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Abstract

Electric vehicle (EV) grid integration presents significant challenges and opportunities for

electricity system operation and planning. Proper assessment of the costs and benefits in-

volved in EV integration hinges on correctly modeling and evaluating EV-user driving and

charging patterns. Recent studies have evidenced that EV users do not plug in their vehicle

every day (here called non-systematic plug-in behavior), which can alter the impacts of EV

charging and the flexibility that EV fleets can provide to the system. This work set out to

evaluate the effect of considering non-systematic plug-in behavior in EV grid integration stud-

ies. To do so, an open-access agent-based EV simulation model that includes a probabilistic

plug-in decision module was developed and calibrated to match the charging behavior ob-

served in the Electric Nation project, a large-scale smart charging trial. Analysis shows that

users tend to plug-in their EV between 2 to 3 times per week, with a lower plug-in frequency

for large-battery EVs and large heterogeneity in user charging preferences. Results com-

puted using our model show that non-systematic plug-in behavior effects reduce the impact

of EV charging, especially for price-responsive charging, as fewer EVs charge simultaneously.

On the other hand, non-systematic plug-in can reduce available flexibility, particularly when

considering current trends towards larger battery sizes. Counter-intuitively, large-battery

fleets can have reduced flexibility compared to small-battery fleets, both in power and stored

energy, due to lower plug-in frequency and higher energy requirements per charging session.
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Improving plug-in ratios of EV users appears as key enabler for flexibility. In comparison,

augmenting charging power can increase the flexibility provided by EV fleets but at the

expense of larger impacts on distribution grids.

Highlights

• Agent-based model to generate EV charging profiles considering non-systematic plug-in

behavior.

• Plug-in model calibrated with real-world data from a large-scale EV trial.

• Evaluation of non-systematic plug in behavior on EV-grid integration studies.

• Non-systematic plug-in behavior is crucial to assess the impact of EV charging cor-

rectly.

• Counter-intuitively, large-battery EVs may provide less flexibility to electricity systems.
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Nomenclature

Sets

EV Set of EVs

Se Set of charging sessions for EV e

Parameters

di Daily distance driven for day i [km]

η Driving efficiency [kWh/km]

ν Charging efficiency

b Battery size [kWh]

ρ Range anxiety factor

α Plug-in preference factor

SoCi State of Charge at beginning of charging session for day i

ξi Required SoC for next day (i+ 1) trips

Es Charged energy in session s

nde Number of days of EV e spent in the Electric Nation trial

nevs Number of EVs

ASe(t) Accessible storage of EV e at time t

ASf Average accessible storage of an EV fleet

tsavg Average duration of a charging session
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1. Introduction

Addressing the climate change challenge requires a drastic reduction of greenhouse gas

(GHG) emissions. The transport sector is the second-largest GHG emitter behind the energy

sector, accounting for 27% of total emissions in the European Union (European Environment

Agency (2020)) and 28% in the US (United States Environmental Protection Agency (2020))

with passenger cars responsible for around half of these emissions. Replacing internal com-

bustion powered vehicles with battery electric vehicles (EVs), if coupled with a low-carbon

electricity generation mix, can substantially reduce CO2 emissions while also improving air

quality and noise levels in urban areas. Cities and governments worldwide have adopted

pro-EV measures, with several countries announcing bans on sales of new petrol/diesel ve-

hicles in the next 10 to 20 years, such as the Netherlands and the UK1 by 2030 and France

by 2040. These factors have spurred the EV market’s rapid growth, with over 2.1 million

EVs sold worldwide in 2019 (International Energy Agency (2020)) to more than 3.2 million

in 2020 (EV- (2021)). This trend is expected to continue, with projections pointing to over

200 million EVs in the streets by 2030 according to IEA’s best-case scenario.

The integration of a large number of EVs into the electricity grid is likely to pose major

challenges, especially at the distribution level - medium (MV) and low voltage (LV) grids -

where they will be connected. Additional load due to EV charging could overload grid assets

or create voltage issues, in both cases requiring substantial investments in new infrastructure

(Gonzalez Venegas et al. (2021)). However, EVs can be controllable resources and can provide

flexibility to the grid, via unidirectional (smart charging) or bidirectional (V2G) charging.

EV flexibility can reduce the impacts of grid integration and create value for end-users

and the electricity system by providing services such as frequency regulation or increasing

renewable generation hosting capacity (Thompson and Perez (2020)).

A proper assessment of the impacts and flexibility potential of EVs requires appropriate

consideration of EV driving and charging behavior. Most studies consider a plug-in behavior

here called ‘systematic’, meaning that the EVs are plugged in every day, but regular private

users do not follow this pattern even if they have easy access to a charging point, such as at

1The UK ban concerns pure combustion engines by 2030 and plug-in hybrids by 2035.
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home (Western Power Distribution (2019), Helmus et al. (2020)).

The objective of this work is to quantify the impact of non-systematic plug-in behavior

(i.e. not plugging in every day) on EV-grid integration studies. To achieve this we developed

a probabilistic decision model for EV plug-in behavior and calibrated it with real-world data

to match observed behavior of EV users. Then, we analyzed the impact of non-systematic

plug-in behavior on additional EV peak load into the grid and on the potential of EV fleets

to provide flexibility.

Main results from this work show that it is important to consider realistic non-systematic

plug-in behavior to correctly assess the impacts of EV charging, especially at the distribution

level and when considering price-responsive (smart) charging. As well, considering systematic

(every day) charging can largely overestimate the flexibility that EV fleets can provide to

the system via smart charging and V2G, both in terms of power (kW) and storage (kWh)

available to aggregators. Non-systematic plug-in effects are more important for large-battery

EVs, both in terms of impact of EV charging and on available flexibility. Counter-intuitively,

large-battery EV fleets can put flexibility aggregators at risk, as they offer lower flexibility

potential due to lower plug-in frequency and less flexible time per charging session.

We anticipate this work to bring valuable insight to several stakeholders: distribution

system operators, EV aggregators, regulators, and car manufacturers. It provides insights

into the impacts of EV charging on distribution systems and the real potential that smart

charging and V2G can offer to the electricity system, considering evolutions in battery sizes

and charger power, and end-user behavior.

The paper is organized as follows. Section 2 analyzes relevant work on plug-in behavior

modeling. Section 3 describes the proposed agent-based model for simulating EV charging,

including the plug-in decision module. Section 4 provides insights on plug-in behavior from

the a large-scale EV trial, which we use to calibrate our model. Section 5 evaluates the

impact of considering non-systematic plug-in behavior in EV grid integration and flexibility

studies. Finally, Section 6 reports the conclusions of the paper and provides leads for further

research.
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2. Literature review on plug-in behavior

Most EV grid integration studies analyzing grid impacts of EV charging and the poten-

tial of smart charging and V2G as flexibility sources consider a systematic plug-in behavior.

EV impact studies include Salah et al. (2015) who analyzed the impacts of uncontrolled

and price-responsive charging at HV/MV substation level in Switzerland, and Veldman and

Verzijlbergh (2015) that studied the impacts of EV integration in the MV grid in the Nether-

lands. These studies showed that price-responsive charging can create larger constraints in

the grid due to the synchronization of EV charging at low-price hours. Muratori (2018)

quantified the demand increase using detailed EV and household modeling based on US

data, and similarly Guo et al. (2020) analyzed the peak load created by EV charging at

different aggregation levels. In Leemput et al. (2015), authors that studied the impacts of

EV integration on Belgian LV grids, and Gaete-Morales et al. (2020) developed a tool for

generating EV charging profiles. All previous studies consider that EVs are plugged in every

day.

The literature on EV flexibility includes Bartolini et al. (2020) who analyzed the potential

of increasing self-consumption in a PV-rich Italian village using V2G-capable EVs, with

underlying assumption that EVs are plugged in every day and at all times (day and night)

that they are not being driven, which can prove to be highly unrealistic. In another case

study, Borne et al. (2018) and Calearo and Marinelli (2020) estimated the revenues of EV

fleets participating in primary frequency regulation services every day. This hypothesis may

be possible for highly reliable company fleets, but is less accurate for much more uncertain

private user fleets.

Analysis using real EV driving and charging behavior datasets have shown that users do

not recharge every day even if they have access to charging infrastructure (Western Power

Distribution (2019)), and that there is large heterogeneity among EV users charging patterns

(Philipsen et al. (2018); Zoepf et al. (2013); Schäuble et al. (2017)). The Electric Nation

project in the UK, which counted over 600 participants running different makes and models,

including plug-in hybrid EVs (PHEV), range extenders (REX) and battery EVs (BEV),

and at-home charge access, showed a median charging frequency of 3.64 times per week for

all participants, and only 2.73 times per week for BEV users (Western Power Distribution
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(2019)). Similar results have been found in Dutch public charging infrastructure, where

Helmus et al. (2020) identified typologies of EV users from a dataset consisting of over 28000

unique users and computed an average charging frequency for different EV user types of

between 0.9 and 4.6 events per week.

Thus, considering a systematic (i.e. every day) charging behavior can provide biased

estimations of the grid impacts of EV charging and significantly overestimate the flexibility

potential of each charging session. As users only plug in their EV a few times per week,

there are fewer EVs available (i.e. connected) to provide flexibility to the system.

Studies have found that the main factors that affect the plug-in decision (whether to

connect or not the EV) when charging at the users’ regular charging location are expected

kilometers to be driven in the next trip and the remaining range (Sun et al. (2015), Daina

et al. (2017)), while still maintaining a ’comfortable range’ buffer (Franke and Krems (2013)).

Recent studies have started to consider and model the non-systematic plug-in behavior of

EV users, summarized in Table 1 1. Still, most do not consider all the factors that shape

plug-in behaviors.

A study done by the French transmission system operator RTE considered different lev-

els of non-systematic plug-in to evaluate EV charging impacts and the potential to provide

flexibility services at the transmission level, though only by defining different shares of EVs

connected per day at the national level (RTE (2019)). Plug-in behavior was explicitly mod-

eled by Calearo et al. (2019) to analyze the impact of 24 kWh EVs on a LV grid using

predefined plug-in probability curves based on user’s daily distances driven and EV state of

charge (SoC) on arrival at home. Bollerslev et al. (2021) extended this work to 48 kWh and

60 kWh EVs, but without data supporting this extrapolation, and studied the coincidence

factors of uncontrolled EV charging at different aggregation levels. Using the same mod-

els, González-Garrido et al. (2019) studied the gains of optimal charging scheduling in the

Danish island of Bornholm considering 40 kWh EVs with non-systematic charging behavior.

However, there is no parametric model for the probability curves used by these papers, lim-

iting their use in other studies and the extrapolation to different battery sizes. Bouallaga

and Doumbia (2019) proposed a fuzzy logic plug-in decision model that depended on EV

battery size and SoC on arrival at the charging location to evaluate the impact of EV charg-
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ing at a HV/MV substation in Paris. However, no data was supporting this model. Fischer

et al. (2019) analyzed EV impact on residential load profiles considering a plug-in decision

model based on a logistic function dependent exclusively on SoC on arrival. The parame-

ters that define the logistic function can be made to vary to account for the heterogeneity

in user charging behavior. Dixon et al. (2020) proposed a heuristic model that selects the

minimum number of charging events to cover all trips during a full week by minimizing the

inconvenience of EV charging. Dixon and Bell (2020) then applied this model to evaluate

the impacts of EV charging in distribution networks, considering different levels of charger

power and battery sizes, and Dixon et al. (2020) analyzed the potential for mitigating wind

curtailment comparing the minimal charging strategy to a systematic (every day) charging.

Gonzalez Venegas et al. (2019) proposed a deterministic model where users plug in only

when needed for the next day while keeping a ‘safety’ buffer (or range anxiety factor). They

used this model to evaluate EV impact on HV/MV substations on a weekly basis, finding

that a significant share of EV charging could be displaced to weekends and that both bat-

tery sizes and rural/urban conditions can modify these charging patterns. Gonzalez Venegas

et al. (2020) extended their deterministic model to a probabilistic model and used the EV

load and availability profiles to analyze the participation of V2G-capable EV fleets in local

flexibility tenders. Results showed that fleets with non-systematic plug-in behavior obtained

revenues at least 2-fold lower (and up to 7-fold lower) than fleets with systematic charging,

due to EVs not being plugged-in at times when flexibility was required.
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Table 1: Summary of main EV grid integration studies that consider non-systematic plug-in behavior.

Model parameters

Study Model Extendablea Data-basedb Heterogeneityc
Next-trip

distance

SoC at

arrival

Comfortable

ranged

RTE (2019)
Proportion of

connected EVs
- No No No No No

Calearo et al. (2019)
Plug-in curves for

24 kWh EVs
No Yes No Yes Yes -

Bollerslev et al. (2021)
Plug-in curves for

24, 48, 60 kWh EVs
No Partly No Yes Yes -

González-Garrido et al. (2019)
Plug-in curves for

40 kWh EVs
No Partly No Yes Yes -

Bouallaga and Doumbia (2019)
Fuzzy logic

decision model
Yes No No Yes Yes Yes

Fischer et al. (2019) Logistic curve Yes No Yes No Yes Yes

Dixon et al. (2020)
Minimum number of

charging sessions
Yes No No Yes Yes No

Gonzalez Venegas et al. (2019)
Deterministic plug-in,

only if needed
Yes No No Yes Yes Yes

This paper Probabilistic plug-in Yes Yes Yes Yes Yes Yes

a A model that can be applied to other contexts or EVs with different characteristics.

b A model that is supported by real-world data of EV usage.

c A model that allows for heterogeneity on EV users plug-in preferences.

d The comfortable range refers to the consideration of a buffer with respect to the uncertainty of next-day trips. It can be interpreted as a risk

aversion towards running out of battery.
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We find that despite the evidence from various demonstrator projects and EV usage

analyses, most EV-grid integration literature still does not consider the non-systematic plug-

in behavior of users. Some recent studies have started to consider and model non-systematic

plug-in patterns, but either the models are not readily extendable to different kinds of users

or EV characteristics (e.g., only applicable to a given battery size), or they do not account for

the heterogeneity of user charging preferences (all users behaving the same), or the decision

models are not backed up by real-world data on EV user plug-in behavior. Furthermore,

there has not been any study that specifically analyzes the impact of considering the non-

systematic plug-in behavior in EV grid integration studies.

This work aims to bridge the gaps identified in the literature by developing an advanced

plug-in decision model and then explicitly analyzing the impact of non-systematic plug-in

behavior on EV-grid integration studies. The model is extendable to different situations and

usages, it can account for the heterogeneity of user’s plug-in preferences, and it is calibrated

using real EV usage data obtained from a large-scale EV trial.

2.1. Contributions

The main contributions are the following:

• First, we propose an ABM for EV simulation that considers non-systematic plug-

in behavior. In particular, the plug-in decision complies with several characteristics

missing from the scientific literature: it is extendable, can capture heterogeneity, and

is backed-up by real-world data.

• Second, we provide insights on plug-in preferences from EV users using a large-scale

dataset that comprises a wide diversity of EV marks and models. This is of particular

interest as most analysis come from have little diversity on EV characteristics (see for

example Quirós-Tortós et al. (2016); Neaimeh et al. (2015); Boston and Werthman

(2016); Schäuble et al. (2017)).

• Third, we explicitly evaluate the impact of non-systematic plug-in behavior on EV

grid integration studies, in both impact of EV charging and flexibility potential of EV

fleets. To the best of our knowledge, this analysis has not been previously carried out.
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3. EV simulation model

3.1. Model

We developed a stochastic agent-based tool to generate weekly or monthly EV load curves

for distribution system studies that considers charging at one regular location, such as home

charging. Agent-based models are widely used to simulate EV–grid interactions as they

allow to simulate each EV individually, allowing each agent to interact with its environment

and make its own decisions (see, for example, Lin et al. (2019) for EV charging at various

locations, Marmaras et al. (2017) for electricity grid and road transport interactions, or

Olivella-Rosell et al. (2015) for a study of EV charging impact at distribution level). The

model proposed here consists of three sequential sub-modules: a mobility module, a plug-in

decision module, and a charging module that runs for each EV in each day of simulation,

as shown in Fig 1. The model is available in https://github.com/fgonzalezvenegas/

EVModel.

Initialize EVs

For days i=1...ndays

Mobility module (distance

ChargingPlug-in

No

Yes

i=ndays

EV load curves

No

For EVs j=1...nevs

j=nevs

Yes

No

Yes

decision module

and arrival/departure times)

Inputs
 Mobility data:

   Arrival/departure dists.

   Distance distributions

 EV technical data:

   Battery size

   Driving efficiency

 Charging data:

   Charging power

   Charging strategy

Figure 1: Flowchart of the proposed model

The mobility module computes daily distance driven (di) and arrival and departure times

at the EV charging location. It simulates commuters that travel the same distance to work

every weekday and make variable trips on weekends, with the possibility to include additional

trips to increase the variability of daily distances driven. Arrival and departure times are
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randomly sampled from user-defined probability distributions for each day. Finally, SoC

levels on arrival at the charging location are computed based on distance driven, EV driving

efficiency (η in kWh/km) and battery size (b in kWh), as shown in in Eq. 1.

SoCi = SoCi−1 −
di · η
b

(1)

Second, the plug-in module determines the plug-in decision of the EV agent2. The plug-

in decision is based on three factors identified in the literature, i.e., a range anxiety factor

or comfortable range (ρ), the expected next-trip distance (di+1), and SoC at arrival, and

detailed in Eqs. 2 and 3. The user will plug in if the remaining range (i.e., SoC on arrival)

is lower than what is required for the next trip after allowing for a range anxiety safety

margin (ξi)), otherwise the probability of plugging in decreases with higher SoC levels.

The α parameter modifies the user’s plug-in preference, thus allowing to account for the

heterogeneity of user choices. For α values close to zero, the user will plug in only if they

need to cover next-day trips, whereas for high α values (α >> 1) the user will tend to plug

in every day. Fig. 2 gives an illustrative example of these plug-in probability curves.

ξi =
di+1 · η
b

· ρ (2)

P(plugini) =

 if SoCi ≤ ξi : 1

if SoCi > ξi : 1 − (SoCi−ξ
1−ξ )α

(3)

Finally, if the agent decides to recharge the vehicle, the charging module will compute

the charging profile needed to reach the desired SoC. Different charging strategies have

been implemented, including uncontrolled charging, off-peak charging, and charging-cost

minimization with dynamic tariffs. In this study, we focus on uncontrolled charging and

price-responsive charging.

2This model is a probabilistic extension of the deterministic module proposed in Gonzalez Venegas et al.

(2019)
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Figure 2: Plug-in probability curve according to SoC at arrival for three plug-in preferences (α), and for a

required SoC for next trip (ξ) of 30%

4. Insights from a large-scale EV trial and model calibration

4.1. The Electric Nation trial

We used real-world data from the Electric Nation project to calibrate the plug-in decision

module. The Electric Nation project was a large-scale smart charging trial in the UK that

ran from 2016 to 2018. The full dataset contains information for 153621 charging sessions,

including starting time, ending time, and energy consumed for each session, by 601 unique

users with a variety of BEVs, PHEVs, and REX brands and models.3

To calibrate the model, we only considered BEV users that stayed in the trial for more

than 3 months. After cleaning the dataset, we obtained 52822 charging sessions for 265

unique users, encompassing a wide range of EV brands and battery sizes, as shown in Fig. 3.

However, there were two distinct EV groups: the first composed of small EVs with battery

sizes between 20–35 kWh, and a second group composed of large EVs with battery sizes

around 75 kWh represented mainly by Tesla cars as shown in Table 2.

3Dataset available at Western Power Distribution (2019)
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Table 2: Most popular BEVs in the Electric Nation trial (out of 265)

EV Model Users Battery size [kWh]

Nissan Leaf 79 24-30

Tesla Model S 74 75

BMW i3 43 33

Tesla Model X 20 75-100

Kia Soul EV 18 27-30

Renault Zoé 12 24

10 20 30 40 50 60 70 80 90 100
Battery size [kWh]

0

20

40

60

80

Co
un

t

Small BEVs
Large BEVs

Figure 3: Distribution of battery sizes in the Electric Nation trial

For each EV user e, we computed three charging behavior indicators: the average number

of weekly charging sessions, the average charged energy per session, and the average daily

distance driven (davge). As the dataset does not provide the actual driven distances, we

estimated them from the charged energy (E), as shown in Eq. 4. For this we considered

a charger efficiency (ν) of 95% and a driving efficiency (η, in kWh/km) dependent on the

battery size, shown in Eq. 5 (from Weiss et al. (2020)).
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davge =
1

nde

∑
s∈Se

Es · ν
ηe

(4)

ηe = (14 + 0.09 · be)/100 (5)

The charging behavior indicators for all users are shown in Fig. 4, and mean and median

values are shown in Table 3. Despite the large heterogeneity in charging preferences, some

trends can be identified. Large EVs are plugged in less often (mean frequency of 2.79 sessions

per week) than small EVs (mean frequency of 3.31 sessions per week) and charge a higher

amount of energy per session (left-hand plot in 4)), as larger battery sizes allow for longer

periods without requiring to recharge. Furthermore, users who drive higher distances per day

tend to plug in their car more frequently, and users with higher battery capacity drive longer

distances for the same frequency of charging sessions (right-hand plot in Fig. 4). This means

that a small-EV user who plugs in 4 times a week will drive around 40 km/day, whereas

a large-EV user will drive 60 km/day for the same charging frequency. A linear regression

model between charging sessions and daily distances, disaggregated by large and small EVs,

shows that an increase in daily distance driven of 7 km for small EVs and 13.9 km for large

EVs requires one extra charging session per week. Note that the aggregated fleet can be

seen as representative of car usage in Europe, where daily distances driven are around 40

km/day (similar results are found in Borne (2019) for France, González-Garrido et al. (2019)

for Denmark or Van Roy (2015) for Belgium). Driven distances can be considered high for

UK standards, where average yearly mileage in 2019 was around 10,000 km ( 30 km/day)

(Department for Transport (2020)).

4.2. Plug-in decision model calibration

We calibrate our model to match the average plug-in frequency found in the Electric

Nation trial for three cases representative of small, average-size (given by average values

across the whole dataset), and large EV fleets. Using the EV model presented in Section 3, a

simulation for 1,000 EVs and 12 weeks was carried out with a range anxiety factor (ρ) of 1.5,

as in Gonzalez Venegas et al. (2019), and for levels of the plug-in parameter (α) varying from

10-2 to 102. Each simulated EV has a daily distance sampled from a lognormal distribution,
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Figure 4: Charging behavior indicators for EV users in the Electric Nation trial: (a) Average charged energy

per session and (b) average daily distance driven (davg) according to weekly charging sessions. Each point

corresponds to an EV user. Panel (b) includes linear regressions between weekly charging sessions and daily

distance for small and large EVs, shaded areas corresponding to the confidence interval at 95% of the linear

regression.

Table 3: Charging behavior indicators of EV users from the Electric Nation trial. Results are shown for the

aggregate EV user population and disaggregated for small (<50 kWh battery) and large (>50 kWh battery)

EVs.

Indicator
Mean Median

All Small Large All Small Large

Weekly sessions 3.12 3.31 2.79 2.72 3.00 2.28

Charged energy

per session [kWh]
18.5 13.2 28.3 15.2 13.2 29.3

Daily distance [km] 38.1 33.3 46.7 32.6 29.7 43.4
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as in Borne (2019). Table 4 shows the main parameters of the simulations used to calibrate

the model, and Fig. 5 shows the average frequency of charging sessions for a sweep of the

α parameter for the three cases and the selected α value to match the observed data. The

selected α parameter ranges between 0.89 for small EVs, to 1.31 for the average fleet.

Table 4: Simulation parameters for the three representative cases to calibrate the α parameter.

EV case
Battery size

[kWh]

Average daily

distance [km]

Average weekly

plug-in frequency

Small 28 33.3 3.31

Average 46 38.1 3.12

Large 79 46.7 2.79
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EV Model - Large BEVs
Large BEV : 1.22

Figure 5: Average weekly charging frequency from EV model simulations varying the α parameter. α is

selected to match the average charging frequency observed in the Electric Nation trial.

To verify the quality if the model calibration, we computed the same charging behavior

indicators for the three simulated EV cases. We considered the heterogeneity of users’ charg-

ing choices by sampling the α value individually for each user using a lognormal distribution
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centered on the α values previously found.4 We used a lognormal distribution due to the log-

arithmic behavior of the α variable (see Fig. 5). For each EV group, the underlying normal

distribution of the lognormal function has a mean (µ) equal to logα and standard deviation

(σ) of one.5 The charging behavior indicators of the simulations, shown in Fig. 6, are similar

to those observed in the trial, both qualitatively and quantitatively. The simulations repro-

duce the same EV-group patterns that in the trial (lower charging frequency, higher energy

per session, and higher distances driven for large EVs), including a large heterogeneity on

charging choices. A group of users with significantly higher charged energy per session and

a low charging frequency is also found that was not observed in the homogeneous case (see

left-hand plot). Quantitatively, the linear regression models of daily distances vs. charging

frequency for small and large EV groups present similar coefficients to those observed in the

trial, thus demonstrating the validity of the model calibration.
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Figure 6: Charging behavior indicators for heterogeneous α simulation: (a) Average charged energy per

session and (b) average daily distance driven (davg) according to weekly charging sessions. Each point

corresponds to an EV user. Panel (b) includes linear regressions between weekly charging sessions and daily

distance for small and large EVs, shaded areas corresponding to the confidence interval at 95% of the linear

regression.

4Initially, an homogeneous case was studied, where all EVs had the same α value. Results for this case

can be found in the Appendix.
5For a lognormal distribution centered in x, the underlying normal distribution has a µ of log(x)
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The EV model with heterogeneous plug-in choices can easily be applied to analyze the

charging behavior of EV users under different driving and charging conditions. Fig. 7 shows

the plug-in frequency for an urban case with low daily distances driven (davg) and a rural case

with high davg, and for varying battery sizes, based on Gonzalez Venegas et al. (2019). Results

show that plug-in frequency decreases with increasing battery sizes. In the average scenario,

over 75% of 25 kWh-EV users plug-in more than 3 or more times per week, compared to only

25% of users with 100 kWh EVs. This effect is exacerbated under urban conditions where

daily mobility requirements are lower, with less than 25% of 50 kWh-battery users plugging

in 3 or more times per week. Conversely, in rural areas where daily mobility requirements

are higher, users will tend to plug-in more often, with a significantly higher share of users

plugging in almost daily. These effects can be of great interest to flexibility aggregators that

rely on EVs being plugged in to provide services to the grid, as will be discussed in the

next Section, as well as for public charging infrastructure planning authorities that need to

determine and map out a sufficient coverage of charging points.

These results can provide insights on EV charging under evolution of mobility patterns.

For example, a reduction in driven distances as advocated by Committee on Climate Change

(2020) or Bigo (2020) can entail a reduction the plug-in ratios of EV users.

5. Impact of non-systematic plug-in behavior on EV grid integration studies

We evaluated the impact of considering non-systematic plug-in behavior in EV grid in-

tegration studies. For this purpose, we analyzed two aspects: the impact of EV charging in

power systems through the peak load created by EV fleets, and the flexibility potential to

assess the time and accessible storage capacity that EV fleets can use for smart charging or

V2G-based flexibility services.

Simulations using the EV model were carried out for a fleet of 10,000 EVs and com-

binations of battery size, charging power, plug-in behavior, and charging strategies. We

considered three battery sizes, i.e., small (25 kWh), medium (50 kWh) and large (75 kWh)

in line with current trends, and three charging power levels, i.e., 3.7 kVA and 7.4 kVA, re-

flecting standard single-phase chargers, and an 11 kVA three-phase charger, all with a 0.95

power factor. Charging choices were considered via systematic plug-in (i.e., every day) and
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Figure 7: Charging frequency distribution for varying battery sizes for (a) urban (davg 22.2 km), (b) average

(davg 38.9 km), and (c) rural (davg 70.6 km) cases. EV model simulations with heterogeneous plug-in

behavior, median α 1.31.

three non-systematic plug-in behaviors, an average case given by the calibration with the

Electric Nation trial (α=1.31), a high plug-in case (α=3.4), and a low plug-in case (α=0.5)

to account for different charging choices. Two charging strategies were analyzed: uncon-

trolled charging, where EVs are charged as soon as they are plugged in, and price-responsive

smart charging, where EVs charge during an off-peak period between 10 pm and 6 am6.

Finally, arrival and departure times at the charging locations are given by joint probability

distributions derived from the Electric Nation trial (probability distributions shown in 8).

5.1. Impact on peak load

To quantify the impact of EV charging at different levels of the grid, peak load was

computed for fleets of varying sizes between 1 and 10,000 EVs, as the impact of EV charging

at LV feeder level (tens of EVs) will not be the same as in the LV transformer (up to hundreds

of EVs) or HV/MV substation (hundreds to thousands of EVs). 500 iterations for each fleet

size were carried out to obtain statistically significant results, and the average EV peak load

6This can be seen as a worst-case scenario where the the diversity of EV charging is lost. However, this

can potentially happen if end-user tariffs in a pocket of the grid are the same.
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Figure 8: (a) Joint probability distribution and (b) marginal distribution for arrival and departure times

derived from the Electric Nation trial.

is reported. This approach follows the studies of Guo et al. (2020) and Bollerslev et al.

(2021) on coincidence factors of uncontrolled EV charging7, and extends this analysis to the

case of price-responsive smart charging.

Results for the uncontrolled case, depicted in Fig. 9, show the decreasing coincidence

of EV charging as EV fleet sizes increase due to the natural diversity of charging sessions,

both in start times and in energy requirements. This effect is higher for higher charger

power, as each charging session requires less time, and thus there is less coincidence in EV

charging, with a drastic drop in 11 kVA chargers for fleets above 7 EVs. The coincidence

factor of EV charging, summarized in Table 5, reaches 70% for fleets of 10 EVs (LV feeder

level) with 3.7 kVA chargers but only 21% for fleets of 10,000 EVs (HV/MV substation

level). The coincidence factor decreases as charging power increases, reaching only 12% for

a 7.4 kVA charger (0.9 kW/EV) and 9% for an 11 kVA charger for fleets of 10,000 EVs.

Therefore, increasing charging power will have a more significant impact on distribution

grids, especially at the LV feeder level. For 10 EVs, moving from 3.7 to 7.4 kVA chargers

7Coincidence factor is the ratio of simultaneous maximum demand of a group of electricity customers

over the maximum demand capacity. In this case it represents the maximum share of EVs charging at the

same moment.
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represents an increase of 66% in EV peak load, whereas for 10,000 EVs (HV/MV level) the

same increase in charging power represents only a 13% in EV peak load.

More importantly, results show almost no difference in peak load for uncontrolled charg-

ing for different battery sizes and plug-in behaviors for each of the three charger power

levels. This means that even though there are fewer vehicles connected every day, the peak

coincidence factor of EV charging remains the same due to higher energy requirements per

session. Increasing battery sizes does not modify peak load, even though it represents a

higher energy consumption due to lower driving efficiency. However, the EV load shape is

altered as charging shifts towards later hours due to each charging session lasting longer.

This effect is higher for large-battery EVs, which is in line with results found in Dixon and

Bell (2020). Therefore, current trends of increasing battery sizes make it crucial for EV grid

impact studies to consider non-systematic plug-in behavior (see Appendix for the detailed

EV load curves).
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Figure 9: Peak load for varying fleet sizes [kW/EV] for the uncontrolled charging strategy. (a) Different

battery sizes with average plug-in behavior (α=1.31), and (b) different plug-in behaviors with 50 kWh

battery EVs.

Widespread uncontrolled charging is unlikely to be the norm. EV users can adapt their

charging strategy based on electricity tariffs to reduce their energy bills, and price-responsive

(smart) charging is already possible with time-of-use tariffs such as peak/off-peak and dy-
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Table 5: Peak power per EV [kW/EV] and coincidence factor for fleets of 10, 100 and 10,000 EVs for the

uncontrolled case. 50 kWh EVs and average plug-in behavior.

Power [kW/EV] Coincidence factor

Charger power 10 100 10,000 10 100 10,000

3.7 kVA 2.52 1.23 0.79 70% 34% 22%

7.4 kVA 4.20 1.71 0.90 58% 24% 12%

11 kVA 5.35 2.02 0.99 50% 18% 9%

namic tariffs that follow (sub) hourly market prices, as found in numerous countries (Hoarau

and Perez (2018), Freitas Gomes et al. (2021)). While smart charging can benefit the (local)

system by shifting load to off-peak hours, there is a risk of synchronizing EV charging in

low-price periods that can create even higher congestion at the local distribution grid, as

noted in Verzijlbergh et al. (2014).

Results for the smart charging case, depicted in Fig. 10, show the synchronization of EV

charging at low-price periods, with a greater peak load created under this case than under

the uncontrolled case. Peak load for a fleet size of 10,000 EVs and non-systematic plug-in

behavior increases between 107% for 3.7 kVA chargers and 377% for 11 kVA chargers, with

respect to the uncontrolled case (see summary in Table 5. At the LV level (between 10 to

100 EVs), the coincidence factor of EV charging remains high, especially for small-sized EVs

which are plugged in more often.

Considering systematic (every day) plug-in behavior highly overestimates the impact of

price-responsive EV charging into the grid (see bottom plots in Fig. 10), as it considers that

all EVs will charge at the same moment. This may have little effect at the LV feeder level,

as a high coincidence of EV charging can be expected for low numbers of EVs in all plug-in

behavior cases (though not everyday). However, it has significant effects at the MV or HV

level (fleet sizes above 100 EVs) as coincidence factors are double than those obtained for

the non-systematic case. This can lead to overestimate the congestion created by EVs in

the distribution grid, and wrongly estimate infrastructure reinforcements8. Price-responsive

8See Veldman and Verzijlbergh (2015) for an example of a smart charging impact assessment that showed

high infrastructure requirements at the MV distribution level to cope with price-responsive EVs under high
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charging prompts a larger difference from plug-in behaviors than in the uncontrolled case,

with lower peak loads for the low plug-in case, as fewer EVs are connected simultaneously,

and with a greater impact of high-power chargers. However, the differences among non-

systematic cases remain low compared to the systematic case highlighting the importance of

considering non-systematic plug-in behavior, even with a roughly tuned parameter, on top of

getting the model parametrization correctly fine-tuned (i.e., setting the correct α). We also

observe a positive effect (i.e., reducing the peak load) of larger battery sizes, as lower plug-in

frequency from larger EVs results in a lower coincidence of price-responsive EV charging.

Table 6: Peak load for price-responsive charging and 10,000 EV fleet. Peak power per EV [kW/EV],

coincidence factor (CF) and increase with respect to the uncontrolled case for the average plug-in and

systematic cases.

Average (α = 1.31) Systematic

Charger Power Power CF Increase Power CF Increase

3.7 kVA 1.64 46% +105% 3.51 97% +338%

7.4 kVA 3.27 45% +261% 6.57 91% +630%

11 kVA 4.73 44% +373% 8.88 83% +788%

Note that even though smart charging can create higher EV peak loads than uncontrolled

charging due to the synchronization of EV charging events, it does not necessarily translate

into higher peak loads at the distribution or transmission system. Well-adjusted price signals

can shift EV load to low-demand periods where the system can absorb the extra load, and

the non-systematic plug-in behavior of users reduces the risk of creating excessive additional

demand during these periods. EV grid integration studies are still needed to assess the

impact of EV charging, especially at the LV distribution grid, to analyze voltage deviations

and unbalances, and they should consider non-systematic plug-in behavior, as longer charging

sessions can create grid issues at different timeframes, an effect that is increased with current

trends of increasing battery sizes.

wind power penetration scenarios.
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Figure 10: Peak load for varying fleet sizes [kW/EV] for the price-responsive charging strategy. Top: different

battery sizes with average plug-in behavior (α = 1.31). Bottom: different plug-in behaviors for 50 kWh

battery EVs.

25



5.2. Impact on flexibility potential

As discussed in Section 1, EVs can act as flexibility resources that can help the electricity

system at various levels, from optimizing the use of grid assets and deferring infrastructure

reinforcements to helping the integration of renewable energies. However, to provide this

flexibility, the EVs need to be connected to the grid in the first place. EV fleets with

uncertain plug-in behavior may have limited participation in flexibility services that require

high reliability, such as investment deferral for distribution grids (Gonzalez Venegas et al.

(2020)).

Flexibility depends on three dimensions: time, power and energy Schlund et al. (2020).

In the case of an EV charging session flexibility depends on the idle time (i.e., the time

spent connected but not charging) and quantifies the time during which flexibility can be

provided without affecting the user’s driving needs. The flexibility that the EV will provide

will also depend on the charging power (in kW) and on the storage capacity (energy, in kWh)

of the EV. Different flexibility services have different time, power and energy requirements.

Balancing services like primary frequency response are more power-based, with low energy

requirements and are required all the time. In contrast, services like back-up power or peak-

shaving are more energy-intensive, requiring a sufficient storage capacity if V2G is considered

but limited to a few hours per day.

We analyzed three indicators to assess the flexibility that can be provided by V2G-capable

EV fleets from an aggregator’s point of view, covering the three dimensions of flexibility: the

average charging and flexible time of charging sessions (in hours); the average flexible power

per EV (in kW/EV); and the average accessible storage capacity of an EV fleet (in kWh/EV).

The average duration of charging sessions and their charging and flexible times for dif-

ferent battery sizes and plug-in behaviors are shown in Fig. 11. The average duration of

charging sessions remains constant for the different cases (10.2 hours), as it is given by the

arrival and departure times of users and not for how often they plug-in, but the time spent

charging depends greatly on battery size and the user’s plug-in behavior. Under the sys-

tematic plug-in assumption, the average charging time per session is between 2 to 3 hours

with a 3.7 kVA charger and around 1 hour with a 7.4 kVA charger, leaving more than 12

hours of idle time to provide flexibility. However, when considering non-systematic plug-in
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behavior, users charge less often and require more energy in each charging session, increasing

the charging duration and reducing the flexible time. This effect is higher for larger battery

sizes, as they tend to plug in less frequently and have higher energy requirements. For users

with a 3.7 kVA charger and battery sizes above 60 kWh, average charging times are above 5

hours (average plug-in case), thus reducing flexible time accordingly. As these indicators are

average values, there may be cases where charging time exceeds connection time, thus creat-

ing the possibility that large-battery EV users will adopt high-power chargers to reduce these

risks. This can be a more significant issue in countries where residential dwellings already

have three-phase grid connection, such as Germany or the Netherlands, easing the installa-

tion of high-power chargers at home, unlike France or the UK where residential dwellings

have primarily single-phase grid connections. Nevertheless, average flexible time remains

high, at above 8 to 10 hours per charging session for most cases and battery sizes under 60

kWh, which can be ample margin to shift charging to off-peak hours or provide even a few

hours of bidirectional power to the grid.
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Figure 11: Average charging and flexible times of charging sessions for a 1,000 EV fleet. Arrows indicate

charging time for the case systematic plug-in and flexible time for the case of non-systematic low plug-in.

The participation of aggregators in flexibility services such as frequency regulation Borne

et al. (2018) or long-term local flexibility tenders Gonzalez Venegas et al. (2019), depend on

the power (in kW or MW) that they can provide to system operators. Thus, the controllable
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power is a key metric for aggregators. The power that EV aggregators can access depends

mainly on the number of EVs connected to the grid, which varies along the day, as shown

in Fig. 12. As our case study refers to home charging, EVs are mostly connected during

nighttime, i.e., between 8 pm and 7 am. We computed the flexible power seen from an

aggregator’s perspective, shown in Fig. 13, as the average charging power of connected

EVs between 10 pm and 6 am, which is the period in with the highest share of connected

EVs. Note that for V2G-capable fleets, the flexible power can provide both upwards and

downwards flexibility. An aggregator that controls fleets that are systematically connected

can be certain that all EVs will be available as flexibility resources, thus offering access to the

full charger power of the whole EV fleet. However, when considering non-systematic plug-in

behavior, fewer EVs are connected per day, and so the aggregator has a lower amount of

power flexibility to control. With a fleet of 25 kWh EVs, an aggregator will only have access

to 60% of the fleet power on average, and this figure drops to less than 40% for battery sizes

above 60 kWh. Therefore, large-battery EVs can present risks to flexibility aggregators, as

they will have to contend with fewer EVs connected daily and less flexible time per charging

session.
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Figure 12: Average share of connected EVs along the day. Average plug-in behavior for non-systematic

cases.

Finally, the flexibility that V2G-capable EVs can provide also depends on the storage
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Figure 13: Average flexible power [kW/EV] during high-availability hours (10pm-6am) for a 1,000-EV fleet

capacity that they can access (i.e., the energy aspect of flexibility). To assess the flexibility

storage capacity that an EV aggregator can control, we defined the accessible storage of

a V2G-capable EV as the space of feasible charging trajectories, depicted in green in Fig.

14. The accessible storage of a charging session for one EV will depend on its battery size,

charging power, and connection duration. The accessible storage of an EV fleet (ASf ) is

then computed as the sum of accessible storage of all EVs for an average charging period, as

shown in Eq. 6, tsavg is the average charging session duration of 10.2 hours and nevs is the

number of EVs in the fleet (we express this indicator in kWh/EV to make it independent of

fleet size). the number of EVs in the fleet (we express this indicator in kWh/EV to make it

independent of the fleet size).

ASf =

∑
e∈EV

∫
t
ASe(t)dt

nevs · tsavg
(6)

The results for average accessible storage per EV for different battery sizes and plug-in

behaviors, shown in Fig. 15, point to several conclusions.

First, when considering systematic plug-in behavior, which is the ideal case where EVs

are plugged in every day, larger battery sizes increase the accessible storage per EV, but

only up to a given battery size dependent on charger power. This means that increasing

battery sizes above a certain threshold does not increase the accessible storage capacity of a
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Figure 14: Example of the accessible storage of a charging session of a single EV (ASe(t)) with a feasible

charging (and discharging) trajectory. (a) EV with 40 kWh battery and 7.4 kVA charger, and (b) EV with

25 kWh battery and 3.7 kVA charger. A minimum SoC of 20% was considered for computing the accessible

storage.

fleet, as this additional storage capacity is not accessible during the charging session time.9

For a 3.7 kVA charger, the maximum accessible storage is 15.7 kWh, reached with 40 kWh

batteries, which can be increased to 30.5 kWh with 7.4 kVA chargers, reached with battery

sizes larger than 80 kWh. In both cases the accessible storage represents around 4.5 hours

of bidirectional power injection to the grid. Thus, to fully access EVs’ storage capabilities

of large-battery EVs requires an increase in charging power. However, increasing charger

power can have a significant impact on the distribution grid, as shown in Section 5.1.

Second, when we consider non-systematic plug-in behavior, the accessible storage of the

whole fleet is reduced by at least 50%, as fewer EVs are connected and they have reduced

flexible time. Moreover, we observe a peak in accessible storage, at around 25 kWh for a 3.7

kVA charger, and around 60 kWh for a 7.4 kVA charger, after which increasing battery sizes

9For a 10 hour charging session of a 50 kWh EV with a 7.4 kVA charger, and disregarding charging

requirements, it can, at most, discharge during 5 hours and then charge during the remaining 5 hours,

having a maximum accessible storage of 37 kWh. Increasing the battery size does not provide additional

flexibility.
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reduces accessible storage. This is due to lower plug-in rates and higher energy requirements

per charging session for larger battery sizes. Therefore, increasing battery sizes can present

high risks for EV aggregators wanting to offer flexibility services to the grid, as larger-battery

EVs actually decrease the accessible storage. Increasing the charger power can increase the

accessible storage, but this increase is much less significant than with systematic charging.

Providing incentives to plug in (i.e. changing from an average plug-in behavior to a high

plug-in one) can be equally or more effective in increasing accessible storage than increasing

charger power.

Third, a fleet composed of small-battery EVs that is systematically connected, which can

be the case for company fleets (see, for example, the Parker demonstrator project; Parker

Project (2018)), can provide greater flexibility than a fleet of large-battery EVs with non-

systematic plug-in. From the results shown in Fig. 15, for 11 kVA chargers, a fleet composed

of 20 kWh EVs with systematic charging can offer greater accessible storage than a 50 or 80

kWh fleet with an average plug-in behavior.
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Figure 15: Average accessible storage [kWh/EV] for a 1,000 EV fleet and for three charger power levels.

Storage limit is equal to 80% of the battery size.

These results demonstrate the significance of EV users’ plug-in behavior as a factor in

the flexibility that can be provided to the system. EV fleets with high plug-in frequency can

provide increased flexibility, both in power and energy, compared to regular EV users. To
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maximize the accessible flexibility of EV fleets, EV aggregators should provide the incentives

for end-users to plug in on a regular basis.

6. Conclusions

The integration of a large number of EVs into the grid is likely to pose significant chal-

lenges, due to the additional demand it creates, but also significant opportunities for im-

proved operation of electricity systems from the use of smart charging or V2G-based flex-

ibility. To correctly assess the impact of EV integration into the grid and the flexibility

that EVs can provide to the system, models should appropriately reflect EV users’ real driv-

ing and charging behaviors. Studies have evidenced the fact that EV users do not plug in

their vehicle every day, yet few EV grid integration studies have considered this real-world

behavior pattern, and the models available present several limitations.

The objective of this work was to quantify the impact of non-systematic plug-in behavior

on EV grid integration studies. To do so, an agent-based EV simulation model that considers

a probabilistic plug-in decision module was developed, and the model parameters were then

calibrated to match the charging behavior observed in the Electric Nation project, a large-

scale smart charging trial in the UK that covered a wide range of EV marks and models.

Results show that our model correctly captures the heterogeneity of users’ charging prefer-

ences and can be used to generate load curves for a wide array of EV conditions, including

different battery sizes and driving patterns. On average, users tend to charge their vehicle

between 2 to 3 times per week, with large-battery EVs having reduced plug-in frequency and

higher energy requirements per charging session.

We evaluated the impact of the non-systematic plug-in behavior of EV users charging at

home through two aspects: the peak load that EVs generate at different levels of the grid, and

the flexibility potential that can be offered during charging sessions. Results show that it is

crucial to factor in non-systematic plug-in behavior in order to correctly assess EV charging

at the distribution level, especially considering the current trend towards increasing battery

sizes, for both uncontrolled and price-responsive smart charging. For price-responsive EV

charging, considering only systematic charging (i.e., every day) significantly overestimates the

impact of EV load synchronization at low-price hours. Increasing battery sizes has a positive
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effect on peak load (i.e. reducing peak load), as their lower charging frequency reduces the

coincidence of EV charging, but at the cost of longer charging sessions or increased charger

power. Results also highlight the significant impact of EVs on LV grids, where clusters of

tens of EVs can present high coincidence factors that may create risks for grid stability, and

these effects can be exacerbated by increasing charging power. This impact gets reduced on

higher-voltage levels where the diversity of connection start time and charging requirements

of a high number of EVs reduces the coincidence factor of EV charging.

Our results concerning the flexibility potential of V2G-capable EV fleets based on non-

systematic plug-in behavior show a significant reduction in accessible flexibility for EV ag-

gregators, especially for larger battery sizes as they have lower plug-in rates, less flexible time

of charging sessions, and reduced accessible storage capacity. Accessible storage capacity is

reduced by at least 50% when considering an average plug-in rate (based on observations of

the Electric Nation trial) compared to a systematic plug-in behavior. Moreover, we found

that accessible storage reaches a maximum value for a given charger power configuration,

even under the case of systematic charging. Increasing battery sizes above 20-30 kWh with

a 3.7 kVA charger or above 60 kWh with a 7.4 kVA charger does not provide any additional

flexibility to the system. On the contrary, increasing battery sizes may reduce the amount

of accessible flexibility for regular users fleets. One route to cope with this reduction of flex-

ibility is to increase the charger power level, but at the expense of creating greater impacts

on distribution grids from EV charging. Thus, a trade-off appears for increasing charging

power between additional flexibility and higher grid impacts.

This study can provide important insights to grid planners, flexibility aggregators, regula-

tors and car manufacturers. In particular, we show that flexibility aggregators who focus on

reliable fleets that can be plugged in every day, such as company fleets, can significantly in-

crease the flexibility they can harvest. Flexibility aggregators should also provide incentives

to plug-in or identify users with aligned charging preferences to maximize their flexibility

portfolio.

Results hint that V2G-based flexibility through aggregators is more likely to be devel-

oped in professional-user contexts where company fleets can have higher plug-in reliability

and more consistent driving and charging patterns, than for private users where driving and
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charging patterns are less consistent. Consequently, the volume of accessible flexibility com-

ing from private users, both in energy and power, might be less than expected. However, the

development of behind-the-meter flexibility (Vehicle-to-Home or Vehicle-to-Building) can

still present an interest to private users and should be considered as a potential lead for

end-customer flexibility development.

Finally, with increasing EV adoption, the availability of new datasets could improve and

better calibrate plug-in decision models such as the one presented in this work and consider

user patterns in different countries or demographic conditions, including changes in mobility

patterns. The study and modeling of how users will react to incentives to plug-in will be

of high interest.Further work should be carried out to understand user charging choices and

EV usages. Weekly (e.g., is there a preferred day for charging?), seasonal or event-driven

patterns should be identified and analyzed, along with the impact of the availability of

charging opportunities (at work, commercial centers, public charging), as they may affect

EV charging patterns. Identifying and categorizing user driving and charging behaviors and

their responses to plug-in incentives could help drive the development of flexibility offers

around user’s charging preferences.
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Appendix

6.1. Homogeneous EV model calibration

The charging behavior indicators for an homogeneous case (with all users of the same

EV group having the same α value), are depicted in Fig. 16. They exhibit the same

trends observed in the Electric Nation trial but with no dispersion in user charging choices

and a linear regression model between driven distances and charging frequency that differs

significantly from the trial.

Figure 16: Charging behavior indicators for homogeneous α simulation: (a) Average charged energy per

session and (b) daily distance driven according to weekly charging sessions. Each point corresponds to an

EV user. Panel (b) includes linear regressions between weekly charging sessions and daily distance for small

and large EVs, shaded areas corresponding to the confidence interval at 95% of the linear regression.
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6.2. EV load curves
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Figure 17: EV charging load curves for systematic and average non-systematic plug-in behavior (α = 1.31).

Uncontrolled chargigng for 20-EV fleets with 7.4 kVA chargers. Central lines plot average EV demand, and

shaded areas show the variability of EV demand.
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Figure 18: Weekday EV charging load curves [kW/EV] for combinations of battery sizes, plug-in behavior

profiles and fleet sizes. Uncontrolled charging with 7.4 kVA chargers. Central lines plot average EV demand,

and shaded areas show the variability of EV demand.
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