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Abstract

Dynamic resource allocation problems arise under a variety of settings and have been studied
across disciplines such as Operations Research and Computer Science. The present paper in-
troduces a unifying model for a very large class of dynamic optimization problems, that we call
dynamic resource constrained reward collection (DRC2). We show that this class encompasses
a variety of disparate and classical dynamic optimization problems such as dynamic pricing
with capacity constraints, dynamic bidding with budgets, network revenue management, on-
line matching, or order fulfillment, to name a few. Furthermore, we establish that the class of
DRC2 problems, while highly general, is amenable to analysis. In particular, we characterize
the performance of the fluid certainty equivalent control heuristic for this class. Notably, this
very general result recovers as corollaries some existing specialized results, generalizes other ex-
isting results by weakening the assumptions required, but also yields new results in specialized
settings for which no such characterization was available. As such, the DRC2 class isolates some
common features of a broad class of problems, and offers a new object of analysis.

Keywords: dynamic optimization, resource allocation, certainty equivalent, model predictive
control, online matching, dynamic pricing, dynamic bidding, network revenue management,
multi-secretary.

1 Introduction

Dynamic optimization problems with resource constraints arise across a variety of disparate ap-

plications. For example, retailers dynamically price products with inventory constraints, airlines

and hotels engage in dynamic allocation of limited seats or rooms, advertisers bid in real-time to

fulfill campaigns with limited budget. Due to the importance and centrality of these problems,

various classes of dynamic optimization problems have received significant attention in industry

but also across academic communities in Operations Research, Computer Science, and Economics.
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A significant focus of the literature has been on the development of efficient algorithms to optimize

performance subject to capacity constraints.

While the literature on these problems is rich and extensive,1 studies have focused on specific

applications, or classes of applications. As such, arguments are specialized for specific settings and

do not directly apply to other settings, typically requiring to re-develop, from scratch, analyses and

proofs when faced with a new type of dynamic optimization problem with resource constraints.

While, from a practical perspective, problems such as those mentioned above can appear very

different, these problems do admit some common mathematical structure. In the present work,

we survey the literature, elucidate such common structure, and demonstrate that the latter can be

captured by a general model we propose. In turn, we derive important theoretical implications of

such commonalities.

A unified model. Our first main contribution is the introduction and definition of a general

class of problems: dynamic resource constrained reward collection (DRC “squared” or for short

DRC2) problems, including problems with finite and continuum of actions and contexts. Notably,

we show that this class admits as special cases a variety of problems studied separately in the

literature. Broadly speaking, a DRC2 problem is defined as follows. A decision maker endowed

with some resources faces a finite (discrete) time horizon. At each period, the decision maker is

presented with a stochastic opportunity (independent of other periods), and must select an action;

the action leads to some stochastic resource consumption and reward collection. The goal of the

decision maker is to select a sequence of actions to maximize her total expected rewards subject to

the resource constraints. We assume that the decision maker knows the distribution of the various

stochastic components, and, as such, this problem can be formulated as a discrete and finite-time

dynamic program, with the state given by the vector of resources available.

The DRC2 class of problems generalizes and brings under the same umbrella a host of classical

problems studied separately. Figure 1 provides a conceptual illustration of the class. In particular,

we show in §3 how the proposed class of DRC2 problems encompass the following classical prob-

lems: Network dynamic pricing problems (see, e.g., Gallego and Van Ryzin 1997), Multi-secretary

problems (see, e.g., Kleinberg 2005), Dynamic bidding in repeated auctions with budgets (see, e.g.,

Balseiro et al. 2015), Network revenue management problems (see, e.g., Talluri and Van Ryzin

2006), Choice-based revenue management problems (see, e.g., Talluri and Van Ryzin 2004), Order

fulfillment problems (see, e.g., Acimovic and Farias 2019), and Online matching problems (see, e.g.,

Aggarwal et al. 2011). For each of these problems, we explain how they map to a DRC2 problem.

1We discuss the literature in detail when we discuss our model and present our main results and associated
corollaries.
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Figure 1: Definition of a new large class of dynamic decision problems (DRC2) that encompasses
many known problem classes.

A unified analysis of “fluid” certainty-equivalent control. Although from a theoretical

perspective, DRC2 problems can be formulated through a dynamic program, one natural question

is whether the DRC2 formulation lends itself to analysis, beyond a generic analysis of a general

dynamic program, that can be applied to all special cases, or whether problems should be specialized

first to be able to derive properties of interest. We indeed demonstrate that the general DRC2

formulation can lead to unified analysis through the study of a central heuristic in the stochastic

dynamic optimization literature. Our second layer of contribution is in the analysis domain. In

particular, we characterize the performance of a classical “fluid” certainty-equivalent control for

the general DRC2 class of problems.

In more detail, solving even a special case of a DRC2 problem to optimality is typically im-

possible due to the curse of dimensionality; indeed, the state space grows exponentially with the

number of resources. This has brought forward the need for heuristics for such problems, and many

such heuristics have been developed for subsets of the problems above. A notable heuristic for dy-

namic optimization problems is the so-called certainty-equivalent heuristic, which involves solving

a deterministic problem in each period by using proxies for random quantities, implementing the

prescribed decisions for that period, and repeating the process over time. Such certainty-equivalent

heuristics have been shown to be near-optimal under some conditions in various special cases of

DRC2 problems. A notable example of a certainty-equivalent heuristic is the so-called “fluid” one,

in which the random quantities are replaced by their expectations. We will refer to this heuristic
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as CE. Such policies are sometimes also referred to as “re-solving” or “model predictive control”

in the various related streams of literature. To analyze the performance of the heuristic, we mea-

sure the loss between the optimal performance and that of the CE heuristic, and characterize the

dependence of this loss on the “scale” of the system.

More specifically, we establish a hierarchy of sufficient conditions for the CE heuristic to lead to

a “small” performance loss. The first layer of sufficient conditions identifies fundamental properties

of the primal fluid problem that drive the CE performance and are stated in terms of the local

strong-smoothness of the latter as a function of the resource vector. This condition highlights

upfront a dichotomy between whether the primal problem is locally linear in the resource vector

(i.e., weakly locally smooth) or locally strongly concave (i.e., strictly locally smooth). Under weak

local-smoothness the CE heuristic leads to losses that do not grow with T (where T is the length of

the horizon), while under strict local-smoothness the CE heuristic leads at most logarithmic losses

in T .

The second layer of sufficient conditions explores the drivers of the local strong-smoothness

of the fluid problem in terms of the primitives of a DRC2 problem. In doing so, we highlight

how the local strong-smoothness condition naturally emerges in a variety of settings. A central

object for this set of sufficient conditions is the dual Lagrangian problem, and we elucidate how

properties of the latter together with the nature of the problem (finite vs. continuum of actions,

finite vs. continuum of contexts) impact the type of local smoothness of the primal fluid problem.

In particular, the analysis leads to a dichotomy between two fundamental cases: that when the

set of contexts and actions are finite (and the fluid problem is a finite linear program), and that

when one of these is a continuum. When the set of contexts and actions are finite, the primal fluid

problem is locally linear under some conditions and, in turn, we show that one can guarantee a

regret that does not grow with T (where T is the length of the horizon). When either the set of

contexts or the actions is a continuum, the primal problem is an infinite-dimensional program. In

this case, we show that a variety of conditions lead to its local strong-smoothness, and in turn the

CE heuristic can be shown to guarantee at most logarithmic losses in T . Our analysis also leads to

some control over the constants that drive the losses.

In essence, the analysis establishes that the class of DRC2 problems, under said sufficient condi-

tions, is “easy” in that the CE heuristic is extremely effective. Intuitively, the CE heuristic enables

the decision maker to implement good decisions through the proxy problem while controlling very

closely the path of the resource constraints.

In general, the primal problem solved in each step of the CE heuristic needs to optimize over

randomized controls. When the set of actions is a continuum, the resulting problems are over

infinite-dimensional probability measures and, thus, challenging to solve. We provide simple condi-

tions on the primitives under which the optimal controls are deterministic and strong duality holds
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(even when the underlying deterministic problem is non-convex). From a computational perspec-

tive, this leads to simpler implementations of the CE heuristic as, in many cases, the dual problem,

which is always convex, can be alternatively solved. From a theoretical standpoint, we can leverage

duality theory to provide simple conditions on the primitives that are simple to check and, at the

same time, yield geometric insights into the structure of the problem.

We highlight here that the fact that the CE heuristic is effective for specific DRC2 instances

is not new. The following are novel contributions of our work. First, the analysis as well as the

types of ideas developed can be “lifted” and generalized at the DRC2 level, and in turn, one may

derive more general sufficient conditions for such performance, anchored in the raw primitives of

the elements of a DRC2 problem. Second, given such general sufficient conditions, the scope of

problems for which such guarantees apply can be expanded without specialized arguments. In

particular, after developing our theoretical results and the impact of the set of actions and contexts

being finite or not, we return to the classical problems in the literature and state the corollaries

that one obtains from the general analysis of the CE heuristic. This allows us to recover versions

of various existing results but also to obtain such results under weaker conditions (see, e.g., the

case of dynamic pricing in §3.1 and §6.1), or to obtain altogether new results in the literature for

the performance of the fluid CE heuristic (see, e.g., the case of dynamic bidding with budgets in

§3.2 and §6.2 or the case of dynamic assortment optimization in §3.4 and §6.4). Additionally, our

results give performance bounds with better dependence on the number of resources and hold even

when the underlying fluid problems in the CE heuristic are non-convex, as for example in the case

of dynamic bidding with budgets. We discuss the related literature in detail when we discuss the

various specialized problems.

Overall, this paper introduces a novel general formulation of dynamic optimization problems,

bringing under the same umbrella a variety of problems previously studied separately. We illustrate

how this formulation lends itself to analysis through a unified analysis of the CE heuristic. As such,

the DRC2 class offers a “useful” and powerful intermediate class of problems between the specialized

versions previously studied in the literature and a fully general dynamic program, and this work

opens up the possibility of further generalizations of arguments developed for special cases of DRC2

problems.

2 Model

We consider a dynamic decision-making problem with a finite time horizon T , over which a decision

maker collects rewards subject to resource constraints. We refer to this problem as the Dynamic

Resource Constrained Reward Collection (DRC2) problem. There are L resources and the decision

maker is initially endowed with initial capacities C ∈ RL
+ for the resources.
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In each period t, an opportunity arises and each opportunity is characterized by a context

θ ∈ Θ, where Θ is the set of contexts. The context includes auxiliary information available to the

decision maker that allows to customize decisions. For example, it can capture a user’s preferences,

demographic or historical information about a consumer, information about an order of products

that needs to be fulfilled, etc. Contexts are drawn independently from a distribution p ∈ ∆(Θ),

where we use ∆(·) to represent the set of all probability distributions over a set. Upon observing

an opportunity, the decision maker takes an action a ∈ A, where A is the set of feasible actions.

Upon taking an action a, the decision maker collects a reward that depends on the context θ, the

action a, and an idiosyncratic shock ϵ. Shocks lie in a space E and are drawn independently from

a distribution f ∈ ∆(E). Shocks are revealed to the decision maker after an action is taken and

are meant to capture exogenous factors that are idiosyncratic to the opportunity. We denote by

r : Θ×A×E → R, the reward function, where r(θ, a, ϵ) denotes the reward when the context is θ,

the action is a, and the shock is ϵ. Taking an action consumes resources and we assume that the

amount of resources consumed depends on the context θ and the value of the shock ϵ. We denote

by y : Θ×A× E → RL, the vector-valued resource consumption function. In particular yl(θ, a, ϵ)

represents the consumption of resource l if context θ arrived, the decision maker chose an action a,

and the shock was ϵ.

To ensure that the problem is feasible, we assume there is a null action a0 in A that consumes

no resources and generates no reward. That is, for every context θ and idiosyncratic shock ϵ, we

have r(θ, a0, ϵ) = 0 and yl(θ, a0, ϵ) = 0 for every resource l.

We denote the history up to time t − 1 as Ht−1 = {θs, as, ϵs}t−1
s=1. We let Π denote the set of

all non-anticipating policies, i.e., the set of policies such that the action at time t, at, depends on

the observed context of the opportunity in time t and the history up to (and including) time t− 1.

That is, for a policy π, at = aπt (θt,Ht−1).
2 The decision maker’s objective is to choose a policy

π ∈ Π that maximizes her expected rewards earned during the horizon. Taking into account that

the consumption’s constraints must hold almost surely, the stochastic optimization formulation of

the decision maker may be written as follows:

J∗(C, T ) = sup
π∈Π

E

[
T∑
t=1

r(θt, a
π
t , ϵt)

]

s.t
T∑
t=1

yl(θt, a
π
t , ϵt) ≤ Cl, ∀l ∈ [L] (a.s.) ,

(P)

where [L] denotes the set {1, . . . , L}.
Note that in general, this is a dynamic program with potentially a high number of dimensions

and the curse of dimensionality precludes solving this problem to optimality. Given this, various

2To simplify notation we will write aπ
t to refer to the action taken at time t given the policy π
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heuristics can be considered and their performance can be assessed through the resulting optimality

gap

J∗(C, T )− Jπ(C, T ),

where Jπ(C, T ) represents the expected reward obtained by the decision maker if policy π is im-

plemented. We refer to the expression above as the reward loss of the heuristic given by π.

2.1 Discussion of the modeling assumptions

To simplify notation, we make the probability distribution of ϵ independent of the action and

the context. In some applications, it might be convenient to consider some dependence. Any

dependencies may be captured in our framework by modifying reward and consumption functions.

We present the details of this reduction in Appendix A.1.

In this paper, we assume that the decision maker knows all parameters and the probability

distributions of all uncertainties. There exists another line of work studying problems when these

quantities are unknown, and can be either stochastic or adversarial. When the context distribution

is unknown but the shocks are either deterministic or from a known distribution, the problem is

called the online allocation problem (see, e.g., Mahdian et al. 2012, Mirrokni et al. 2012, Agrawal

et al. 2014, Ma and Simchi-Levi 2020, Li and Ye 2021, Balseiro et al. 2022). When the shock

distribution is unknown and there is a single context, the problem is called the multi-armed bandit

with knapsack [Badanidiyuru et al., 2013] and it includes important subclasses such as dynamic

pricing with unknown demand [Besbes and Zeevi, 2009]. In the case when both the context and

shock distributions are unknown, the problem is called the contextual multi-armed bandit with

knapsack [Badanidiyuru et al., 2014].

In the following section, we survey part of the literature and review a set of problems that are

particular cases of the proposed DRC2 class of problems. For each problem, we show it can be

modeled as a DRC2 problem.

3 Mapping Notable Problem Classes to a DRC2 Problem

As it was mentioned above, many dynamic resource allocation problems can be modeled as a DRC2

problem. In this section, we present some notable subclasses of problems and provide an explicit

mapping to a DRC2 problem. In Table 1, we present a high level overview of how various notable

classes map to a DRC2 problem, together with the subsections in which this mapping is established.
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Elements of the DRC2 problem

Problem subclass Context (θ) Action (a) Idiosyncratic shock (ϵ)
Resource Constraint

LHS RHS

Network dynamic pricing customer product heterogeneity total resources initial

§3.1 class prices in customer consumed inventory

values

Bidding in repeated auctions impression’s bid exogenous total payment budget

§3.2 valuation auction

uncertainty

Network revenue management customer accept/reject - total resources initial

§3.3 class - consumed inventory

Multi-secretary candidate hire/not hire - total candidates maximum

§3.3 ability - hired hires

Choice-based NRM customer offer heterogeneity total resources initial

§3.4 class set in customer consumed inventory

preferences

Online matching customer a resource - total resources initial

§3.5 class - assigned inventory

Order fulfillment items facilities - total items initial

§3.6 requested used to fulfill - allocated from inventory in

request - each facility each facility

Table 1: Comparison of some special subclasses of DRC2 problems. The idiosyncratic shocks are
meant to qualitatively capture the underlying exogenous factors associated with each opportunity
as opposed to the distribution of the actual random variable ϵ.

3.1 Network Dynamic Pricing

In the Network Dynamic Pricing problem, a firm sells products to a sequence of customers over a

finite horizon (see, e.g., Gallego and Van Ryzin [1997]). On the demand side, each buyer belongs to

a class, captured by the context, characterized by their valuation for the products, which influences

her demand. On the firm side, at the beginning of each period, he observes the class of the customer

who arrived and posts prices to maximize his expected revenue taking into account that each

product consumes a subset of resources, whose inventories are finite and without replenishment.

The interest in dynamic pricing problems has grown during the last few decades. The design

of near-optimal pricing policies that are easy to implement has been studied under several model

variants and heuristic polices are widely used in practice by firms. For example, Kunnumkal and

Topaloglu [2010] and Erdelyi and Topaloglu [2011] consider a dynamic programming formulation.

Both papers consider an airline network in which prices affect the probability of the arrival request.

In the former, the authors propose a stochastic approximation algorithm for choosing prices dy-

namically and prove its convergence. In the latter, they develop two methods for making pricing

decisions based on a decomposition of the original dynamic program. We refer the reader to the
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review papers and textbook of Bitran and Caldentey [2003], Talluri and Van Ryzin [2006], Gallego

and Topaloglu [2019].

Mapping to a DRC2 problem. In this setting, there is a set of N different products to sell

during a finite, discrete horizon. The context θ ∈ Θ represents a customer class or consumer

segment, which will influence their demand. The set of actions A = RN
+ consists of the set of all

feasible price vectors to post for the products.

For each customer class θ, the idiosyncratic shock ϵ captures heterogeneity in customer values.

Then, given θ, posted prices a ∈ A = RN
+ and a realization of the shock ϵ, we denote by D(θ, a, ϵ) ∈

RN
+ the induced vector of demand. The reward function captures the revenue of the firm and is

given by r(θ, a, ϵ) = a⊤D(θ, a, ϵ), and the consumption function is y(θ, a, ϵ) = QθD(θ, a, ϵ). In the

latter expression, Qθ ∈ RL×N is a matrix where Qn
lθ represents the units of resource l needed to

serve a customer in class θ with a single unit of product n.

3.2 Dynamic Bidding in Repeated Auctions

Consider the problem faced by a bidder participating in a sequence of repeated auctions to buy

opportunities. The bidder has a budget constraint that limits his total expenditure over the horizon

and aims to maximize his cumulative utility. This model is mainly motivated by internet advertising

markets in which advertisers buy opportunities to display advertisements—an event referred to as

an impression—via repeated auctions subject to budget constraints.

For instance, Abhishek and Hosanagar [2013] study this problem, where the goal is to compute

optimal bids for multiple keywords in an advertiser’s portfolio. Motivated by ad exchanges, Balseiro

et al. [2015] introduce a fluid mean-field equilibrium (FMFE) notion to study the strategic outcome

of advertisers competing in repeated second-price auctions. Fernandez-Tapia et al. [2017] also study

the problem of bidding in repeated auctions but they consider that the arrival of requests is a Poisson

process and characterize the optimal bidding strategy via its Hamilton-Jacobi-Bellman equation.

Mapping to a DRC2 problem. In this setting, the decision maker is an advertiser. The

advertiser is present in the market for T periods and one impression is auctioned per period. Upon

the arrival of an impression at time t, the advertiser observes a real-valued valuation (the context)

θt ∈ Θ ⊂ (0,Θmax] for the impression, which is distributed according to p ∈ ∆(Θ), and chooses

an action at ∈ A = [0,Θmax] representing his bid in the auction. We denote by C the budget of

the advertiser. The shock ϵ captures all exogenous uncertainty in the auction, such as the bids of

the competitors and any potential randomization of the auction. For simplicity, we assume that

ϵ is independent of the buyer’s valuation θ but our model can be easily be modified to account

for correlation using the reduction in Appendix A.1. The auction is characterized by an allocation
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rule q : A × E → [0, 1] together with a payment rule m : A × E → R; the former determines the

probability that the impression is allocated to the advertiser and the latter his expected payment

as a function of his bid and the exogenous shock. In §6.2 we explicitly state the allocation and

payment rules when the advertisers bid in first and second-price auctions, which are two auctions

commonly used in practice and studied in the literature. The reward earned by the advertiser and

his budget consumption, given a, ϵ and θ can be expressed as r(θ, a, ϵ) = θq(a, ϵ) − m(a, ϵ) and

y(θ, a, ϵ) = m(a, ϵ), respectively.

3.3 Network Revenue Management

Another notable special case of the DRC2 class is a classical problem in the Revenue Management

literature: the Network Revenue Management (NRM) problem. It was originally proposed in

D’Sylva [1982], Glover et al. [1982] and Wang [1983] and analyzed in the seminal paper Talluri and

Van Ryzin [1998]. Since then, it has been extensively studied in the literature and has also been

the basis for various industry solutions. The books of Talluri and Van Ryzin [2006] and Gallego

and Topaloglu [2019] provide extensive reviews.

In the NRM problem, the decision maker is a firm who is trying to dynamically allocate a

limited amount of resources over a finite horizon. Resources are sold to heterogeneous consumers

who arrive sequentially over time and belong to different classes depending on their consumption of

resources and the fixed fare they pay. The distribution of contexts is stationary. Upon a customer’s

arrival, the firm has to decide whether to accept or reject the customer’s request. If the customer is

accepted and there is enough remaining inventory to satisfy its request, she consumes the resources

requested and pays the corresponding fare. Otherwise, no revenue is collected and no resource is

used. The decision maker’s objective is to maximize the expected revenue earned during the selling

horizon.

It is worth mentioning that some other problems, such as versions of dynamic knapsack problems

(see, e.g., Papastavrou et al. 1996, Kleywegt and Papastavrou 1998, Arlotto and Xie 2020) and

versions of the multisecretary problem (see, e.g., Karlin 1962, Sakaguchi and Saario 1995, Arlotto

and Gurvich 2019), can be seen as particular cases of the NRM problem and therefore they also

belong to the DRC2 class.

Mapping to a DRC2 problem. In a NRM problem, a customer class can be captured by the

context θ ∈ Θ and is characterized by their usage of resources and a fixed price they pay for the

service. We let rθ denote the fare associated with class θ. The decision maker’s feasible actions

has two values, A = {0, 1}, where we represent the action “accept” by 1 and “reject” by 0. In

this problem the set of idiosyncratic shocks is empty; both reward and resource consumption are

deterministic given the class. The reward if the customer belongs to class θ and the decision maker
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chooses an action a is r(θ, a) = rθ a. If we denote by Qθ = (Qlθ)l ∈ RL the consumption vector,

where Qlθ is the amount of resource l required to serve a customer of class θ, the consumption given

that the decision maker chooses an action a and the customer class is θ is given by y(θ, a) = Qθ a.

3.4 Choice-Based Network Revenue Management

This problem bears many similarities to the network revenue management problem. In this setting,

a firm is trying to dynamically allocate a limited amount of products which are sold to heterogeneous

consumers who arrive sequentially and belong to different classes characterized by their product

preferences. The key difference with the NRM class is that, upon a customer’s arrival, the firm

makes an offer in the form of a set of options and depending on the offer and on the customer’s

preferences, the consumer selects a single product to buy.

This class of problems appears in the literature under different names depending on whether

each product in the offer is a combination of one or more resources or whether there is a one-

to-one mapping between products and resources. The first variant is the so-called choice-based

problem whereas the second stream corresponds to a dynamic assortment optimization problem

under capacity constraints.

In the first stream, the single-leg case was introduced by Talluri and Van Ryzin [2004] who

provided an analysis of the optimal control policy under a general discrete choice model of demand.

In a network setting, Gallego et al. [2004] was the first to study a choice-based NRM problem. They

consider flexible products in a continuous time horizon and with arrivals following independent

Poisson processes. A flexible product consists of a set of alternative products serving a customer

class. That is, if a flexible product F is offered by the decision maker and accepted by the consumer,

then the decision maker assigns him one of the products in F . Liu and Van Ryzin [2008] considered a

choice-based network RM problem in which each consumer belongs to a market segment (customer

class) characterized by a set of products (different for each segment) in which the consumer is

interested and the decision maker has to decide a set of products to offer in each selling period.

Bront et al. [2009] consider the same problems as Liu and Van Ryzin [2008] but they allow customer

classes to overlap. Jasin and Kumar [2012] considers a model with customer choice that is slightly

more general that the choice-based NRM as it allows for more general reward functions and resource

consumption distributions. Still, their model fits in the DRC2 class with appropriately defined

reward and resource consumption functions.

In the second stream, Bernstein et al. [2015] consider a dynamic assortment problem in contin-

uous time. In the problem they consider, all products have the same price and for each customer

class they compute the probability that a customer belonging to that class chooses a product from

the offer according to a Multinomial Logit model. Golrezaei et al. [2014] also formulate a related

dynamic assortment optimization problem. Their formulation is different in that it focuses on
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arbitrary, possibly adversarial, sequences of customer arrivals.

Mapping to a DRC2 problem. In this setting we consider a set of N products, each of them

consisting of a set of resources. Product n is priced at mn. Contexts represent customer classes.

Given a customer class θ and a product n, we denote by An
lθ the amount of resource l needed to

serve product n to customer θ. The action set is given by A ⊆ 2{1,...,N}, where an action a ∈ A
represents a set of products to be offered to a consumer.

For each action a and customer class θ, we define the shock random vector ϵθa ∈ Ea =
{
ϵ ∈

{0, 1}N :
∑

n∈[N ] ϵ
n ≤ 1, ϵn = 0 for n ̸∈ a

}
, where its nth component ϵnθa is 1 if and only if

the customer selects product n from the offer a. Then, ϵθa ∼ Multinomial(1, gθa) where gnθais the

probability of the consumer choosing product n given that his class is θ and the action taken is a.

Here gnθa = 0 if n ̸∈ a, i.e., if the product does not belong to the offer set.

Given the consumer class θ, the action a, and the shock realization ϵθa, the reward function

is given by r(θ, a, ϵ) =
∑

n∈[N ]mnϵ
n and the consumption function by y(θ, a, ϵ) =

∑
n∈[N ]Q

n
θ ϵ

n.

Note that, conditional on the shock ϵ, the resource consumption does not depend on the action.

However, the action affects the distribution of ϵ. In Appendix A.1, we show how one may apply

suitable transformations to the reward and consumption functions to obtain an equivalent problem

in which the random shock is independent of the class and the action.

3.5 Online Matching

Another closely related class of problems is that of online matching. This problem is related to the

NRM class, but now, instead of making accept/reject decisions and each opportunity consuming a

subset of resources, each opportunity can be assigned to any one resource and the decision maker

needs to decide the resource to which to assign the opportunity.

The bipartite online matching problem was introduced by Karp et al. [1990] where they consider

the case with arrivals in arbitrary order and with the goal of maximizing the total number of

matches. Their results were extended by Aggarwal et al. [2011] to more general settings. It was

also recently studied by Vera and Banerjee [2021]. Some special cases of the online matching

problem were considered by Feldman et al. [2009], Manshadi et al. [2012] and Devanur et al. [2013].

Mapping to a DRC2 problem. We have a bipartite graph with resources on one side and

contexts on the other side. An opportunity with context θ arrives with probability pθ and the

decision maker needs to decide which resource to assign it to. Calling L to the set of resources,

each context θ has a reward vector rθ ∈ RL
+ and a resource consumption Qθ ∈ RL

+. The action set

is A = L ∪ {0}, where the action 0 represents rejecting the request, i.e., the decision maker needs

to decide the resource to which to assign the opportunity. Given an arrival with context θ and an
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action a, the reward is given by r(θ, a) = fθa1{a̸=0} and the consumption of resource l ∈ L is given

by yl(θ, a) = Qa
θ1{a=l}. We assume that the bipartite graph is complete. Incomplete graphs can be

modelled by setting fθj = −∞ if assigning context θ to resource j is not feasible.

3.6 Order Fulfillment

In this section we detail a class of problems faced by a retailer who needs to fulfill the orders they

receive from different facilities. Specifically, in this problem orders arrive sequentially and a decision

maker has to construct a fulfillment policy to decide from which facility each of the items in the

arriving order should be fulfilled.

Many different variants of this DRC2 problem have been studied in the literature (see, e.g.,

Acimovic and Graves 2015, Jasin and Sinha 2015, Andrews et al. 2019). For example, papers have

considered different objectives to optimize, whether the model requires a demand forecast or not,

multi or single-item approaches, among others. We refer the reader Acimovic and Farias [2019] for

a recent overview of order fulfillment problems.

On the other hand, some works in the existing literature consider additional constraints related,

for instance, to the set of feasible facilities (or resources) from which is it possible to serve an order.

Asadpour et al. [2019] consider an online allocation problem with equal numbers of types of resources

and types of requests with the restriction that a request of type i can be served only by resources

of type i and type i + 1. If both resources have zero inventory left, then the sale is lost. Their

goal is to provide an upper bound on the difference between the performance with and without the

above described restriction on fulfillment.

It is worth mentioning that some works consider the order fulfillment problem jointly with the

pricing problem (see, e.g., Harsha et al. 2019, Lei et al. 2018a) or jointly with both pricing and

display problems (see, e.g., Lei et al. 2018b).

Mapping to a DRC2 problem. We consider the setting where there are L different items that

could be served from N different facilities. Each facility n is endowed with an inventory Cn ∈ RL
+,

with Cnl representing the initial capacity of item l in facility n, and we consider that facility N is

fictitious with infinite initial capacity of all items.

Arrival θ occurs with probability pθ and corresponds to an order of products that needs to be

fulfilled belonging to Θ = 2{1,...,L}. We assume one order includes at most one unit of each item.

Then, l ∈ θ if and only if item l is included in the order θ.

The decision maker has to construct a fulfillment policy to decide from which facility n ∈ [N ]

each of the items in θ should be fulfilled in order to maximize his expected revenue. That is, the

action set is given by A = {1, . . . , N}L, where given l ∈ [L], al = n means that item l is served

from facility n. Furthermore, serving item l from facility n has an associated reward denoted by
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fln.

Given that the order is θ and the decision maker chooses action a, the consumption of item l

in the facility n is yln(θ, a) = 1{al=n}, and the reward is given by r(θ, a) =
∑

l∈θ,n∈[N ] fln1{al=n}.

4 Performance Analysis of Certainty Equivalent Heuristic

As mentioned in §2, an optimal solution of the stochastic formulation of a DRC2 problem is not

easy to compute. A common and central heuristic in the theory of dynamic decision-making under

uncertainty is based on the certainty equivalent principle: replace quantities by their expected

values and take the best actions given the current history. Specifically, at each point of time t, we

solve an optimization problem obtained by using the history up to t− 1 and replacing the random

quantities in problem (P) by their expectations.

That is, if we denote by Φ the set of all context-dependent probability distributions ϕ : Θ →
∆(A), and by ρ ∈ RL

+ a non-negative parameter representing the vector of available inventory di-

vided by the number of remaining periods, at time t we solve the following parametric programming

problem for ρ = ρt, which we refer to as the fluid problem:

J̄(ρ) = sup
ϕ∈Φ

Eθ∼p,a∼ϕ(θ),ϵ∼f [r(θ, a, ϵ))]

s.t Eθ∼p,a∼ϕ(θ),ϵ∼f [yl(θ, a, ϵ)] ≤ ρl, ∀l ∈ [L].

(PFLUID)

While we refer to (PFLUID) as the fluid problem as it uses deterministic quantities as inputs (random

quantities are replaced by their expected values), we remark that the controls are, in general,

randomized. Because the distributions of contexts and shocks are independent and identically

distributed (i.i.d.) and we allow for randomized actions, we can restrict attention without loss to

static controls in the fluid problem. For each context θ ∈ Θ, the decision variable ϕ(θ) gives a

probability distribution over actions a ∈ A conditional on the arrival belonging to context θ.

In what follows, we assume that problem (PFLUID) admits an optimal solution. We denote by

ϕ∗
ρ an optimal solution when the parameter is ρ. We will provide sufficient conditions for existence

of an optimal solution in §5. When an optimal solution does not exist or it is computationally

intractable, the analysis we develop can also be applied when a provably approximately optimal

solution is computable. In particular, we can control the loss stemming from using an approximately

optimal solution. In Appendix A.2, we provide a detailed analysis on the additional cumulative

losses one incurs.

The Certainty Equivalence Principle leads to a natural heuristic for the decision maker: at each

point in time t, choose actions according to a solution ϕ∗
ρt to (PFLUID) with ρt = ct/(T − t+1) and

ct the capacity remaining at beginning of time t. We call this heuristic the Certainty Equivalent
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Heuristic (CE) and denote the corresponding policy by πCE. The heuristic is formally presented

in Algorithm 1. The CE heuristic adjusts the parameter ρ dynamically according to the amount of

resources remaining to avoid running out of resources too early or avoid being overly constrained

if resource consumption ends up being lower than expected.

The certainty equivalent heuristic has been extensively studied in the literature for specific

applications. We return to these in §6. Our aim is to characterize its performance for the broader

class of DRC2 problems. Thus, as the family of DRC2 problems encompasses a large number of

applications that have been studied in the literature separately, by analyzing the performance of

the CE heuristic, we shall recover some already known results and, in the process, obtain new

results for other applications, while highlighting very general sufficient conditions to ensure “good”

performance of the CE heuristic.

Algorithm 1 Certainty Equivalent Heuristic (CE)

Initialize c1 ← C

for t = 1, . . . , T do
ρt ← ct/(T − t+ 1)

ϕ∗
ρt ← an optimal solution of Problem (PFLUID) with ρ = ρt

observe the context θt

draw an action at from the distributionϕ∗
ρt(θt)

if y(θt, at, ϵ) ≤ ct ∀ϵ ∈ E, then
choose the action at

observe the shock ϵt

ct+1 ← ct − y(θt, at, ϵt)

else
choose the null action a0

ct+1 ← ct

end

end

For simplicity, we focus on a certainty equivalent control that adjusts decisions based on re-

solving every period. We conjecture that the results developed in the present paper continue to

hold when one re-solves less frequently. The latter has indeed been established for various special

cases of DRC2 problems (see, e.g., Jasin and Kumar 2012).

Before proceeding to the analysis of the performance of the CE heuristic, we show that the

fluid problem (PFLUID) gives an upper bound on the optimal value of the stochastic problem (P),
a result that we will use to obtain the bound for the reward loss of the CE heuristic in the next

section. Although versions of this result have been proven many times for some special cases and

under stronger assumptions (see, e.g., Gallego and Van Ryzin 1997), here we present a generic
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result in the context of the set of DRC2 problems. We prove the result in the primal space, where

the key observation is that in the fluid problem we allow for randomized policies. The proof can

be found in Appendix C.1.1.

Proposition 1. The optimal value of the stochastic problem (P) is upper bounded by T times the

value of the fluid problem (PFLUID) for ρ = C/T . That is,

J∗(C, T ) ≤ T J̄(C/T ).

4.1 Bound on the cumulative reward loss of the CE heuristic

In this section we study the performance of the CE heuristic for the general class of DRC2 problems.

To this end, we first introduce some definitions and conditions on the primitives.

We will assume that the reward and consumption functions are bounded. This assumption is

well motivated in practice as opportunities typically consumer a small number of resources relative

to the total initial capacities. For a vector x ∈ Rn, we denote by ∥x∥ =
(∑n

i=1 x
2
i

)1/2
its ℓ2−norm

and denoted by ∥x∥∞ = maxi |xi| its ℓ∞−norm.

Assumption 1. The following hold:

1. There exists r̄∞ ∈ R++ such that r(θ, a, ϵ)≤ r̄∞ for all θ ∈ Θ, a ∈ A, and ϵ ∈ E.

2. There exist ȳ2, ȳ∞ ∈ R++ such that ∥y(θ, a, ϵ)∥ ≤ ȳ2 and ∥y(θ, a, ϵ)∥∞ ≤ ȳ∞ for all θ ∈ Θ, a ∈
A, and ϵ ∈ E.

Recall that ρ1 is the vector of initial inventory divided by the amount of periods to consider.

Given ϕ∗
ρ1 , an optimal solution of (PFLUID) for ρ = ρ1, we partition the resources [L] into the set

of resources C for which the corresponding resource constraint of problem (PFLUID) is binding at

ρ = ρ1 and U the set of resources for which the constraint does not bind. That is,

C :=
{
l ∈ [L] : Eθ∼p,a∼ϕ∗

ρ1
(θ),ϵ∼f [y(θ, a, ϵ)] = ρl

}
and

U :=
{
l ∈ [L] : Eθ∼p,a∼ϕ∗

ρ1
(θ),ϵ∼f [y(θ, a, ϵ)] < ρl

}
.

Given a vector v, we will denote by v|C and v|U the restriction of v to the components of the set C
and U , respectively.

We will assume that, in the “neighborhood” of ρ1, the optimal objective value of the fluid

problem J̄(ρ) is locally smooth as well as that the consumption constraints corresponding to the

set C stay binding. We require the assumption to hold in the set of

N (ρ1, δ, C) =
{
ρ ∈ RL

+ : ∥ρ|C − ρ1|C∥ ≤ δ and ρ|U − ρ1|U ≥ −δ1
}
,
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which are the vectors that are δ close to ρ1 for the binding resources and at least −δ larger for

those resources that are not binding. Intuitively, resources which are not binding can increase

without changing the optimal solution so these are only restricted from below. When all resources

are binding, i.e., C = [L], we write N (ρ1, δ) to represent the set of all points at distance at most δ

from ρ1.

Assumption 2. There exist δ,K ∈ R++ with δ < minl∈[L] ρ1,l such that for every ρ ∈ N (ρ1, δ, C)
it holds that:

1. The function J̄(ρ) satisfies J̄(ρ) ≥ J̄(ρ1) +∇J̄(ρ1)(ρ− ρ1)− K
2 ∥ρ|C − ρ1|C∥2.

2. There exists an optimal solution ϕ∗
ρ satisfying Eθ∼p,a∼ϕ∗

ρ(θ),ϵ∼f [y(θ, a, ϵ)|C ] = ρ|C.

We will refer to the inequality given in Assumption 2.1 as J̄(ρ) admitting a K-lower downward

quadratic (K-LDQ) envelope in N (ρ1, δ, C). See Figure 4 (a) for an example of a function admitting

a K-LDQ envelope and its envelope. This condition is a weaker and local notion of the K-strongly

smooth condition for concave functions, which requires the inequality in Assumption 2.1 to hold

for every pair of parameters ρ, ρ′. When all resources are binding, a sufficient condition for J̄(ρ)

to admit a K-LDQ envelope is that its gradient is locally K-Lipschitz continuous at ρ1 for all

ρ ∈ N (ρ1, δ), that is,

∥∇J̄(ρ1)−∇J̄(ρ)∥ ≤ K∥ρ1 − ρ∥ .

See Lemma 3.4 in Bubeck [2014] for a proof of the previous fact.

The second part of Assumption 2 requires that all resources that are binding at ρ1 remain

binding at optimal solutions in a neighborhood of ρ1. Because the lower quadratic envelope in

the first part is independent of the unconstrained resources, we are also implicitly precluding

unconstrained resources from becoming constrained and impacting performance.

We are now ready to state our performance bound of the CE heuristic under Assumptions 1 and 2.

Specifically, in Theorem 1, we bound the reward loss of the heuristic given by CE as a function of

the parameters in Assumptions 1 and 2.

Theorem 1. Let JCE(C, T ) be the expected performance of Algorithm 1. Then, under Assump-

tions 1 and 2, the reward loss satisfies

J∗(C, T )− JCE(C, T ) ≤ ȳ22K log T +

(
2ȳ∞
ρ
1
− δ

+
14ȳ2∞
δ2

)
J̄(ρ1),

where ρ
1
is the smallest component of the vector ρ1.

We note that the result above applies across all DRC2 problems, and only requires Assump-

tions 1 and 2. Consider a regime in which C and T are scaled proportionally, i.e., C = ρ1T for
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some ρ1 ∈ RL
++. Theorem 1 implies that, in such a regime, the CE heuristic is asymptotically

optimal in the sense that JCE(C, T )/J∗(C, T )→ 1 as T →∞ because the reward collected by the

CE heuristic grows as T →∞. Furthermore, the optimality gap is of order O(log T ) if K > 0 and

of order O(1) if K = 0. In other words, we see a clear distinction among DRC2 problems driven

by the value of K in Assumption 2.

At a more detailed level, the dependency on the number of resources L enters our bound

indirectly via the constants ȳ2, ȳ∞, and K. Interestingly, when resource consumption is uniformly

bounded, i.e., ȳ∞ <∞, the dependency on the number of resources is mostly driven by ȳ22. While in

the worst case we could have ȳ22 = Ω(L), in many settings of interest, one will have ȳ22 = O(1) and

we obtain bounds that are independent of the number of resources. This could happen, for example,

if every opportunity consumes only a finite subset of resources. Our dependence in the number of

resources is better than some existing, specialized results on the literature (e.g., those in Jasin and

Kumar 2012) because we use concentration inequalities for multi-dimensional martingales instead

of a union bound to control the stopping time associated to the first time a resources is close to

being depleted, which would naturally lead to a linear dependence on L. Finally, as it is common

in the operations research literature, the bound provided in Theorem 1 is instance dependent, i.e.,

it depends on the parameters of the particular problem at hand. (This is in contrast to, e.g., bounds

in the multi-armed bandit [Bubeck and Cesa-Bianchi, 2012] or online convex optimization [Hazan

et al., 2016] literatures which are worst-case over a large class of instances and depend on few key

parameters such as the size of the action space and the length of the horizon.)

The proof of the theorem can be found in Appendix B. The proof leverages ideas pioneered by

Jasin and Kumar [2012] and lifts them to more general settings than the one considered in their

paper. In particular, we analyze the performance of the CE heuristic up to the stopping time

τ , where τ is the first time that a resource is close to depletion or the ratio of capacity to time

remaining ρt leaves the ball N (ρ1, δ, C) defined in Assumption 2. Using that the fluid problem gives

an upper bound on the optimal value of the stochastic problem, that is, J∗(C, T ) ≤ T J̄(C/T ) (see

Proposition 1), we can bound the reward loss as follows

J∗(C, T )− JCE(C, T ) ≤ T J̄(ρ1)− JCE(C, T ) (1)

≤ E

[
τ∑

t=1

J̄(ρ1)−
τ∑

t=1

r(θt, a
πCE

t , ϵt)

]
+ E

[
T∑

t=τ+1

J̄(ρ1)

]
,

where aπ
CE

t denotes the action taken by the CE heuristic and the second inequality follows because

r(θt, a
πCE

t , ϵt) ≥ 0 since the null action a0 is feasible. The second term of the right-hand side can be

written as E[T − τ ] · J̄(C/T ), which is of order O(1), as we establish in Lemma B-3. This follows

because, under the CE heuristic, the ratio ρt behaves like a martingale for the binding resources

(and a submartingale for the ones that are not binding) by Assumption 2.2 and, as a result, the
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heuristic never runs out of resources nor ρt leaves the set N (ρ1, δ, C) too early. The first term is

shown to be of order O(log T ). To see this, note that up to time τ actions are not constrained by

resources and the expected reward at period t satisfies E
[
r(θt, a

πCE

t , ϵt) | ρt
]
= J̄(ρt) because the

CE heuristic takes actions according to ϕ∗
ρt . Therefore, using Assumption 2.1 together with the

fact that ∂J̄
∂ρl

(ρ1) = 0 for every resource l ∈ U that is not binding, we can upper bound the first

term by

E

[
τ∑

t=1

∑
l∈C

∂J̄

∂ρl
(ρ1)(ρ1,l − ρt,l)

]
+ (K/2)E

[
τ∑

t=1

∥ρ1|C − ρt|C∥2
]
.

The first term is zero because, for the binding resources, ρt behaves like a martingale, while the

second term can be bounded using the fact that martingale differences are orthogonal. Putting

everything together, we then conclude with the bound in the Theorem.

We highlight here again that, although the general idea behind the proof of Theorem 1 is not

novel, our contribution is to generalize this result to the class of DRC2 problems and identify

crisp sufficient conditions that allow us to obtain a performance guarantees on the CE heuristic

for every problem in this class without the need of exploiting specific structural features of each

particular application. As we will see later, this allows us to obtain in some cases weaker conditions

or sharper bounds, but also to obtain new results altogether. More specifically, we see that it is

not only possible to define a unified model for a very large class of dynamic optimization problems

as we established in §3, but it is also possible to identify general sufficient conditions that allow for

a unified analysis of the CE heuristic and its performance.

Assumption 2 provides sufficient conditions to obtain good performance guarantees for the CE

heuristic that involve, in a neighborhood of the “initial inventory per period,” local smoothness of

the optimal objective value of the fluid problem, as well as the fact that the consumption constraints

stay binding if they were binding for the initial problem. These conditions, while simple to state,

may not be easy to check in many applications. In §5 we provide a “tree” of sufficient conditions

leading to assumptions on the primitives of the model, which are simple to check, that imply

Assumption 2 and, therefore, also the bound in Theorem 1. Our conditions yield, in many cases,

closed-form expressions for the values of δ and K based on the primitives of the problem. In

particular, we highlight the drivers for positive values of K, delineating when one should expect to

obtain logarithmic versus constant regret. Next, in §6 we revisit the applications presented in §3
using the results from §5. For each problem, we provide problem-specific sufficient conditions for

our assumptions to hold, and we derive the implications of Theorem 1. As we will see, our results

allow to recover some existing results in the literature as special cases, sometimes under weaker

assumptions, and also uncover new results for other classes of problems studied in the literature.
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5 Drivers of CE Heuristic Performance: Dual Problem and Gen-

eral Sufficient Conditions

An important component to understand the drivers of the CE heuristic is to link the primitives

of a DRC2 problem to the performance that is achieved. In this section, we address this goal by

giving conditions on the primitives of a DRC2 problem that are sufficient for Assumption 2 to be

satisfied. These conditions provide a unifying framework to understand how the structural features

of different problems across the DRC2 class impact the performance of the CE heuristic, rather

than requiring a problem-specific analysis for each application.

We introduce a dual of Problem (PFLUID) in which we dualize the consumption constraints.

To this end, let µ ∈ RL
+ be the vector of Lagrange multipliers associated with the consumption

constraints of Problem (PFLUID). Let r̄ : Θ × A → R+ denote the expected reward function, i.e.,

r̄(θ, a) = Eϵ

[
r(θ, a, ϵ)

]
. In the same way, for each l ∈ [L], let ȳ : Θ×A → RL

+ denote the expected

resource consumption function, i.e., ȳ(θ, a) = Eϵ

[
y(θ, a, ϵ)

]
. Then, the Lagrangian function is given

by

L(ϕ, µ) = Eθ∼p,a∼ϕ(θ)

[
r̄(θ, a)

]
+ µ⊤ (ρ− Eθ∼p,a∼ϕ(θ)

[
ȳ(θ, a)

])
= Eθ∼p,a∼ϕ(θ)

[
r̄(θ, a)− µ⊤ȳ(θ, a)

]
+ µ⊤ρ.

Define, for each θ ∈ Θ, the function gθ : RL → R, which captures the optimal opportunity-cost

adjusted reward given a context, and is given by

gθ(µ) = sup
a∈A

{
r̄(θ, a)− µ⊤ȳ(θ, a)

}
. (2)

We will refer to gθ(µ) as the context-dependent adjusted reward function. We denote the set of

maximizers associated with the function gθ(µ) by

A∗
θ(µ) = argmax

a∈A

{
r̄(θ, a)− µ⊤ȳ(θ, a)

}
, (3)

and let the adjusted reward function to be g(µ) = Eθ∼p [gθ(µ)]. The Lagrange dual function, for

fixed ρ ≥ 0, is given by

Ψρ(µ) = sup
ϕ∈∆(A)

L(ϕ, µ) = µ⊤ρ+ Eθ∼p

[
sup
a∈A

{
r̄(θ, a)− µ⊤ȳ(θ, a)

}]
= µ⊤ρ+ Eθ∼p [gθ(µ)] = µ⊤ρ+ g(µ) ,

where the second equality follows because the problem is separable over contexts. The dual problem

20



of Problem (PFLUID) is then given by

inf
µ∈RL

+

Ψρ(µ) . (4)

In Figure 2, we provide an overview of the results in this Section, which highlight how a variety

of assumptions naturally lead to Assumption 2. The arrows and associated results establish the

sufficiency of the conditions from one block to another block. At a high level, we present two sets of

conditions under which Assumption 2 holds and characterize the corresponding parameters. A first

set of conditions is when the fluid problem (PFLUID) is a linear program, which corresponds the

case of finite actions and contexts (§5.1); in this case, Assumption 2 holds with K = 0. A second

set of conditions is on the dual of (PFLUID) (§5.2). These conditions apply to a variety of settings

and the analysis links the values of K and δ to the primitives of the problem. In particular, we

illustrate these conditions in two notable subfamilies of cases: a continuum of actions, and binary

actions with a continuum of contexts.

5.1 When the fluid problem is a finite dimensional linear program

Suppose that the set of actions A is finite and the set of contexts Θ is finite. We will de-

rive sufficient conditions for Assumption 2 to hold with K = 0. Examples of problems with

finite set of contexts and actions are: network revenue management problems with finite customer

classes, multi-secretary problems with finite types, choice-based revenue management problems,

order fulfillment problems with discrete locations, online matching problems, among others.

Note that Problem (PFLUID), in this special case, can be written as a finite-dimensional linear

programming problem as follows

J̄(ρ) = max
ϕθ∈∆(A)

∑
θ∈Θ

pθr̄
⊤
θ ϕθ

s.t
∑
θ∈Θ

pθȳθϕθ ≤ ρ ,
(5)

where r̄θ = (r̄(θ, a))a∈A ∈ R|A|
+ is the vector of expected rewards for the different actions and

ȳθ = (ȳ(θ, a))a∈A ∈ RL×|A|
+ is the matrix of expected resource consumption. Furthermore, the

feasible set is non empty and compact, and therefore there exists an optimal solution.

The following is a common assumption in the literature associated with special cases of DRC2

problems that guarantees that the CE policy has bounded reward loss (see, e.g., Jasin and Kumar

2012, Wu et al. 2015).

SC 1. The primal problem (5) has a non-degenerate optimal solution for ρ = ρ1, namely ϕ∗
ρ1.

Considering the standard form of Problem (5) (see Appendix A.3 for details and the proof of

Lemma 1 for an explicit matricial representation), let B ∈ R(L+|Θ|)×(L+|Θ|) be the corresponding
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Theorem 1

Finite Actions
Finite Contexts

(PFLUID) is a finite LP (§5.1)

(PFLUID) admits a non-
degenerate solution

(SC 1)

Lemma 1

Dual conditions
for non-degeneracy

(SC 2 and SC 3)

Lemma 2

(PFLUID) is not a finite LP (§5.2)

Deterministic control
is optimal

for (PFLUID)

Smoothness of
context-dependent
adjusted rewards

(SC 4)

Proposition 2

Continuity of reward
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uniqueness of optimal
resource consumption

(SC 5, SC 6)

Proposition 3

Strong local convex-
ity of adjusted re-
wards / dual slack-
ness conditions
(SC 7 and SC 8)

Lemma 3
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Interior optimal ac-
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and consumption

(SC 9, SC 10, SC 11)

Continuum of Actions
Arbitrary Contexts

Distribution of rewards
is absolutely contin-
uous and increasing

(SC 12, SC 13, SC 14)

Lemma 5

Binary Actions
Continuum of Contexts

Figure 2: Sufficient conditions and their implications on the performance of the CE
heuristic. Throughout, we assume that Assumption 1 holds.
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optimal basis matrix and denote byB−1
ρ1 the submatrix ofB−1 associated to the resource constraints.

In the following lemma, we show that Assumption 2 holds under Assumption SC 1 and characterize

the associated values of K and δ.

Lemma 1. Suppose that Assumption SC 1 holds. Then Assumption 2 holds with K = 0 and δ =

min(ϕ∗
min, x

∗
min)/∥B−1

ρ1 ∥, where ϕ
∗
min = minθ∈Θ,a∈A{ϕ∗

θ(a) : ϕ
∗
θ(a) > 0}, x∗min = minl∈[L] {x∗l : x∗l > 0}

and x∗l = ρl −
∑

θ∈Θ pθȳlθϕ
∗
θ is the slack of the l-th resource constraint.

The proof is provided in Appendix C.2.1. A direct implication of Lemma 1 is that the reward

loss if the action and context spaces are finite is on the order of O(1).

Corollary 1. Suppose that the sets of actions and contexts are finite and that Assumptions 1 and SC 1

hold. Then, the reward loss of the certainty equivalent heuristic is bounded by a constant for DRC2

problems.

Note that the bound on the reward loss is proportional to δ−2 and hence deteriorates when

δ is small, which can occur if unconstrained resources are close to binding or if the fluid solution

prescribes some actions to be taken with low probability.

Although the sufficient condition SC 1 is given on the primal problem (5), it is also possible to

state sufficient conditions on the partial dual problem (4) to guarantee that Assumption 2 holds.

In this case, (4) can be thought of as a “partial” dual problem in which we dualize the resource

constraints but not the simplex constraint
∑

a∈A ϕθ(a) ≤ 1. Then, it follows that the duality gap

is zero and J̄(ρ) = infµ∈RL
+
Ψρ(µ).

It is well known that a sufficient condition to have a non-degenerate (and unique) solution of

a linear problem is uniqueness and non-degeneracy of the dual problem (see, e.g., Bertsimas and

Tsitsiklis 1997), and therefore in what follows we state sufficient conditions to guarantee the latter.

More specifically, the condition SC 2 implies that the dual problem of (5) for ρ = ρ1 has a unique

solution, whereas from SC 2 and SC 3 we obtain that such optimal solution is not degenerate,

concluding that under conditions SC 2 and SC 3, the problem (5) has a unique and non-degenerate

optimal solution for ρ = ρ1, which is stated in Lemma 2.

SC 2. The dual problem (4) has a unique solution, µ1, for ρ = ρ1.

SC 3. The set of maximizers defined in (3) satisfies
∑

θ∈Θ |A∗
θ(µ

1)| = L+ |Θ|.

In the following lemma, we formalize that under Assumptions SC 2 and SC 3 there exists

a unique and non-degenerate optimal solution of (5) for ρ = ρ1. The proof is provided in Ap-

pendix C.2.2.

Lemma 2. Under Assumptions SC 2 and SC 3, Assumption SC 1 holds.
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Figure 3: Function J̄ and dual function Ψρ for two different parameters.

Geometric interpretation. We now provide a geometric interpretation for Assumption SC 2

as well as for the deterministic and dual functions for the case of finite actions and finite contexts.

First, note that problem (5) is an LP and therefore the deterministic function J̄(ρ) is a concave

piece-wise linear function (see Bertsimas and Tsitsiklis 1997 for more details). Moreover, due to

the nature of the problem, it will be non-decreasing. In Figure 3 (a), the function J̄(ρ) is plotted

for a problem with one resource and two contexts. Every optimal dual variable µ for Ψρ(µ) gives a

super-gradient to J̄(ρ). Therefore, the slope of each straight-line segment is equal to the Lagrange

multiplier associated to the consumption constraint, and the corresponding interval gives the values

of the right-hand side range for the consumption constraint ρ for which the same dual variable is

optimal.

In Figure 3 (b) and (c), we plot the dual function Ψρ(µ) as a function of µ for two different

possible values of the parameter ρ. In Figure 3 (b), we take ρ = ρ11, a value where J̄(ρ) has a

kink. In this case, the dual problem admits an infinite number of solutions (flat blue segment in

the figure) and every dual solution is a super-gradient of J̄(ρ1). In Figure 3 (c), we plot the

dual function at ρ = ρ21, a value belonging to an interval where J̄(ρ) is smooth. There, the set of

super-gradients is a singleton and, as a result, the dual optimal solution is unique (red dot in the

figure). Thus, Assumptions SC 2 and SC 3 are equivalently asking that the parameters ρ1 lies in

the interior of an interval where the deterministic function J̄(ρ) is smooth.

5.2 Beyond finite dimensional linear programs as fluid problems

When either the set of actions or the set of contexts is a continuum, Problem (PFLUID) is not

necessarily a finite dimensional linear program. Next, we explore these cases and the drivers of

the parameters K and δ associated with Assumption 2, and in turn why these problems often lead

to logarithmic regret. (As we will see, natural conditions on the primitives lead to Assumption 2
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holding with K > 0.)

In particular, we first provide sufficient conditions to ensure that strong duality holds for the

fluid problem and that the fluid problem admits an optimal deterministic solution. Then, we give

a closed-form expression for the values of K > 0 and δ for which Assumption 2 holds. Finally, we

illustrate our conditions on two prototypical examples: finite contexts with a continuum of actions

and a continuum of contexts with binary actions.

5.2.1 Strong duality and deterministic controls

We next present conditions on the function gθ defined in (2) that are sufficient to ensure that

the fluid problem has zero duality gap for every positive parameter ρ and that the fluid problem

admits an optimal deterministic solution. Our sufficient conditions require that the functions gθ

are differentiable and an optimal action exists for every context and dual variable.

SC 4. Almost surely over θ ∈ Θ we have that, for every µ ≥ 0, function gθ(µ) is differentiable in

µ and the set of maximizers A∗
θ(µ) is non-empty.

Proposition 2. Under Assumptions 1 and SC 4, strong duality for (PFLUID) holds, i.e., J̄(ρ) =

infµ∈RL
+
Ψρ(µ) for all ρ > 0. Furthermore, J̄(ρ) admits a deterministic optimal solution for all ρ.

A proof is provided in Appendix C.2.3. We first prove that the dual problem admits an optimal

solution using the extreme value theorem. This follows because the dual objective is continous and,

without loss, we can restrict dual variables to a compact set. We then prove that strong duality

holds by first principles by constructing a primal-dual pair that satisfies complementary slackness

and Lagrangian optimality. The result follows because the primal solution is, by construction,

deterministic.

Proposition 2 implies that, under assumption SC 4, randomization in (PFLUID) is not needed.

As a result, we can write J̄(ρ) as the following non-linear program:

J̄(ρ) = max
a∈A|Θ|

Eθ∼p,ϵ∼f [r(θ, aθ, ϵ)]

s.t Eθ∼p,ϵ∼f [yl(θ, aθ, ϵ)] ≤ ρl, ∀l ∈ [L] ,

where a ∈ A|Θ| is to be interpreted as a function that maps a context θ to an action aθ. We remark

here that in the literature, the fluid problem is sometimes formulated directly over deterministic

actions as stated above. The analyses of the induced certainty equivalent policies typically require

concavity of the objective and convexity of the constraints (with respect to actions or appropriate

transformations of actions); see, e.g., Gallego and Van Ryzin [1997], Maglaras and Meissner [2006],

Jasin [2014]. Remarkably, Proposition 2 allows to recover the optimality of deterministic actions
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even when the problem is non-convex and allows to obtain strong guarantees on the performance

of certainty equivalent controls in more generality.

The resulting non-linear program might be non-convex and, in general, challenging to solve.

A straightforward corollary of Proposition 2 is that instead of solving the primal problem, it is

possible to construct deterministic controls for the CE heuristic by solving the dual problem at

each step. In many cases the dual problem can be efficiently solved (e.g., using first-order methods)

because it is always guaranteed to be convex and finite dimensional. For all ρ > 0, we show in

the same result that the dual problem admits an optimal solution µ∗ ∈ argminµ∈RL
+
Ψρ(µ). A

primal control can be constructed by solving, for each context θ ∈ Θ, for an action a∗θ ∈ A∗
θ(µ

∗) =

argmaxa∈A

{
r̄(θ, a)− µ∗⊤ȳ(θ, a)

}
. In other words, optimal actions maximize rewards minus the

opportunity cost of consuming resources, where resources are priced according to the optimal dual

variable µ∗. We notice here that in some cases, such as the problem of dynamic bidding in repeated

auctions (§3.2, §6.2), once dual variables are available, an optimal action can be computed in closed

form.

The assumptions presented above are stated in terms of g(µ), which is a derived object, and,

in general, might not be easy to verify. We now present sufficient conditions on the primitives of

the problem for Assumptions SC 4 to hold.

SC 5. Almost surely over θ ∈ Θ, the expected reward function r̄(θ, a) is upper-semicontinuous in a

and the expected resource consumption function ȳ(θ, a) is continuous in a.

SC 6. Almost surely over θ ∈ Θ, the set of optimal actions A∗
θ(µ) is non-empty and the set of

optimal resource consumptions {ȳ(θ, a∗) : a∗ ∈ A∗
θ(µ)} is a singleton for every µ.

Proposition 3. If the set of actions A is compact and conditions SC 5 and SC 6 hold, then

condition SC 4 is fulfilled.

The proof of Proposition 3 follows directly from Corollary 4 of Milgrom and Segal [2002]. When

the set of actions is finite, the continuity conditions SC 5 trivially hold, and we only require that

the set of optimal resource consumptions is a singleton. For the latter condition to hold, one needs

that the set of contexts is uncountable. It follows from Proposition 3 that if A is compact and SC 5

and SC 6 hold, then there is an optimal deterministic solution to the fluid problem (PFLUID).

5.2.2 Dual-based sufficient conditions for Assumption 2

In addition to condition SC 4, we need to make another regularity assumption over the function g,

stated below, to ensure Assumption 2 holds for these particular cases of DRC2.
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SC 7. There exist positive real numbers κ and ν, with ν < µ = minl∈C µ
1
l , such that for all

µ ∈ N (µ1, ν) ∩ RL
+, g(µ) satisfies

g(µ) ≥ g(µ1) +∇g(µ1)⊤(µ− µ1) +
κ

2
∥µ− µ1∥2 . (6)

In what follows we will refer to property (6) as g admitting a κ-lower upward quadratic (κ-LUQ)

envelope in N (µ1, ν). See Figure 4 (b) for an example of a function admitting a κ-LUQ and its

envelope.3 The next assumption provides a sufficient condition to guarantee that the resources that

are not binding at the initial resource vector ρ1 remain not binding if we locally perturb resource

availability. The condition is stated in terms of the derivative of the dual function, but can be

understood as requiring that resources that are not binding have sufficient “slack.”

SC 8. For each µ ∈ N (µ1, ν)∩RL
+ and ρj ≥ ρj,1−νκ/2, it holds that ∂g

∂µj
(µ)+ρj > 0 for resources

j ∈ U , where U = {j ∈ [L] : µ1
j = 0} is the set of resources with zero initial dual variables.

Lemma 3. Suppose that Assumptions SC 4, SC 7, and SC 8 hold. Then Assumption 2 holds with

K = 1/κ and δ = (νκ)/2.

A proof is provided in Appendix C.2.4. To prove the result we need to show that the two

conditions of Assumption 2 hold for ρ ∈ N (ρ1, δ, C), i.e., J̄(ρ) admits a lower downward quadratic

envelope and that all resources that are binding at ρ1 remain binding at an optimal solutions in a

neighborhood of ρ1. Some intuition can be gleaned in light of well-known duality results between

strong convexity and strong smoothness (see, e.g., Kakade et al. 2009). The proof of Lemma 3,

however, is more delicate because our quadratic envelope condition is local. We prove the result

by extending the envelope condition to hold globally over the dual domain and then optimizing

over its convex envelope. For the second condition, we show that for every ρ ∈ N (ρ1, δ, C) the

dual optimal solutions are strictly positive for resources C that are binding at the initial resource

vector and zero for the other resources that are not binding. The condition would then follow from

complementary slackness.

We obtain the following result as a corollary.

Corollary 2. Suppose that Assumptions 1, SC 4, SC 7, and SC 8 hold. Then, the reward loss of

the certainty equivalent heuristic is of logarithmic order in T .

Geometric interpretation. The deterministic function J̄(ρ) can be easily shown to be concave

and non-decreasing. Assumption SC 7 states that the dual function admits a κ-LUQ envelope in a

neighborhood of the Lagrange multiplier µ1. In Figure 4 (b) we represent the dual function for a one-

resource problem. By duality, this allows us to prove the smoothness condition on the deterministic

3Admitting a κ-LUQ envelope is a weaker and local notion of the κ-strongly convex condition, which requires (6)
to hold for every pair of dual variables µ, µ′.
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Figure 4: Deterministic proxy J̄ and its Lagrangian dual function, and their envelopes.

function stated in the first statement of Assumption 2, which is represented in Figure 4 (a) and

consists of J̄(ρ) admitting a K-LDQ envelope.

Recall that in the case of a finite set of contexts and actions (cf. §5.1), in contrast, it was not

necessary to assume that the dual function admits a κ-LUQ envelope (condition SC 7). As we can

see in Figure 3 (b), a lower upward quadratic envelope is obtained for free when the optimal dual

solution is unique and the context and action sets are finite because the dual problem is piece-wise

linear.

5.2.3 Example 1: Continuum of actions

As a first example of the theory, we consider settings in which the set of actions A is a continuum

(contexts can be either finite or not). Examples of applications with continuous actions include, for

example, network dynamic pricing problems with finite segments and a continuum of prices, and

dynamic bidding in repeated auctions with budgets. To simplify the exposition we assume that

all resources are binding at the initial resource vector by imposing that µ1 > 0 and give sufficient

conditions on the primitives for SC 7 to hold. In this case, we shall prove that gθ(µ) admits a

lower upward quadratic envelope for each context θ and then simply take expectations over the

contexts to establish that SC 7 holds. We do so by imposing envelope conditions on the reward

and consumption functions.

For each θ ∈ Θ, let us denote by a1θ a feasible action that maximizes r̄(θ, a)− (µ1)⊤ȳ(θ, a). We

will assume the following extra conditions in order to bound the reward loss.

SC 9. For each θ ∈ Θ, the feasible action a1θ is interior. That is, there exists a positive number φ

such that N (a1θ, φ) ⊆ A for all θ in Θ.
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SC 10. r̄(θ, ·) admits a κr-LDQ envelope in N (a1θ, φ). That is, for all θ ∈ Θ,

r̄(θ, a) ≥ r̄(θ, a1θ) +∇r̄(θ, a1θ)⊤(a− a1θ)−
κr
2
∥a− a1θ∥2 ∀a ∈ N (a1θ, φ).

SC 11. There exists a positive vector κy such that for all θ ∈ Θ and a ∈ N (a1θ, φ) the consumption

function ȳ(θ, ·) satisfies

ȳ(θ, a) ≤ ȳ(θ, a1θ) +∇ȳ(θ, a1θ)(a− a1θ) +
κy
2
∥a− a1θ∥2 , (7)

where ∇ȳ(θ, ·) represents the Jacobian matrix.

We will refer to property (7) as the consumption function ȳ(θ, ·) admitting a κy-upper upward

quadratic (κy-UUQ) envelope in N (a1θ, φ).
4 Analogously to the relation made with the lower down-

ward quadratic envelope notion, a sufficient condition for Assumption SC 11 to hold is that the

gradient ∇ȳj(θ, ·) is locally Lipschitz continuous for every resource j ∈ [L].

Given a real-valued matrix A, we denote by ∥A∥ = σmax(A), where σmax(M) represents the

largest singular value of matrix M . Recall that given a real-valued matrix A, its singular values

are the square roots of the eigenvalues of matrix A⊤A. We are now ready to provide sufficient

conditions for Assumption SC 7 to hold.

Lemma 4. Suppose that Assumptions SC 5-SC 11 hold. Then, if A is compact, SC 7 holds with

ν = κφ/σ and κ = κr + (ν + ∥µ1∥)∥κy∥ where σ = infθ∈Θ σθ, with σθ the minimum singular value

of ∇ȳ(θ, a1θ).

A proof is provided in Appendix C.2.5. We obtain the following result as a corollary.

Corollary 3. Suppose that there is a continuum set of actions. Furthermore, suppose that As-

sumption 1 and Assumptions SC 5-SC 11 hold. If the set of feasible actions A is compact and

µ1 > 0, the reward loss of the certainty equivalent heuristic is of logarithmic order in T .

5.2.4 Example 2: A continuum of contexts with binary actions

We now consider problems with a continuum of contexts and binary actions. These problems

naturally emerge in a variety of applications, dating back to the early network revenue management

formulation of Talluri and Van Ryzin [1998] in which the context is the fare offer of a customer,

to the special case of multi-secretary problems in which the context is the ability of the applicant

(see, e.g., Bray 2022 for a formulation with a continuum of contexts). To simplify the exposition,

we restrict attention to the case of binary actions—similar results can be derived when multiple

4The κy-UUQ envelope condition is a weaker and local notion of the κy-strongly smooth condition for concave
functions, which requires (7) to hold for every pair of actions a, a′.
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actions are available to the decision maker. Additionally, we assume that all resources are binding

at the initial resource vector by imposing that µ1 > 0.

We denote the set of actions by A = {0, 1}, i.e., the decision maker can either accept (a = 1)

or reject (a = 0) each opportunity. We assume that the null action is a = 0 and to simplify

the notation we denote by r̄(θ) = r̄(θ, 1) and ȳ(θ) = ȳ(θ, 1) the expected reward and resource

consumption of accepting an opportunity, respectively. (The reward and resource consumption of

rejecting are zero.) Resource consumption is non-negative, i.e., ȳ(θ) ≥ 0. Moreover, we have that

gθ(µ) = max
(
r̄(θ)− µ⊤ȳ(θ), 0

)
. We assume that the distributions of contexts is such that only one

action is optimal with probability one.

SC 12. For every µ ≥ 0, we have that Pθ∼p

{
r̄(θ) = µ⊤ȳ(θ)

}
= 0.

In the case of a continuum of contexts with binary actions, condition SC 5 trivially holds.

Moreover, under SC 12 we have that the set of maximizers A∗
θ(µ) is unique almost surely over the

contexts θ and SC 6 holds. Therefore, by Proposition 3, we readily obtain that condition SC 4 is

fulfilled. Thus, strong duality holds and the fluid problem admits an optimal deterministic control.

The functions gθ(µ) are piecewise linear and, thus, do not admit lower upward quadratic envelopes

as in the case of a continuum of actions. When there is a continuum of contexts, however, we can

establish that the expected function g(µ) = Eθ∼p [gθ(µ)] admits a lower upward quadratic envelope

because the convolution over contexts smoothes out kinks.

Our next assumption imposes that the density of rewards is bounded from below or, equivalently,

its distribution is strictly increasing, which is required for contexts to act as mollifiers.

SC 13. There exists a positive real number p such that for every measurable set R ⊂ [0, r̄∞] and

consumption vector 0 ≤ y ≤ ȳ∞, we have that Pθ∼p {r̄(θ) ∈ R | ȳ(θ) = y} ≥ p · |R|.

Our final assumption imposes that there is enough variation in resource consumption. This

condition is trivially satisfied when we have one resource. When we have multiple resources, it

guarantees that the dual function is strongly convex by preventing it from being constant along

fixed directions.

SC 14. There exists some positive reals ν > ∥µ1∥ and λ such that the minimum eigenvalue of the

positive definite matrix Eθ∼p

[
ȳ(θ)ȳ(θ)⊤1

{
y(θ)⊤µ1 + ν∥y(θ)∥ ≤ r̄∞

}]
∈ RL×L is at least λ.

We are now ready to provide sufficient conditions for Assumption SC 7 to hold.

Lemma 5. Suppose that Assumptions SC 12-SC 14 hold. Then, SC 7 holds with κ = pλ and ν.

A proof is provided in Appendix C.2.6. We obtain the following result as a corollary.

Corollary 4. Suppose that there are two actions and the set of contexts is a continuum. Further-

more, suppose that Assumptions SC 12-SC 14 hold. If µ1 > 0, the reward loss of the certainty

equivalent heuristic is of logarithmic order in T .
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6 CE Heuristic Performance: Corollaries Across Subclasses of

Problems

In this section we revisit the applications discussed in §3. Using the results from §5, we present

sufficient conditions for Assumption 2 together with the resulting performance characterization of

the CE heuristic; we then comment on the specific connections to the existing literature in the

study of the CE heuristic.

6.1 Network Dynamic Pricing

This class of problems was presented in §3.1. As highlighted there, this is a central class of problems

widely studied. For simplicity we assume that contexts are finite—similar results can be provided

when there is a continuum of contexts.

Let D̄(θ, a) = Eϵ[D(θ, a, ϵ)] denote the expected demand and r̄(θ, a) = a⊤D̄(θ, a) the corre-

sponding expected reward function. The fluid problem can be expressed as follows:

J̄(ρ) = max
ϕ∈Φ

∑
θ∈Θ

pθEa∼ϕ(θ)

[
r̄(θ, a)

]
s.t

∑
θ∈Θ

pθEa∼ϕ(θ)

[
QθD̄(θ, a)

]
≤ ρ.

(8)

In this problem, we will assume, as is commonly done in the literature, that there is a continuum

of actions (we comment on the case of finite actions later). We map conditions SC 5-SC 11 to

sufficient conditions for this particular problem. The following conditions together with µ1 > 0 and

compactness of the set of actions A are sufficient for Lemma 4 to hold.

• The expected demand function D̄(θ, a) is continuous in a.

• The expected resource consumption QθD̄(θ, a) at a maximizer of (a−Qθµ)
⊤D̄(θ, a) is unique.

• For each θ ∈ Θ, the price vector maximizing (a−Q⊤
θ µ)

⊤D̄(θ, a), namely a1θ, is interior. That

is, there exists a positive number φ such that N (a1θ, φ) ⊆ A for all θ in Θ.

• The expected revenue function r̄(θ, ·) admits a κr-LDQ envelope in N (a1θ, φ).

• There exists a positive vector κy such that the expected demand function D̄(θ, ·) admits a

κy-UUQ envelope in N (a1θ, φ).

In particular, under the conditions above, from Lemma 3, Assumption 2 holds with K = 1/κ

and δ = (νκ)/2, where κ = κr+(ν+∥µ1∥)∥κy∥, ν = κφ/σ, and σ is a lower bound on the minimum

singular value of Qθ∇D̄(θ, a1θ).
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Therefore, we can use Corollary 2 to deduce that the revenue loss of the certainty equivalent

heuristic is of order O(log T ) for the network dynamic pricing problem with a continuum set of

feasible prices. Another implication of our result is that the optimal pricing policy associated with

the deterministic proxy is deterministic and the decision maker does not need to randomize over

posted prices.

Finally, note that, if we consider a finite set of feasible prices, the fluid problem reduces to

a finite linear program and the sufficient conditions from Section 5.1 guarantee constant revenue

loss for the CE heuristic. Conversely, if we have finite prices but a continuum contexts, then it is

possible to guarantee O(log T ) regret in a variety of cases by invoking results similar to those in

Section 5.2.4.

Connection with earlier analysis of the CE heuristic. The CE heuristic for this problem

was previously analyzed in Maglaras and Meissner [2006] and Jasin [2014]. The former established

that a CE heuristic for the pricing problem will always yield an asymptotic weak decrease in the

revenue loss compared to a static control. Jasin [2014] considers a single customer class and presents

a certainty equivalent heuristic akin to the CE one. Our general result recovers the bound in Jasin

[2014] on the logarithmic revenue loss but our sufficient conditions are weaker than his. It is worth

mentioning that this problem is typically analyzed in the demand space in the literature, i.e., for

each class θ, the decision variables are the expected demands λ = D̄(θ, a) instead of the prices a

(see, e.g., Jasin 2014). In many cases, this leads to a more tractable problem because constraints

become linear and, under additional conditions, the objective becomes concave. However, further

assumptions are needed for this reformulation of the problem to go through. For example, it is

typically assumed that the reward function is concave in the demand space and the demand function

is invertible. Our result yields similar performance guarantees for the CE heuristic and only requires

local smoothness properties of the revenue function, which typically leads to weaker assumptions.

This is an important departure from previous work, even when specializing the analysis. We see

here, how by lifting the formulation to a DRC2 problem, we are not only able to recover existing

results through a generalized argument, but also to weaken the assumptions needed for such results

to hold.

6.2 Dynamic Bidding in Repeated Auctions

This class of problems was presented in §3.2. To simplify some of the notation in what follows,

given an action a, we introduce the interim allocation and interim payment variables defined as

follows: q̄(a) = Eϵ∼f [q(a, ϵ)], m̄(a) = Eϵ∼f [m(a, ϵ)]. For simplicity, we assume that the set of values

Θ is finite, but our results hold when the set of values is a continuum. For the particular setting
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described in §3.2, the fluid problem (PFLUID) is equivalent to the following problem:

J̄(ρ) = max
ϕ∈Φ

∑
θ∈Θ

pθEa∼ϕ(θ)

[
θq̄(a)− m̄(a))

]
s.t

∑
θ∈Θ

pθEa∼ϕ(θ)

[
m̄(a)

]
≤ ρ .

(9)

For each value θ ∈ Θ, let gθ(µ) = maxa∈A {θq̄(a)− (µ+ 1)m̄(a)}. Assumption SC 4 requires

that gθ(µ) is differentiable in µ and that gθ(µ) is achieved by an action. Under these conditions,

Proposition 2 implies that strong duality holds and the Problem (9) admits a deterministic optimal

solution. In this application, we can characterize an optimal bidding strategy in terms of an optimal

bidding function for the static auction without budget constraints, which we denote by β : Θ→ A.
That is, given an advertiser with valuation θ, the optimal bidding strategy for the static auction

(ignoring budget constraints) satisfies

β(θ) ∈ argmax
a∈A
{θq̄(a)− m̄(a))} .

We have the following result. A proof is provided in Appendix C.3.1.

Proposition 4. Under Assumption SC 4, an optimal solution of (9) is to bid β(θ/(1+µ∗)) when

the value is θ, where µ∗ is the optimal solution of the dual problem of (9).

If in addition Assumptions SC 7 and SC 8 hold, from Lemma 3 we obtain that Assumption 2

holds with K = 1/κ and δ = (νκ)/2. Below, we study the particular cases of second-price auction

and first-price auction. Specifically, we provide sufficient conditions on the primitives of the problem

for conditions SC 4 and SC 7 to be satisfied.

Second-price auctions. In a second-price auction, the bidder with the highest bid wins the

auction and pays the second-highest bid. In this case, we reduce the definition of ϵ to a random

variable capturing the maximum bid of the competitors and take E = R+. Again, we assume

ϵ is distributed according to f , with density function f ′. While the maximum competing bid ϵ

is assumed to be independent of the values θ, our results can easily incorporate correlation (see

Appendix A.1). Without loss, ties are broken in favor of the decision maker. The allocation and

payment functions are given by q(a, ϵ) = 1{a≥ϵ} and m(a, ϵ) = ϵ1{a≥ϵ}, respectively.

Suppose that the following conditions hold:

• The distribution of the maximum competing bid f is absolutely continuous and strictly in-

creasing.

• The density f ′ is locally ξ-Lipschitz continuous with respect to a1θ in N (a1θ, φ), i.e., |f ′(a)−
f ′(a1θ)| ≤ ξ|a− a1θ| for all a ∈ N (a1θ, φ).
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It is possible to show—see Lemma A-2 in Appendix A.4—that these conditions are sufficient to

apply Proposition 3 and Lemma 4 and, in turn, Corollary 4 holds. This leads to a revenue loss of

logarithmic order in T .

First-price auctions. In a first-price auction, the winner is the highest bidder but pays his

bid. Again, we reduce the definition of ϵ to a random variable capturing the maximum bid of the

competitors. We assume ϵ is distributed according to f , with density function f ′. The allocation

and payment functions are given by q(a, ϵ) = 1{a≥ϵ} and m(a, ϵ) = a1{a≥ϵ}, respectively.

Suppose the following conditions hold:

• The distribution of the maximum competing bid f is absolutely continuous.

• The function M(a) = a+ f(a)/f ′(a) is strictly increasing.

• The bid a1θ maximizing θq̄(a)−(1+µ1)m̄(a) is interior. That is, there exists a positive number

φ such that N (a1θ, φ) ⊂ A for all θ ∈ Θ.

• The density f ′ is locally ξ−Lipschitz continuous with respect to a1θ in N (a1θ, φ).

Moreover, if we have µ1 > 0, then it can be proved—see Lemma A-3 in Appendix A.4—that

assumptions SC 5-SC 11 hold and, therefore, by Corollary 4 we obtain a revenue loss of logarithmic

order in T .

Connection with earlier analysis of the CE heuristic. While the problem of bidding in

repeated auctions with budgets has been studied in the past (see, e.g., Abhishek and Hosanagar

2013, Balseiro et al. 2015), to the best of our knowledge, this is the first result that characterizes the

reward loss of a certainty equivalent heuristic with resolving for the advertiser’s decision problem.

We note here that this problem is an important illustration of the value of the unified DRC2 model

we propose, and the associated highly general sufficient conditions for the logarithmic loss of the

CE heuristic. Even more, we note that our analysis does not require convexity assumptions to hold.

6.3 Network Revenue Management

This class of problems was presented in §3.3. Note that here, in contrast to the two problems

exposed before, the set of actions is finite (binary).

In the case of finite customer classes (contexts), Problem (5) can be written as follows

J̄(ρ) = max
ϕθ(1)∈[0,1]

∑
θ∈Θ

pθ rθ ϕθ(1)

s.t
∑
θ∈Θ

pθ Qθ ϕθ(1) ≤ ρ .
(10)
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Because the set of actions consists of A = {0, 1}, it is enough to consider decision variables ϕθ(1)

for all θ ∈ Θ because ϕθ(0) = 1−ϕθ(1). Removing the variable ϕθ(0) from the fluid problem requires

a slight change in the statement of Lemma 1. In the standard form representation of the problem,

the constraint matrix is Q = (Q̃, I) ∈ R(L+|Θ|)×(L+2|Θ|) where Q̃ ∈ R(L+|Θ|)×|Θ| is the constraint

matrix associated to the decision variables (ϕθ(1))θ∈Θ and the identity matrix I ∈ R(L+|Θ|)×(L+|Θ|)

is associated to the slack variables of the resource constraints and the constraints ϕθ(1) ≤ 1. The

θ-th column of Q̃ consists of the vector
(
pθQθ
eθ

)
, where eθ ∈ R|Θ| is the canonical vector. Let

B be the submatrix of Q corresponding to the columns associated to the basic variables at an

optimal solution, and B−1
ρ1 the submatrix of B−1 associated to the resource constraints. Then,

under Assumption SC 1, Assumption 2 holds with K = 0 and δ = min{ϕ∗
min, x

∗
min}/∥B−1

ρ1 ∥, where
x∗min = minl∈[L] {x∗l : x∗l > 0} and x∗l = ρl −

∑
θ∈Θ pθQθlϕ

∗
θ(1) is the slack of the l-th resource

constraint. In the definition of ϕ∗
min we now take into account how close the controls are to both

zero and one. That is, ϕ∗
min = minθ∈Θ{ϕ∗

θ(1) : ϕ
∗
θ(1) > 0} ∧minθ∈Θ{1 − ϕ∗

θ(1) : ϕ
∗
θ(1) < 1}, where

x ∧ y denotes the minimum between x and y.

When there is a continuum of contexts5, one may use the analysis in §5.2.4 and the associated

sufficient conditions to observe that the CE heuristic will guarantee logarithmic regret under a

variety of settings.

Connection with earlier analysis of the CE heuristic. The question of approximating opti-

mal performance through simple policies has also received significant attention around the network

revenue management problem.

Jasin and Kumar [2012] consider a more general version of the NRM problem than ours with

finite contexts (they consider a NRM problem with customer choice), and provide a constant revenue

loss guarantee for the CE heuristic under the nondegeneracy assumption. In that sense, we recover

their result for the setting where there is no customer choice.

Bray [2022] studies a NRM problem with a continuum of contexts and obtains logarithmic regret

under some regularity conditions and assumptions that imply SC 4 and SC 7, namely the local

strong convexity and smoothness of the adjusted reward function. The set of sufficient conditions

in Bray [2022] are stated in terms of the Hessian matrix of the adjusted reward function, whereas

the set of conditions in Section 5.2.4 are directly stated in terms of problem primitives. He considers

a policy similar to the CE heuristic that in each period burns a certain amount of the resources that

are not binding to prevent their inventory levels from drifting and make the sequence of remaining

inventory follow a martingale.

Wu et al. [2015] study a variant with one resource in which the decision maker can take one of

many actions (not just accept/reject) and show that the CE heuristic attains constant revenue loss

5Interestingly, the early NRM formulation in Talluri and Van Ryzin [1998] considers a continuum of contexts.
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under non-degeneracy while O(
√
T ) revenue loss under degeneracy. Bumpensanti and Wang [2020]

assume that arrivals follow a Poisson process and show that the CE heuristic could have a Θ(
√
T )

revenue loss when the fluid problem at ρ = C/T is degenerate, which highlights the necessity of the

non-degeneracy assumption for the loss considered here (we further comment on alternative losses

in §7).

6.4 Choice-Based Network Revenue Management

This class of problems was presented in §3.4. In this case, the set of actions is finite and the fluid

problem can be expressed as

J̄(ρ) = max
ϕ∈Φ

∑
θ∈Θ

∑
a∈A

ϕθ(a)pθ
∑
n∈[N ]

mng
n
θa

s.t
∑
θ∈Θ

∑
a∈A

ϕθ(a)pθ
∑
n∈[N ]

Qn
θ g

n
θa ≤ ρ.

(11)

We can define the vector of variables and the associated matrix involved in the constraints of

problem (11) by setting each column to pθ
∑

n∈[N ]Q
n
θ g

n
θa. Then, under Assumption SC 1, we can

apply Lemma 1 and Assumption 2 holds for K = 0 and δ defined as in the statement of the lemma.

Therefore, we obtain a constant bound on the revenue loss of the CE heuristic for the choice-based

network revenue management problem.

Connection with earlier analysis of the CE heuristic. Our formulation shows that a cer-

tainty equivalent heuristic admits strong performance guarantees under Assumption SC 1. This

recovers a result from Jasin and Kumar [2012] for a slightly different model with consumer choice.

6.5 Online Matching

Here we revisit the problem presented in §3.5 and perform a similar analysis to the one we conducted

for the NRM problem. That is, we interpret the value of δ for this class of problems. First, note

that the fluid problem is given by

J̄(ρ) = max
ϕ≥0

∑
θ∈Θ

∑
a∈[L]

ϕθ(a)pθfθa

s.t
∑
θ∈Θ

pθ diag(Qθ)ϕθ ≤ ρ

∑
a∈[L]

ϕθ(a) ≤ 1 ∀θ ∈ Θ ,

(12)
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where ϕ⊤
θ = (ϕθ(1), . . . , ϕθ(L)) and where for a vector x ∈ RL, diag(x) ∈ RL×L is a diagonal matrix

with diagonal entry i given by xi.

Here, as in the network revenue management problem, we need a slight change in the statement

of Lemma 1 because we removed the decision variable associated to the action a = 0. In the standard

form representation of the problem, the constraint matrix is Q =
(
Q1

Q2

)
∈ R(L+|Θ|)×(L|Θ|+L+|Θ|) where

Q1 ∈ RL×(L|Θ|+L+|Θ|) is the matrix associated to the resource constraints andQ2 ∈ R|Θ|×(L|Θ|+L+|Θ|)

is the matrix associated to the constraints
∑

a∈[L] ϕθ(a) ≤ 1. The matrix Q1 is obtained by horizon-

tally stacking the matrices diag(pθQθ) ∈ RL×L, the identity matrix I ∈ RL×L, and the zero matrix

0 ∈ RL×|Θ|. The matrix Q2 ∈ R|Θ|×(L|Θ|+L+|Θ|) is obtained by horizontally stacking the matrices

e1, e2, . . . , e|Θ|,0 ∈ R|Θ|×L and the identity matrix I ∈ R|Θ|, where eθ ∈ R|Θ|×L is the matrix with

all columns equal to the θ-th canonical vector of R|Θ|. Let B be the submatrix of Q corresponding

to the columns associated to the basic variables at an optimal solution, and B−1
ρ1 the submatrix

of B−1 associated to the resource constraints. Then, if the problem (12) has a non-degenerate

optimal solution for ρ = ρ1, Assumption 2 holds with K = 0 and δ = min{ϕ∗
min, x

∗
min}/∥B−1

ρ1 ∥,
where ϕ∗

min = minθ∈Θ,a∈[L]{ϕ∗
θ(a) : ϕ∗

θ(a) > 0} ∧ minθ∈Θ

{
1−

∑
a∈[L] ϕ

∗
θ(a) :

∑
a∈[L] ϕ

∗
θ(a) < 1

}
,

x∗min = minl∈[L] {x∗l : x∗l > 0} and x∗l = ρl −
∑

θ∈Θ pθQθlϕ
∗
θ(l) is the slack of the l-th resource

constraint, and the constant bound for the revenue loss is obtained.

Connection with earlier analysis of the CE heuristic. Although the online matching prob-

lem has been extensively studied under different settings (see, e.g., Karp et al. 1990, Aggarwal

et al. 2011, Vera and Banerjee 2021), to the best of our knowledge, our paper is the first to doc-

ument the performance of the CE heuristic for the online matching problem. Our analysis yields

good performance bounds under the so-called “small bid assumption,” which requires that the

maximum possible resource consumption in a time period is small relative to the total amount of

initial resources. This requirement is implicitly imposed by part 2 of Assumption 1 by assuming

that resource consumption is uniformly bounded. While the CE policy still can be implemented

when the small bid assumption does not hold, our performance bounds are not meaningful in such

settings. In light of the recent results by Bumpensanti and Wang [2020] and Arlotto and Gurvich

[2019], we expect that similar bounds might hold even in the absence of the small bid assumption.

We refer the reader to Mehta [2013] for an overview of online matching problems and the small bid

assumption.
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6.6 Order Fulfillment

The order fulfillment problem was presented in §3.6 and, in this case, the fluid problem can be

expressed as follows

J̄(ρ) = max
ϕ∈Φ

∑
θ∈Θ

∑
a∈A

pθϕθ(a)
∑
l∈θ

∑
n∈N

fln1{al=n}

s.t
∑
θ∈Θ

∑
a∈A

pθϕθ(a)1{al=n} ≤ ρln.
(13)

As in the previous problems, we can write the constraints of problem (13) in matrix form and,

thus, obtain an expression for δ involved in the assumption. We do not give an explicit formula

for δ here to avoid introducing more notation. Moreover, if problem (13) has a non-degenerate

optimal solution for ρ = ρ1, Assumption 2 holds with K = 0 and we recover a constant revenue

loss bound for the order fulfillment problem.

Connection with earlier analysis of the CE heuristic. While there are related studies

analyzing the performance of heuristics (see, e.g., Acimovic and Graves 2015, Jasin and Sinha

2015, Andrews et al. 2019), to the best of our knowledge, our result is the first that provides

guarantees for the CE heuristic.

7 Concluding Remarks

In this paper, we show that several classical dynamic optimization problems, which are usually

studied separately in the literature, possess structural similarities that allow them to be studied

under a common framework. More explicitly, we introduce a large class of problems, that we

called DRC2, which encompasses many notable problems that have been studied individually in

the literature.

In addition to presenting this novel, unified model, we exploit the common features of problems

in the DRC2 class to study the performance of a fluid certainty equivalent control heuristic. More

specifically, we establish some sufficient conditions to obtain good performance guarantees (see §4
and §5), which depend on whether the set of contexts or actions are finite or a continuum. We

provide general conditions under which the CE heuristic guarantees constant or logarithmic revenue

loss. This leads us to recover a variety of existing results in the literature for some of the classical

problems in DRC2, sometimes under weaker conditions, but also to obtain new ones for others

(see §6).
The present work opens many avenues for future research. A first one involves the use of

different benchmarks to analyze the performance of the CE heuristic or variations of it. While in

this paper we use the fluid problem as a benchmark, some authors consider tighter benchmarks

for particular problems in the DRC2 class. One of them is known as hindsight optimum (see,
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e.g., Reiman and Wang 2008, Bumpensanti and Wang 2020, Vera and Banerjee 2021), which is

the problem obtained when all uncertainties are revealed in advance. This benchmark is usually

considered in the situations without idiosyncratic shocks such as the network revenue management

problem or the online matching problem as knowledge of the idiosyncratic shocks confers too much

power to the decision maker. (Stronger bounds can be obtained in the presence of idiosyncratic

shocks by only granting the decision maker advance knowledge of the contexts.) Another natural

benchmark is the optimal value of the dynamic program, which was recently considered by Wang

and Wang [2022] to evaluate the performance of the CE heuristic in a dynamic pricing problem. We

also refer the reader Vera et al. [2021] for a novel framework that allows using various information

augmented benchmarks, enabling to obtain constant regret across a broad family of problems.

An interesting direction would be to see if comparisons to tighter benchmarks can be applied or

generalized to the DRC2 class.

A second important and related avenue is to study alternative heuristics at the DRC2 level and

weaken the assumptions required for strong performance. For instance, for the dynamic pricing

problem Jasin [2014] shows it is possible to attain revenue losses of similar order using a heuristic

that solves a single optimization problem at the beginning of the selling horizon and then adjusts

controls linearly. There has also been an important stream of recent papers that consider the

hindsight optimum benchmark while also relaxing the non-degeneracy assumption in the NRM

problem. Reiman and Wang [2008] propose a heuristic that resolves the deterministic problem

once at a judiciously chosen time that obtains a revenue loss of order o(
√
T ). In a related setting,

Bumpensanti and Wang [2020] propose a heuristic that has a O(1) revenue loss. The idea is to re-

solve the deterministic problem only a few selected times, using the approach of Reiman and Wang

[2008] recursively, while applying thresholds to the controls. Vera and Banerjee [2021] propose a

meta-algorithm based on statistical predictions of the hindsight benchmark that leads to a constant

upper bound on the revenue loss for NRM and online matching problems. Thus, an interesting

question is whether existing arguments and analyses for these particular problems and heuristics

can be lifted to derive similar results for the broader class of DRC2 problems that accommodates,

e.g., a continuum of actions.

Performance bounds in the literature are typically instance dependent which makes it hard to

directly compare different algorithms. For example, some algorithms might have better dependence

on the length of the horizons but worse dependence on other important parameters such as the

size of the action space or the number of resources. A third important direction is to investigate

the impact of different parameters, either numerically or analytically, on the performance of the

algorithms proposed in the literature.

A fourth direction pertains to further expanding the class of DRC2 problems for which a unified

analysis is possible. One direction could be to include additional flexibility in inventory evolution
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and decisions. For instance, Vera et al. [2020], in the context of a NRM problem, consider possible

replenishment of resources and/or the possibility of delays in serving requests, and proves a constant

regret of a policy that involves re-solving the fluid problem at each time period.

Finally, another promising direction would be to relax informational assumptions and under-

stand if algorithms that jointly learn and optimize can be analyzed in a unified manner in the

DRC2 class.
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A Additional material

A.1 Idiosyncratic shock

The goal of this section is to show that we can assume, without loss of generality, that the probability

distribution of the idiosyncratic shock is independent of the action and the context. To this end,

we assume that for each context θ and each action a, we have a random shock ϵθa lying in a space

Eθa and drawn from a distribution fθa. We denote by r(θ, a, ϵθa) and y(θ, a, ϵθa) the reward and

consumption functions, respectively. It is enough to show that there exists a random variable ϵ

with probability distribution f , independent of θ and a, and functions r̄ and ȳ such that r̄(θ, a, ϵ)

has the same distribution as r(θ, a, ϵθa) and ȳ(θ, a, ϵ) has the same distribution as y(θ, a, ϵθa). We

first introduce the following technical lemma.

Lemma A-1. Let X be a random variable with distribution F . If G : (0, 1)→ R is defined as the

generalized inverse of F , that is G(y) = inf{x : F (x) ≥ y}, and Y ∼ U(0, 1), then Z = G(Y ) has

distribution F .

Proof. We have to show that Z ∼ F. Let x be such that F (x) ∈ (0, 1) and let y ∈ (0, 1). Note that

y ≤ F (x) if and only if G(y) ≤ x, where one of the directions holds because F is right continuous

and the other by definition of the generalized inverse of F . Then,

P(Z ≤ x) = P(G(Y ) ≤ x) = P(Y ≤ F (x)) = F (x),

where the first equality follows from the definition of Z, the second holds because of the observation

above, and the last equality holds because Y ∼ U(0, 1).

Applying Lemma A-1 with X = ϵθa and Y = ϵ uniformly distributed in (0, 1), it follows

that Gθa(ϵ) ∼ fθa, where Gθa is the generalized inverse of fθa. Therefore, defining r̄(θ, a, ϵ) :=

1Columbia University, Graduate School of Business. Email: srb2155@columbia.edu.
2Columbia University, Graduate School of Business. Email: ob2105@columbia.edu.
3Université Toulouse 1 Capitole, Toulouse School of Economics. Email: dana.pizarro@tse-fr.eu.
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r(θ, a,Gθa(ϵ)) and ȳ(θ, a, ϵ) := y(θ, a,Gθa(ϵ)), we obtain that ϵ has a probability distribution in-

dependent of θ and a, and r̄(θ, a, ϵ) and ȳ(θ, a, ϵ) has the same distributions as r(θ, a, ϵθa) and

y(θ, a, ϵθa), respectively.

Above, we assumed that the idiosyncratic shock is univariate. If we assume that for each context

θ and action a the random shock ϵθa = (ϵ1θa, . . . , ϵ
D
θa) is a D-dimensional random vector with joint

distribution fθa and marginals f i
θa, we can generate it by sampling sequentially from the conditional

distributions. More specifically, we first generate the random variable X1 with distribution function

f1
θa by using the procedure described for the univariate case. Then, we consider the conditional

distribution of ϵ2θa given that X1 = x1, denoted by f2
θa( · |x1) and we generate the random variable

X2 with distribution f2
θa( · |x1). Then, we consider the conditional distribution of ϵ3θa given that

X1 = x1 and X2 = x2, denoted by f3
θa( · |x1, x2), and we generate the random variable X3 with

distribution f3
θa( · |x1, x2), and so on and so forth. For more details on the algorithm to generate

random vectors using conditional distributions we refer the reader to Johnson [2011].

A.2 Approximate solution of Problem PFLUID

One of the goals of this paper is to study the performance of the certainty equivalent heuristic

described in Section 4 for the class of DRC2 problems. This heuristic uses, at each time period, an

optimal solution of a fluid problem. However, for some applications the fluid problem could be com-

putationally intractable and then it is important to develop guarantees when only an approximately

optimal solution is available. We develop such guarantees in this section.

To this end, consider Algorithm 1 with ϕ∗
ρt a feasible solution of Problem PFLUID with ρ = ρt

satisfying the second statement of Assumption 2 and such that
∑

θ∈Θ pθ
∫
A Eϵ(r(θ, a, ϵ))dϕ

∗
ρt ≥

J̄(ρt)−αt, that is, an αt-approximate solution of Problem PFLUID for ρ = ρt. Then, if we denote by

JCE(C, T ) the expected performance of Algorithm 1 and aCE
t the action taken by the CE heuristic

at time t, we have that

JCE(C, T ) = E

(
T∑
t=1

r(θt, a
CE
t , ϵt)

)
≥ E

(
τ∑

t=1

r(θt, a
CE
t , ϵt)

)

= E

(
τ∑

t=1

∑
θ∈Θ

pθ

∫
A
Eϵ(r(θ, a, ϵ))dϕ

∗
ρt

)
≥ E

(
τ∑

t=1

J̄(ρt)

)
−

T∑
t=1

αt,

where τ is the first time that a resource is close to depletion or ρt leaves the ball defined in

Assumption 2. The first inequality follows from dropping the performance after the stopping time

τ , the second equality follows from the optional stopping theorem, and the last inequality because

our controls are approximately optimal.
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Therefore, it holds that J∗(C, T ) − JCE(C, T ) ≤ J∗(C, T ) − E
(∑τ

t=1 J̄(ρt)
)
+
∑T

t=1 αt, and

applying the same arguments as in proof of Theorem 1 we obtain the same guarantee plus the

sum of the approximation errors. Thus, it is enough that
∑T

t=1 αT = O(1) or equivalently take

1/T -approximate solutions of Problem PFLUID in Algorithm 1 to have the same guarantee as in

Theorem 1.

A.3 Finite set of actions

Problem 5 is a linear program. In particular, introducing the set of slack variables {x1 . . . xL}, the
standard form is given by

J̄(ρ) = max
Θ∑

θ=1

pθ r̄θϕθ

s.t
∑
θ∈Θ

pθ ȳlθ ϕθ + xl = ρl ∀l ∈ [L]

∑
a∈A

ϕθ(a) = 1 ∀θ ∈ Θ

ϕθ(a) ≥ 0 ∀θ ∈ Θ,∀a ∈ A

xl ≥ 0 ∀l ∈ [L].

(A-1)

A.4 Dynamic bidding in repeated auctions

A.4.1 Second-price auctions

Lemma A-2. If f absolutely continuous and strictly increasing and f ′ is locally ξ-Lipschitz con-

tinuous in N (a1θ, φ), then conditions SC 5-SC 11 hold.

Proof. Let us see that conditions SC 5- SC 11 hold.

• Condition SC 5: By hypothesis f is absolutely continuous and therefore both q̄ and m̄ are

continuous.

• Condition SC 6: For each θ ∈ Θ, let us define the function Gθ : A → R by Gθ(a) =

θf(a) −
∫ a
0 x df(x). Note that G′

θ(a) = (θ − a)f ′(a) and θ > 0, then lima↘0G
′
θ(a) > 0 and

β(θ) ̸= 0. If θ ̸= Θmax, we also have lima→0G
′
θ(a) < 0, and therefore β(θ) ∈ argmaxaGθ(a)

is interior. Assume then first that θ ̸= Θmax. In this case, we can compute the first order

condition, obtaining that β(θ) satisfies the equation

(θ − β(θ))f ′(β(θ)) = 0.
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Therefore, as the cumulative distribution function f is strictly increasing, the unique optimum

is to bid truthfully, as it is known in the literature.

Otherwise, if θ = Θmax, Gθ is strictly increasing for all a ∈ A and therefore β(θ) = Θmax.

We then conclude that SC 6 holds.

• Condition SC 9: Due to the truthfulness property of the second price auction, from Propo-

sition 4, it follows that a1θ = θ/(1 + µ1) which belongs to (0,Θmax) due to the bid is positive,

and thus condition SC 9 holds.

• Conditions SC 10 and SC 11: Note first that r̄(θ, a) = θf(a) − m̄(θ, a) and ȳ(θ, a) =

m̄(a), because f absolutely continuous. Then, it is enough to show the conditions hold for

h(θ, ·) = θf(·) and m̄(a) =
∫ a
0 x df(x). Specifically, we will show that if the density function

f ′ is locally ξ-Lipschitz continuous in N (a1θ, φ), then the gradient of h(θ, ·) = θf(·) is locally
(ξΘmax)-Lipschitz continuous in N (a1θ, φ) and m̄′(a) = af ′(a) is locally ((φ + Θmax/(µ

1 +

1))ξ + η)−Lipschitz continuous in N (a1θ, φ).

To see the former note that

∥∇ah(θ, a)−∇ah(θ, a
1
θ)∥ = θ|f ′(a)− f ′(a1θ)| ≤ Θmaxξ|a− a1θ|,

where the equality follows from the gradient of h and the inequality holds due to the locally

ξ−Lipschitz continuity of f ′ and because θ ≤ Θmax.

For the latter, we first show that f ′(a1θ) ≤ η with η = 1/φ + ξφ. Because the density

f ′ is locally ξ-Lipschitz continuous in N (a1θ, φ), we have that f ′(a1θ) ≤ f ′(x) + ξφ for all

x ∈∈ [a1θ, a
1
θ + φ]. Integrating over x ∈ [a1θ, a

1
θ + φ] we obtain that f ′(a1θ)φ ≤ 1 + ξφ2 because

f ′ integrates to at most one. The result follows by dividing by φ. We now show that m̄′(a)

is locally Lipschitz continuous:

|m̄′(a)− m̄′(a1θ)| = |af(a)− a1θf(a
1
θ)|

= |a
[
f ′(a)− f ′(a1θ)

]
+ f ′(a1θ)(a− a1θ)|

≤ a|f ′(a)− f ′(a1θ)|+ f ′(a1θ)|a− a1θ|

≤
((

φ+
Θmax

µ1 + 1

)
ξ + η

)
|a− a1θ|,

where the first inequality holds applying triangle inequality and the last follows from the

bound of f ′(a1θ), together with the locally ξ−Lipschitz continuity of f ′, the equality a1θ =

θ/(1 + µ1) and the bound a1θ ≤ Θmax. The proof is completed.
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A.5 First-price auctions

Lemma A-3. If f absolutely continuous, M(a) = a + f(a)/f ′(a) strictly increasing, the bid a1θ

maximizing θq̄(a) − (µ1 + 1)m̄(a) is interior, and the density function f ′ is locally ξ−Lipschitz in

N (a1θ, φ), and f ′(a1θ) is upper bounded by η, conditions SC 5-SC 11 hold.

Proof. As in the lemma for second-price auctions, condition SC 5 holds because f is absolutely

continuous. On the other hand, the bidder’s problem in the static first price auction without budget

constraints is to find a bid function β(θ) maximizing (θ−a)f(a). Note that argmax θf(a)−af(a) =
argmax θ′f(a)−(µ1+1)af(a), where θ′ = θ/(µ1+1), is interior by hypothesis and then, computing

the first order condition, we obtain that β(θ) should satisfy

f ′(β(θ))θ − f(β(θ))− β(θ)f ′(β(θ)) = 0. (A-2)

Then, we have θ = β(θ) + f(β(θ))/f ′(β(θ)) = M(β(θ)) and by hypothesis we can compute the

inverse of M and therefore β(θ) = M−1(θ). Thus, payments at the optimal solution are unique and

assumption SC 6 holds.

Note that condition SC 9 is directly assumed in the statement of the lemma, and therefore it

holds.

It remains to see smoothness of both the expected reward r̄(θ, a) = (θ − a)f(a) and expected

payment ȳ(a) = af(a) functions, but it is enough to show that the gradient of ȳ(θ, a) is locally

Lipschitz continuous. To this end, note that

|∇aȳ(θ, a)| = |f(a) + af(a)− f(a1θ)− a1θf(a
1
θ)| ≤ |f(a)− f(a1θ)|+ |af(a)− a1θf

′(a1θ)|,

where the last expression in the inequality can be bound by using the local Lipschitz continuity

of f ′ together with the upper bound for f ′ (as in the case of the second-price action, we have

that f ′(a1θ) is bounded) by using the mean value theorem. The remaining algebra is similar to the

second-price case and the proof is completed.

B Proof of Theorem 1

The goal of this section is to prove Theorem 1, which is our main result regarding the performance

of the heuristic CE for the set of DRC2 problems. To do that, we assume that Assumption 1 and

Assumption 2 hold and we first introduce some processes and random variables, as well as technical

results, that will be useful to obtain the desire result.

In what follows we will denote by yt the resource consumption at time t if the decision maker
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follows the policy πCE. That is, yt = y(θt, a
πCE

t , ϵt). Let us consider the process {Mt}t≥1 up to

time T consisting in, at each time period, the accumulated difference between the resource vector

consumption and its expectation, divided the remaining horizon. More specifically, for each t ∈ [T ],

Mt =

t∑
s=1

E (ys|ρs)− ys
T − s

.

Let us define the stopping time τ. To this end, we need to introduce two random variables. On

one hand, we define τδ to be the first time t such that Mt has ℓ
2-norm greater than or equal to δ,

where δ is defined in Assumption 2. That is,

τδ = min
t∈[T ]
{t : ∥Mt∥ ≥ δ} .

If ∥Mt∥ is at most δ for all t ∈ [T ], we set τδ = ∞. On the other hand, we define τ− as the

first time at which there exists a resource such that its consumption under the policy ϕ∗
ρt is close

to over capacity. That is,

τ− = min
t∈[T ]

{
t : ∃ l ∈ [L] s.t. ct,l − yl(θt, a

ϕ∗
ρt , ϵt) < ȳ∞

}
.

As above, if ct,l − yl(θt, a
ϕ∗
ρt , ϵt) is greater or equal to ȳ∞ for all t ∈ [T ] and l ∈ [L], we set τ− =∞.

Then, we define the random variable τ as the minimum between τδ and τ−, and the number of

periods T , i.e.,

τ = min {τδ, τ−, T} .

Because y(θt, a
ϕ∗
ρt , ϵt) ≤ ȳ∞ by Assumption 1, we have that the actions of the policy up to time τ−

are not constrained by resources and they are taken according to an optimal solution of the fluid

problem. To see this, note that if t = τ−, then ct,l = ct−1,l − yl(θt−1, a
ϕ∗
ρt−1 , ϵt−1) ≥ ȳ∞ and, thus,

ct,l − yl(θt, a
ϕ∗
ρt , ϵt) ≥ 0.

Note that both τδ and τ− are stopping times with respect to the filtration {Ft}t≥1, with Ft =

σ(θ1, . . . , θt, a1, . . . , at, ϵ1, . . . , ϵt), the history up to the end of period t, and thus we obtain that τ

is also a stopping time with respect to the same filtration {Ft}t≥1.

Furthermore, the process {Mt}t≥1 is a martingale with respect to the filtration {Ft}t≥1. In fact,

for each t, from Assumption 1.2 follows that E(yt|ρt)− yt ≤ ȳ∞ <∞, and therefore E(∥Mt∥) <∞
for all t. On the other hand, for each t, it holds that

Mt+1 −Mt =
E(yt+1|ρt+1)− yt+1

T − t− 1
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and E (E(yt+1|ρt+1)− yt+1|Ft) = 0, concluding that

E(Mt+1|Ft) = Mt ∀t ≥ 1.

Since {Mt}t≥1 is a martingale and τ an stopping time, it turns out that the stopped process

{Mt∧τ}t≥1 is also a martingale with respect to the filtration {Ft}t≥1.

We are now ready to present some properties for the process and the stopping time defined

above, which will be needed to prove the bound for the reward loss.

Lemma B-1. Under Assumption 2, if t is at most τδ, it holds that:

1. (ρt+1 − ρ1)|C = Mt|C and (ρt+1 − ρ1)|U ≥Mt|U

2. ∥(ρt − ρ1)|C∥ < δ and (ρt − ρ1)|U ≥ −1δ.

Proof of Lemma B-1. We will proceed by induction on t, dividing the proof into two steps, the first

corresponds to prove the base case and the other the induction step.

Step 1. Note that for t = 1, statement 2 of the lemma follows trivially and we are then under the

hypothesis of Assumption 2, obtaining E(y1|ρ1)|C = ρ1|C and E(y1|ρ1)|U ≤ ρ1|U . Therefore, we can

express M1|C and bound M1|U as follows:

M1|C =
(E(y1|ρ1)− y1)|C

T − 1
=

ρ1|C − y1|C
T − 1

, (B-1)

M1|U =
(E(y1|ρ1)− y1)|U

T − 1
≤ ρ1|U − y1|U

T − 1
(B-2)

From the definition of ρ1 and ρ2, we have that y1 = ρ1T − ρ2(T − 1) and replacing in (B-1) and

(B-2) follows that

M1|C = (ρ2 − ρ1)|C and M1|U ≤ (ρ2 − ρ1)|U ,

obtaining the first statement of the lemma and completes the base case.

Step 2. Now, assume that Lemma B-1 holds for all s smaller or equal than a fixed t < τδ and let

us prove that both statements also hold for t+ 1.

As in the base case, we will first prove statement 2 and we then use it to prove statement 1.

That is, let us show that ∥(ρt+1 − ρ1)|C∥ < δ and (ρt+1 − ρ1)|U ≥ −1δ. Applying the induction

hypothesis to t, it holds that ∥(ρt+1 − ρ1)|C∥ = ∥Mt|C∥ and (ρt+1 − ρ1)|U ≥ Mt|U . On the other
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hand, t < τδ and thus ∥Mt∥ < δ, which implies that ∥Mt|C∥ < δ and Mt|U ≥ −1δ, and the second

statement follows.

In the remainder of the proof, we show that (ρt+2−ρ1)|C = Mt+1|C and (ρt+2−ρ1)|U ≥Mt+1|U .
Note that

ρt+2 − ρ1 =
t+1∑
s=1

ρs+1 − ρs =
t+1∑
s=1

(T − s+ 1)ρs − ys
T − s

− ys =
t+1∑
s=1

ρs − ys
T − s

,

where the first equality is obtained by using a telescoping sum and the second holds because

ρs+1 = cs+1/(T − s), cs = ρs(T − s+ 1) and cs+1 = cs − ys. By the induction hypothesis, together

with the statement 2 we already proved for s = t+1, it holds that ∥(ρs−ρ1)|C∥ < δ for all s ≤ t+1.

Therefore we can apply Assumption 2 to the expression above obtaining that

(ρt+2 − ρ1)|C =
t+1∑
s=1

(E(ys|ρs)− ys)|C
T − s

= Mt+1|C .

On the other hand, E(ys|ρs)|U ≤ ρs|U and using again the expression above we conclude that

(ρt+2 − ρ1)|U ≥
t+1∑
s=1

(E(ys|ρs)− ys)|U
T − s

= Mt+1|U .

and the lemma follows.

Since {Mt∧τ}t≥1 is a zero mean martingale with respect to the filtration {Ft}t≥1, a direct

consequence of Lemma B-1 is that also the stopped process {ρt∧τ |C}t≥1 is a martingale with respect

to the same filtration.

The following lemma is a technical result we need to prove Lemma B-3, which, in turn, states

that the expected number of remaining periods after the stopping time τ is bounded by a constant.

Specifically, the following result gives sufficient conditions on t to be a lower bound for the stopping

time τ−.

Lemma B-2. Assume that Assumption 1 and 2 hold, and define T− = T +1− 2 ȳ∞
ρ
1
−δ , where ρ

1
is

the smallest component of vector ρ1. If t ≤ T− and t < τδ, then t < τ−.

Proof of Lemma B-2. Due to the definition of the stopping time τ−, we have to show that for all s ≤
t, the consumption is at most the available capacity (minus the maximum possible consumption),

i.e., y(θs, a
ϕ∗
ρs , ϵs) ≤ cs − 1ȳ∞. Take s ≤ t. By hypothesis, s < τδ and by Lemma B-1 it holds that

∥(ρs − ρ1)|C∥ < δ and (ρs − ρ1)|U ≥ −1δ. In particular, |(ρs − ρ1)l| < δ ∀l ∈ C, obtaining

ρs > ρ1 − 1δ , (B-3)
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where 1 denotes the vector of ones of size L. On the other hand, note that

cs > (T − s+ 1)(ρ1 − 1δ) ≥ 2ȳ∞
ρ
1
− δ

(ρ1 − 1δ) ≥ 2 · 1ȳ∞ ≥ 1ȳ∞ + y(θs, a
ϕ∗
ρs , ϵs),

where the strict inequality follows from the definition of ρs, together with inequality (B-3); the

second inequality holds because t ≤ T− and ρ
1
> δ; the third due to the definition of ρ

1
; and the

last because y(θs, a
ϕ∗
ρs , ϵs) ≤ 1ȳ∞ from Assumption 1.2. We then conclude that τ− is greater than

t and the proof is completed.

We next prove that the expected number of remaining periods after the stopping time τ is

upper bounded by a constant that does not depend on T , which is a key result to obtain the main

theorem.

Lemma B-3. If Assumptions 1 and 2 hold, then E(T − τ) = O(1). More specifically,

E(T − τ) <
2ȳ∞
ρ
1
− δ

+ 14
ȳ2∞
δ2

.

Proof of Lemma B-3. We will prove the result by bounding the expected value of τ , which is

equivalent to the expression
∑∞

t=1 P(τ ≥ t) because τ is a non-negative random variable. From the

definition of τ , the probability of τ being greater than T is zero, and then,

E(τ) =
T∑
t=1

P(τδ ∧ τ− ≥ t) ≥
T−−1∑
t=1

P(τδ ∧ τ− ≥ t) (B-4)

where the last inequality follows just splitting the horizon and because probabilities are non-

negative.

On the other hand,

T−−1∑
t=1

P(τδ ∧ τ− ≥ t) =
T−−1∑
t=1

P
(
min
s∈[T ]

{s : ∥Ms∥ ≥ δ} ≥ t

)

=

T−−1∑
t=1

P (∥Ms∥ < δ ∀s ∈ [t])

= T− − 1−
T−−1∑
t=1

P
(
max
s∈[t]
∥Ms∥ ≥ δ

)
,

where the first equality is obtained by Lemma B-2 (since t < T−, τδ ∧ τ− = τδ) and the last one

because P(∥Ms∥ < δ ∀s ∈ [t]) = 1− P(maxs∈[t] ∥Ms∥ ≥ δ).
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Then, using the equality above in (B-4) it holds that

E(τ) ≥ T− − 1−
T−−1∑
t=1

P
(
max
s∈[t]
∥Ms∥ ≥ δ

)
.

In the remainder of the proof we will upper bound
∑T−−1

t=1 P
(
maxs∈[t] ∥Ms∥ ≥ δ

)
, and we proceed

by applying Theorem 3.5 in Pinelis [1994]. To this end, note first that (RL, ∥ · ∥) is a separable

Banach space, and since ∥x+y∥+∥x−y∥ ≤ 2∥x∥2+2∥y∥2 holds for all x, y ∈ R+, it is (2, 1)-smooth.

Define, for each t, the martingale {Mt∧s}s≥1. From the definition of Ms it follows that

Ms −Ms−1 =
E(ys|ρs)− ys

T − s
,

and therefore

t∑
s=1

∥∥∥∥E(ys|ρs)− ys
T − s

∥∥∥∥2
∞
≤ (2ȳ∞)2

T − t
,

where the inequality follows from Assumption 1.2, and using that
∑t

s=1 1/(T−s)2 ≤
∫ t
0 1/(T−s)

2 <

1/(T − t).

Then, we are under the hypothesis of the theorem mentioned above, and applying it together

with the inequality P
(
maxs∈[t] ∥Ms∥ ≥ δ

)
≤ 1, we obtain

P
(
max
s∈[t]
∥Ms∥ ≥ δ

)
≤ 1 ∧ 2 exp

(
−δ2(T − t)

8ȳ2∞

)
.

Summing over t and using the bound obtained above, we have

T−−1∑
t=1

P
(
max
s∈[t]
∥Ms∥ ≥ δ

)
≤

T∑
t=1

(
2 exp

(
−δ2(T − t)

8ȳ2∞

)
∧ 1

)

≤
T∫
0

(
2 exp

(
−δ2(T − t)

8ȳ2∞

)
∧ 1

)
dt

≤ 8ȳ2∞
δ2

(log 2 + 1) ,

where the second inequality follows from bounding the summation by the integral and the last

inequality from Lemma D-1.
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Putting all together and using that 8(log 2 + 1) ≤ 14 we conclude

E(T − τ) < T − T− + 1 + 14
ȳ2∞
δ2

=
2ȳ∞
ρ
1
− δ

+ 14
ȳ2∞
δ2

,

and the desire result is obtained.

We are now ready to prove Theorem 1 by combining the technical results already presented.

Proof of Theorem 1. We have to bound J∗(C, T )−JCE(C, T ), which is upper bounded by T J̄(ρ1)−
JCE(C, T ) because J∗(C, T ) ≤ T J̄(C/T ) by Proposition 1. Thus, it is enough to bound T J̄(ρ1)−
JCE(C, T ). By dividing the horizon from 1 to τ and from τ to T and dropping the performance

of the CE policy after time τ , we obtain

T J̄(ρ1)− JCE(C, T ) ≤ E

(
τ∑

t=1

J̄(ρ1)−
τ∑

t=1

r(θt, a
CE
t , ϵt)

)
︸ ︷︷ ︸

(A)

+E

(
T∑

t=τ+1

J̄(ρ1)

)
︸ ︷︷ ︸

(B)

, (B-5)

and we then have to bound (A) and (B), which will be done in Part 1 and Part 2, respectively.

Part 1. We bound (A) by dividing the proof into three steps. First, we show that the expected

reward earned up to time τ considering the policy given by the CE heuristic equals the expected

reward until time τ of the fluid problem for ρ = ρt at time t. Let us prove that

E

(
τ∑

t=1

r(θt, a
CE
t , ϵt)

)
= E

(
τ∑

t=1

J̄(ρt)

)
. (B-6)

To this end, consider the sequence of zero mean, i.i.d. random variables {Xt}t≥1 given by

Xt = r(θt, a
CE
t , ϵt)− Eθ,ϵ

(
r(θt, a

CE
t , ϵt)|ρt

)
.

Then, letting Ns =
∑s

t=1Xt it holds that {Ns}s≥1 is a martingale relative to the filtration {Ft}t≥1

previously defined (see e.g. Ross et al. 1996 page 296). Therefore, due to τ being a stopping time

with respect to the same filtration, we can apply the Martingale Stopping Theorem (Ross et al.

1996, Theorem 6.6.2), which in turns implies that E (Nτ ) = E (N1) = 0. On the other hand, by

the definition of the fluid problem, we have that Eθ,ϵ

(
r(θt, a

CE, ϵt)|ρt
)
= J̄(ρt) for all t ≤ τ . Then,

(B-6) follows from combining these equations.

Second, using (B-6) and applying Assumption 2 (the hypothesis is fulfilled because t ≤ τ and
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then by Lemma B-1 we have ∥(ρt − ρ1)|C∥ < δ) we obtain

(A) = E

(
τ∑

t=1

(
J̄(ρ1)− J̄(ρt)

))
≤ E

(
τ∑

t=1

−∇J̄(ρ1)(ρt − ρ1)

)
︸ ︷︷ ︸

(A1)

+E

(
τ∑

t=1

K

2
∥ρt|C − ρ1|C∥2

)
︸ ︷︷ ︸

(A2)

.

From the linearity of the expectation, for the first term we obtain that

(A1) = −∇J̄(ρ1)E

(
τ∑

t=1

ρt − ρ1

)
= 0 ,

where we used that {ρt∧τ |C}t≥1 is a martingale and that
(
∇J̄(ρ1)

)
l
= 0 for all l ∈ U by Lemma B-4,

and thus the term (A1) vanishes in the bound.

In the third and last step, we bound (A2). Using Lemma B-1 have that

(A2) =
K

2
E

(
τ∑

t=2

∥Mt−1|C∥2
)
≤ K

2
E

(
T∑
t=2

∥Mt−1|C∥2
)

=
K

2

T∑
t=2

E
(
∥Mt−1|C∥2

)
,

where the inequality follows because t ≤ T and using that the summands are positive, and the

last from the linearity of expectations. Therefore, it is enough to bound E
(
||Mt|C ||2

)
. Because

martingale increments are orthogonal (see e.g. Gut 2013, Chapter 10 Lemma 4.1), we have that

E
(
∥Mt|C∥2

)
= E

∥∥∥∥∥
t∑

s=1

(E (ys|ρs)− ys)|C
T − s

∥∥∥∥∥
2

=

t∑
s=1

1

(T − s)2
E ∥(E (ys|ρs)− ys)|C∥2 . (B-7)

Furthermore, by definition of ℓ2-norm, it holds that

E ∥(E (ys|ρs)− ys)|C∥2 =
∑
l∈C

E
(
(E (ys,l|ρs)− ys,l)

2
)
=
∑
l∈C

E (Var(ys,l|ρs))

≤
∑
l∈C

E
(
E(y2s,l|ρs)

)
= E ∥ys|C∥2 ≤ ȳ22 ,

where the inequality follows because Var(X) = E[X2] − E[X]2 ≤ E[X2] and the last inequality

follows from Assumption 1.2.

Using expression (B-7), we finally obtain

(A2) ≤
K

2
ȳ22

T∑
t=2

t−1∑
s=1

1

(T − s)2
=

K

2
ȳ22

T−1∑
s=1

T∑
t=s+1

1

(T − s)2
=

K

2
ȳ22

T−1∑
s=1

1

T − s
≤ K

2
ȳ22(γ + log(T )) ,

where the second equation follows from exchanging the order of summations and the last inequality
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because
∑T−1

s=1 (T − s)−1 =
∑T−1

s=1 s−1 ≤ γ + log(T ), where γ is the Euler–Mascheroni constant.

Putting all together we get

E

(
τ∑

t=1

(
J̄(ρ1)− J̄(ρt)

))
≤ K

2
ȳ22(γ + log T ) ≤ Kȳ22 log(T ) , (B-8)

because γ + log T ≤ log(T ) for T ≥ 2, and the proof of Part 1 is complete.

Part 2. It only remains to bound the second term in (B-5). Note that

E

(
T∑

t=τ+1

J̄(ρ1)

)
= E(T − τ)J̄(C/T ) ≤

[
2ȳ∞
ρ
1
− δ

+
14ȳ2∞
δ2

]
J̄(C/T ) , (B-9)

where the inequality follows from applying Lemma B-3.

Putting everything together. Using (B-8) together with (B-9) in (B-5) we get

J∗(C, T )− JCE(C, T ) ≤ ȳ22K log T +

[
2ȳ∞
ρ
1
− δ

+
14ȳ2∞
δ2

]
J̄(C/T ),

and the result follows.

Lemma B-4. Under Assumption 2, if the consumption constraint corresponding to the resource i

is not binding for the problem (PFLUID) with ρ = ρ1, that is i ∈ U , then
(
∇J̄(ρ1)

)
i
= 0.

Proof of Lemma B-4. We take i ∈ U and we prove that there exists ∆ ∈ R++ such that J̄(ρ1) =

J̄(ρ1 + eiκ) for all κ ∈ [−∆,∆], where ei denotes the i-th canonical vector of RL. We divide the

proof into two parts: In the first part, we prove that there exists ∆ ∈ R++ such that J̄(·) is constant
in [ρ1−ei∆, ρ1], whereas in the second part, we prove that increasing the i-th component of ρ1, the

optimal solution of problem (PFLUID) does not change and therefore the optimal value is constant.

Part 1. If we denote by ϕ∗ the optimal solution of (PFLUID) with ρ = ρ1, by hypothesis we

know that ȳi < (ρ1)i, where ȳi = Eθ∼p,a∼ϕ∗,ϵ∼fyi(θ, a, ϵ). Thus, ϕ∗ is also feasible of (PFLUID)

with ρ = ρ1 − ξei for all ξ ∈ [0, (ρ1)i − ȳi]. Moreover, the feasibility set of the latter problem is

contained in the feasibility set of the former, and therefore ϕ∗ is an optimal solution of (PFLUID)

with ρ = ρ1 − ξei for all ξ ∈ [0, (ρ1)i − ȳi], obtaining that

J̄(ρ1) = J̄(ρ1 + eiξ) for all ξ ∈ [ȳi − (ρ1)i, 0]. (B-10)
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Part 2. On the other hand, suppose that there exists κ > 0 such that an optimal solution ϕ∗
κ of

(PFLUID) for ρκ = ρ1 + κei satisfies (ȳκ)i ≥ (ρ1)i. Then we can take a positive number γ such that

ρ̂ = γρ1+(1− γ)ρκ ≤ ρ1. Note that ϕ̂ = γϕ∗+(1− γ)ϕ∗
κ is feasible for (PFLUID) with ρ = ρ1, since

Eθ∼p,a∼ϕ̂,ϵ∼fy(θ, a, ϵ) =
∑
θ∈Θ

pθ

∫
A

Eϵ (y(θ, a, ϵ)) dϕ̂θ(a)

= γ
∑
θ∈Θ

pθ

∫
A

Eϵ (y(θ, a, ϵ)) dϕ
∗
θ(a) + (1− γ)

∑
θ∈Θ

pθ

∫
A

Eϵ (y(θ, a, ϵ)) d(ϕ
∗
κ)θ(a)

= γȳ + (1− γ)ȳκ < γρ1 + (1− γ)ρκ ≤ ρ1.

Moreover,

Eθ∼p,a∼ϕ̂,ϵ∼fr(θ, a, ϵ) =
∑
θ∈Θ

pθ

∫
A

Eϵ (r(θ, a, ϵ)) dϕ̂θ(a)

= γ
∑
θ∈Θ

pθ

∫
A

Eϵ (r(θ, a, ϵ)) dϕ
∗
θ(a) + (1− γ)

∑
θ∈Θ

pθ

∫
A

Eϵ (r(θ, a, ϵ)) d(ϕ
∗
κ)θ(a)

> γEθ∼p,a∼ϕ∗,ϵ∼fr(θ, a, ϵ) + (1− γ)Eθ∼p,a∼ϕ̂,ϵ∼fr(θ, a, ϵ),

where the inequality follows from the feasibility and no optimality of ϕ̂ for (PFLUID) with ρ =

ρκ. But the latter expression implies that Eθ∼p,a∼ϕ̂,ϵ∼fr(θ, a, ϵ) > Eθ∼p,a∼ϕ∗,ϵ∼fr(θ, a, ϵ), which

contradicts that ϕ∗ is optimal solution of (PFLUID) with ρ = ρ1.

We therefore have that for every positive number κ, the optimal solution ϕ∗
κ satisfies (ȳκ)i <

(ρ1)i, and therefore must be also solution of (PFLUID) with ρ = ρ1, obtaining that

J̄(ρ1) = J̄(ρ1 + eiκ) for all κ > 0. (B-11)

Taking ∆ = (ρ1)i − ȳi, and using (B-10) and (B-11), we obtain the result.

C Additional Proofs

C.1 Proofs of Section 4

C.1.1 Proof of Proposition 1

Proof of Proposition 1. We divide the proof into three steps. First, we consider a dynamic feasible

policy for the stochastic problem (P) and we use it to define a static randomized policy. Then, we

prove that this static policy is a feasible solution of the fluid problem for ρ = C/T and that the

value attained by this feasible solution is the same as the value of the stochastic problem, divided
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by T . Finally, we obtain the desired result by applying the argument to the optimal solution of

(P) and noting that (PFLUID) is a maximization problem.

Step 1. Let π ∈ Π be a feasible policy for the stochastic problem (P) and aπt (θt,Ht−1) the resulting

actions, where Ht−1 is the history up to (and including) time t− 1. Let us define ϕ : Θ→ ∆(A) by
ϕθ(A) = 1

T

∑T
t=1 Et−1

(
1{aπt (θ,Ht−1)∈A}

)
, where Et−1(X) denotes the expectation of X with respect

to the history up to time t− 1.

Let us see that ϕ is well defined:

1. Non negativity. It follows directly from the definition that for every θ ∈ Θ and A ∈ A,
ϕθ(A) ≥ 0.

2. Measure of A. Notice that ϕθ(A) = 1
T

∑T
t=1 Et−1

(
1{aπt (θ,Ht−1)∈A}

)
= 1

T

∑T
t=1 Et−1 (1) = 1.

3. σ−additivity. Let {Ai : i ∈ I} be a countable, pairwise disjoint collection of elements of A,
then

ϕθ

(⋃
i∈I

Ai

)
=

1

T

T∑
t=1

Et−1

(
1{aπt (θ,Ht−1)∈∪iAi}

)
=

1

T

T∑
t=1

Pt−1 (a
π
t (θ,Ht−1) ∈ ∪iAi)

=
1

T

T∑
t=1

Pt−1

(⋃
i

{aπt (θ,Ht−1) ∈ Ai}

)
=

1

T

T∑
t=1

∑
i∈I

Pt−1 (a
π
t (θ,Ht−1) ∈ Ai)

=
∑
i∈I

ϕθ(Ai),

where the third equality holds because the elements are pairwise disjoint and the fourth

equality because Pt−1 is a probability measure.

Step 2. In this step, we will check that the probability distribution ϕ defined in Step 1 is a

feasible solution of Problem PFLUID for ρ = C/T and that Jπ(C, T ) = TJϕ(C/T ), where Jϕ(C/T )

represents the value of the fluid problem for the feasible solution ϕ.

1. Feasibility. Given the probability distribution ϕ we need to prove that

∑
θ∈Θ

pθ

∫
A

Eϵ (yl(θ, a, ϵ)) dϕθ(a) ≤ Cl/T, ∀l ∈ [L].

Due to π is a feasible policy for problem (P), it holds, almost surely, that

T∑
t=1

yl(θt, a
π
t , ϵt) ≤ Cl, ∀l ∈ [L].
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Then, the inequality above also must hold in expectation, that is:

T∑
t=1

Eθt∼p,aπt ∼Pt−1,ϵt∼f (yl(θt, a
π
t , ϵt)) ≤ Cl, ∀l ∈ [L].

Note that for each l ∈ [L], we have that

T∑
t=1

Eθt∼p,aπt ∼Pt−1,ϵt∼f (yl(θt, a
π
t , ϵt)) =

T∑
t=1

∑
θt∈Θ

pθt

∫
A
Eϵt (yl(θt, a, ϵt)) dPt−1 (a

π
t (θt,Ht−1) ∈ a)

=
∑
θ∈Θ

pθ

∫
A
Eϵ (yl(θ, a, ϵ)) d

(
T∑
t=1

Pt−1 (a
π
t (θt,Ht−1) ∈ a)

)

= T
∑
θ∈Θ

pθ

∫
A
Eϵ (yl(θ, a, ϵ)) dϕθ(a),

where the first equality follows from definition of expectation, the second equality holds

because the distributions of contexts and shocks are independent and identically distributed

and the last equality follows from the definition of ϕ.

Putting all together, we obtain that

T
∑
θ∈Θ

pθ

∫
A
Eϵ (yl(θ, a, ϵ)) dϕθ(a) ≤ Cl, ∀l ∈ [L],

which is the desired inequality.

2. Equality. Notice that

Jπ(C, T ) =
T∑
t=1

Eθt∼p,aπt ∼Pt−1,ϵt∼f (r(θt, a
π
t , ϵt)) .

And using the same arguments as before, we obtain

Jπ(C, T ) = T
∑
θ∈Θ

pθ

∫
A
Eϵ (r(θ, a, ϵ)) dϕθ(a),

which is exactly TJϕ(C/T ).

Step 3. Fix δ > 0 and let π be an δ−approximately optimal solution of Problem P, i.e., Jπ(C, T ) ≥
J∗(C, T ) − δ. Applying Step 1 to π we define the solution to the fluid problem ϕ. Therefore, we

conclude that

J∗(C, T ) ≤ Jπ(C, T ) + δ = TJϕ(C/T ) + δ ≤ TJ∗(C, T ) + δ,
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where the first equality follows from Step 2 because Jπ(C, T ) = TJϕ(C/T ), and the second in-

equality because, by Step 2 again, ϕ is a feasible solution of Problem PFLUID for ρ = C/T . The

result is obtained because δ was arbitrary.

C.2 Proofs of Section 5

C.2.1 Proof of Lemma 1

Proof of Lemma 1. Let us prove that the first statement of Assumption 2 holds by showing that

the function J̄(·) is linear over the set N (ρ1, δ, C) = {ρ : ∥(ρ− ρ1)|C∥ ≤ δ, (ρ− ρ1)|U ≥ −δ1} with
δ given in the statement of this result. To this end, let us prove it first for ρ ∈ N (ρ1, δ) =

{ρ : ∥ρ− ρ1∥ ≤ δ}. Take ρ ∈ N (ρ1, δ). That is, ρ = ρ1 + ϵv for some v unitary vector and ϵ a

positive real number smaller than δ.

In the standard form representation of the problem given in problem (A-1), the constraint

matrix is Q =
(
Q1

Q2

)
∈ R(L+|Θ|)×(|A|·|Θ|+L) where Q1 ∈ RL×(|A|·|Θ|+L) is the matrix associated

to the resource constraints and Q2 ∈ R|Θ|×(|A|·|Θ|+L) is the matrix associated to the constraints∑
a∈A ϕθ(a) = 1. The matrix Q1 is obtained by horizontally stacking the matrices pθ ȳθ ∈ RL×|A|

and the identity matrix I ∈ RL×L. The matrix Q2 is obtained by horizontally stacking the matrices

e1, e2, . . . , e|Θ| ∈ R|Θ|×|A| and the zero matrix 0 ∈ R|Θ|×L, where eθ ∈ R|Θ|×|A| is the matrix with

all columns equal to the θ-th canonical vector of R|Θ|. Let ξ⊤ = (ρ1,1) be the corresponding right

hand side of problem (A-1) for ρ = ρ1 and u⊤ = (v,0), where 1 ∈ R|Θ| and 0 ∈ R|Θ| denote a vector

of ones and zeros, with a proper size, respectively. In this notation, we can write the perturbed

right-hand vector as ξ+ ϵu. Let B be the submatrix of Q corresponding to the columns associated

to the basic variables at an optimal solution for ρ = ρ1, and B−1
ρ1 the submatrix of B−1 associated

to the resource constraints. We can write the optimal basic variable vector as
(
ϕB
xB

)
= B−1ξ.

Note that in this case, B−1u = B−1
ρ1 v because the last |Θ| components of u are zero and thus

∥B−1u∥ = ∥B−1
ρ1 v∥ ≤ ∥B

−1
ρ1 ∥ where the last equality hold because v is an unitary vector. Then, by

Lemma D-3 we have that if 0 ≤ ϵ ≤ min(ϕ∗
min,x

∗
min)

∥B−1
ρ1

∥ , B is an optimal basis for the standard problem

with right hand side ξ + ϵu and therefore the optimal basic variable vector, namely
(
ϕB
xB

)
, can be

computed as B−1(ξ + ϵu). Let us define c ∈ R|A|·|Θ|+L the objective function coefficient vector

of problem (A-1). That is, the coefficient vector is obtained by vertically stacking the vectors

pθr̄θ ∈ R|A| and the zero vector 0 ∈ RL. Thus, calling cB to the coefficient vector associated to the
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basic variables, it holds that

J̄(ρ) = c⊤BB
−1(ξ + ϵu)

= c⊤BB
−1ξ + ϵc⊤BB

−1u

= c⊤BB
−1ξ + c⊤BB

−1
ρ1 (ϵv)

= J̄(ρ1) +∇J̄(ρ1)(ρ− ρ1) ,

where the last equality follows because B is optimal basis of problem (A-1) and ϵv = ρ − ρ1.

We then have that J̄(·) is linear over N (ρ1, δ). Notice that if we increase the components of ρ

corresponding to the unbinding constraints, then the optimal basis does not change (see Part 2 in

the proof of Lemma B-4 ) and therefore the equalities above still holds, obtaining that J̄(·) is linear
over N (ρ1, δ, C) and the first statement holds with K = 0.

We proved that taking ρ ∈ N (ρ1, δ, C) the optimal basis does not change and therefore the

second statement follows directly because the constraints are binding for ρ1|C .
Therefore, we conclude that Assumption 2 holds for δ =

min(ϕ∗
min,x

∗
min)

∥B−1
ρ1

∥ , and K = 0.

C.2.2 Proof of Lemma 2

Proof of Lemma 2. We want to prove that the problem (5) has a unique non-degenerate optimal

solution for ρ = ρ1. To this end, we will prove that its dual problem has a unique non-degenerate

optimal solution.

Note that if we denote by zθ ∈ R to the dual variable associated to the constraint
∑

a ϕθ(a) = 1,

the dual problem of (5) can be written as follows

min
µ,zθ

ρ⊤1 µ+
∑
θ∈Θ

zθ

s.t pθµ
⊤ȳθ(a) + zθ ≥ pθr̄θ(a) ∀a ∈ A ∀θ ∈ Θ ,

µ ≥ 0 .

(C-1)

From the constraints, for each θ ∈ Θ, the dual variable zθ should satisfy zθ ≥ pθ(r̄θ(a)−µ⊤ȳθ(a)) ∀a ∈
A , and therefore zθ ≥ pθ maxa∈A{r̄θ(a) − µ⊤ȳθ(a)}. Due to (C-1) is a minimization problem, we

conclude that the optimal value for the dual variable zθ is given by z1θ = pθ maxa∈A{r̄θ(a)−µ⊤ȳθ(a)}.
The dual problem is then equivalent to the following problem

min
µ∈RL

+

ρ⊤µ+
∑
θ∈Θ

pθ max
a∈A
{r̄θ(a)− µ⊤ȳθ(a)} ,
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which has a unique solution µ1 by Assumption SC 2, and therefore we obtain that the dual problem

(C-1) has a unique solution for ρ = ρ1. It remains to show that such solution (µ1, z1) is not

degenerate. To show that, we will prove that there is at most L+ |Θ| (number of variables) active

constraints. Note that the number of constraints in problem (C-1) is L + |Θ| × |A|. However,

by Assumption SC 3 we know that for each θ ∈ Θ, there exists a unique a∗θ ∈ A such that

z1θ = pθ(r̄θ(a
∗
θ)− µ⊤ȳθ(a

∗
θ)) and thus pθµ

1⊤ȳθ(a) + z1θ > pθr̄θ(a) ∀a ∈ A \ {a∗θ}. We conclude that

exactly |Θ| constraints from the first set are binding and therefore there are at most L+ |Θ| active
constraints, obtaining the desired result.

C.2.3 Proof of Proposition 2

Proof of Proposition 2. We divide the proof into two steps. First, we prove that an optimal solution

to the dual problem exists, namely µ∗. Then, we define ϕ∗ properly and we apply Proposition 5.1.5

in Bertsekas [1997] to prove that ϕ∗ is primal solution and µ∗ is in fact a Lagrangian multiplier and

that therefore there is no duality gap, obtaining the desired result.

Step 1. Note that for each θ ∈ Θ, gθ is convex because it is defined as the supremum of a family

of linear functions and therefore the dual problem is a convex problem. Then, the function g is

convex because convex combinations of convex functions are convex.

To prove the existence of optimal dual solution µ∗, we first prove Ψρ is continuous and then

we argue that the domain of the dual problem can be restricted to a compact set, achieving the

result applying the extreme value theorem. Continuity of the dual function follows because it

is differentiable (as we argue in the step 2 below). On the other hand, we can prove that we

can restrict the domain of the dual problem to the hypercube [0, µ̄ρ]
L, for µ̄ρ = r̄∞/ρ̄, where

ρ̄ = minl∈[L] ρl and r̄∞ is the positive real number provided by Assumption1.1. We have that

µ̄ρ <∞ because ρ > 0. Let us check that every µ ̸∈ [0, µ̄ρ]
L is suboptimal. Take µ ̸∈ [0, µ̄ρ]

L, and

define L1 = {l ∈ [L] : µl > µ̄ρ} the components of µ greater than µ̄ρ. Then, we have

Ψρ(µ) ≥ ρ⊤µ ≥
∑
l∈L1

ρlµ̄l =
∑
l∈L1

r̄∞
ρl
ρ̄
≥ r̄∞ ≥ Ψρ(0),

where the first inequality holds because r̄(θ, a0) = ȳ(θ, a0) = 0, for all θ ∈ Θ and therefore

gθ(µ) ≥ 0; the second follows from the non-negativity of vectors µ and ρ, the third inequality

holds because L1 contains at least one element and ρl ≥ ρ, and the last one follows because

Ψρ(0) = Eθ∼p [maxa∈A r̄(θ, a)] and r̄∞ ≥ r̄(θ, a) for all θ ∈ Θ, and a ∈ A. Then, we have

Ψρ(0) ≤ Ψρ(µ) and together with the extreme value theorem we conclude that for each ρ > 0

there exist µ∗ optimal dual solution satisfying µ∗ ∈ [0, µ̄ρ]
L.
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Step 2. Given ρ > 0, take µ∗ an optimal dual solution and, for each θ ∈ Θ, define ϕ∗(θ) a

distribution that assigns probability one to an action a∗θ ∈ argmaxa∈A

{
r̄(θ, a)− µ∗⊤ȳ(θ, a)

}
. Such

actions are guaranteed to exist by Assumption SC 4. Let us now show that (ϕ∗, µ∗) is an optimal

solution-Lagrange multiplier pair. We will proceed by using Proposition 5.1.5 in Bertsekas [1997].

That is, we need to check primal and dual feasibility, Lagrangian optimality and complementary

slackness.

1. Primal and dual feasibility. Dual feasibility follows because µ∗ ≥ 0. For primal feasibility,

note that the gradient of r̄(θ, a)−µ⊤ȳ(θ, a) with respect to µ exists and is given by −ȳ(θ, a).
Because the value function gθ(µ) is differentiable and achieved for some action a∗θ, we have

from the envelope theorem applied to gθ (see, e.g., Theorem 1 in Milgrom and Segal 2002),

that ∇gθ(µ) = −ȳ(θ, a∗θ). The last statement holds almost surely over θ ∈ Θ. Because gθ(µ)

is convex, we obtain from Theorem 7.46 of Shapiro et al. [2009] that g(µ) = Eθ∼p[gθ(µ)] is

differentiable with gradient ∇g(µ) = −Eθ∼p[ȳ(θ, a
∗
θ)]. Therefore, Ψρ is differentiable and its

gradient evaluated at µ∗ is given by

∇Ψρ(µ
∗) = ρ− Eθ∼p[ȳ(θ, a

∗
θ)] . (C-2)

Because µ∗ is an optimal dual solution and the constraint set is convex, by Proposition 2.1.2

in Bertsekas [1997], the first-order conditions are given by

∇Ψρ(µ
∗)⊤(µ− µ∗) ≥ 0, ∀µ ∈ RL

+ . (C-3)

Letting µl →∞, we obtain that ∇Ψρ(µ
∗) ≥ 0, which, in turn, implies that Eθ∼p[ȳ(θ, a

∗
θ)] ≤ ρ

by (C-2). Primal feasibility follows.

2. Complementary slackness. If µ∗
l = 0, we trivially have (∇Ψρ(µ

∗))lµ
∗
l = 0 and complementary

slackness follows. If µ∗
l > 0, we can take ν > 0 with µ∗

l + ν and µ∗
l − ν belonging to R+.

Using (C-3), we obtain that (∇Ψρ(µ
∗))lν ≥ 0 and (∇Ψρ(µ

∗))lν ≤ 0. Thus, it holds that

(∇Ψρ(µ
∗))l = 0 and complementary slackness follows.
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3. Lagrangian optimality. Note that

argmax
ϕ∈Φ
L(ϕ, µ∗) = argmax

ϕ∈Φ

{
µ∗ρ+ Eθ∼p,a∼ϕ(θ)

[
r̄(θ, a)− µ∗⊤ȳ(θ, a)

]}
=

{
arg max

ϕθ∈∆(A)
Ea∼ϕθ

[
r̄(θ, a)− µ∗⊤ȳ(θ, a)

]}
θ∈Θ

=

{
argmax

a∈A
gθ(µ

∗)

}
θ∈Θ

,

where the second equality holds because we can separate the problem for each θ. But note

that gθ(µ
∗) is maximized at a∗θ and thus we have Lagrangian optimality.

Therefore, the four conditions hold and the proof is complete.

C.2.4 Proof of Lemma 3

Proof of Lemma 3. We have to show that if ρ ∈ N (ρ1, δ, C) = {ρ : ∥(ρ− ρ1)|C∥ ≤ δ, (ρ− ρ1)|U ≥ −δ1},
with δ = (νκ)/2 then it holds that

1. J̄(ρ) ≥ J̄(ρ1) +∇J̄(ρ1)(ρ− ρ1)− K
2 ∥ρ|C − ρ1|C∥2,

2.
(
Eθ∼p,a∼ϕ∗(θ) [ȳ(θ, a)]

)
|C = ρ|C .

We divide the proof into five parts: First, we extend the strong convexity lower bound of g in

SC 7 to the entire domain. Then, we use a claim (that we prove in Part 4) to show the second

statement of Assumption 2. In the third part of the proof, we show that given δ ∈ N (ρ1, δ, C),
the optimal solution of (4) is contained in N (µ1, ν) ∩RL

+. In the last part, we use the preliminary

results showed along the proof to prove the first statement of Assumption 2.

Part 1. We first extend the strong convexity lower bound of gθ to the entire domain. By SC 7, g

admits a κ-LUQ envelope in Iν = N (µ1, ν) ∩ RL
+. Then, for all µ ∈ Iν .

g(µ) ≥ g(µ1) +∇g(µ1)⊤(µ− µ1) +
κ

2
∥µ− µ1∥2 . (C-4)

We next extend the lower bound to every feasible dual variable. Consider µ ≥ 0 with µ ̸∈ Iν .

Take α such that αµ + (1 − α)µ1 = µ̂ where µ̂ ≥ 0 is in the boundary of the ball N (µ1, ν), i.e.,

µ̂ ∈ N (µ1, ν). The latter is possible because µ ̸∈ Iν . Note that µ̂ − µ1 = α(µ − µ1). Taking

ℓ2-norm in both sides, we get that α = ∥µ̂ − µ1∥/∥µ − µ1∥. Moreover, α ∈ (0, 1) because ν > 0,

µ̂ ∈ ∂N (µ1, ν) and µ ̸∈ Iν . Because g is convex, we have

αg(µ) + (1− α)g(µ1) ≥ g(αµ+ (1− α)µ1) = g(µ̂) ,
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which can be reordered to give

g(µ) ≥ 1

α
g(µ̂)− 1− α

α
g(µ1)

≥ 1

α
g(µ1) +

1

α
∇g(µ1)⊤(µ̂− µ1) +

κ

2α
∥µ̂− µ1∥2 − 1− α

α
g(µ1)

= g(µ1) +
1

α
∇g(µ1)⊤(µ̂− µ1) +

κ

2α
∥µ̂− µ1∥2 ,

= g(µ1) +∇g(µ1)⊤(µ− µ1) +
κν

2
∥µ− µ1∥ ,

where the second inequality follows by (C-4) with µ = µ̂ and the second equality from µ̂ − µ1 =

α(µ− µ1) together with ∥µ̂− µ1∥2 = α∥µ− µ1∥∥µ̂− µ1∥ = αν∥µ− µ1∥ since ∥µ̂− µ1∥ = ν because

µ̂ lies at the boundary of the ball N (µ1, ν). Combining both cases we obtain that

g(µ) ≥ g(µ1) +∇g(µ1)⊤(µ− µ1) + κℓ(µ− µ1) , (C-5)

where

ℓ(z) =


1
2∥z∥

2 if ∥z∥ ≤ ν

ν
2∥z∥ otherwise.

Part 2. Let us now see the second statement. We will actually prove a stronger result. Let µ be

any optimal solution of (4) for a fixed ρ, i.e., µ ∈ argminµ∈RL
+
Ψρ(µ) with Ψρ(µ) = ρ⊤µ + g(µ)

the Lagrange dual function. We shall show that µi > 0 ∀i ∈ C and µi = 0 ∀i ∈ U for every

optimal solution when the resource vector ρ belongs to N (ρ1, δ, C). In the latter we denote by

C = [L] \ U = {j ∈ [L] : µ1
j > 0} the resources with positive initial dual variables.

Note that by complementary slackness we know that for all j ∈ [L]

µi

(
ρ− Eθ∼p,a∼ϕ(θ) [ȳ(θ, a)]

)
j
= 0,

where µ is the optimal solution of (4). Therefore, the previous claim would imply for all j ∈ C and

ρ ∈ N (ρ1, δ, C) then
Eθ∼p,a∼ϕ(θ) [ȳj(θ, a)] = ρj ,

where ϕ∗ is an optimal solution of the fluid problem when the resource vector is ρ, and thus the

second statement of Assumption 2 would follow.

In the rest of this part, we use the bound obtained in the first part of the proof to bound the

Lagrange dual function. We prove the claim in Part 4.
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For all µ ≥ 0, we have from (C-5) that

Ψρ(µ) ≥ ρ⊤µ+ g(µ1) +∇g(µ1)⊤(µ− µ1) + κℓ(µ− µ1)

= ρ⊤µ1 + g(µ1) + (µ− µ1)⊤
(
∇g(µ1) + ρ

)
+ κℓ(µ− µ1)

= Ψρ(µ
1) + κℓ(µ− µ1) + (µ− µ1)⊤

(
g(µ1) + ρ

)
,

where we used that Ψρ(µ
1) = ρ⊤µ1 + g(µ1). Because µ1 is an optimal dual solution and the

constraint set is convex, by Proposition 2.1.2 in Bertsekas [1997], the first order conditions are

given by

(µ̄− µ1)⊤∇Ψρ(µ
1) ≥ 0, ∀µ̄ ∈ RL

+ ,

and applying it for µ̄ = µ and using that ∇Ψρ(µ
1) = ∇g(µ1) + ρ1 we obtain

(µ− µ1)⊤
(
∇g(µ1) + ρ

)
≥ (µ− µ1)⊤(ρ− ρ1) .

Putting all together we conclude that

Ψρ(µ) ≥ Ψρ(µ
1) + κℓ(µ− µ1) + (µ− µ1)⊤ (ρ− ρ1) . (C-6)

Part 3. We now prove that µ, the optimal solution of (4) for a fixed ρ ∈ N (ρ1, δ, C), belongs to

the truncated ball Iν = N (µ1, ν) ∩ RL
+. To this end, we show that minµ̸∈Iν Ψρ(µ) > Ψρ1(µ

1). To

do so, using (C-6), it is sufficient to prove that

(I) = min
µ̸∈Iν

{
κℓ(µ− µ1) + (µ1 − µ)⊤(ρ1 − ρ)

}
> 0 .

Note that it is enough to consider ρ with ∥(ρ1 − ρ)∥ < (κν)/2. In fact, if we have ρ̄ = ρ+ ξ, where

ρ ∈ N (ρ1, (κν)/2) and ξ ∈ RL
+ with ξi = 0 for all i ∈ C and ∥ξ∥ > 0, we obtain

(µ1 − µ)⊤(ρ1 − ρ̄) = (µ1 − µ)⊤(ρ1 − ρ− ξ) = (µ1 − µ)⊤(ρ1 − ρ) +
∑
ı∈U

µiξi ≥ (µ1 − µ)⊤(ρ1 − ρ) ,

where we use that µ1
i = 0 for all i ∈ U .

Let us show now that given ρ such that ∥(ρ1−ρ)∥ < (κν)/2, it holds that (I) > 0. Take µ ̸∈ Iν .

We then have ∥µ− µ1∥ > ν and, in this case, ℓ(z) = ν∥z∥/2. Using Cauchy-Schwartz we obtain

(I) ≥ min
µ̸∈Iν

(κν
2
− ∥(ρ1 − ρ)∥

)
∥µ− µ1∥ ≥

(κν
2
− ∥(ρ1 − ρ)∥

)
ν > 0 ,

where the third inequality follows because ∥(ρ1− ρ)∥ < (κν)/2. We conclude that µ belongs to Iν .
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Part 4. In this part we prove the claim of Part 2, that is, that µi > 0 ∀i ∈ C and µi = 0 ∀i ∈ U
for every optimal dual solution when the resource vector ρ belongs to N (ρ1, δ, C).

• Case U . We first handle the resources that are unconstrained at the initial optimal dual

variable. We will prove that if ρ is suitably chosen, then the optimal solution of the dual

problem satisfies µi = 0 for all i ∈ U . Recall that the first order conditions are given by

∇Ψρ(µ)
⊤(µ̄− µ) ≥ 0, ∀µ̄ ∈ RL

+ , (C-7)

where ∇Ψρ(µ) = ρ + ∇g(µ). By Part 3, we know that µ ∈ Iν and thus we are under the

hypothesis of Assumption SC 8, obtaining ρj +
∂g
∂µi

(µ) > 0 for all i ∈ U . We then conclude

that µi = 0 for all i ∈ U . Otherwise, if there exists j ∈ U with µj > 0, we can take

µ̄l = µl1{l ̸=j} ∈ RL
+, contradicting (C-7).

• Case C. We now handle the resources that are constrained at the initial optimal dual variable.

Notice that since ν < µ = mini∈C µ
1
i and µ1|C > 0, it holds that for all µ̄ ∈ Iν , µ̄|C is strictly

positive. On the other hand, by Part 3 we know that the optimal dual solution µ belongs to

Iν , concluding that µ|C > 0, and the claim is proved.

Part 5. It remains to prove the first statement of Assumption 2. To this end, we use the lower

bound C-5 on g obtained in Part 1 of the proof, together with the claim proved in Part 4.

The function ℓ : RL → R in (C-5) is, unfortunately, not convex. We restore convexity while

preserving the lower bound by shrinking the radius of ball in half and shifting down the cone outside

the ball. In particular, consider the function f∗ : RL → R given by

f∗(z) =


1
2∥z∥

2 if ∥z∥ ≤ ν
2

ν
2∥z∥ −

1
8ν

2 otherwise.

The function is easily shown to be convex and satisfies ℓ(z) ≥ f∗(z) for all z ∈ RL. (Actually, f∗(z)

is the largest convex function satisfying ℓ(z) ≥ f∗(z).) Combining this with (C-5) we obtain that

g(µ) ≥ g(µ1) +∇g(µ1)⊤(µ− µ1) + κf∗(µ− µ1) . (C-8)
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Using this lower bound on g to bound Ψρ we have

J̄(ρ) = min
{µ≥0 : µ|U=0}

ρ⊤µ+ g(µ)

≥ min
{µ≥0 : µ|U=0}

{
ρ⊤µ+ g(µ1) +∇g(µ1)⊤(µ− µ1) + κf∗(µ− µ1)

}
= ρ⊤1 µ

1 + g(µ1) + (µ1)⊤(ρ− ρ1) + min
{µ≥0 : µ|U=0}

{
(ρ− ρ1)

⊤(µ− µ1) + κf∗(µ− µ1)
}

= J̄(ρ1) +∇J̄(ρ1)⊤(ρ− ρ1) + min
{z≥−µ1, z|U=0}

{
ρ̂⊤z + κf∗(z)

}
︸ ︷︷ ︸

(E)

,

where the second equality holds because for all constrained resources i ∈ C we have by the first-order

conditions of the dual problem that ∂g
∂µi

(µ1)+ ρ1,i = 0 and for all unconstrained resources i ∈ U we

have µi = µ1
i = 0, and the last equality follows from performing the change of variables µ−µ1 = z,

defining the vector ρ̂ ∈ RL
+ as ρ̂|C = (ρ − ρ1)|C and ρ̂|U = 0, and because J̄(ρ1) = ρ⊤1 µ

1 + g(µ1)

together with ∇J̄(ρ1) = µ1 from the envelope theorem. Note that envelope theorem applies to J

because both g and J—in a neighborhood of ρ1—are continuously differentiable (it follows from

Assumption SC 4, and from the concavity of J and Theorem 25.5 in Rockafellar 1970, respectively).

In the remainder of the proof we lower bound the error term (E). We have that

(E) ≥ min
z∈RL

{
ρ̂⊤z + κf∗(z)

}
= −κmax

z∈RL

{(
ρ̂

κ

)⊤
z − f∗(z)

}
= −κf∗∗

(
ρ̂

κ

)
,

where the first inequality follows from relaxing the constraints z ≥ −µ1 and z|U=0, the first equality

from factoring κ > 0 and changing the direction of the optimization, and the last one by denoting

f∗∗(x) = maxz∈RL{x⊤z − f∗(z)} to be the convex conjugate of f∗(z). Invoking Lemma D-2 with

φ = ν/2, we obtain that f∗∗(x) = f(x) with f(x) = 1
2∥x∥

2 if ∥x∥ ≤ ν/2 and f(x) = ∞ otherwise

because the function f(x) is proper (because ν > 0), closed, and convex (because every squared

norm is convex). Therefore, if ∥ρ̂∥ = ∥(ρ− ρ1)|C∥ ≤ νκ/2, we have

(E) ≥ −κf
(
ρ̂

κ

)
= − 1

2κ
∥ρ̂∥2 = − 1

2κ
∥(ρ− ρ1)|C∥2 .

Putting it all together, we conclude that for ρ ∈ N (ρ1, δ, C) with δ = (νκ)/2,

J̄(ρ) ≥ J̄(ρ1) +∇J̄(ρ1)⊤(ρ− ρ1)−
1

2κ
∥(ρ− ρ1)|C∥2.

The result follows.
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C.2.5 Proof of Lemma 4

Proof of Lemma 4. We will show that under assumptions SC 5-SC 11, gθ(µ) admits a κ-LUQ

envelope in N (µ1, ν) for ν = κφ/σ and κ = κr + (ν + ∥µ1∥)∥κy∥.
From SC 10, r̄(θ, ·) admits a κr-LDQ envelope in N (a1θ, φ). That is, for all θ ∈ Θ,

r̄(θ, a) ≥ r̄(θ, a1θ) +∇r̄(θ, a1θ)⊤(a− a1θ)−
κr
2
∥a− a1θ∥2 ∀a ∈ N (a1θ, φ).

On the other hand, from SC 11, ȳ(θ, ·) admits a κy-UUQ in N (a1θ, φ). That is, for all θ ∈ Θ,

ȳ(θ, a) ≤ ȳ(θ, a1θ) +∇ȳ(θ, a1θ)(a− a1θ) +
κy
2
∥a− a1θ∥2 ∀a ∈ N (a1θ, φ).

Combining these two inequalities we obtain that, for a ∈ N (a1θ, φ), we have

r̄(θ, a)− µ⊤ȳ(θ, a)

≥ r̄(θ, a1θ)− µ⊤ȳ(θ, a1θ) + (∇r̄(θ, a1θ)−∇ȳ(θ, a1θ)⊤µ)⊤(a− a1θ)−
κr + µ⊤κy

2
∥a− a1θ∥2

≥ gθ(µ
1) +∇gθ(µ1)⊤(µ− µ1) + (∇ȳ(θ, a1θ)⊤(µ1 − µ))⊤(a− a1θ)−

κr + µ⊤κy
2

∥a− a1θ∥2, (C-9)

where the equality follows because gθ(µ
1) = r̄(θ, a1θ)−(µ1)⊤ȳ(θ, a1θ), because∇r̄(θ, a1θ) = ∇ȳ(θ, a1θ)⊤µ1

from the first order condition of gθ (by assumption SC 9, a1θ is interior), and because ∇gθ(µ1) =

−ȳ(θ, a1θ) from the envelope theorem applied to gθ (using compactness of A and Assumptions

SC 5-SC 6 we can apply Corollary 4 in Milgrom and Segal 2002).

We now proceed to bound gθ(µ). Fix µ ∈ N (µ1, ν). We have

gθ(µ) = max
a∈A

{
r̄(θ, a)− µ⊤ȳ(θ, a)

}
≥ max

{a:∥a−a1θ∥≤φ}

{
r̄(θ, a)− µ⊤ȳ(θ, a)

}
≥ gθ(µ

1) +∇gθ(µ1)⊤(µ− µ1) + max
{x:∥x∥≤φ}

{(
∇ȳ(θ, a1θ)⊤(µ1 − µ)

)⊤
x− κ

2
∥x∥2

}
= gθ(µ

1) +∇gθ(µ1)⊤(µ− µ1) + h
(
∇ȳ(θ, a1θ)⊤(µ1 − µ)

)
,

where the first inequality follows from restricting the optimization to a ∈ A such that ∥a−a1θ∥ ≤ φ;

the second from (C-9), using Cauchy-Schwartz and the triangle inequality to bound µ⊤κy ≤
∥µ∥∥κy∥ ≤ (∥µ − µ1∥ + ∥µ1∥)∥κy∥ ≤ (ν + ∥µ1∥)∥κy∥, setting κ = κr + (ν + ∥µ1∥)∥κy∥, and

making the change of variables x = a − a1θ; the second equality follows from setting h(z) =

max{x:∥x∥≤φ}
{
z⊤x− κ

2∥x∥
2
}
.

Note that h(z) is the convex conjugate of κf(x) with f(x) defined in the statement of Lemma D-

2. Using that the convex conjugate of the scaled function κf(x) is given by κf∗(z/κ) (see, e.g.,
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Boyd and Vandenberghe 2009, Section 3.3.2) together with Lemma D-2 and that the dual norm to

the Euclidean norm is the Euclidean norm, we obtain that

h(z) =


1
2κ∥z∥

2 if ∥z∥ ≤ κφ

φ∥z∥ − 1
2κφ

2 otherwise.

Given that σ is a lower bound on the smallest singular value of ∇ȳ(θ, a1θ), it holds that

∥∇ȳ(θ, a1θ)⊤z∥ ≥ σ∥z∥ for all z (see Grcar 2010, Lemma 3.3). We can equivalently write h(z) =
1
κ min(κφ, ∥z∥) · ∥z∥ − 1

2κ min(κφ, ∥z∥)2, which implies that h(z̃) ≥ h(z) whenever ∥z̃∥ ≥ ∥z∥ since
h is increasing in ∥z∥. This yields that h(∇ȳ(θ, a1θ)⊤z) ≥ h(σz) for all z ∈ RL.

Therefore, if µ ∈ N (µ1, ν), we have that ∥µ − µ1∥ ≤ ν = κφ/σ, in which case h(σz) =

(σ2/2κ)∥z∥2, which yields

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)⊤(µ− µ1) +

σ2

2κ
∥µ− µ1∥2,

and the result follows.

C.2.6 Proof of Lemma 5

Proof. By Danskin’s theorem we have that the value function gθ(µ) is differentiable whenever

the set of optimal actions is unique, which, in light of SC 12, happens almost surely over the

contexts θ. Because gθ(µ) is convex, we obtain from Theorem 7.46 of Shapiro et al. [2009] that

g(µ) = Eθ∼p[gθ(µ)] is differentiable with gradient

∇g(µ) = −Eθ∼p

[
ȳ(θ)1

{
r̄(θ) ≥ µ⊤ȳ(θ)

}]
,

because action a = 1 is optimal whenever r̄(θ) ≥ µ⊤ȳ(θ). We prove SC 7 holds by showing that

(
∇g(µ)−∇g(µ1)

)⊤
(µ− µ1) ≥ κ∥µ− µ1∥2 , (C-10)

for every µ ≥ 0 with ∥µ−µ1∥ ≤ ν. To see that the latter condition implies the result, write ℓ(µ) =

g(µ)− (κ/2)µ⊤µ and note that condition (C-10) is equivalent to
(
∇ℓ(µ)−∇ℓ(µ1)

)⊤
(µ− µ1) ≥ 0.

Now consider the function h(α) = ℓ
(
µ1 + α(µ − µ1)

)
with h′(α) = ∇ℓ

(
µ1 + α(µ − µ1)

)⊤
(µ − µ1).
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We obtain that

ℓ(µ) = h(1) = h(0) +

∫ 1

0
h′(α)dα

= ℓ(µ1) +

∫ 1

0
∇ℓ
(
µ1 + α(µ− µ1)

)⊤
(µ− µ1)dα ≥ ℓ(µ1) +∇ℓ(µ1)⊤(µ− µ1) ,

where the inequality follows from using (C-10) with µ = µ1 + α(µ− µ1). The claim follows.

Using our formula for the gradient, we obtain that

(
∇g(µ)−∇g(µ1)

)⊤
(µ− µ1) = Eθ∼p [D(θ)] .

where

D(θ) := ȳ(θ)⊤(µ− µ1)
(
1
{
r̄(θ) ≥ ȳ(θ)⊤µ1

}
− 1

{
r̄(θ) ≥ ȳ(θ)⊤µ

})
.

Let M(θ) = max
(
ȳ(θ)⊤µ1, ȳ(θ)⊤µ

)
and m(θ) = min

(
ȳ(θ)⊤µ1, ȳ(θ)⊤µ

)
. Then, we can write the

term inside the expectation as

D(θ) = (M(θ)−m(θ))1 {r̄(θ) ∈ [m(θ),M(θ))} ,

which follows simply by using that M(θ) = ȳ(θ)⊤µ1 and m(θ) = ȳ(θ)⊤µ when ȳ(θ)⊤µ1 ≥ ȳ(θ)⊤µ

and viceversa. Because D(θ) ≥ 0, we obtain by restricting to the event M(θ) ≤ r̄∞ and taking

expectations that

(
∇g(µ)−∇g(µ1)

)⊤
(µ− µ1) = Eθ∼p [D(θ)]

≥ Eθ∼p [D(θ)1 {M(θ) ≤ r̄∞}]

= Eθ∼p [(M(θ)−m(θ))P {r̄(θ) ∈ [m(θ),M(θ)) | ȳ(θ)}1 {M(θ) ≤ r̄∞}]

≥ pEθ∼p

[
(M(θ)−m(θ))21 {M(θ) ≤ r̄∞}

]
= p(µ− µ1)⊤Eθ∼p

[
y(θ)y(θ)⊤1 {M(θ) ≤ r̄∞}

]
(µ− µ1)

≥ p(µ− µ1)⊤Eθ∼p

[
y(θ)y(θ)⊤1

{
y(θ)⊤µ1 + ν∥y(θ)∥ ≤ r̄∞

}]
(µ− µ1)

≥ pλ∥µ− µ1∥2 ,

where the second equality follows from conditioning on ȳ(θ) and using that M(θ) and m(θ) are

measurable with respect to ȳ(θ), the second inequality from using SC 13 together with the fact

that [m(θ),M(θ)) ⊆ [0, r̄∞], the third equality because

(M(θ)−m(θ))2 =
(
ȳ(θ)⊤(µ− µ1)

)2
= (µ− µ1)⊤y(θ)y(θ)⊤(µ− µ1)
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and using the linearity of expectations, the third inequality because

M(θ) = max
(
ȳ(θ)⊤µ1, ȳ(θ)⊤µ

)
≤ ȳ(θ)⊤µ1 +

∣∣∣ȳ(θ)⊤(µ− µ1)
∣∣∣

≤ ȳ(θ)⊤µ1 + ∥ȳ(θ)∥ · ∥µ− µ1∥

≤ ȳ(θ)⊤µ1 + ν∥ȳ(θ)∥

from Cauchy-Schwartz and using that ∥µ−µ1∥ ≤ ν, and the last inequality from SC 14. The result

follows with κ = pλ.

C.3 Proofs of Section 6

C.3.1 Proof of Proposition 4

Proof of Proposition 4. Recall that there exist µ∗ optimal dual solution satisfying µ∗ ∈ [0, µ̄] (see

Step 1 in the proof of Proposition 2). Thus, it is enough to show that
(
β
(

θ
1+µ∗

)
, µ∗
)
is an optimal

solution- Lagrange multiplier pair. We will proceed by using Proposition 5.1.5 in Bertsekas [1997].

That is, we need to check primal and dual feasibility, Lagrangian optimality and complementary

slackness.

1. Dual feasibility. It follows directly because we take µ∗ optimal dual solution.

2. Primal feasibility and complementary slackness. To check primal feasibility and complemen-

tary slackness we will apply Proposition 2.1.2 in Bertsekas [1997], which gives us that, as µ∗

is optimal dual solution, we have that

Ψ′
ρ(µ

∗)(µ− µ∗) ≥ 0, ∀µ ∈ [0, µ̄],

where the derivative of Ψρ is given by

Ψ′
ρ(µ) = ρ+

∑
θ∈Θ

pθg
′
θ(µ) = ρ−

∑
θ∈Θ

pθm̄

(
β

(
θ

1 + µ

))
. (C-11)

If µ∗ = 0,Ψ′
ρ(0)µ ≥ 0 and therefore Ψ′

ρ(0) ≥ 0. Note that we also have Ψρ(µ
∗)µ∗ = 0, and then

primal feasibility and complementary slackness follows by (C-11) because
∑

θ∈Θ pθm̄
(
β
(

θ
1+µ∗

))
is the expected payment under the optimal bidding strategy.

If µ∗ > 0, there exists ν > 0 such that µ∗ + ν and µ∗ − ν belongs to [0, µ̄]. Therefore both

Ψ′
ρ(µ

∗)ν and Ψ′
ρ(µ

∗)(−ν) and non-negative, obtaining Ψ′
ρ(µ

∗) = 0, and primal feasibility and
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complementary slackness hold.

3. Lagrangian optimality. Note that

argmax
ϕ∈Φ
L(ϕ, µ∗) = argmax

ϕ∈Φ

µ∗ρ+
∑
θ∈Θ

pθ

∫
A

(θq̄(a)− (1 + µ∗)m̄(a)) dϕθ(a)


=

arg max
ϕθ∈∆(A)

∫
A

(θq̄(a)− (1 + µ∗)m̄(a)) dϕθ(a)


θ∈Θ

=

{
argmax

a∈A
gθ(a, µ

∗)

}
θ∈Θ

,

where the second equality holds because we can separate the problem for each θ. But note

that gθ(a, µ
∗) is maximized at a = β(θ/(µ∗ + 1)) and thus we have Lagrangian optimality.

Therefore, the four conditions holds and the proof is completed.

D Auxiliary Results

The following lemma is a technical result we need to prove Lemma B-3.

Lemma D-1. For every a > 1, b > 0 we have

T∫
0

a exp(−b(T − t)) ∧ 1 dt ≤ 1

b
(log(a) + 1).

Proof. We assume that a exp(−bT ) < 1. Otherwise, the integrand is always one and the bound

trivially holds because T < log(a)/b if a exp(−bT ) > 1. Let T̃ ∈ [0, T ] be such that a exp(−b(T −
T̃ )) = 1, which is always guaranteed to exists because the function t 7→ a exp(−b(T − t)) is

continuous, increasing, and evaluates to a exp(−bT ) < 1 at t = 0 and a > 1 at t = T . Then,

by partitioning the integral at T̃ we obtain

T∫
0

a exp(−b(T − t)) ∧ 1 dt =

T̃∫
0

a exp(−b(T − t)) dt+ T − T̃

=
a

b
exp(−b(T − t))

∣∣∣T̃
0
+ T − T̃

=
a

b
exp(−b(T − T̃ ))− a

b
exp(−bT ) + T − T̃

≤ 1

b
+ T − T̃ ,
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where the last inequality follows from our choice of T̃ and discarding the second term. On the other

hand, as a exp(−b(T − T̃ )) = 1 we have that T − T̃ = log a
b , and therefore we conclude that

T∫
0

a exp(−b(T − t)) ∧ 1 dt ≤ 1

b
(log a+ 1).

Lemma D-2. Let ∥x∥ be a norm in the Euclidean space and let ∥z∥∗ = max∥x∥≤1{z⊤x} be its

dual norm. Let f(x) = 1
2∥x∥

2 if ∥x∥ ≤ φ and f(x) = ∞ otherwise. Then, its convex conjugate

f∗(z) = maxx
{
z⊤x− f(x)

}
= maxx:∥x∥≤φ

{
z⊤x− 1

2∥x∥
2
}
is given by

f∗(z) =


1
2∥z∥

2
∗ if ∥z∥∗ ≤ φ

φ∥z∥∗ − 1
2φ

2 otherwise.

Proof. Note that the convex conjugate can be more compactly written as min(φ, ∥z∥∗) · ∥z∥∗ −
1
2 min(φ, ∥z∥∗)2. We first show that the latter expression provides an upper bound and then show

that the upper can be attained by choosing a suitable feasible solution.

For the upper bound, use Cauchy-Schwartz inequality to obtain that

f∗(z) ≤ max
x:∥x∥≤φ

{
∥z∥∗∥x∥ −

1

2
∥x∥2

}
= max

ℓ∈R:0≤ℓ≤φ

{
∥z∥∗ℓ−

1

2
ℓ2
}

,

where the equality follows because we can equivalently optimize over the attainable norm values

in [0, φ]. The objective value of the latter problem is a downward parabola with maximum at

ℓ = ∥z∥∗. The claim follows because the optimal solution is ℓ = min(φ, ∥z∥∗).
For the lower bound, fix z and let x̃ = argmax∥x∥≤1{z⊤x}, i.e., a vector satisfying ∥z∥∗ = z⊤x̃.

Such a vector exists because the dual norm always admits an optimal solution by Weierstrass

theorem (the objective is continuous and the feasible set is compact). Consider the solution

x = min(φ, ∥z∥∗)x̃. This solution is feasible because ∥x∥ = min(φ, ∥z∥∗)∥x̃∥ ≤ φ since ∥x̃∥ ≤ 1.

Therefore,

f∗(z) ≥ z⊤x− 1

2
∥x∥2 = z⊤x̃ ·min(φ, ∥z∥∗)−

1

2
∥x̃∥2 ·min(φ, ∥z∥∗)2

≥ min(φ, ∥z∥∗) · ∥z∥∗ −
1

2
min(φ, ∥z∥∗)2 ,

where the last inequality follows because ∥z∥∗ = z⊤x̃ and x̃ ≤ 1. The result follows.
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Lemma D-3. Consider the general linear program problem

max
x

c⊤x

s.t Ax = ξ + ϵu , (D-1)

x ≥ 0 ,

where c, x,0,1 ∈ Rn, ξ, u ∈ Rm, A ∈ Rm×n matrix of rank m and ϵ a real parameter. Define

x∗min = min{x∗i : x∗i > 0}, where x∗ denotes a non-degenerate optimal solution of problem (D-1)

for ϵ = 0, and denote by AB ∈ Rm×m its associated basis matrix. If δ = x∗min/∥A
−1
B u∥, then AB

remains optimal for problem (D-1) for all 0 ≤ ϵ ≤ δ.

Proof. By permuting its columns, matrix A can be written as A = (AB|AN ) , where AB ∈ Rm×m is

the submatrix containing the columns associated to the basic variables of x∗ and AN ∈ Rm×(n−m)

is the submatrix corresponding to the non-basic variables of x∗. Furthermore, we can write x∗ =

(x∗B,0), where x∗B = A−1
B ξ ∈ Rm is the subvector of basic variables and 0 ∈ Rn−m. Note that

non-degeneracy of x∗ implies that x∗B > 0.

Note that δ > 0 is well defined because {x∗i : x∗i > 0} is not empty due to the non-degeneracy

condition on x∗. Take ϵ ≤ δ. We will prove that AB is an optimal basis for (D-1), that is, x = (xB,0)

with xB = A−1
B (ξ + ϵu) is an optimal solution for Problem (D-1). Changing the right-hand side

of the equality constraints does not change the reduced cost vector and, therefore, it is enough to

show that xB is non-negative.

To this end, take j ∈ {1, . . . ,m} such that (A−1
B u)j < 0. Note that if does not exist such j, the

desired inequality follows trivially because x∗j = (A−1
B ξ)j > 0 since x∗ is non-degenerate. Otherwise,

we have that

(xB)j =
(
A−1

B (ξ + ϵu)
)
j
= (x∗B)j + ϵ

(
A−1

B u
)
j
≥ x∗min − ϵ∥A−1

B u∥ ≥ x∗min − δ∥A−1
B u∥ = 0 ,

where the first equation follows from the definition of xB, the second because (x∗B)j is a basic

variable, the first inequality from the definition of x∗min together with |xj | ≤ ∥x∥ for every xj ∈
Rm, the second inequality because ϵ ≤ δ, and the last from the definition of δ. The proof is

completed.
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