choice of a sequence of rationals converging to ϕ
is related to a quite remarkable and well-known sequence of polynomials.

Let Fn be the nth Fibonacci number, the sequence of rationals Fn+1

Fn
converges to ϕ. Quantizing this

sequence, one obtains a sequence of rational functions

(3.4)

[
Fn+1

Fn

]
q

=:
F̃n+1(q)

Fn(q)
.

The polynomials F̃n+1(q) and Fn(q) in the numerator and denominator of (3.4) are q-deformations of
the Fibonacci numbers, considered in [12].

Both sequences of polynomials Fn(q) and F̃n(q) are of degree n− 2 (for n ≥ 2) and are mirror of each
other:

F̃n(q) = qn−2Fn(q−1).

The polynomials Fn(q) can be calculated recursively. It will be convenient to separate the sequence
of polynomials Fn(q) into two subsequences, with even n and odd n. Both of these sequences satisfy the
same recurrence, which is a q-analogue of the classical recurrence

Fn+2 = 3Fn − Fn−2

for the Fibonacci numbers. We have the following.

Proposition 3.3. The polynomials Fn(q) in the denominator of (3.4) are determined by the recurrence

(3.5) Fn+2(q) = [3]q Fn(q)− q2Fn−2(q),

where [3]q = 1 + q + q2, and the initial conditions

(F0(q) = 0, F2(q) = 1) and (F1(q) = 1, F3(q) = 1 + q) .

Proof. It was shown in [12] that

F2`+1 = qF2` + F2`−1,

F2`+2 = F2`+1 + q2F2`,

Recurrence (3.5) follows readily. �
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The coefficients of the polynomials Fn(q) and F̃n(q) form the triangles

1
1 1
1 1 1
1 2 1 1
1 2 2 2 1
1 3 3 3 2 1
1 3 4 5 4 3 1
· · ·

1
1 1

1 1 1
1 1 2 1

1 2 2 2 1
1 2 3 3 3 1

1 3 4 5 4 3 1
· · ·

known as Sequences A123245 and A079487 of OEIS [15], respectively.

Example 3.4. One has [
5
3

]
q

=
1 + q + 2q2 + q3

1 + q + q2
,

[
8
5

]
q

=
1 + 2q + 2q2 + 2q3 + q4

1 + 2q + q2 + q3
,

[
13
8

]
q

=
1 + 2q + 3q2 + 3q3 + 3q4 + q5

1 + 2q + 2q2 + 2q3 + q4
,

[
21
13

]
q

=
1 + 3q + 4q2 + 5q3 + 4q4 + 3q5 + q6

1 + 3q + 3q2 + 3q3 + 2q4 + q5
,

. . . . . . . . .

Remark 3.5. The polynomials Fn(q) with odd n are specializations of 3-parameter family of polynomials
considered in [4] (see Remark 8.4.).

3.3. Roots of the Fibonacci polynomials. Our next goal is to obtain the bounds for the absolute
values of roots of the Fibonacci polynomials.

Let us use the following notation. Let D0 be the disc and C0 the circle with radius R∗:

D0 = {q ∈ C , |q| ≤ R∗} , C0 = {q ∈ C , |q| = R∗} .

Theorem 3.1. For every n ∈ N, and for every root qr, of each of the polynomials, Fn(q) and F̃n(q),
one has

R∗ < |qr| < R−1∗ .

Proof. Recurrence (3.5) can be rewritten as follows

(3.6)
Fn+2(q)

Fn(q)
= [3]q − q2

Fn−2(q)

Fn(q)
.

By the Rouché theorem (see, e.g., [3, 17] and the introduction), it suffices to prove that, for every n,

(3.7)
∣∣q2 + q + 1

∣∣
C0

> R2
∗

∣∣∣∣Fn−2(q)

Fn(q)

∣∣∣∣
C0

,

on the circle C0, in order to prove, that, for every n, the polynomial Fn(q) has no roots inside the disc D0

with radius R∗. Indeed, the cyclotomic polynomial [3]q = q2 + q+ 1 has no roots inside D0, so that (4.6)
will guarantee, by induction on n, that Fn+2(q) has no roots inside D0.

The inequality (4.6) follows from the next two lemmas.

Lemma 3.6. On the circle C0, one has

2R∗ ≤
∣∣q2 + q + 1

∣∣
C0
≤ 4R∗,

where 2R∗ is the minimal, and 4R∗ the maximal value of [3]q on the circle.

Lemma 3.7. Assume that
∣∣∣Fn−2(q)
Fn(q)

∣∣∣
C0

< 1
R∗

, then
∣∣∣ Fn(q)
Fn+2(q)

∣∣∣
C0

< 1
R∗

.
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Lemma 3.6 is a standard exercise of complex analysis. The minimum and maximum values of the
function ∣∣q2 + q + 1

∣∣ =
∣∣∣(q + eiπ/3)(q + e−iπ/3)

∣∣∣
on the circle C0 are attained at the points q = −R∗ and q = R∗, respectively. Therefore, we have

R2
∗ −R∗ + 1 ≤

∣∣q2 + q + 1
∣∣
C0
≤ R2

∗ +R∗ + 1.

Lemma 3.6 then follows from the relation R2
∗ = 3R∗ − 1 satisfied by the radius R∗ = 3−

√
5

2 . �
Lemma 3.7 follows directly from (3.6) and Lemma 3.6. �

It remains to prove that the polynomials F̃n(q) have no roots inside D0. The proof is similar,

since F̃n(q) also satisfy (3.5). This follows from the recurrent formulas

F̃2`+1 = F̃2` + q2F̃2`−1,

F̃2`+2 = qF̃2`+1 + F̃2`,

proved in [12]. Theorem 3.1 is proved. �

It is easy to prove that the bounds R∗ and R−1∗ of Theorem 3.1 are tight. This follows from the fact
that R∗ is the radius of convergence of [ϕ]q, and the stabilization phenomenon.

4. Radius of
[√

2
]
q

and roots of the Pell polynomials

The second example we consider is
√

2. It is important in Markov theory of Diophantine approxima-
tions. The slight modification,

√
2 + 1, has some tiny advantages, so we will often work with it; note

that
√

2 + 1 is approximated by the quotients of consecutive Pell numbers Pn+1

Pn
= [2, 2, . . . , 2]︸ ︷︷ ︸

n

.

We show that the convergence radius of the series
[√

2
]
q

and
[√

2 + 1
]
q

is equal to R√2 := R(
√

2),

(4.1) R√2 =
1 +
√

2−
√

2
√

2− 1

2
≈ 0.53101,

and that the roots of the polynomials in the numerators and denominators of
[
Pn+1

Pn

]
q

belong to the

annulus bounded by the circles with radius R√2 and R−1√
2
.

4.1. The series
[√

2
]
q

and
[√

2 + 1
]
q
. These series are related by

[√
2 + 1

]
q

= q
[√

2
]
q

+ 1 (cf. (2.1))

and obviously have the same convergence radius; we prefer to perform the calculations for
[√

2 + 1
]
q
.

The q-deformation
[√

2 + 1
]
q

is given by the infinite 2-periodic continued fraction

(4.2)
[√

2 + 1
]
q

= 1 + q +
q4

q + q2 +
1

1 + q +
q4

q + q2 +
1

. . .

see [13]. This is the q-deformed classical continued fraction expansion
√

2 + 1 = [2, 2, 2, 2, . . .].

The series
[√

2 + 1
]
q

satisfies the following functional equation:

(4.3) qX2 −
(
q3 + 2q − 1

)
X − 1 = 0,

readily obtained from (4.2), and can be calculated from it recursively:[√
2 + 1

]
q

= 1 + q + q4 − 2q6 + q7 + 4q8 − 5q9 − 7q10 + 18q11 + 7q12 − 55q13 + 18q14

+146q15 − 155q16 − 322q17 + 692q18 + 476q19 − 2446q20 + 307q21

+7322q22 − 6276q23 − 18277q24 + 33061q25 + 33376q26 − 129238q27 − 10899q28 · · ·
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see Sequence A337589 of [15] for the coefficients of this series.

Proposition 4.1. The radius of convergence of the series
[√

2
]
q

and
[√

2 + 1
]
q

is equal to R√2.

Proof. The generating function of the series can be deduced from (4.3):

GF[
√
2+1]

q

=
q3 + 2q − 1 +

√
(q4 + q3 + 4q2 + q + 1)(q2 − q + 1)

2q
.

The radius (4.1) is equal to the modulus of the root of the polynomial q4 + q3 + 4q2 + q + 1 closest to
zero. �

4.2. The Pell polynomials. The irrational
[√

2 + 1
]
q

can be approximated by the quotient of the

consecutive Pell numbers: Pn+1

Pn
= [2, 2, . . . , 2]︸ ︷︷ ︸

n

. We define the Pell polynomials via

[
Pn+1

Pn

]
q

=:
P̃n+1(q)

Pn(q)
.

The polynomials P̃n(q) and Pn(q) are of degree 2n− 3, and, similarly to the Fibonacci polynomials, are

the mirrors of each other: q2n−3P̃n(q−1) = Pn(q).

Proposition 4.2. The polynomials Pn(q) are determined by the recurrence

(4.4) Pn+2 =

(
4

2

)
q

Pn − q4Pn−2,

where
(
4
2

)
q

= 1 + q + 2q2 + q3 + q4 is the Gaussian q-binomial, and the initial conditions

(P0(q) = 0, P2(q) = 1 + q) and
(
P1(q) = 1, P3(q) = 1 + q + 2q2 + q3

)
.

Proof. Recurrence (4.4) follows from the formulas

P2`+1 =
(
q + q2

)
P2` + P2`−1,

P2`+2 = (1 + q)P2`+1 + q4 P2`,

proved in [12]. �

The coefficients of Pn(q) form a triangular sequence

1
1 1
1 1 2 1
1 2 3 3 2 1
1 2 5 6 6 5 3 1
1 3 7 11 13 13 11 7 3 1
1 3 9 16 24 29 29 25 18 10 4 1
· · ·

(see Sequence A323670 of [15]).
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Figure 1. Roots of P10(q): the smallest root modulus is 0.5668 . . ., and the largest 1.8832 . . .

Example 4.3. One has[
5
2

]
q

=
1 + 2q + q2 + q3

1 + q + q2
,

[
12
5

]
q

=
1 + 2q + 3q2 + 3q3 + 2q4 + q5

1 + q + 2q2 + q3
,

[
29
12

]
q

=
1 + 3q + 5q2 + 6q3 + 6q4 + 5q5 + 2q6 + q7

1 + 2q + 3q2 + 3q3 + 2q4 + q5
,

[
70
29

]
q

=
1 + 3q + 7q2 + 11q3 + 13q4 + 13q5 + 11q6 + 7q7 + 3q8 + q9

1 + 2q + 5q2 + 6q3 + 6q4 + 5q5 + 3q6 + q7
,

. . . . . . . . .

4.3. Roots of the Pell polynomials. We prove that the roots of the Pell polynomials always belong
to the annulus bounded by R√2 and R−1√

2
; see Figure 4.3.

Theorem 4.1. The roots of the polynomials, Pn(q) and P̃n(q) belong to the annulus bounded by R√2

and R−1√
2
:

R√2 < |qr| < R−1√
2
,

for every qr, such that Pn(qr) = 0, or P̃n(qr) = 0.

Proof. Recurrence (4.4) lads to

(4.5)
Pn+2(q)

Pn(q)
=

(
4

2

)
q

− q4 Pn−2(q)

Pn(q)
.

Once again, we use the Rouché theorem and want to prove that, for every n, the absolute value of the
polynomial

(
4
2

)
q

satisfies

(4.6)

∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣
C1

> R4√
2

∣∣∣∣Pn−2(q)

Pn(q)

∣∣∣∣
C1

,

on the circle C1 =
{
|q| = R√2

}
. Indeed, all the roots of the polynomial

(
4
2

)
q

= (q2 + 1)(q2 + q+ 1) belong

to the unit circle, so that (4.6) will guarantee, by induction on n, that Pn+2(q) has no roots inside D1.
The inequality (4.6) follows from the next two lemmas.
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Lemma 4.4. On the circle C1, one has

R√2

(
R2√

2
+R√2 + 1

)
≤

∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣
C1

.

Proof of Lemma 4.4. The minimum of the function∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣ =
∣∣(q2 + 1)(q2 + q + 1)

∣∣
on the circle C1 is attained at the point q = −R√2. Therefore, we have

(R2√
2

+ 1)(R2√
2
−R√2 + 1) = R4√

2
−R3√

2
+ 2R2√

2
−R√2 + 1 ≤

∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣
C1

.

Since the radius R√2 satisfies the equation R4√
2
− 2R3√

2
+ R2√

2
− 2R√2 + 1 = 0, the above inequality

becomes

R3√
2

+R2√
2

+R√2 ≤

∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣
C1

.

Hence the lemma. �

Lemma 4.5. Assume that
∣∣∣Pn−2(q)
Pn(q)

∣∣∣
C1

< 1
R√2

, then
∣∣∣ Pn(q)
Pn+2(q)

∣∣∣
C1

< 1
R√2

.

Proof of Lemma 4.5. It follows from (4.5) that∣∣∣∣Pn+2(q)

Pn(q)

∣∣∣∣
C1

≥

∣∣∣∣∣
(

4

2

)
q

∣∣∣∣∣
C1

−R4√
2

∣∣∣∣Pn−2(q)

Pn(q)

∣∣∣∣
C1

.

Lemma 4.4 and assumption
∣∣∣Pn−2(q)
Pn(q)

∣∣∣
C1

< 1
R√2

then imply∣∣∣∣Pn+2(q)

Pn(q)

∣∣∣∣
C1

≥ R2√
2

+R√2.

Hence the lemma. �

The proof that the polynomials P̃n(q) have no roots inside D1 is analogous since P̃n(q) also satisfy (4.4).
Theorem 4.1 is proved. �

5. A general result

In this section, we prove that Conjecture 1.1 holds for x ∈ R, satisfying under some technical restric-
tions on the coefficients of the continued fraction.

5.1. Statement of the theorem. Given an irrational x ≥ 0, consider the Hirzebruch-Jung continued
fraction expansion x = Jc1, c2, c3, . . .K, see Section 2.3.

Theorem 5.1. If every coefficient of the Hirzebruch-Jung continued fraction expansion x = Jc1, c2, c3, . . .K
of an irrational x > 0 satisfies

(5.1) ci ≥ 4,

for all i ≥ N , and some fixed N , then the radius of convergence of [x]q is greater or equal to R∗ = 3−
√
5

2 .

Let us reformulate the inequality (5.1) in terms of the coefficients of the regular continued fraction
expansion x = [a1, a2, a3 . . .]. Recall the formula [5] expressing the coefficients of the Hirzebruch-Jung
continued fraction:

x = Ja1 + 1, 2, . . . , 2︸ ︷︷ ︸
a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, a5 + 2, . . . , a2n−1 + 2, 2, . . . , 2︸ ︷︷ ︸
a2n−1

, . . .K
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In other words, the coefficients with odd indices, a2n−1 become a2n−1 + 2 (except for a1 that becomes
a1+1), and coefficients with even indices, a2n produce an (a2n−1)-tuple of 2’s. Inequality (5.1) becomes:{

a2M−1 ≥ 2,

a2M = 1,

starting from some M .

5.2. Proof of Theorem 5.1. Using the PSL(2,Z)-invariance of the q-deformation, we can assume that
condition (5.1) is satisfied by the coefficients ci, for all i ≥ 1.

Let us choose the rational approximation of x by the finite convergents of the Hirzebruch-Jung con-
tinued fraction: rn

sn
= Jc1, c2, c3, . . . , cnK, and consider the q-deformation

Rn(q)

Sn(q)
:=

[
rn
sn

]
q

.

It suffices to prove that, for every n, the polynomial Sn(q) has no roots in the disc D0.
Formula (2.5) implies that the polynomial Sn(q) satisfy the recurrence

Sn+1(q) = [cn+1]q Sn(q)− qcn−1 Sn−1(q),

with the initial values S0(q) = 0 and S1(q) = 1, that we rewrite as follows

(5.2)
Sn+1(q)

Sn(q)
= [cn+1]q − qcn−1

Sn−1(q)

Sn(q)
.

By the Rouché theorem, we need to prove that, for every n, the polynomial [cn+1]q = 1−qcn+1

1−q dominates

the second summand of the right-hand-side of (5.2), when restricted on the circle C0:

(5.3)
∣∣∣[cn+1]q

∣∣∣
C0

> R cn−1
∗

∣∣∣∣Sn−1(q)

Sn(q)

∣∣∣∣
C0

.

Since for every positive integer c the polynomial [c]q has no roots in D0, we will then argue by induction

that Sn+1(q) also has no roots in D0.
For every positive integer c, one obviously has

(5.4)
1−Rc

1 +R
≤
∣∣∣[c]q∣∣∣ ,

on any circle of radius R.

We will assume, by induction, that
∣∣∣Sn−1(q)
Sn(q)

∣∣∣
C0

< 1
R∗

, and therefore

R cn−1
∗

∣∣∣∣Sn−1(q)

Sn(q)

∣∣∣∣
C0

< Rcn−2∗ .

We then have from (5.2) and (5.4) that∣∣∣∣Sn+1(q)

Sn(q)

∣∣∣∣
C0

>
1−Rcn+1

∗

1 +R∗
− Rcn−2∗ .

To prove the induction step, we need the following.

Lemma 5.1. If ci ≥ 4 for all i, then
∣∣∣Sn+1(q)
Sn(q)

∣∣∣
C0

> R∗.

Proof. Indeed,

1−Rcn+1
∗

1 +R∗
− Rcn−2∗ −R∗ =

1−Rcn+1
∗ −Rcn−2∗ −Rcn−1∗ −R∗ −R2

∗
1 +R∗

.

Since ci ≥ 4 for all i, we have

1−Rcn+1
∗ −Rcn−2∗ −Rcn−1∗ −R∗ −R2

∗
1 +R∗

≥ 1−R4
∗ −R3

∗ − 2R2
∗ −R∗

1 +R∗
=

14− 36R∗
1 +R∗

,
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because R2
∗ = 3R∗ − 1. One checks that 7− 18R∗ > 0.

Hence the lemma. �

We proved that (5.3) holds for all n. Theorem 5.1 is proved.

Remark 5.2. Let us stress on the fact that, using the adopted approach, we are unable to improve the
assumption (5.1). Indeed, assuming ci ≥ 3 in Lemma 5.1, leads in the proof to the quantity 3 − 8R∗,
which is negative. However, the statement of the theorem is true in the case ci = 3 for all i ≥ 1, that
corresponds to the Fibonacci polynomials, see Section 3.

5.3. Miscellaneous experiments. Multiple computer experiments show that the situation in the q-
deformed case is very different from classical Markov theory [1].

Example 5.3. For
√

3, one has:
√

3 = [1, 1, 2] = J2, 4K. The generating function of the series
[√

3
]
q

is

GF[
√
3]

q

=
q3 + q2 − q − 1 +

√
q6 + 2q5 + 3q4 + 3q2 + 2q + 1

2q2
,

see [13]. The absolute value of the minimal root of the polynomial under the radical is

R√3 := R(
√

3) ≈ 0.527756 . . .

which is between R∗ and R√2:

R∗ < R√3 < R√2.

This example demonstrates, that, unlike classical Markov theory [1], the series corresponding to
√

2

“converges better” than that of
√

3.

Let us also give another interesting example, which is the third “badly approximated” number in
Markov theory, after ϕ and the ”silver ratio”

√
2.

Example 5.4. The number α = 9+
√
221

10 = [2, 2, 1, 1], sometimes called ”bronze ratio”, is the third most
irrational number [1]. In this case, the radius of convergence can be calculated explicitly in radicals.

More precisely, the radius of convergence of
[
9+
√
221

10

]
q

is

Rbronze := R(α) =
1 +
√

13−
√

2
(√

13− 1
)

4
≈ 0.58069 . . .

Indeed, a direct computation gives[
9+
√
221

10

]
q

=
q6+2q5+3q4+3q3+q2−1+

√
(q4+3q3+5q2+3q+1)(q6+2q5+3q4+5q3+3q2+2q+1)(q2−q+1)

2q(q3+2q2+q+1)

Note that 221 = 13 · 17, the factors under the radical are q-versions of these numbers. The radius of
convergence is equal to the absolute value of the minimal root of the polynomial under the radical, which
can be found explicitly.

We wonder if for other quadratic irrationals the radius of convergence is an algebraic number of
degree 2n (like in the theory of ruler-and-compass construction) as it was for ϕ,

√
2, and for the above

example, but we have no explicit formulas in general.

Acknowledgements. We are very grateful to the Mathematisches Forschungsinstitut Oberwolfach for
the hospitality during our RiP stay in summer 2020, when this project was started. We are pleased
to thank Jenya Ferapontov and Sergei Tabachnikov for fruitful discussions. This paper was partially
supported by the ANR project ANR-19-CE40-0021.



14 L. LECLERE, S. MORIER-GENOUD, V. OVSIENKO, AND A.VESELOV

References

[1] M. Aigner, Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational

Numbers to Perfect Matchings. Springer, 2013.
[2] J. Bernstein, T. Khovanova, On the quantum group SLq(2), Comm. Math. Phys. 177 (1996), no. 3, 691–708.

[3] J.B. Conway, Functions of One Complex Variable I. Springer-Verlag, 1978.

[4] G. Cotti, A. Varchenko, The ∗-Markov equation for Laurent polynomials, arXiv:2006.11753.
[5] F.E.P. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183–281.
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