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We study a 2 ˆ2 matrix equation arising naturally in the theory of Coxeter frieze patterns. It is formulated in terms of the generators of the group PSLp2, Zq and is closely related to continued fractions. It appears in a number of different areas, for example, toric varieties. We count its positive solutions, obtaining a series of integer sequences, some known and some new. This extends classical work of Conway and Coxeter proving that the first of these sequences is the Catalan numbers.

˙ˆa 2 ´1 1 0 ˙¨¨¨ˆa N ´1 1 0 ˙" ˘Id,
where the indeterminates pa 1 , a 2 , . . . , a N q are integers.

Definition.

' We shall refer to (1.1) as the Conway-Coxeter equation. ' We shall refer to a solution of (1.1) as positive if all of the integers a i are positive.

The Conway-Coxeter equation arises in the theory of Coxeter frieze patterns [START_REF] Coxeter | Frieze patterns[END_REF] and has been studied in several articles, such as [START_REF] Bergeron | SL k -tilings of the plane[END_REF][START_REF] Conley | Lagrangian configurations and symplectic cross-ratios[END_REF][START_REF] Morier-Genoud | Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics[END_REF][START_REF] Morier-Genoud | Linear difference equations, frieze patterns, and the combinatorial Gale transform[END_REF][START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF]. It is also relevant for several other fields in algebra, geometry, and combinatorics, including the theory of two-dimensional toric varieties; see [START_REF] Fulton | Introduction to Toric Varieties[END_REF], Section 2.5. The project of enumerating all positive solutions of (1.1) was begun in [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF]. The main purpose of this article is to complete it.

Let us write T for the sum of the integers a i :

(1.2) T pa 1 , . . . , a N q :" a 1 `a2 `¨¨¨`a N .

This quantity is an important characteristic of the collection of matrix factors in (1.1). As discussed in [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF], it has several combinatorial and dynamical interpretations. We will refer to it as the total sum. In addition to enumerating all positive solutions of (1.1), we also enumerate those with any given fixed value of T . It turns out that for any positive solution of (1.1), the total sum necessarily satisfies

(1.3) T " 3pN ´2q ´6k
for some non-negative integer k ď 1 3 N ´1. It can be shown that the right side of (1.1) is p´1q k`1 Id. The Conway-Coxeter solutions arising from Coxeter's frieze patterns correspond to k " 0 (see Section 1.2). The case k " 1 is also of particular significance (see Section 8).

The Conway-Coxeter equation has a certain ubiquity. Various combinatorial and geometric problems can be formulated in terms of it, with differing conditions on the indeterminates a i . The positivity condition leads to interesting combinatorics, bearing out the general principle that any naturally occurring sequence of positive integers must enumerate some concrete set of objects.

1.1. Hirzebruch-Jung continued fractions. There is a close relation between (1.1) and the Hirzebruch-Jung continued fraction [START_REF] Fulton | Introduction to Toric Varieties[END_REF][START_REF] Hirzebruch | Hilbert modular surfaces[END_REF], a 1 , . . . , a N :" a 1 ´1 a 2 ´1 . . . ´1 a N , sometimes called in the literature the "negative", "minus", or "reversal" continued fraction [START_REF] Katok | Coding of closed geodesics after Gauss and Morse[END_REF]. It is classical that the matrix product in (1.1) encodes this continued fraction; see for example [START_REF] Morier-Genoud | Farey boat: continued fractions and triangulations, modular group and polygon dissections[END_REF].

To be precise, consider the tridiagonal determinant K N pa 1 , . . . , a N q :" det ¨a1 1 1 a 2 1 . . . . . . . . .

1 a N ´1 1 1 a N ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, known as Euler's continuant. The Hirzebruch-Jung continued fraction is a quotient of two continuants, a 1 , . . . , a N " K N pa 1 , . . . , a N q K N ´1pa 2 , . . . , a N q , while the matrix product in (1.1) is ˜KN pa 1 , . . . , a N q ´KN´1 pa 1 , . . . , a N ´1q K N ´1pa 2 , . . . , a N q ´KN´2 pa 2 , . . . , a N ´1q ¸.

In fact, (1.1) is equivalent to the system of integer equations K N ´1pa 2 , . . . , a N q " 0, K N ´1pa 1 , . . . , a N ´1q " 0.

These conditions imply K N pa 1 , . . . , a N q " K N ´2pa 2 , . . . , a N ´1q " ˘1, as the determinant of (1.1) is necessarily 1. In this situation many authors speak of a 1 , . . . , a N ´1 and a 2 , . . . , a N as "continued fractions representing zero"; see [START_REF] Christophersen | On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity theory and its applications[END_REF][START_REF] Hacking | Flipping surfaces[END_REF][START_REF] Stevens | On the versal deformation of cyclic quotient singularities[END_REF]. From this point of view, the question we answer in this article may be formulated as follows: in how many ways can zero be represented by a Hirzebruch-Jung continued fraction a 1 , . . . , a N such that a 1 , . . . , a N are positive integers?

1.2. Triangulations and the Conway-Coxeter theorem. A theorem of Conway and Coxeter identifies a class of solutions of (1.1) which correspond to triangulations of convex N -gons by noncrossing diagonals. In order to state it they introduce the notion of quiddity: the quiddity of a triangulation is the cyclically ordered N -tuple pa 1 , . . . , a N q, where a i is the number of triangles contacting the i th vertex of the N -gon.

Positive solutions of (1.1) of total sum T " 3N ´6, the maximal value of T , are said to be totally positive (the reasons for this terminology are explained in [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF]). Totally positive solutions give ´Id in (1.1).

Theorem 1.1 (Conway and Coxeter [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF]). The set of all totally positive solutions of (1.1) is equal to the set of all quiddities of triangulations of N -gons. To give a simple example, take N " 5. The triangulations of the pentagon are all rotations of the one depicted here with its quiddity. It is not difficult to show that for N " 5 there exist exactly 5 positive solutions of (1.1): the cyclic permutations of the quiddity p1, 3, 1, 2, 2q.
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It is classical that the number of triangulations of an pn `2q-gon is the Catalan number,

(1.4)

C n :" 1 n `1 ˆ2n n ˙.
Therefore the number of totally positive solutions of (1.1) is C N ´2.

1.3. Quiddities and 3-periodic dissections. Recall that a dissection of a convex N -gon is a partition thereof into sub-polygons by non-crossing diagonals. We will refer to these diagonals as the chords of the dissection. Just as for triangulations, the quiddity of a dissection is the cyclically ordered N -tuple pa 1 , . . . , a N q, where a i is the number of sub-polygons contacting the i th vertex of the N -gon.

We will rely on a combinatorial description of positive solutions of (1.1) which is one of the main results of [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF]. It generalizes Theorem 1.1 to what are referred to in [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF] as 3d-dissections: dissections such that the number of vertices of every sub-polygon is a multiple of 3. We shall modify this term to 3-periodic dissections. The result is as follows.

Theorem 1.2 ([25], Theorem 1.1(i)). The set of all positive solutions of (1.1) is equal to the set of all quiddities of 3-periodic dissections of N -gons.

For example, it is easy to verify directly that (1.1) has no positive solutions for N " 1 or 2, and a unique positive solution for N " 3, given by pa 1 , a 2 , a 3 q " p1, 1, 1q, the quiddity of the trivial dissection of the triangle. The figure shows some simple examples of 3-periodic dissections which are not triangulations, with their quiddities.
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By Theorem 1.2, the number of 3-periodic dissections is an upper bound for the number of positive solutions of (1.1). In fact, enumerating 3-periodic dissections is not difficult and may be accomplished via standard combinatorial methods; we present the result in Section 3. There are many good sources for the techniques involved, for example, the book [START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions[END_REF] and the article [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF].

However, the upper bound thus obtained is not strict, because, in contrast with triangulations, 3-periodic dissections are not determined by their quiddities. The first occurrence of distinct 3-periodic dissections with the same quiddity is the octagonal case shown.
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Our main result is an exact count of the set of positive solutions of (1.1). In order to obtain it, we must enumerate the set of quiddities of 3-periodic dissections, or in other words, the set of classes of 3-periodic dissections with the same quiddity. Our approach is to construct a canonical representative of each class; see Section 6.

1.4. Remarks and a general problem. Although we succeed in counting the quiddities of 3periodic dissections, our method relies heavily on 3-periodicity. It does not seem to adapt to arbitrary dissections, and so we formulate the following general problem. As far as we know it is open and has not been considered in the literature.

Problem. Count the number of quiddities of dissections. More precisely, enumerate the distinct quiddities of the set of dissections of an N -gon into m sub-polygons.

We also mention some connections with other fields. In Section 8 we will see that certain solutions of (1.1) correspond to rational fans in R 2 , relating the topic to the theory of toric surfaces. Theorem 1.1 was rediscovered in [START_REF] Christophersen | On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity theory and its applications[END_REF][START_REF] Stevens | On the versal deformation of cyclic quotient singularities[END_REF] in this context, where it has become an important tool; see [START_REF] Hacking | Flipping surfaces[END_REF] and references therein. Another combinatorial model was recently suggested in [START_REF] Cuntz | Frieze patterns over integers and other subsets of the complex numbers[END_REF], encoding arbitrary solutions of (1.1). 1.5. Organization. In Section 2 we state our main results, characterizing the generating functions of the 3-periodic quiddities. We give functional equations and formulas for the coefficients, solving the problem of counting positive solutions of (1.1).

In Section 3 we discuss the generating functions of the 3-periodic dissections themselves, as well as those of a more general family of classes of dissections. This serves both as a review of the relevant techniques and as a source of information needed in the proofs of the main results.

Sections 4 and 5 complete the proofs of all results stated in Sections 2 and 3 except for Theorem 2.6, the functional equation satisfied by the bivariate generating function of the 3-periodic quiddities. In Section 4, Lagrange-Bürmann inversion is used to determine the coefficients of the generating functions from their functional equations, and in Section 5, asymptotic estimates are deduced from singularity analysis. Both of these sections follow [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF] closely.

Sections 6 and 7 are devoted to the proof of Theorem 2.6. In Section 6 we define the class of "maximally open" 3-periodic dissections and prove that it is in bijection with the set of 3-periodic quiddities. This renders the enumeration of 3-periodic quiddities amenable to classical techniques, which we apply in Section 7.

We conclude in Section 8 with an application of a special case of our main result to the enumeration of a certain class of toric varieties. This special case was previously proven in [START_REF] Guichard | Les nombres de Catalan et le groupe modulaire PSL 2 pZq[END_REF].

Quiddity generating functions

In this section we state our main results, descriptions of the univariate generating function (UGF) and bivariate generating function (BGF) enumerating the quiddities of 3-periodic dissections. By Theorem 1.2, these are also the generating functions enumerating the positive solutions of (1.1). We give functional equations and explicit formulas for the coefficients, and we give an asymptotic estimate related to work of V. Kotesovec. The proofs are developed in subsequent sections.

2.1. The univariate generating function. As noted in (1.4), the Catalan number C n is the number of triangulations of an pn `2q-gon. We will maintain this shift by 2 throughout the article. Thus to translate between the integer N of the introduction and the integer n below, set

N " n `2.
The Catalan generating function and its functional equation are

Cpzq :" 8 ÿ n"0 C n z n , C " 1 `zC 2 .
The functional equation encodes the recursive formula for the coefficients, and Stirling's formula applied to (1.4) gives an asymptotic estimate:

C n " n´1 ÿ i"0 C i C n´1´i , C n " 4 n ? π n 3{2 ´1 `O´1 n ¯¯.
In this section we state the analogous results for 3-periodic quiddities.

Definition. Let Q n be the number of quiddities of 3-periodic dissections of pn `2q-gons, where by convention, Q 0 :" 1. The UGF of the 3-periodic quiddities is the formal power series Qpzq :"

8 ÿ n"0 Q n z n .
In order to give the functional equation satisfied by Qpzq we must introduce an auxiliary generating function P pzq. Its combinatorial significance will be elucidated in Section 7.

Definition. Let P pzq :" ř 8 n"0 P n z n be the formal power series defined recursively by the equation (2.1) P pzq " 1 `zP 2 `z4 P 4 `z7 P 6 `¨¨¨" 1 `zP 2 1 ´z3 P 2 . This formula determines the coefficients P n : they are monotonically increasing positive integers which exceed the Catalan numbers for n ě 4. For 0 ď n ď 10 they are 1, 1, 2, 5, 15, 48, 160, 550, 1937, 6954, 25355. This sequence is known: it is a shift of A218251 in the Online Encyclopedia of Integer Sequences (OEIS) [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], which was authored by P. Hanna in 2012. In 2013 V. Kotesovec added the asymptotic estimate we restate below, as well as a degree 7 recurrence relation.

Our main results concerning Qpzq and P pzq are Theorems 2.1 and 2.2. They are corollaries of their bivariate analogs, Theorems 2.6 and 2.7.

Theorem 2.1. Qpzq may be expressed as a rational function of z and P pzq:

(2.2)
Qpzq " 1 `zP 2 `z4 P 5 `z7 P 8 `¨¨¨" 1 `zP 2 1 ´z3 P 3 .

Theorem 2.2. For n ą 0, the coefficients of P pzq and Qpzq are The coefficients Q n of Qpzq: the number of positive solutions of (1.1)

P n " ÿ 0ďkăn{3 1 n ´k `1 ˆn ´2k ´1 k ˙ˆ2n ´4k n ´3k ˙, Q n " ÿ 0ďsďk, 0ďkăn{3 3pk 
The final theorem of this section gives asymptotic estimates for Q n and P n . It will be proven in Section 5, and for P n it is due to Kotesovec. It involves the following positive algebraic numbers:

' Let ρ be the least positive root of the irreducible polynomial (2.3) 4z 7 ´12z 5 ´8z 4 `12z P pρq " ν{ρ, Qpρq " 1 `ν2 {ρp1 ´ν3 q.

(iii) Asymptotically,

P n " γ P ρ ´n ? π n 3{2 ´1 `O´1 n ¯¯, Q n " γ Q ρ ´n ? π n 3{2 ´1 `O´1 n ¯¯.
2.2. The bivariate generating function. In this section we determine the number of positive solutions of (1.1) with a given value of the total sum T .

In any dissection of an pn `2q-gon into sub-polygons, we refer to the sub-polygons as cells. Subpolygons with R vertices are called R-cells. We denote the total number of cells in the dissection by m.

Given a dissection of an pn `2q-gon with quiddity pa 1 , . . . , a n`2 q, let us define the total sum of the quiddity to be T :" a 1 `¨¨¨`a n`2 . In light of Theorem 1.2, this definition is compatible with (1.2). The following lemma shows that for a given value of n, fixing m is equivalent to fixing T . Lemma 2.4. Consider a dissection of an pn `2q-gon with m cells.

(i) The dissection has m ´1 chords, and T " n `2m.

(ii) If the dissection is 3-periodic, then m " n ´3k and T " 3pn ´2kq for some non-negative integer k ă 1 3 n, the same k appearing in (1.3). Proof. For (i), use the fact that the number of chords contacting the i th vertex is a i ´1. For (ii), note that any dissection can be made into a triangulation by triangulating each R-cell. Because triangulating an R-cell adds R ´3 chords, the total number of new chords needed to convert a 3-periodic dissection to a triangulation is a multiple of 3.

Definition. Let Q n,m be the number of quiddities of 3-periodic dissections of pn `2q-gons with m cells, where by convention, Q 0,0 :" 1 and Q 0,m :" 0 for m ą 0. The BGF of the 3-periodic quiddities is the formal power series (2.6) Qpz, wq :"

8 ÿ n"0 8 ÿ m"0 Q n,m z n w m .
The following corollary of Theorem 1.2 and Lemma 2.4 is immediate.

Corollary 2.5.

(i) In any positive solution of (1.1), the total sum T is 3pn ´2kq for some non-negative integer k ă n{3 (where n " N ´2). (ii) For k ă n{3, the number of positive solutions of (1.1) with T " 3pn ´2kq is Q n,n´3k .

As in the univariate case, in order to give the functional equation satisfied by Qpz, wq we must introduce an auxiliary generating function P pz, wq, whose combinatorial significance will be given in Section 7.

Definition. Let P pz, wq :" ř 8

n"0 ř 8 m"0 P n,m z n w m be the formal power series defined recursively by (2.7) P pz, wq " 1 `wzP 2 `wz 4 P 4 `wz 7 P 6 `¨¨¨" 1 `wzP 2 1 ´z3 P 2 . It is an abuse of notation to use the symbols Q and P for both the UGFs and the BGFs, but the arguments resolve the ambiguity. Observe that evaluating the BGFs at w " 1 gives the UGFs:

(2.8)

Qpzq " Qpz, 1q, P pzq " P pz, 1q.

We are now prepared to state the bivariate versions of Theorems 2.1 and 2.2: Theorems 2.6 and 2.7, respectively. They immediately imply their univariate counterparts: in light of (2.8), Theorem 2.1 is Theorem 2.6 evaluated at w " 1 and Theorem 2.2 is Theorem 2.7 summed over k.

As discussed in the introduction, the proof of Theorem 2.6 is of a different nature from the proofs of our other results. It occupies Sections 6 and 7. Theorem 2.7 follows from an application of Lagrange-Bürmann inversion to (2.7) and (2.9); the details are given in Section 4.

Theorem 2.6. Qpz, wq is a rational function of z, w, and P pz, wq:

(2.9)

Qpz, wq " 1 `wzP 2 `wz 4 P 5 `wz 7 P 8 `¨¨¨" 1 `wzP 2 1 ´z3 P 3 .

Theorem 2.7. For n ą 0, the coefficients P n,m and Q n,m of P pz, wq and Qpz, wq are 0 unless m " n ´3k for some non-negative integer k ă n{3, in which case they are given by

P n,n´3k " 1 n ´k `1 ˆn ´2k ´1 k ˙ˆ2n ´4k n ´3k ˙, (2.10) Q n,n´3k " ÿ 0ďsďk 3pk ´sq `2 n ´s `1 ˆn ´3k `s ´2 s ˙ˆ2n ´3k ´s ´1 n ´3k ´1 ˙. (2.11)
Let us write Q n,n´3k explicitly at k " 0, 1, and 2. At k " 0, both formulas reduce to the Catalan numbers:

Q n,n " P n,n " C n . In fact, this may be seen without computation by letting z go to 0 while holding wz constant in (2.7) and (2.9).

At k " 1 and 2 we obtain sequences not currently in the OEIS:

Q n,n´3 " ˆ2n ´4 n ´4 ˙`6 n `1 ˆ2n ´5 n ´5 ˙" ˆ2n ´3 n ´4 ˙´2 ˆ2n ´5 n ´6 ˙, (2.12) Q n,n´6 " n ´5 2 ˆ2n ´6 n ´7 ˙´pn `2q ˆ2n ´8 n ´9 ˙´pn ´2q ˆ2n ´9 n ´10 ˙. (2.13)
The k " 1 sequence Q n,n´3 plays a central role in our enumeration of blow-ups of the projective plane; see Section 8. Although it is not in the OEIS, it is a sum of OEIS entries: the differential sequence Q n,n´3 ´Pn,n´3 is A003517, and the sequence P n,n´3 is A002694, a sequence of binomial coefficients with a number of combinatorial interpretations:

P n,n´3 " ˆ2n ´4 n ´4 ˙.
Remark. The k " 1 sequence (2.12) was calculated in Theorem V.30 of [START_REF] Guichard | Les nombres de Catalan et le groupe modulaire PSL 2 pZq[END_REF] using a different approach: the coefficient of X k`6 in the formula for G K1 pXq given there is equal to

Q k`4,k`1 .
The tables here give the initial coefficients P n,n´3k and Q n,n´3k , with k fixed along rows. They are accompanied by further remarks on Q n,n´3k . Q n,n starting from n " 17. We have the following bounds:

1 k ˆ2n ´4k n ´3k ´1˙ˆn ´2k ´1 k ´1 ˙ă Q n,n´3k ă 1 k ˆ2n ´3k n ´3k ´1˙ˆn ´2k ´1 k ´1 ˙.

Dissection generating functions

In preparation for the proofs of our main theorems we collect some results on dissections. Section 3.1 concerns the multivariate generating function (MGF) of the arbitrary dissections. It provides a convenient tool for Section 3.2, which treats 3-periodic dissections, and more generally, ℓ-periodic dissections. The results here are all either known or follow easily from well-known techniques, and in Section 3.3 we point out some of the relevant references.

3.1. Arbitrary dissections. We employ the usual multi-index notation. Write N for the nonnegative integers and N ω for sequences pm 1 , m 2 , . . .q in N which are eventually zero. Define m :" pm 1 , m 2 , m 3 , . . .q, w :" pw 1 , w 2 , w 3 , . . .q, w m :" w m1 1 w m2 2 w m3 3 ¨¨¨. Of course, for m P N ω , w m is a finite product. Set

| m| :" 8 ÿ r"1 m r , } m} :" 8 ÿ r"1 rm r ,
and use the multinomial coefficient expression

ˆj `| m| j, m ˙:" ˆj `| m| j, m 1 , m 2 , m 3 , . . .

˙.

Definition. For m P N ω , an m-dissection is a dissection such that for all positive integers r, the number of pr `2q-cells is m r .

The reader may check that an m-dissection is necessarily a dissection of an pn `2q-gon with m cells, where

(3.1) n " } m}, m " | m|.
Definition. Let D m be the number of m-dissections, and set D 0,0,0,... :" 1. The MGF of the dissections is the formal power series Proof. This formula may be understood via a standard method; see Section 3.3. However, we have been unable to locate it in the literature, and in the course of the proof of our main results we will need a variation of the method. For these reasons, we include a proof. Fix some non-zero m and set n :" } m}. Label the vertices of the pn `2q-gon by 0 to n `1, in cyclic order. Refer to the edge pn `1, 0q as the base edge, and in any dissection, refer to the cell containing the base edge as the base cell. The result will follow if we prove that the number of m-dissections in which the base cell is an pr `2q-cell is equal to the coefficient of w m in w r D r`1 .

Given such a dissection, label the vertices of the base cell by v 0 , . . . , v r`1 , where 0 " v 0 ă v 1 ă ¨¨¨ă v r ă v r`1 " n `1, as in the figure. For 0 ď s ď r, consider the sub-dissection induced on the sub-polygon with vertices v s , v s `1, . . . , v s`1 ´1, v s`1 , which is attached to the base cell along the
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Counting dissections recursively (hollow dots represent sub-dissections) chord pv s , v s`1 q. It is an mpsq-dissection, for some mpsq such that } mpsq} " v s`1 ´vs ´1. Note that if v s`1 " v s `1, then this sub-dissection is empty and mpsq " 0.

Because the entire dissection is an m-dissection and the base cell accounts for one r-cell, we must have ř r 0 mpsq " m ´er , where e r denotes the standard basis vector in N ω with a 1 in the r th spot and 0's elsewhere. Observe that the coefficient of m ´er in D r`1 is the sum of all products ś r 0 D mpsq , taken over all choices of v 1 , . . . , v r , and for each such choice, over all choices of the mpsq such that

(3.4) } mpsq} " v s`1 ´vs ´1 and r ÿ 0 mpsq " m ´er .
The proposition follows.

The following result is well-known; see Section 3.3 for references. We have included a brief proof in Section 4, applying Lagrange-Bürmann inversion to (3.3).

Theorem 3.2. The coefficients of the MGF Dp wq are

(3.5) D m " 1 } m} `1 ˆ} m} `| m| } m}, m ˙.
3.2. Periodic dissections. In addition to the generating functions of the 3-periodic dissections, we will need the generating functions of the "odd dissections", in which all cells have an odd number of vertices. In order to present a unified treatment we consider a family of classes of dissections including both types.

Definition. Let ℓ be a positive integer. A dissection is ℓ-periodic if each of its cells is a p3 `ℓdq-cell for some d P N.

In particular, the 2-periodic dissections are the odd dissections, and 1-periodic dissections are simply arbitrary dissections. Denote the UGF and BGF of the ℓ-periodic dissections, respectively, by Drℓspzq and Drℓspz, wq. Thus Drℓspzq :"

8 ÿ n"0 Drℓs n z n ,
Drℓspz, wq :"

8 ÿ n,m"0 Drℓs n,m z n w m ,
where Drℓs n is the number of ℓ-periodic dissections of pn `2q-gons, and Drℓs n,m is the number of such dissections which have m cells.

Proposition 3.3. The BGF Drℓspz, wq satisfies

(3.6) Drℓspz, wq " 1 `wzDrℓs 2 `wz 1`ℓ Drℓs 2`ℓ `¨¨¨" 1 `wzDrℓs 2 1 ´zℓ Drℓs ℓ .
Proof. Say that a multi-index m is ℓ-periodic if m r " 0 for all r ı 1 mod ℓ. Clearly an m-dissection is ℓ-periodic if and only if m is ℓ-periodic. Combine this fact with (3.1) and (3.2) to deduce that

(3.7) Drℓs n,m " ÿ D m : } m} " n, | m| " m, m is ℓ-periodic ( .
Substituting wz r for each factor w r in w m gives z } m} w | m| . Therefore Drℓspz, wq is the series obtained from Dp wq by substituting wz r for w r when r " 1 mod ℓ, and 0 for w r otherwise. Hence the proposition follows from (3.3).

As in (2.8), the UGF is the BGF at w " 1, and so we obtain:

Corollary 3.4. The UGF Drℓspzq satisfies (3.8)
Drℓspzq " 1 `zDrℓs 2 `z1`ℓ Drℓs 2`ℓ `¨¨¨" 1 `zDrℓs 2 1 ´zℓ Drℓs ℓ .

Remarks.

' The quadratic formula gives a closed form of Dr1spz, wq:

Dr1spz, wq " z `1 ´az 2 ´2p2w `1qz `1 2pw `1qz
.

' The 3-periodic UGF Dr3spzq coincides with OEIS A301832 up to order 8.

Theorem 3.5. For 0 ă m ď n, the coefficient Drℓs n,m of Drℓspz, wq is 0 unless m " n mod ℓ, in which case it is

(3.9) Drℓs n,m " 1 n `1 ˆm ´1 `pn ´mq{ℓ m ´1 ˙ˆn `m m ˙.
This result will be proven in Section 4. However, let us make two remarks: ' It is easy to see why Drℓspz, wq is 0 for m ı n mod ℓ: it follows from the fact that if m is ℓ-periodic, then } m} " | m| mod ℓ, because

} m} ´| m| " ÿ r pr ´1qm r .
(Note that this generalizes Lemma 2.4(ii) from Dr3s to Drℓs.) ' Combining (3.5) and (3.7) gives Drℓs n,m as a sum, but this sum does not imply (3.9) in any obvious way. It is often convenient to reformulate (3.9) as follows: for n ą 0, Drℓs n,m " 0 unless m " n ´ℓk for some non-negative integer k ă n{ℓ, and

(3.10) Drℓs n,n´ℓk " 1 n `1 ˆn ´pℓ ´1qk ´1 k ˙ˆ2n ´ℓk n ´ℓk ˙.
Applying Drℓspzq " Drℓspz, 1q gives a formula for Drℓs n :

Corollary 3.6. For n ą 0, the coefficients Drℓs n of the UGF Drℓspzq are

Drℓs n " 1 n `1 ÿ 0ďkăn{ℓ ˆn ´pℓ ´1qk ´1 k ˙ˆ2n ´ℓk n ´ℓk ˙.
We will discuss Drℓspzq from an analytic standpoint in Section 5.

Remark. Because Q counts 3-periodic quiddities and Dr3s counts 3-periodic dissections, it is clear that the coefficients of Q are majorized by those of Dr3s. We will see in Section 7 that P counts only certain 3-periodic quiddities, so its coefficients are majorized by those of Q. An examination of (3.10) shows that Drℓs n,n´ℓk decreases as ℓ increases, and comparison with (2.10) shows that P n,n´3k majorizes Dr4s n,n´4k . Thus we have

Dr1s n,n´k ě Dr2s n,n´2k ě Dr3s n,n´3k ě Q n,n´3k ě P n,n´3k ě Dr4s n,n´4k ě ¨¨¨, (3.11) Dr1s n ě Dr2s n ě Dr3s n ě Q n ě P n ě Dr4s n ě ¨¨¨ě C n .

Historical remarks.

The pictorial argument we have used to prove (3.3) is a special case of the symbolic enumeration method; see for example Section 0.1 of [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF]. In Section 3.1 of the same paper the authors use it to give a derivation of (3.6) for ℓ " 1; our argument for (3.3) is essentially the same. See Section 7.1 of [START_REF] Bender | Asymptotic methods in enumeration[END_REF] for another relevant example, giving the UGF of the dissections such that the number of sides of each cell lies in any prescribed subset of t3, 4, 5, . . .u. A proof of (3.5) by bijection may be found in Corollary 4.2 of [START_REF]Gaiffi Nested sets, set partitions and Kirkman-Cayley dissection numbers[END_REF]. The formula also appears in [START_REF] Goulden | Combinatorial Enumeration[END_REF], as Exercise 2.7.14, and in [START_REF] Devadoss | Cellular structures determined by polygons and trees[END_REF].

For ℓ " 1, (3.9) is known as the Kirkman-Cayley formula, as it was conjectured in [START_REF] Kirkman | On the k-partitions of the r-gon and r-ace[END_REF] and proven in [START_REF] Cayley | On the partitions of a polygon[END_REF]. (It was also stated as a question in [START_REF] Prouhet | Question 774[END_REF].) Proofs using generating functions may be found in [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF][START_REF] Read | On general dissections of a polygon[END_REF], and proofs by bijection are given in [START_REF]Gaiffi Nested sets, set partitions and Kirkman-Cayley dissection numbers[END_REF][START_REF] Przytycki | Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers[END_REF][START_REF] Stanley | Polygon dissections and standard Young tableaux[END_REF]. Our proof for arbitrary ℓ is a straightforward generalization of the argument given in [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF].

Lagrange-Bürmann inversion

We now apply Lagrange-Bürmann inversion to prove Theorems 2.7, 3.2, and 3.5 (in reverse order). Suppose that φpuq is a formal power series in u with a non-zero constant term. Then there is clearly a unique formal series solution ypzq of the functional equation ypzq " z `φ ˝ypzq ˘. Lagrange-Bürmann inversion gives the coefficients of ypzq. More generally, if ψpuq is any formal series, it gives the coefficients of ψ ˝ypzq. The result is

(4.1)
pn `1qrz n`1 spψ ˝yq " ru n spψ 1 φ n`1 q, where rx i sf denotes the coefficient of x i in a formal series f pxq. This is a well-known classical theorem; for further discussion and references, see [START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions[END_REF][START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF]. Let us briefly outline the proof. Because rz n`1 spψ ˝yq depends only on the initial terms of φ and ψ, we may take them to be polynomial. This gives 2πipn `1qrz n`1 spψ ˝yq " 2πirz n spψ ˝yq 1 "

¿ 0 ψ 1 ˝y z n`1 y 1 dz.
The lowest non-zero term of the series ypzq is linear, so we may apply the change of variables u " ypzq. Combine this with the fact that z " y{pφ ˝yq and continue the above equation as follows to complete the proof:

¿ 0 ψ 1 puq z n`1 du " ¿ 0 ψ 1 φ n`1 u n`1 du " 2πiru n spψ 1 φ n`1 q.
We will frequently need a special case of (4.1): take ψpuq " u e and substitute n `e ´1 for n to obtain Let y ℓ pz, wq be the shifted BGF zDrℓspz, wq. Regarding w as a parameter, multiply (3.6) by z and rearrange to obtain y ℓ " zpφ ℓ ˝yℓ q, where φ ℓ puq :" ˆ1 ´wu 1 ´uℓ ˙´1 .

Applying (4.2), we have pn `eqrz n sDrℓs e pz, wq " pn `eqrz n`e sy e ℓ pz, wq " eru n sφ n`e ℓ pu, wq.

Use p1 ´xq ´pn`eq " ř 8

i"0

`n`e`i´1 i ˘xi and the assumption n ą 0 to obtain

ru n s ˆ1 ´wu 1 ´uℓ ˙´pn`eq " ru n s 8 ÿ i"1 ˆn `e `i ´1 i ˙ˆwu 1 ´uℓ ˙i " 8 ÿ i"1 ˆn `e `i ´1 i ˙wi ru n´i sp1 ´uℓ q ´i " 8 ÿ i"1 8 ÿ k"0 ˆn `e `i ´1 i ˙ˆi `k ´1 k ˙wi ru n´i su ℓk .
The sum over i contributes only at i " n ´ℓk, completing the proof.

Proof of Theorem 3.5. Apply Proposition 4.1 at e " 1.

Proof of Theorem 3. Define y D pz, vq :" zDp wq and check that y D pz, vq " zp1 ´v1 y D ´v2 y 2 D ´v3 y 3 D ´¨¨¨q ´1. Thus y D pz, vq " z `φD ˝yD pz, vq ˘, where φ D pu, vq :" p1 ´v1 u ´v2 u 2 ´¨¨¨q ´1, a well-defined formal series in u.

Apply (4.2) with e " 1:

pn `1qrz n sDp wq " pn `1qrz n`1 sy D pz, vq " ru n sφ n`1 D pu, vq. Following the argument used for Proposition 4.1, this becomes

ru n sp1 ´v1 u ´v2 u 2 ´¨¨¨q ´pn`1q " 8 ÿ i"0 ˆn `i i ˙ru n spv 1 u `v2 u 2 `¨¨¨q i .
To complete the proof, note that

ru n spv 1 u `v2 u 2 `¨¨¨q i " ÿ t m: } m}"n, | m|"iu ˆi m˙v m and `n`i i ˘`i m˘" `n`i n, m˘.
l

The properties of P pz, wq needed to prove Theorem 2.7 do not follow directly from (4.1), but rather from Proposition 4.1 for Dr2s combined with a certain relationship between P and Dr2s. Define Dr2spz, wq by Dr2spz, wq :" Dr2spz 3{2 , wz ´1{2 q, and use Proposition 4.1 to see that it is a formal series in z and w with non-negative integral exponents. We begin with two preparatory lemmas.

Lemma 4.2. P pz, wq " Dr2spz, wq.

Proof. By (3.6), Dr2spz, wq " 1 `wzDr2s 2 {p1 ´z2 Dr2s 2 q, and so Dr2s satisfies Dr2spz, wq " 1 `wz Dr2s 2 {p1 ´z3 Dr2s 2 q. This is the same recursive functional equation (2.7) defining P pz, wq. 

0 ď 3k 1 ă n 1 , the coefficient of z n 1 w n 1 ´3k 1 in P e 1 is pP e 1 q n 1 ,n 1 ´3k 1 " e 1 n 1 ´k1 `e1 ˆn1 ´2k 1 ´1 k 1 ˙ˆ2n 1 ´4k 1 `e1 ´1 n 1 ´3k 1 ˙.
Now apply Theorem 2.6 to obtain

Q n,n´3k " k ÿ j"0 pP 3j`2 q n´3j´1,n´3k´1
for n ą 0. Substituting n 1 " n ´3j ´1, k 1 " k ´j, and e 1 " 3j `2 in the formula for pP e 1 q n 1 ,n 1 ´3k 1 and then replacing k ´j by s completes the proof. l

Asymptotic estimates

Here we use a classical strategy presented in Section 4 of [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF] to prove Theorem 2.3 and give a conjectural asymptotic estimate of the coefficients of the periodic dissection UGF Drℓspzq. The conjecture depends on the distribution of the roots of a certain polynomial of degree 2ℓ and may be checked with software for any particular ℓ; we have verified it for ℓ ď 16.

Suppose that F pz, yq is a real polynomial such that F p0, 0q " 0, B y F p0, 0q " 0.

Let ypzq be the branch of the graph of F pz, yq " 0 passing through the origin, i.e., the analytic function such that yp0q " 0 and F pz, ypzqq " 0. Recall that (5.1) y 1 pzq " ´pB z F {B y F q| pz,ypzqq .

Theorem 5.1. Let ř 8 n"1 b n z n be the Maclaurin series of ypzq. Make the following assumptions concerning it:

(i) The coefficients b n are non-negative real numbers.

(ii) The radius of convergence of the series is ρ ă 8.

(iii) ρ is the unique singularity of ypzq of magnitude ρ.

(iv) lim zÑρ ´y " ν ă 8.

(v) B z F pρ, νq " 0 and B 2 y F pρ, νq " 0.

Then asymptotically, b n "

γρ ´n ? π n 3{2 ´1 `O´1 n ¯¯, where γ " d ρ B z F 2 B 2 y F ˇˇˇˇp ρ,νq ą 0.
Proof. We will only outline the proof; further details and historical references are given in [START_REF] Flajolet | Analytic combinatorics of non-crossing configurations[END_REF]. See also Theorem 5 of [START_REF] Bender | Asymptotic methods in enumeration[END_REF] for a similar result.

The idea is to expand the inverse function zpyq at pρ, νq. Because ypzq is a non-negative series with radius of convergence ρ, it must be singular at z " ρ, which implies that B y F pρ, νq " 0.

Because B z F pρ, νq " 0, the branch of the graph of F pz, yq " 0 passing through pρ, νq may be regarded as an analytic function zpyq. Check that z 2 pνq " ´pB 2 y F {B z F q| pρ,νq " ´ρ{2γ 2 . To see that γ may be taken real and positive, note that ypzq and all its derivatives are non-negative on r0, ρq, so z 2 pyq must be non-positive at ν.

Conclude that zpyq may be expressed as ř 8 m"0 β m py ´νq m , where

β 0 " ρ, β 1 " 0, β 2 " ´ρ{4γ 2 .
This can be written as 4γ 2 p1 ´z{ρq " py ´νq 2 `1 `β1 3 py ´νq `β1 4 py ´νq 2 `¨¨¨˘, where β 1 3 " ´4γ 2 β 3 {ρ, β 1 4 " ´4γ 2 β 4 {ρ, and so on. Take the square root. Because y ă ν for z ă ρ, we obtain a series of the form 2γp1 ´z{ρq 1{2 " pν ´yq `1 `β2 Thus F P `z, y P pzq ˘" 0 for all z in the domain of y P , where F P pz, yq :" zy 3 `p1 ´z2 qy 2 ´y `z.

Because F P p0, 0q " 0 and B y F P p0, 0q " 0, we may proceed to check the hypotheses (i)-(v) of Theorem 5.1. Regarding (5.3) as a recursive functional equation, it is clear that the Maclaurin series of y P at z " 0 has integer coefficients exceeding the Catalan numbers (this also follows from Theorem 2.2). Therefore the radius of convergence ρ of y P is at most 1{4, and so (i) and (ii) are proven.

Because it has a positive series, y P must be singular at ρ. By (5.1), B y F P is zero at singularities of y P . As a polynomial in y, F P has lead coefficient z. Since y P is not singular at z " 0, it can only be singular at roots of the discriminant of F P regarded as a cubic in y. This discriminant is (2.3), which has positive roots near 0.24 and 1.97, a negative root near ´0.21, and two pairs of complex roots, of magnitudes near 0.94 and 1.70. Since ρ ă 1{4, it must be the least positive root, as given in (2.5). Moreover, (iii) is proven.

At this point (iv) is also proven, as ν must be the simultaneous root of F pρ, yq and B y F P pρ, yq.

To express it as a root of a rational polynomial, solve F P pz, y P q " 0 for z to obtain the inverse z P pyq of y P pzq. The fact that y P p0q " 0 determines which branch of the square root to take: z P pyq " py 3 `1q ´apy 3 ´1q 2 `4y 4 2y 2 .

Calculus shows that z 1 P can only be zero at roots of the polynomial (2.4), which has three real roots, near 0.45, 1.13, and 2.37. Because z P " 0 at y " 0, 1, the root near 0.45 is its least positive (and in fact only) maximum. Because y P increases monotonically on r0, ρq, this root must be ν, as given in (2.5).

For (v), note that

B z F P pρ, νq " ν 3 ´2ρν 2 `1, B 2 
y F P pρ, νq " 2p3ρν ´ρ2 `1q. The statements of Theorem 2.3 concerning P pzq now follow from Theorem 5.1.

For the statements concerning Q, set y Q pzq :" zQpzq and gpyq :" y 2 {p1 ´y3 q. Then (2.2) becomes y Q " z `gpy P q, so y Q and Q have the same radius of convergence ρ as y P and P , and their values at ρ are as claimed.

For the asymptotic estimate of Q n , note that asymptotically the coefficients of y Q and gpy P q are the same. Combining gpνq ´gpyq " g 1 pνqpν ´yq `Opν ´yq 2 with (5.2) leads to γ Q " g 1 pνqγ P , completing the proof. l

Remarks.

' The discriminant (2.3) of F P has a real root µ near ´0.21, of magnitude less than ρ. We know that y P pzq is analytic at µ, so it must be that F P pµ, yq " 0 has two distinct roots in y, one double and one simple, and y P pµq is the simple one. ' The polynomial (2.4) is the resultant of F P and B y F P regarded as quadratics in z, divided by y. Not all of its real roots are extrema of z P : the roots near 0.45 and 2.37 are, but the root near 1.13 is the minimum of the conjugate of z P , in which the other branch of the square root is taken.

We conclude this section with some observations on the analytic behaviour of the UGF Drℓspzq. Consider the shift y ℓ pzq :" zDrℓspzq. By (3.8), (5.4)

y ℓ pzq " z `y2 ℓ `yℓ`2 ℓ `y2ℓ`2 ℓ `¨¨¨" z `y2 ℓ 1 ´yℓ ℓ .
Thus F ℓ `z, y ℓ pzq ˘" 0 for all z in the domain of y ℓ , where (5.5) F ℓ pz, yq :" y ℓ`1 ´zy ℓ `y2 ´y `z.

At p0, 0q, F ℓ " 0 and B y F ℓ " 0, so Theorem 5.1 will give asymptotic estimates for the coefficients of the Maclaurin series of y ℓ if its hypotheses (i)-(v) hold. However, for general ℓ we have only been able to verify (i), (ii), (iv), and (v). Indeed, by either Corollary 3.10 or direct argument from (5.4), the series of y ℓ has positive coefficients exceeding the Catalan numbers, so it has radius of convergence ď 1{4. This gives (i) and (ii), and (iv) and (v) then follow from (5.5).

In order to describe y ℓ pzq we define the following positive algebraic numbers: ' Let ν ℓ be the least positive root of the polynomial R ℓ pyq :" y 2ℓ ´pℓ ´2qy ℓ`1 ´2y ℓ ´2y `1.

' Set ρ ℓ :" z ℓ pν ℓ q, where z ℓ pyq is the inverse of y ℓ pzq: z ℓ pyq :" y ´y2 1 ´yℓ " ypy ℓ `y ´1q y ℓ ´1 " y ´y2 ´yℓ`2 ´y2ℓ`2 ´¨¨¨.

Proposition 5.2.

(i) y ℓ pzq and Drℓspzq have radius of convergence ρ ℓ . (ii) At z " ρ ℓ , y ℓ and Drℓs have infinite first derivative but finite value:

y ℓ pρ ℓ q " ν ℓ , Drℓspρ ℓ q " ν ℓ ρ ℓ " 1 ´νℓ ℓ 1 ´νℓ ´νℓ ℓ .
Proof. The inverse z ℓ pyq of y ℓ pzq increases monotonically on the interval p0, ν ℓ q to a local maximum of value ρ ℓ , as

z 1 ℓ pyq " R ℓ pyq py ℓ ´1q 2 " 1 ´2y ´pℓ `2qy ℓ`1 ´p2ℓ `2qy 2ℓ`1 ´¨¨¨.
Hence the proposition follows from the fact that y ℓ pzq has a positive series and is non-singular on the interval p0, ρ ℓ q.

Problem. Does y ℓ satisfy (iii) of Theorem 5.1? In other words, is z " ρ ℓ the unique singularity of y ℓ of magnitude ρ ℓ ? If so, the theorem would give the asymptotic estimate

Drℓs n " γ ℓ ρ ´n ℓ ? π n 3{2 ´1 `O´1
n ¯¯, where (5.6)

γ ℓ :" 1 ´νℓ ℓ ? 2ρ ℓ ´2 `2ℓν ℓ´1 ℓ `pℓ ´2qpℓ `1qν ℓ ℓ ´2ℓν 2ℓ´1 ℓ ¯´1{2 .
The z-coordinates of the singularities of y ℓ pzq occur at roots of the discriminant of F ℓ , regarded as a polynomial in y. It is not hard to see that this discriminant is a polynomial of degree 2ℓ in z, but the polynomial itself is complicated. We used software to confirm that for ℓ ď 16, (iii) does hold, and so (5.6) is valid. However, starting at ℓ " 14 the discriminant has pairs of complex roots of magnitude less than ρ ℓ , increasingly many as ℓ grows, increasingly close to zero. As a side note, software also suggests that the discriminant is always irreducible, which would imply that ρ ℓ and ν ℓ are both of degree 2ℓ over Q.

We mention that the y-coordinates of the singularities of y ℓ pzq occur at roots of the resultant of F ℓ and B y F ℓ , regarded as polynomials in z, which is simply R ℓ pyq. One can prove that ν ℓ is the unique root of R ℓ of magnitude ď ν ℓ indirectly, by observing that the Maclaurin series of z 1 ℓ has this property.

Finally, let us formalize the obvious statement that Drℓspzq goes to the Catalan generating function Cpzq as ℓ goes to 8. Recall that the shifted Catalan function y C pzq :" zCpzq has inverse z C pyq :" y ´y2 , radius of convergence 1{4, and limiting value 1{2 as z Ñ p1{4q

´.

Proposition 5.3. In the limit as ℓ Ñ 8, (i) ρ ℓ increases monotonically from ρ 1 " 3 ´2? 2 to 1{4.

(ii) ν ℓ increases monotonically from ν 1 " 1 ´1{ ? 2 to 1{2. (iii) Drℓspzq decreases monotonically to Cpzq for all z P p0, 1{4q.

Proof. The series for z 1 ℓ gives (ii), and then the series for z ℓ gives (i). For (iii), recall (3.11) and note that Drℓs n " C n for ℓ ě n.

Remark. It is an amusing exercise to graph z ℓ on R. Consider z 2 ℓ pyq " pℓ ´1qpℓ ´2qy 2ℓ `pℓ ´1qpℓ `4qy ℓ `2 py ℓ ´1q 3 .

For ℓ ě 3, regard the numerator as a quadratic in y ℓ . As such, its discriminant is ℓ 2 pℓ ´1qpℓ `7q and both roots are negative. It follows that for ℓ " 1 or ℓ even, z ℓ has no real inflection points, while for ℓ ě 3 and odd, it has two, both at negative y-values, which approach ´1 from opposite sides as ℓ Ñ 8.

In the former case, z ℓ has exactly two real real extrema: a maximum at y " ν ℓ and a minimum at some y ą 1. In the latter case it has these two extrema and possibly two more, a minimum and a maximum, both at negative y-values. Observing that for ℓ odd, z 1 ℓ p´1q " 8 ´ℓ, and plotting the cases ℓ " 3, 5, 7 with a computer, we find that these two additional extrema obtain for ℓ ě 9 and odd, and that they approach y " ´1 from opposite sides as ℓ Ñ 8. This is explained by the fact that for ℓ large, z ℓ approximates y for |y| ą 1 and y ´y2 for |y| ă 1.

Operations on dissections

At this point we have proven all stated results except for Theorem 2.6, the formula for the 3periodic quiddity BGF Qpz, wq in terms of P pz, wq. We now take the first step in the proof of this theorem: we construct a canonical representative of each equivalence class of 3-periodic dissections with the same quiddity.

Before we begin, we wish to emphasize two points concerning quiddity generating functions. To put our results in context it would be natural to ask about the generating functions of the quiddities of the ℓ-periodic dissections for arbitrary ℓ. Denote these functions by Qrℓs, so that Q " Qr3s.

' The UGF Qrℓspzq and the BGF Qrℓspz, wq are well-defined, but the MGF Qrℓsp wq is not. This is because by Lemma 2.4, the quiddity determines the numbers of vertices and of cells in the dissection, but it does not determine the number of pr `2q-cells for each r. ' Our construction of a canonical dissection associated to each quiddity works only in the case ℓ " 3. As far as we can see, it does not adapt to give a canonical ℓ-periodic dissection associated to each ℓ-periodic quiddity in general. Consequently, we do not know anything about Qrℓspz, wq for ℓ " 3. To our knowledge, this question is new; hence the problem we formulated in Section 1.4.

Surgery.

Here we define an operation on dissections which preserves the quiddity. Consider a dissection of a convex pn `2q-gon. Let us begin by collecting terminology from earlier sections: ' The vertices are labelled 0, 1, 2, . . . , n `1, in cyclic order. ' The edges are the segments pi, i `1q bounding the pn `2q-gon, i P Z n`2 . ' The base edge is pn `1, 0q. ' The chords are the non-crossing diagonals pi, jq that make up the dissection. Note that here i and j are not cyclically adjacent. ' The cells are the sub-polygons into which the pn `2q-gon is dissected. ' The base cell is the cell containing the base edge. ' The sides of a cell are the edges and chords bounding it.

The next three definitions establish the concept of level, which is a measure of a type of distance from any given cell to the base cell.

Definition. Consider a non-base cell C. Its base side is the unique side with the following property: it is a chord, and of the two pieces into which it divides the pn `2q-gon, one contains the base cell and the other contains C.

Definition. Consider a cell.

' Its parent is the unique cell with which it shares its base side. ' Its children are the cells of which it is the parent. ' Define its ancestors and descendants accordingly.

In order to visualize the descendants of a cell, say C, divide the pn `2q-gon into two pieces along the base side of C. The descendants of C are precisely all cells in the same piece as C.

Definition. The level of a cell is the number of ancestors it has. Some observations are in order. The base cell has no parent and so is of level 0. A cell of level L has exactly one ancestor of each level 0, 1, . . . , L ´1. Its parent is of level L ´1 and its children are of level L `1.

The level and ancestors of a cell may be understood as follows. Consider a path from the cell to the base cell which stays in the interior of the pn `2q-gon and crosses the minimum number of chords. The cell's level is the number of chords the path crosses, and its ancestors are the cells the path enters.
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A level 2 cell C 2 and its two ancestors: its parent C 1 and its grandparent C 0 , the base cell (hollow dots represent sub-dissections).

The next two definitions introduce surgery. Consider a dissection of an pn `2q-gon containing an pr `2q-cell with vertices v 0 , . . . , v r`1 , where (6.1)

0 ď v 0 ă v 1 ă ¨¨¨ă v r ă v r`1 ď n `1.
The sides of the cell are the segments pv s , v s`1 q. At s " r `1 we take this to mean pv r`1 , v 0 q. It is important to note that this is the base side.

Definition. Two sides of a cell are distant if "the cell has vertices properly between them". Thus sides pv s , v s`1 q and pv s 1 , v s 1 `1q with s ă s 1 are distant if

s 1 ě s `3, s ě ps 1 `3q ´pr `2q.
Definition. Surgery may be performed on any two distant sides of a cell which are both chords of the dissection; neither is an edge. It "replaces them by the other two sides of the quadrilateral formed by their vertices". Thus if pv s , v s`1 q and pv s 1 , v s 1 `1q are distant sides and also chords, surgery removes them from the dissection and replaces them by the chords pv s`1 , v s 1 q and pv s 1 `1, v s q.

The result of a surgery is a new dissection, as the modified set of chords is still non-crossing. Surgery is reversible: the two new chords it creates are themselves distant sides of a newly created cell, and surgery on them inverts the original surgery. Surgery alters exactly three cells in the
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on a cell (again, hollow dots represent sub-dissections) dissection: the cell whose distant sides are replaced, and the two cells with which it shared those sides. The main point is the following lemma, which is obvious.

Lemma 6.1. Surgery does not change the quiddity of the dissection.

This suggests a question: is the converse true? If two dissections have the same quiddity, can one be transformed into the other by a sequence of surgeries? In general, we do not know. The main result of this section is that in the 3-periodic case, the answer is yes.

Definition. Consider two distant sides of a cell which are both chords. If one of them is the base side, surgery on them is opening. Otherwise it is closing.

Opening surgery is never possible on the base cell, as its base side is an edge. Opening and closing surgeries are mutually inversive.

Let us describe the effect of an opening surgery. Suppose that C L is a non-base cell of level L with vertices (6.1). Write C L´1 for its parent cell, with which it shares its base side pv r`1 , v 0 q. Assume that C L has a non-base side pv s , v s`1 q which is distant from the base side, i.e., 2 ď s ď r´2, and is a chord. Write C L`1 for the child cell of C L with which it shares pv s , v s`1 q.

In this setting pv s , v s`1 q and pv r`1 , v 0 q are eligible for opening surgery, which merges the parent C L´1 and the child C L`1 into a single cell C 1 L´1 of level L ´1, and divides the original cell C L into two cells C 1 L and C 2 L , both of level L. The two new level L cells are both children of the new level L ´1 cell, and their base sides are the two new chords created by the surgery. All other cells in the dissection remain unchanged. The levels of the descendants of C L`1 all decrease by 2, and no other levels change. Heuristically, we think of opening surgeries as "bringing cells closer to the base cell", by "opening ancestor cells outward towards descendant cells"; hence the terminology. 6.2. 3-periodic surgery. Surgery does not preserve 3-periodic dissections. For example, there is a 3-periodic dissection of the 11-gon into a base nonagon and two level 1 triangles which after surgery has a base pentagon, a level 1 hexagon, and a level 2 quadrilateral: take the original chords to be p2, 4q and p7, 9q in p0, 1, . . . , 10q. However, there is a natural type of surgery which does preserve 3-periodic dissections.
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Definition. Given a 3-periodic dissection, we assign an element of Z 3 to each edge, chord, and cell, its Z 3 -index. The procedure is recursive on level. To begin, assign the index 0 to the base edge of the base cell. Once the sides of all cells of level ă L are indexed, the base sides of all cells of level L will have been indexed. To index their remaining sides, increase the indices in increments of 1 going counterclockwise around each cell. The index of a cell is the index of its base side.

Level 2, Index 0 The proofs of these lemmas are trivial and are left to the reader. Note that the inverse of a 3-periodic surgery is a 3-periodic surgery.
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The remainder of this section is devoted to proving that any two 3-periodic dissections with the same quiddity are linked by a series of 3-periodic surgeries. The strategy is to show that each quiddity equivalence class of 3-periodic dissections contains a unique dissection on which no 3-periodic opening surgeries are possible.

Definition. Consider a 3-periodic dissection and a cell within it.

(i) The cell is maximally open if it admits no 3-periodic opening surgeries.

(ii) The dissection is maximally open if all of its cells are maximally open.

Lemma 6.4. Consider a cell in a 3-periodic dissection. The number of 3-periodic opening surgeries it admits is equal to the number of non-base sides it has which are chords of the same Z 3 -index as its base side.

Corollary 6.5. A 3-periodic dissection is maximally open if and only if in every non-base cell, every non-base side of the same Z 3 -index as the base side is an edge.

These two results are also obvious. In order to state the next result, suppose that D is a 3periodic dissection in which all cells of level ą L are maximally open, but not all cells of level L are maximally open. Let σ L be the total number of 3-periodic opening surgeries on cells of level L admitted by the entire dissection.

Fix a cell C L in D of level L which admits at least one 3-periodic opening surgery. Fix such a surgery, and let D 1 be the new 3-periodic dissection it produces. Let σ 1 L be the total number of 3-periodic opening surgeries on cells of level L admitted by D 1 . Lemma 6.6. The 3-periodic dissection D 1 has the following properties:

(i) All cells of level ą L are maximally open.

(ii) σ 1 L " σ L ´1. Proof. We use the notation of Figure 6.1; subscripts denote levels. The surgery merges the parent

C L´1 of C L with one of its children, C L`1 , to form C 1 L´1 . This divides C L into C 1 L and C 2 L .
The other cells are not changed, and the only change in their levels is that those of the descendants of C L`1 all decrease by 2.

For (i), all cells of level ą L in D 1 were cells of level ą L in D, and so they are maximally open. For (ii), there are three types of level L cells in D 1 :

' those which were level L cells in D other than C L ; ' those which were children of C L`1 in D; ' the two new cells C 1 L and C 2 L . The number of opening surgeries in cells of the first type is not changed by the surgery, and cells of the second type are maximally open. An application of Lemma 6.4 shows that the sum of the number of opening surgeries in C 1 L and C 2 L is one less than the number of opening surgeries in C L , because the base side of C L`1 is no longer available. The result follows.

Let us remark that the new dissection D 1 may admit arbitrarily many more opening surgeries than the original dissection D. However, they will all be in C 1 L´1 , which is of level L´1. Therefore an obvious induction argument starting from the highest level present in D and proceeding downward yields the following result. 
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. Opening surgeries producing a maximally open dissection

Given such a cell, consider the polygon formed by the vertices of its base side and all of its chord sides of the same Z 3 -index as its base side. Half of the sides of this polygon are sides of the cell and half are not part of the dissection. Delete the former from the dissection and replace them by the latter. This process is equivalent to a sequence of ordinary 3-periodic opening surgeries.

6.3.

Operations enlarging the polygon. In this section we recall from [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF] two operations on 3-periodic dissections. They are quite different in nature from surgery, in that both change not only the quiddity but even the number of vertices of the polygon. Consider an arbitrary 3-periodic dissection of an pn `2q-gon, with quiddity pa 0 , . . . , a i , a i`1 , . . . , a n`1 q.

' Blow-up: Add a triangle to the dissection, attaching it to the pi, i `1q-edge. This results in a 3-periodic dissection of an pn `3q-gon, with quiddity pa 0 , . . . , a i´1 , a i `1, 1, a i`1 `1, a i`2 , . . . , a n`1 q.

' Expansion: This operation expands one of the sub-polygons contacting the i th vertex, replacing that vertex with three new edges. The construction is as follows: expand the i th vertex to an edge and call its endpoints i 1 and i 2 . Place two new vertices along this new edge, dividing it into three edges. Of the a i ´1 chords contacting the i th vertex in the original dissection, allot a 1 i ´1 of them to i 1 and a 2 i ´1 of them to i 2 , where a 1 i and a 2 i are positive integers summing to a i `1.
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Before and after an expansion

This yields a 3-periodic dissection of an pn `5q-gon, with no chords contacting the two vertices between i 1 and i 2 . Its quiddity is pa 0 , . . . , a i´1 , a 1 i , 1, 1, a 2 i , a i`1 , . . . , a n`1 q. Because the vertices are cyclically ordered, both operations are defined for 0 ď i ď n `1. The blow-up operation is well known and was the main technical tool used by Conway and Coxeter in [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF]. To our knowledge, expansion was first considered in [START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF], where the two operations are used together to prove Theorem 1.2. The idea of the proof is to regard the operations as acting on quiddities rather than dissections. Let us briefly explain it. The following lemma is an easy exercise. Lemma 6.8 ([25], Section 1.2). Blow-up and expansion preserve solutions of (1.1). Blow-up increases N by 1, expansion increases N by 3, and both increase T by 3.

Clearly any 3-periodic dissection may be obtained by applying a sequence of blow-ups and expansions to a triangle. The next theorem is the analog of this observation for solutions of (1.1). Combining it with Lemma 6.8 leads to Theorem 1.2. Theorem 6.9 ([25], Theorem 2). Any positive solution pa 1 , . . . , a N q of (1.1) may be obtained from the quiddity p1, 1, 1q of the triangle via a sequence of blow-ups and expansions.

The terminology "blow-up" comes from the theory of toric varieties; see [START_REF] Fulton | Introduction to Toric Varieties[END_REF], pp. 43-44. Expansion also has a geometric interpretation: it adds a half-turn to the corresponding rational fan. We discuss connections between (1.1) and toric surfaces in Section 8. Remark. It would be natural to try to induct by applying the result to an appropriate subdissection, for example, one obtained by removing a single cell of maximal level. But this does not work, because the quiddity alone does not reveal the cell structure.

Instead we must devise a process which transforms a maximally open 3-periodic dissection into a smaller one, using as input information only the quiddity. The key is to construct what may be thought of as a quotient dissection. The blow-up and expansion operations from Section 6.3 play a crucial role.

Proof. Let D and D be two maximally open 3-periodic dissections of an pn `2q-gon which have the same quiddity, and assume the proposition for smaller n. Label the vertices 0, 1, . . . , n `1 and write pa 0 , a 1 , . . . , a n`1 q for the quiddity. If the quiddity values are all 1, both dissections are trivial, so we may dispense with this case.

Refer to cells with no children as terminal. In a non-trivial dissection, a terminal cell is a nonbase cell with only one chord side, pi, jq. Here j ´i ě 2 and either 0 ă i, or j ă n `1, or both. The vertices of the cell are the consecutive integers i, i `1, . . . , j, and their quiddity values satisfy (6.2) a i ą 1, a i`1 " a i`2 " ¨¨¨" a j´1 " 1, a j ą 1.

In the 3-periodic case, 3 divides j ´i `1.

There is always at least one terminal cell; for example, any cell of maximal level. Let i, . . . , j be the vertices of a terminal cell of D. Name this cell C.

In the dissection D, we cannot conclude a priori that i, . . . , j are the vertices of a terminal cell; we only know that their quiddity values are as in (6.2). These quiddity values do permit us to conclude that i, . . . , j are all contained in a single cell of D. Name this cell C. For illustrative examples, see Figure 6.3.

The case j ą i `2. Here C is a 3d-gon for some d ě 2, and so j ě i `5. Because no chords emanate from the vertices i `1, i `2, and i `3, we may create from D a new dissection D 1 by erasing them and connecting i to i `4 by a single edge. This is the inverse of the expansion operation: D 1 is a 3-periodic dissection of an pn ´1q-gon with vertices 0, . . . , i, i `4, . . . , n `1.

The sole difference between D 1 and D is that in D 1 , the cell C is replaced by a cell C 1 obtained by deleting the vertices i `1, i `2, and i `3. All other cells remain the same, all chords are the same, all base sides are the same, and the levels, Z 3 -indices, and quiddity values of all components of D 1 are the same as they were in D. In particular, D 1 is maximally open and has quiddity pa 0 , . . . , a i , a i`4 , . . . , a n`1 q.

The same inverse expansion operation may be performed on D, producing a 3-periodic dissection D1 of an pn ´1q-gon which differs from D only in that the vertices i `1, i `2, and i `3 are deleted from the terminal cell C to create a new cell C1 . As before, everything else remains the same, so D1 is also maximally open, and it has the same quiddity as D 1 . Therefore, by the induction hypothesis, D 1 and D1 are equal. Performing expansion surgery on the cells C 1 and C1 returns the smaller dissections D 1 and D1 to the originals D and D, so they too are equal.

The case j " i `2. Here the terminal cell C is a triangle with vertices i, i `1, and i `2. Let D1 be the dissection obtained by removing this cell from D. This is the inverse of the blow-up operation: D1 is a 3-periodic dissection of an pn `1q-gon with vertices 0, . . . , i, i `2, . . . , n `1.

Clearly the cells, base sides, levels, and Z 3 -indices in D1 are the same as they were in D. It follows that D1 is maximally open and has quiddity (6.3) pa 0 , . . . , a i´1 , a i ´1, a i`2 ´1, a i`3 , . . . , a n`1 q.

Now consider the cell C in the dissection D containing the vertices i, i`1, and i`2. Suppose that it contains no other vertices. Then it is a terminal triangle, and we may perform the same inverse blow-up operation, removing C from D to produce a 3-periodic dissection D 1 which is maximally open and has quiddity (6.3). By the induction hypothesis, D 1 " D1 , and hence D " D.

Thus the proof will be complete if we derive a contradiction from the assumption that C is not a triangle. Suppose it is an pr `2q-cell with vertices v 0 ă . . . ă v r`1 , where r `2 " 3d for some d ě 2. For some s P t0, 1, . . . , r ´1u, we have

v s " i, v s`1 " i `1, v s`2 " i `2.
Because the quiddity values a i and a i`2 exceed 1, the sides pv s´1 , v s q and pv s`2 , v s`3 q of C are chords. Moreover, they have the same Z 3 -index, so we may perform 3-periodic surgery on them.

Because D is maximally open, this surgery must be a closing surgery: neither of the two chords it removes can be the base side pv r`1 , v 0 q of C. Thus in fact s P t1, . . . , r ´2u.

Let D be the dissection produced by this closing surgery. It has the same quiddity as D and D, and it contains the triangle pi, i `1, i `2q as a terminal cell created by the surgery. It is not maximally open: it admits exactly one 3-periodic opening surgery, the inverse of the closing surgery that produced it from D.

Let D1 be the dissection obtained from D by applying the inverse of the blow-up operation and removing the triangle pi, i `1, i `2q. It has the same quiddity (6.3) as D1 , and it is maximally open, because the only 3-periodic opening surgery admitted by D is no longer available. Hence as before, induction shows that D1 " D1 . But then applying the blow-up operation and reattaching the triangle pi, i `1, i `2q implies that D " D, a contradiction, because D is not maximally open.

i `1 i `2 ' ☎ ☎ ☎ ' ✿ ✿ ✿ i ' ✲ ✲ ✲ ✲ ✲ ✲ ✲ C ˝✿ ✿ ✿ ' ☎ ☎ ☎ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ' D i `1 i `2 ' ☎ ☎ ☎ ' ✿ ✿ ✿ i ' ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ✿ ✿ ✿ ' ☎ ☎ ☎ ' ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ D i `1 i `2 ' ☎ ☎ ☎ ' ✿ ✿ ✿ C i ' ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ✿ ✿ ✿ ☎☎ ☎ ˝D D, D,
and D for j " i `2: as usual, hollow dots represent sub-dissections, and the base is contained in the square.

Counting quiddities

In this section we will prove Theorem 2.6. Consider the set of all 3-periodic dissections of an pn `2q-gon into m cells. In light of Theorem 6.10, the number of maximally open 3-periodic dissections in this set is equal to the number of distinct quiddities of all dissections in the set. Thus the function Qpz, wq defined in (2.6) is the BGF of the maximally open 3-periodic dissections.

In order to enumerate the set of maximally open 3-periodic dissections, we must first enumerate a certain subset of these dissections whose BGF satisfies a recursive functional equation. This BGF will turn out to be the auxiliary function P pz, wq defined in Section 2.2.

Definition. A maximally open 3-periodic dissection is base-open if it remains maximally open

when the blow-up operation is applied to its base edge.

The next result is a corollary of Lemma 6.4. It is similar to Corollary 6.5: the only difference is that in Corollary 6.5 the base cell is excepted from the Z 3 -condition. This exception is the reason that the generating function Qpz, wq does not satisfy any recursive functional equation we know of. Consider the effect of replacing w r by wz r for all r. As we saw in the proof of Proposition 3.3, this replaces w m by w |m| z }m} , and so by (3.1), it replaces P p wq by P pz, wq. Therefore (7.1) is a consequence of the following recursive functional equation for P p wq:

(7.2) P p wq " 1 `8 ÿ d"1
w 3d´2 P p wq 2d .

To prove (7.2) we follow the proof of Proposition 3.1. Consider a maximally open base-open 3-periodic m-dissection such that the base cell is a 3d-cell for some positive integer d. To match earlier notation, set r " 3d´2, so that the base cell is an pr `2q-cell. Label its vertices v 0 , . . . , v r`1 , where 0

" v 0 ă v 1 ă ¨¨¨v r´1 ă v r ă v r`1 " n `1.
Observe that the Z 3 -index of the side pv s , v s`1 q is s `1. For 0 ď s ď r, consider the sub-dissection induced on the sub-polygon with vertices v s , v s 1, . . . , v s`1 ´1, v s`1 , which is attached to the base cell along the side pv s , v s`1 q. Just as in Proposition 3.1, it is an mpsq-dissection for some mpsq such that } mpsq} " v s`1 ´vs ´1. However, there are now two further conditions, arising from the following obvious statement. The new conditions are that the mpsq-dissection attached to pv s , v s`1 q is maximally open and base-open, and empty if s " 2 mod 3. Thus the number of maximally open base-open m-dissections such that the base is a 3d-cell is the sum of all products `P mp0q P mp1q ˘`P mp3q P mp4q ˘¨¨¨`P mpr´4q P mpr´3q ˘`P mpr´1q P mprq ˘, taken over all choices of v 1 , . . . , v r , and for each such choice, over all choices of the mpsq such that } mpsq} " v s`1 ´vs ´1 and

d´1 ÿ i"0 `mp3iq `mp3i `1q ˘" m ´er .
This number is identical to the coefficient of w m in w 3d´2 P p wq 2d , proving (7.2) and hence the proposition.

Evaluating P pz, wq at w " 1 gives the following corollary. As an aside, let us remark that Theorem 3.2 gives an explicit formula for the coefficients P m, via essentially the same trick used in Lemma 4.2. To explain, use (3.3) to check that the function Dpw 1 , 0, w 4 , 0, w 7 , 0, w 10 , 0, . . .q Here Q n`1,n´2 should be interpreted as 0 for n " 1, 2. The simplified formula on the right is valid only for n ě 2. The sequence begins 4, 15, 49, 168, 594, 2145, . . ..

Before giving the proof we briefly recall rational fans and the blow-up operation. This material is well-known and can be found in Sections 2.4 and 2.5 of the classical book [START_REF] Fulton | Introduction to Toric Varieties[END_REF]. 8.1. Rational fans in R 2 . Every compact nonsingular toric surface is determined by a complete rational fan. A regular complete rational fan in R 2 is an N -periodic sequence of lattice points v i P Z 2 satisfying the following two conditions:

' every pair v i , v i`1 of consecutive points forms a basis of Z 2 ; ' distinct cones pv i , v i`1 q and pv j , v j`1 q intersect only at t0u or along a bounding ray. We shall write such sequences as pv i q iPZ , where v i`N " v i for all i. Clearly there is a sequence pa i q iPZ of integers such that the v i satisfy the recurrence relation

(8.2) v i`1 " a i v i ´vi´1
(cf. [START_REF] Fulton | Introduction to Toric Varieties[END_REF], p. 43). Note that the a i are not necessarily positive.

Applying an element of SLp2, Zq, we may assume that v 1 " e 1 and v 2 " e 2 . Hence the fan is determined up to equivalence by the a i . The following proposition is obvious (see [START_REF] Fulton | Introduction to Toric Varieties[END_REF], Exercises 2.17 and 2.18). Proposition 8.2.

(i) The sequence pa i q in (8.2) is a solution of (1.1) (not necessarily positive), with `Id on the right side. Its total sum (1.2) is T " 3N ´12. (ii) Conversely, any solution of (1.1) of total sum 3N ´12 determines a complete rational fan with v 1 " e 1 and v 2 " e 2 .

Examples. In all cases, we take v 1 " e 1 and v 2 " e 2 .

(i) The first two types of isomorphism classes of rational fans are represented by a 3-periodic fan with pa 1 , a 2 , a 3 q " p´1, ´1, ´1q and a one-parameter family of 4-periodic fans with pa 1 , a 2 , a 3 , a 4 q " pa, 0, ´a, 0q, where a P Z. The corresponding surfaces are the projective plane P 2 and the Hirzebruch surface F a .

v 2 y y 0 | | ② ② ② ② ② G G v 1 v 3 P 2 : v3 " ´e1 ´e2 v 2 y y v 3 0 G G o o v 1 v 4 x x ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ Fa: v3 " ´e1, v4 " ae1 ´e2
(ii) The simplest positive solution of (1.1) with total sum T " 3N ´12 is pa 1 , . . . , a 6 q " p1, 1, 1, 1, 1, 1q. It corresponds to the pictured 6-periodic fan. By Theorem 6.9, every positive solution of (1.1) with T " 3N ´12 may be obtained from this solution by a sequence of blow-ups.

v 3 v 2 v 4 0 y y G G 4 4 ❊ ❊ ❊ ❊ ❊ o o ❊ ❊ ❊ ❊ ❊ v 1 v 5 v 6
A fan with N " 6: v 3 " ´e1 `e2 , v 4 " ´e1 , v 5 " ´e2 , v 6 " e 1 ´e2 (iii) An example of a solution with T " 3N ´6 is pa 1 , a 2 , a 3 , a 4 q " p1, 2, 1, 2q. It gives an antiperiodic quadrilateral of index 1 2 , a "half-fan". By Theorem 1.1, the number of half-fans of N vectors is the Catalan number C N ´2.

v 3 v 4 v 2 v 5 0 G G y y ✸ ✸ ✸ ✸ ✸ ✸ ✸ ✸ ✸ ❊ ❊ ❊ ❊ ❊ o o v 1
A fan with N " 4: v 3 " ´e1 `2e 2 , v 4 " ´e1 `e2 , v 5 " ´v1 , . . .

(iv)

In examples with T " 3N ´18 the sequence pv i q is again anti-periodic, as for T " 3N ´6.

Here the index is 3 2 , in the sense that the broken line pv i q 0ďiďn makes one and a half turns around the origin, as shown. The number of positive solutions of (1.1) of this type is Q N ´2,N ´8, which is given by (2.13).
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A fan with T " 3N ´18 8.2. The blow-up operation. This operation plays a crucial role in the classification of toric surfaces [START_REF] Fulton | Introduction to Toric Varieties[END_REF]. Recall its combinatorial definition:

Definition. The blow-up of an N -periodic fan pv i q iPZ is the pN `1q-periodic fan obtained by inserting the vector v k `vk`1 between v k and v k`1 for some k.

The corresponding sequence pa i q changes just as quiddities do under the dissection blow-up operation defined in Section 6.3: a k and a k`1 increase by 1, and a 1 is inserted between them: (8.3) p. . . , a k , a k`1 , . . .q Þ ÝÑ p. . . , a k `1, 1, a k`1 `1, . . .q.

Proof of Theorem 8.1. The theorem counts the number of distinct fans with v 1 " e 1 and v 2 " e 2 obtained from the fan of P 2 by a sequence of blow-ups. It is not hard to see that the sequence pa i q obtained by n ě 1 blow-ups of p´1, ´1, ´1q must be one of the following four mutually exclusive types: (a) The a i are all positive. Here we must have n ě 3. (b) There is a k such that a k " ´1. In this case, the neighbors a k´1 and a k`1 must be non-negative, and the other a i must all be positive. (c) There is a k such that a k " a k`1 " 0. In this case, the other a i must all be positive, and n ě 2. (d) There is a k such that a k " 0, and the other a i are all positive. Here n ě 3. We will count the number of sequences of each type separately; combining the results then completes the proof. Note that after n blow-ups we have an pn `3q-periodic sequence.

' Type (a): these sequences are the quiddities of 3-periodic dissections of the pn `3q-gon into triangles and a single hexagon. By Theorem 2.7, there are Q n`1,n´2 of them. ' Type (b): the following lemma shows that the number of such sequences is pn `3qC n . Proof. Consider the following operation on N -periodic sequences of Type (b): (8.4) p. . . , a k´1 , ´1, a k`1 , . . .q Þ ÝÑ p. . . , a k´1 `1, a k`1 `1, . . .q.

Check that it produces a positive solution of length N ´1 and total sum T " 3N ´9. By Theorem 1.1, such solutions are quiddities of triangulations of the pN ´1q-gon, of which there are C N ´3. The lemma now follows from the fact that there are N choices for the position k of the ´1 in the original sequence.

' Type (c): the next lemma shows that the number of such sequences is pn `3qC n´1 .

Lemma 8.4. The number of solutions of (1.1) of Type (c) is N C N ´4.

Proof. Removing the two consecutive 0's gives a positive solution of (1.1) of length N ´2 and total sum T " 3N ´12. The remainder of the proof goes as for Lemma 8.3.

' Type (d): our final lemma shows that the number of sequences here is pn`3qpC n ´2C n´1 q.

Lemma 8.5. The number of solutions of (1.1) of Type (d) is N pC N ´3 ´2C N ´4q.

Proof. If p. . . , a k´1 , 0, a k`1 , . . .q is a solution of Type (d), then p. . . , a k´1 `ak`1 , . . .q is a positive solution. By Theorem 1.1, it is the quiddity of a triangulation of the pN ´2q-gon.

Conversely, given a quiddity pa 1 , . . . , a k , . . . , a N ´2q of a triangulation of the pN ´2q-gon such that a k ě 2, any sequence pa 1 , . . . , a 1 k , 0, a 2 k , . . . , a N ´2q with a 1 k `a2

k " a k and a 1 k , a 2 k positive corresponds to splitting the triangulation into two triangulations along a chord. Therefore the number of solutions with 0 at a fixed position is ř N

´5

i"1 C i C N ´4´i . By the quadratic recurrence equation for the Catalan numbers, this is C N ´3 ´2C N ´4. The lemma now follows as before.

Remark. The operation (8.4) used for Type (b) has an inverse: p. . . , a k , a k`1 , . . .q Þ ÝÑ p. . . , a k ´1, ´1, a k`1 ´1, . . .q. This is a "negative version" of the blow-up operation (8.3). In terms of the sequence pv i q, it inserts the vector v k`1 ´vk between v k and v k`1 and reverses the sign of the subsequent vectors, giving p. . . , v k , v k`1 ´vk , ´vk`1 , ´vk`2 , . . .q.

Examples. We conclude with descriptions of the sequences counted by Theorem 8.1 for n ď 4.

' n " 1, 4-periodic sequences: blowing up P 2 at one point gives 4 sequences pa i q, all of Type (b): the cyclic permutations of p´1, 0, 1, 0q. The corresponding fans are 201
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(3. 2 )

 2 Dp wq :" ÿ mPN ω D m w m. Proposition 3.1. The dissection MGF satisfies the recursive functional equation (3.3) Dp wq " 1 `w1 Dp wq 2 `w2 Dp wq 3 `w3 Dp wq 4 `¨¨¨.

(4. 2 )

 2 pn `eqrz n`e sy e " eru n sφ n`e . Proposition 4.1. For any positive integer e, Drℓspz, wq e " 1 `ÿ n, k: 0ďkăn{ℓ e n `e ˆn ´pℓ ´1qk ´1 k ˙ˆ2n ´ℓk `e ´1 n ´ℓk ˙zn w n´ℓk . Proof. It suffices to prove the following generalization of (3.10): for n ą 0, pn `eqrz n sDrℓs e pz, wq " e ÿ 0ďkăn{ℓ ˆn ´pℓ ´1qk ´1 k ˙ˆ2n ´ℓk `e ´1 n ´ℓk ˙wn´ℓk .

2 .

 2 In order to use (4.1), we substitute w r :" v r z r in Dp wq. Then (3.3) becomes Dp wq " 1 `v1 zD 2 `v2 z 2 D 3 `¨¨¨, and (3.5) is equivalent to pn `1qrz n sDp wq " ÿ t m: } m}"nu ˆn `| m| n, m ˙v m.

6. 1 . 1 L , and C 2 L

 112 Opening surgery on a cell C L : the base sides of C L , C L`1 , C are emphasized, hollow dots represent sub-dissections, and the base is contained in the square.

Figure 6 . 2 .

 62 Figure 6.2. The Z 3 -indices of a 3-periodic dissection of a 16-gon

Proposition 6 . 7 .

 67 Any 3-periodic dissection can be transformed into a maximally open 3-periodic dissection by a sequence of 3-periodic opening surgeries.

Figure 6 .

 6 Figure 6.3 gives a simple example of three dissections of a hexadecagon. The chords are labelled by their Z 3 -indices. In the initial dissection on the left, there is one cell in each of the levels 0, 1, 2, 3, and 4. The only possible opening surgery is on the level 2 cell, producing the middle dissection, which has one level 0 cell (as always), one level 1 cell, and three level 2 cells. It too has only one opening surgery, on the level 1 cell, producing the dissection on the right. It is maximally open and has one level 0 cell, two level 1 cells, and two level 2 cells.Remark. From a practical standpoint, a dissection containing cells admitting multiple opening surgeries may be transformed into a maximally open dissection more efficiently by performing what might be called "3-periodic maximal opening surgery" in place of 3-periodic opening surgery.

6. 4 .

 4 Quiddity classes of dissections. We have come to our main technical result: Theorem 6.10. Every equivalence class of 3-periodic dissections with the same quiddity contains a unique maximally open 3-periodic dissection. Proof. Keeping in mind Lemma 6.1, we see by Proposition 6.7 that every quiddity class of 3-periodic dissections contains at least one maximally open dissection. Therefore the following proposition proves the theorem. Proposition 6.11. If two maximally open 3-periodic dissections have the same quiddity, then they are equal.

Corollary 7 . 1 .Proposition 7 . 2 .

 7172 A 3-periodic dissection is maximally open and base-open if and only if in every cell, every non-base side of the same Z 3 -index as the base side is an edge. Example. The 3-periodic dissection in Figure 6.2 is maximally open but not base-open, in contrast with the maximally open 3-periodic dissection in Figure 6.3, which is base-open. The function P pz, wq defined in (2.7) is the BGF of the maximally open baseopen 3-periodic dissections: P n,m is the number of such dissections of an pn `2q-gon into m cells. Proof. Write Pn,m for the number of maximally open base-open 3-periodic dissections of an pn`2qgon into m cells, and let P pz, wq be the corresponding BGF,ř n,m Pn,m z n w m . We must prove that P pz, wq " P pz, wq. It will suffice to prove that P pz, wq satisfies the same recursive equation (2.7) satisfied by P pz, wq: (7.1) P pz, wq " 1 `wz P 2 `wz 4 P 4 `wz 7 P 6 `wz 10 P 8 `¨¨¨. The maximally open base-open 3-periodic dissections have an MGF, analogous to the MGF Dp wq of the dissections defined in (3.2). Following the notation of Section 3.1, let P m be the number of maximally open base-open 3-periodic m-dissections. The MGF is P p wq :" ÿ mPN ω P m w m.

Lemma 7 . 3 .

 73 Fix a 3-periodic dissection D, and regard it as a collection of 3-periodic sub-dissections attached to the sides of its base cell. (i) D is maximally open if and only if each of the sub-dissections is maximally open and base-open. (ii) If D is maximally open, then it is in addition base-open if and only if the sub-dissections attached to the sides of the base cell of Z 3 -index 0 are empty.

Corollary 7 . 4 .

 74 The function P pzq defined in (2.1) is the UGF of the maximally open base-open 3-periodic dissections: P n is the number of such dissections of an pn `2q-gon.

Lemma 8 . 3 .

 83 The number of solutions of (1.1) of Type (b) is N C N ´3.

e 1 , e 2 , 1 , e 2 ,

 1212 ´e1 , ´e1 ´e2 ( , e ´e1 ´e2 , ´e2 ( , e 1 , e 2 , ´e1 , e 1 ´e2 ( , e 1 , e 2 , ´e1 `e2 , ´e2 ( .' n " 2, 5-periodic sequences: blowing up at two points gives 15 sequences, 10 of Type (b) and 5 of Type (c), the cyclic permutations of the following:-Type (b): p´1, 0, 2, 1, 1q, p´1, 1, 1, 2, 0q; -Type (c): p0, 0, 1, 1, 1q.

' n " 3 , 6 -

 36 periodic sequences: blowing up at three points gives 49 sequences: 1 of Type (a), 30 of Type (b), 12 of Type (c), and 6 of Type (d), the cyclic permutations of the following:-Type (a): p1, 1, 1, 1, 1, 1q; -Type (b): p´1, 0, 2, 2, 1, 2q, p´1, 2, 1, 2, 2, 0q, p´1, 0, 3, 1, 2, 1q, p´1, 1, 2, 1, 3, 0q, p´1, 1, 1, 3, 1, 1q;-Type (c): p0, 0, 1, 2, 1, 2q, p0, 0, 2, 1, 2, 1q; -Type (d): p0, 1, 1, 2, 1, 1q.' n " 4, 7-periodic sequences: blowing up at four points gives 168 sequences: 7 of Type (a), 7 ¨14 of Type (b), 7 ¨5 of Type (c), and 7 ¨4 of Type (d). We will not list representatives of each cyclic permutation class, but let us give the Type (d) cases:p0, 1,1, 2, 2, 1, 2q, p0, 2, 1, 2, 2, 1, 1q, p0, 1, 2, 1, 3, 1, 1q, p0, 1, 1, 3, 1, 2, 1q. There are four of them because 4 " C 4 ´2C 3 " C 1 C 2 `C2 C 1 . They correspond, respectively, to the divisions of triangulations of the pentagon indicated by the figure.

n´3k grows faster than the previous one. For instance, Q n,n´3 dominates
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						The coefficients P n,n´3k of P pz, wq		
	k zn	0 1 2 3	4	5	6	7	8	9	10	11	12	13	14
	0	1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440
	1			1	7	34	147	605	2431	9646	38012 149226 584630 2288132
	2						1	15	121	758	4160	21098	101660	472872
	3									1	26	315	2710	19234
	4												1	40
	k zn	15	16			17		18	19		20	21
	0		9694845 35357670 129644790 477638700 1767263190 6564120420 24466267020
	1		8951945 35023365 137058495 536568150 2101610280 8235855870 32292718290
	2		2144397	9541895	41844935	181418250	779349480	3323000670 14081037000
	3		120887	699447	200720	19892125	100274020	492017955	2362240530
	4		680	7707		68875	527002	3617264	22924330	136717635
	5			1			57		1295	18718		205953	1888162
	6									1		77	2254
						The coefficients Q n,n´3k of Qpz, wq		
	' The "diagonal" Q 3k`2,2 , beginning 2, 7, 15, 26, 40, 57, 77, 100, 126, . . ., is the second pen-tagonal number sequence, 1 2 k 1 p3k 1 `1q, where k 1 " k `1. It goes back to Euler; see OEIS A005449.
	' Each row Q n,										

  Hence the lemma follows from Lemma 4.2 and the substitution n " ñ `k, k " k.

	Lemma 4.3. For any positive integer e,
	P e pz, wq " 1	`ÿ n, k: 0ďkăn{3	e n ´k	`e ˆn ´2k k	´1 ˙ˆ2n ´4k `e n ´3k	´1	˙zn w n´3k .
	Proof. By Proposition 4.1 and the definition of Dr2spz, wq,
	Dr2s e " 1	`ÿ ñ, k: 0ď kăñ{2	ñ	e `e ˆñ ´k k	´1	˙ˆ2ñ ´2k `e ñ ´2k	´1 ˙pz 3{2 q ñpwz ´1{2 q ñ´2 k.

Proof of Theorem 2.7. For (2.10), apply Lemma 4.3 at e " 1. For (2.11), restate Lemma 4.3 as follows: for
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satisfies the same recursive equation (7.2) as P p wq. In other words, P p wq is Dp wq with w 2d replaced by 0 and w 2d´1 replaced by w 3d´2 for all d ě 1. This leads to the following statement.

Proposition 7.5. The coefficient P m of w m in the MGF P p wq is 0 unless m is 3-periodic, in which case it is

Finally we have arrived at the proof of our main result:

Proof of Theorem 2.6. We follow the proof of Proposition 7. 

where Q m is the number of maximally open 3-periodic m-dissections. Check that replacing w r by wz r for all r replaces Qp wq by Qpz, wq, just as it replaces P p wq by P pz, wq. Use this to come down to proving the identity

Consider maximally open 3-periodic m-dissections such that the base cell is a 3d-cell. Everything goes as in the proof of (7.2), except that only Part (i) of Lemma 7.3 applies, so maximally open base-open 3-periodic mpsq-sub-dissections can be attached to every non-base side of the base cell, regardless of Z 3 -index.

Therefore the number of maximally open 3-periodic m-dissections such that the base cell is a 3d-cell is the sum of all products ś r 0 P mpsq , taken over the same set (3.4) as in the proof of Proposition 3.1. This number is identical to the coefficient of w m in w 3d´2 P p wq 3d´1 , proving (7.3) and hence the theorem. l

Remark. At the beginning of Section 6 we claimed that the set of ℓ-periodic quiddities does not have a well-defined MGF, because the quiddity does not determine m. While this is true, for ℓ " 3 one could argue that there is a well-defined MGF, namely, Qp wq. It is in fact possible to obtain an explicit formula for the coefficients of Qp wq, by proving multivariate analogs of Proposition 4.1 and Lemmas 4.2 and 4.3. However, the result does not seem to be either illuminating or elegant.

Counting blow-ups of the projective plane

This section is an application of the formula (2.12) for Q n,n´3 , the number of quiddities of dissections of an pn `2q-gon into n ´4 triangles and a single hexagon. This is the k " 1 case of (2.11) in Theorem 2.7. As we remarked below (2.12), it was previously obtained in [START_REF] Guichard | Les nombres de Catalan et le groupe modulaire PSL 2 pZq[END_REF].

Consider the rational surfaces obtained from the projective plane P 2 by blowing it up at a finite set of points. They form an important class of toric surfaces which is useful for many purposes; see for example [START_REF] Mcmullen | Dynamics on blowups of the projective plane[END_REF][START_REF] Szemberg | General blow-ups of the projective plane[END_REF].

In general, the result of blow-ups at n distinct points in P 2 depends on the order in which the blow-ups occur. However, different orders may give isomorphic surfaces. The following theorem enumerates the isomorphism classes obtained in terms of (2.12) and the Catalan numbers (1.4). Theorem 8.1. For n ě 1, the number of isomorphism classes of rational surfaces obtained by blow-up at n points is given by the expression (8.1)

Q n`1,n´2 `pn `3qp2C n ´Cn´1 q " n `4 n ˆ2n `1 n ´1 ˙.