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Abstract

In this paper, we address the industrial constraints of au-
tomatic passenger counting in city buses through a deep
architecture able to deal with images taken from low cost
2D cameras placed above the doorstep, from a zenithal
point of view. The challenge is then to handle highly vari-
able scenes due to passengers appearance (hair color, hats,
height), bus population density at rush hour and changes
in scene illumination. The scientific breakthrough related
to deep learning applied to computer vision as well as the
system embedding requirements for this task motivate us to
integrate in this context a lightweight convolutional multi-
object tracker which was especially designed for embedded
applications and performed well on the MOT Challenge. We
here evaluate it in an industrial context on our large scale
in-situ dataset, labelled for detection, multi-target tracking
and counting, and present a complete and embedded count-
ing system meeting the requirements of our application.

1. Introduction
In the literature, people counting is divided into two main

areas: ”region of interest” or ROI counting, and ”line of in-
terest” or LOI counting. The former consists in estimating
the number of people present in an image at a given time,
while the latter considers the individual and temporal count-
ing of people crossing an artificial line in the image. For a
public transport operator, counting passengers on buses al-
lows both to establish statistics on bus lines occupancy and
to estimate the fraud rate w.r.t. ticketing. To get the accu-
rate and individual count required by these tasks, we place
ourselves from the LOI counting perspective.

In order to avoid all the problems of occultation that can
occur with ordinary perspective view surveillance systems,
the existing precision counting sensors are generally placed
from a zenithal point of view i.e. above each of the doors

to be monitored. The technologies used are mainly either
stereoscopic vision sensors with depth reconstruction from
two images taken from different points of view (passive 3D
sensors), or infrared sensors that pulse light beams on the
scene and calculate the return time of flight of the beam to
estimate the depth of the elements in the observed scene
(active 3D sensors). Despite the ease of acquisition of RGB
images which would make the 2D modality a very attrac-
tive alternative as presented by Sun et al. [30] in their study
on LOI counting, 2D image sensors are rarely used for pas-
senger counting on the public transport commercial mar-
ket. However, the technological breakthrough related to
deep learning methods and convolutional neural networks
(CNNs) applied to computer vision in recent years motivate
us to develop a low cost system based on 2D cameras and
offering counting performance equivalent to the market.

In addition to counting performance, we must meet in-
dustrial requirements such as (i) a reasonable cost for the
client, but also (ii) on-board and near real-time processing
– the videostream of passengers getting in/out of the bus
can be analyzed between two bus stops. From this perspec-
tive, the recent and constant evolution of embedded hard-
ware platforms designed for deep learning approaches is a
real game changer: we can imagine a whole material archi-
tecture suited for this kind of method, able to handle several
doorsteps/cameras at the same time, in parallel, as opposed
to existing decentralized solutions with independent sensors
and processing units for each doorstep to consider – thus
multiplying the final costs.

One way to address the 2D visual counting problem is
then to perform a frame-by-frame visual analysis of the
scene in a multi-object tracking (MOT) framework. The vi-
sion community is very active on this problematic, and the
detection-based tracking paradigm is widely used to tackle
this challenge. A single image counting process based on
one-shot detection is not suited for LOI counting because
single image detection cannot infer if people are getting
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Figure 1. Online multi-object tracking-by-detection applied to pas-
senger counting. A detector locates every object in the scene on
a frame-by-frame basis, then a multi-object tracker links these de-
tections together in order to reconstruct the distinct passengers tra-
jectories. Finally, a tracklet crossing the doorstep line is counted
in/out depending on its direction.

in/out of the bus – to this aim, knowing the passenger di-
rection is essential. Moreover, a temporal analysis i.e. tar-
gets tracking, is more robust since it can catch up on the
single image detector mistakes by filtering false positives
and filling false negative gaps over time. On another note,
where conventional motion flow analysis methods such as
optical flow would have difficulty distinguishing passengers
at rush hour when they are all moving together, tracking-
by-detection allows to precisely detect each target at each
instant, and to link these detections through time to recon-
struct individual trajectories as it is illustrated by figure 1.

In this context and based on the industrial embedded
constraints of our overall counting application, we integrate
and evaluate the compact siamese multi-object tracker pro-
posed by Labit-Bonis et al. [18]. Because their work was
specifically motivated by the performance/speed trade-off
required by such embedded applications, it is well-suited
to our context as they proposed a lightweight architecture,
benefiting from CNNs and which performed great in terms
of tracking performance and speed on the well-known pub-
lic benchmark for multiple people tracking, namely the
MOT Challenge [19].

As a recap, our contributions are three-fold, with:

• the integration of a recent, compact and embeddable
CNN-based siamese tracker which performed well on
the MOT Challenge, into a 2D visual counting system
thus benefiting from the recent breakthrough of deep
learning for computer vision tasks;

• the description of the large scale bus passenger in situ
dataset that we acquired in a city bus under operational
circumstances both at off-peak and rush hour, at differ-
ent times of the day, and that we annotated for detec-
tion, tracking and counting;

• a tracking and counting performance evaluation of the
overall application on this dataset, along with em-

bedded considerations and preliminary results for the
whole algorithm porting.

In the following, we propose a review of existing 2D vi-
sual methods applied to people counting in section 2. In
section 3, we then describe the CNN-based siamese multi-
object tracker integrated in the overall system [18], before
delving into the industrial context of passenger counting
with the presentation of our dataset in section 4. Finally
in section 5, we evaluate our approach both in terms of
tracking and counting metrics on this dataset, after what we
show preliminary results towards the embedding of the final
counting system.

2. Related work
2D vision and deep learning in LOI counting is rarely

used by bus line operators. However, the considerable gains
brought by these techniques on the problem of multi-target
tracking and object detection show a real interest in evalu-
ating their contribution in the industrial context of passen-
ger counting. Several visual methods exist, though, and
have been applied to passenger counting for image pre-
processing, person detection or tracking and counting algo-
rithms, but few propose to use deep learning and convolu-
tional neural networks. In this section, we propose a review
of the existing 2D vision systems for people counting in the
literature, as well as an overview of the online multi-object
tracking-by-detection techniques.

2.1. Visual passenger counting with 2D images

In the context of city buses. In the operational context
of city buses, works are usually carried out on private im-
age databases, in zenithal view. In 2008, Chen et al. [8]
performs segmentation and region merging based on mo-
tion vectors extracted from the image. In 2012, Chen et
al. [9] opt for circular shape detection using Canny filter-
ing and a Hough transform, as well as colorimetric filtering
on hair color. The detected circles are then compared with
those of nearby instants to infer the passengers trajectories.
In 2016, Perng et al. [25] apply background subtraction as
well as morphological operators to focus on moving areas
of interest, before performing the actual person detection
via the correspondence between the region under consider-
ation and an upstream defined head/shoulder geometric pro-
file. In 2017, Liu et al. [20] use a mixture of Gaussians and
background subtraction for target pre-localization, and then
apply a CNN for automatic extraction of passenger visual
features. They also mitigate target tracker drift by progres-
sively updating a pheromone map capturing the memory of
passing trajectories. In 2019, Nakashima et al. [24] achieve
a 93.5% (resp. 36.1%) counting accuracy for people getting
on (resp. off) of a bus on their dataset taken from a perspec-
tive view, by using a tracking-by-detection approach based



on YOLO [26] as the detector and DeepSORT [34] as the
tracking method. They robustify their counting accuracy by
adding a Random Forest Regressor dealing with additional
data based on GPS and vehicle speed.

Out of bus context. Other works in perspective and/or
zenithal view propose for example to manually extract vi-
sual features through HOG and LBP [36, 16, 1] before pass-
ing them to an SVM classifier. In addition, Zeng et al. [36]
then use a particle filter for target tracking, Kocamaz et
al. [16] associate detections with existing trajectories based
on the spatial proximity and motion fluxes of the targets,
Garcı́a et al. [14] use a Kalman filter to predict the position
of the targets prior to the measurements acquisition.

2.2. Online multi-object tracking-by-detection

Visual and online MOT considers sequences of suc-
cessive 2D images. The targets positions are gener-
ally represented by a bounding box around them at
each image instant, expressed in pixel coordinates e.g.
[x, y, width, height] and to which a unique identifier re-
lated to the considered target is assigned. The tracking-by-
detection paradigm is commonly used in 2D visual track-
ing and consists in (i) locating the targets present in each
image via a dedicated detection algorithm and (ii) link-
ing these inter-image observations by specifically identi-
fying them. The tracking objective is twofold: to ensure
the spatio-temporal coherence of the targets’ trajectories,
and to compensate for the errors of the detection agorithm
which can generate false positives (object detected but not
present in the image), false negatives (object present in the
image but not detected) and imperfect measurements. In
this context, detectors and trackers are generally evaluated
separately on dedicated benchmarks such as ImageNet [28]
and the MOT Challenge [19].

Detection. For a long time and before the advent of deep
learning, object detection was done by means of a window
of fixed size browsing the entire image in small regular steps
and with overlap, which were each one going through a fea-
ture extraction and classification process before the gather-
ing and filtering of every confident window to produce the
final bounding box predictions. Since the formalization of
the detection task within CNNs and the evolution of graphic
cards specifically well designed for this kind of structure,
all detectors today replace this slow sliding window pro-
cess by using ”region-based” and ”one-shot” convolutional
architectures such as Faster R-CNN [27], SSD [21] or
YOLO [26]. They take an image as input and process it
once, in its entirety, to directly produce as network outputs
the box coordinates and classification scores for every de-
tected object. SSD and YOLO both stand out from the rest

by their architecture compacity and their speed of execu-
tion, well suited for our application requirements, while still
providing for good detection performance.

Tracking. At each image instant and after the detector
is applied, detection outputs are given to the tracking al-
gorithm, which creates new trajectories when objects are
detected, predicts the current position of existing tracklets,
and associates them with the remaining detections. Vari-
ous methods exist for predicting, associating, and manag-
ing the tracklets status. For prediction, some of them use
simple linear velocity models [4], Kalman filters [10, 34] or
single object convolutional trackers [11, 13]. The vast ma-
jority of the approaches submitted to the MOT Challenge
also use CNNs for appearance description within the asso-
ciation process [10, 34, 11, 13, 15, 35]. However, even for
methods using CNNs for position prediction or appearance
feature extraction, networks are trained and executed sepa-
rately for the two different tasks, thus multipliying the exe-
cution time of the overall process. To overcome this issue,
Labit-Bonis et al. [18] proposed a tracking method meeting
the industrial requirements presented in section 1, by com-
bining these two tasks into a single, unified and compact
siamese convolutional architecture for one-shot regression
and reidentification, demonstrating great speed and track-
ing performance on the MOT Challenge w.r.t. the littera-
ture. The tracker formalization will be further summarized
in section 3.

This paper focuses on the behavior of this tracker within
our industrial passenger counting system, coupled with two
recent detectors of the literature: SSD, and YOLO. As
a baseline to characterize the contribution of the track-
ing method, we also compare these couplings with Deep-
SORT [34] in place of the tracking technology brick: this
popular 1 method uses a Kalman filter for position predic-
tion and a CNN for appearance feature extraction.

2.3. Publicly available datasets

Since 2019, a large public database of bus passen-
ger counting sequences, PCDS (for Passenger Counting
DataSet) has been made available to the scientific commu-
nity by Sun et al. [30]. However to our knowledge, most of
the image databases dedicated to tracking or counting con-
cern plunging or frontal views [7, 6, 23, 22] and there is still
no public dataset annotated for the three tasks of detection,
multi-object tracking and counting within this applicative
context in a zenithal view. In section 4, we focus on our
large scale in situ dataset, on which we evaluate the track-
ing system in section 5.



Figure 2. Tracker synoptic [18]. From two images cropped around
targets position at t − 1 and t, the tracker both regresses their po-
sition offset within the search area, and a reidentification score be-
tween the current target appearance and the predicted one, which
can be interpreted as the prediction confidence.

3. Tracker overview
Labit-Bonis et al.’s work start from the two observations

mentioned before. First, within the MOT context, many ap-
proaches use CNNs to efficiently describe targets, but only a
few use them for the position prediction phase, even though
CNN-based single object trackers (SOT) are among the best
on the VOT Challenge [17]. Second, when trackers do
use CNNs both for prediction and re-identification within
MOT [11, 13], they show great tracking performance but
their processing still remains cumbersome: different net-
works are used for both tasks, they are trained indepen-
dently and executed in sequence.

All-in-one architecture. This single object tracker for
position prediction is integrated within the MOT context
and enriched with a reidentification purpose in a single,
compact and unified architecture by taking advantage of
Siamese networks. These structures are multi-input archi-
tectures with layers sharing all or part of their weights on
each entry. Initially formulated for similarity/dissimilarity
feature learning for verification applications [31, 29], they
are now widely used by the visual tracking community
for target visual motion prediction and have shown great
progress on the VOT Challenge in particular.

The Siamese-based tracker proposed in the paper [18]
consists of three parts: the joint visual feature extraction,
the inter-frame target offset prediction and the prediction
similarity computation via the generation of a reidentifica-
tion descriptor. Figure 2 illustrates the high-level architec-
ture and highlights the joint processing of regression and
reidentification in a two-headed system.

From two enlarged t − 1 and t image patches cropped
around the target position at time t − 1, the network first
infers the target position offset between the two instants
through the SOT branch, and then produces a reidentifica-
tion score between the current target appearance and the one
at the predicted position after retrieving the feature maps

1≈ 1000 citations.

subsets thanks to a ROI Align layer. Based on this predic-
tion confidence score, they are then able to adopt a strategy
which keeps confident targets alive even if no detection has
been made or associated. They thus fill the gaps produced
by missing detections and show a good robustness to occlu-
sions.

Tracking performance on the MOT Challenge. In
2021, the authors presented state-of-the-art tracking perfor-
mance of their siamese-based tracker on the MOT Chal-
lenge SDP test set, comparatively to the most recent ap-
proaches of the literature at the time such as MOTDT [13],
FAMNet [11], Tracktor++ [2] or DASOT [12]. Beyond
tracking performance, they also exhibited a 2 to 17 times
speedup over the approaches with the best MOTA.

Based on these promising results both in terms of track-
ing performance and speed, we want to integrate and evalu-
ate it within the industrial context of passenger counting on
our dataset we present hereafter.

4. Large-scale in-situ passenger dataset
Dataset description. For our evaluations, we recorded a
video database by placing a GoPro camera above the central
door of a bus in operation. These videos are acquired at dif-
ferent times of the day to capture the variability of the per-
ceived scenes (day/night, bus congestion, shape/appearance
of passengers). On these recordings, only some scenes con-
tain people (at the terminus, the bus is waiting for its depar-
ture with closed doors, without passengers on board): only
these sub-sequences are used for detection and tracking. For
the counting evaluation, we then select only the moments
between opening and closing of the bus doors at the stops.
In addition to this segmentation, all videos go through a cal-
ibration phase to linearize the distortion induced by our on-
boarded fish-eye camera.

Detection, Tracking, and Counting Annotations. We
annotate our database for the three evaluation objectives of
detection, multi-target tracking, and counting. Detection
and tracking are annotated using the VATIC tool [33]; all
the sequences details are given in Table 1, and illustrated by
Figure 3. We estimate the annotation time for detection and
tracking alone to be about 70 effective hours. Counting is
evaluated only on the sequences of opening and closing of
doors i.e. 100 sub-sequences accounting for 118 ascents and
239 descents. For each sub-sequence, we store the ground
truth in a .txt file indicating the number of ascents and
descents.

Dataset splits. For each experiment, the sequences
Seq-2, Seq-3 and Seq-4 are used for training, Seq-1
and Seq-5 for validation, and finally Seq-6 for testing.



Seq. Images 6= ID Labels Clutter Illumination
Seq-1 9,751 45 10,017 Medium (max 4) Daylight
Seq-2 15,382 47 15,724 Medium (max 3 + seats) Late + Artificial light
Seq-3 18,427 80 16,773 Large (max 6 + seats) Daylight
Seq-4 29,889 96 33,947 Small (max 3) Daylight
Seq-5 20,353 48 69,493 XLarge (≈10 + seats) Night + Artificial light
Seq-6 11,576 38 10,848 Small (max 2) Night + Artificial light

≈ 1h 105,378 354 156,802
Table 1. Passenger dataset description: there are several scenarios with more or less congestion (standing and sitting passengers) as well as
changing illumination (day, night, with or without artificial lighting).

Figure 3. Illustration of the variability of the scenes in our database in terms of lighting, passenger appearance and environment clutter.

This distribution is chosen in order to have sequences of all
types both in training and validation/testing sets i.e. with
different illumination conditions and scene clutter.

5. Evaluations & discussion
5.1. Implementation details

The counting prototype in its first version (SSD + Deep-
SORT, as described in section 2) is embedded and func-
tional on an NVIDIA Jetson TX2 development kit. At the
time of the porting choice, NVIDIA was the only manufac-
turer on the market and the TX2 had the necessary capabili-
ties for handling three video streams in parallel and running
the considered networks.

The system in its latest version i.e. with the YOLO de-
tector and the tracker from [18], is currently running on
a fixed development PC equipped with a Titan Xp. Even
if the official branch of YOLO is the one developped by
Alexey Bochkovskiy [5], we chose the implementation of
”YOLOv5”, released in August 2020 by Ultralytics 2 be-
cause of its ease of use and portability. Precisely, its porting
is in progress and the arrival of potential processing units
such as Intel Myriad V2 or Google Coral motivates us to
consider a new platform, better adapted than the Jetson TX2
to the industrial constraints stated above. We will further
discuss and show preliminary results of the counting sys-
tem on these platforms at the end of this section.

5.2. Tracking performance analysis

5.2.1 Tracking metrics

As it is done in the MOT Challenge, we evaluate the tracker
with the CLEARMOT [3] metrics: false positives FP, false

2Source: https://github.com/ultralytics/yolov5.

negatives FN, identity switches IDS, percentage of mostly
tracked (MT) and mostly lost (ML) targets, fragmentations
(FM) and most importantly the accuracy of the multi-object
tracking MOTA which combines these metrics and gives
relevant insight into the overall tracking performance.

5.2.2 Tested configurations

In order to quantify the contribution of our method, we com-
pare several variants in Table 2, in an incremental way:

(A) SSD + DeepSORT: as stated in section 2, this coupling
is used as a reference;

(B) SSD + [18]: to illustrate the contribution of the
lightweight siamese tracker, the DeepSORT tracker is
replaced by [18];

(C) YOLOv5 + DeepSORT: replacing SSD by YOLOv5
and keeping DeepSORT as a tracker shows the impact
of the detection performance;

(D) YOLOv5 + [18]: finally, we replace the tracker by [18]
again to show its influence.

5.2.3 Results interpretation

Tracker [18] contribution: (A) vs. (B) Considering ex-
actly the same detections from SSD, the application of
the new tracker instead of DeepSORT gains respectively
+1.6%, +6.4% and +4.5% MOTA points on the three se-
quences, the most notable contribution being on the most
crowded sequence, Seq-5. For SSD, which generates
many false negatives, the trajectory keep-alive strategy
presented in section 3 reduces them considerably (−431,
−6581 and −937 decrease on FNs compared to SSD +
DeepSORT). The visual position prediction strategy also

https://github.com/ultralytics/yolov5


Method IDF1 Prcn Rpl GT MT ML FP FN IDS FM MOTA

(A) SSD + DeepSORT 77,7 88,6 89,1 45 68.9 8.9 1151 1090 10 69 77,5
(B) SSD + [18] 84,9 86,7 93,4 45 80.0 4.4 1433 659 5 22 79,1
(C) YOLOv5 + DeepSORT 78.8 92.3 95.8 45 88.9 4.4 805 422 15 15 87.6Se

q-
1

(D) YOLOv5 + [18] 79.0 90.3 95.6 45 88.9 4.4 1044 346 11 6 86.0

(A) SSD + DeepSORT 30,6 92,1 55,6 48 25.0 22.9 3299 30860 233 1237 50,5
(B) SSD + [18] 31,6 89,3 65,1 48 47.9 20.8 5432 24279 222 297 56,9
(C) YOLOv5 + DeepSORT 61.3 92.6 93.0 48 70.8 10.4 5185 4897 123 414 85.3Se

q-
5

(D) YOLOv5 + [18] 65.9 91 95,1 48 85.4 8.3 6514 3394 112 143 85,6

(A) SSD + DeepSORT 51,7 90,9 55,64 38 36.8 13.2 604 4812 27 175 49,8
(B) SSD + [18] 51,4 86,8 64,3 38 60.5 10.5 1061 3875 25 31 54,3
(C) YOLOv5 + DeepSORT 77.7 96.6 83.4 38 81.6 7.9 317 1806 17 53 80.3Se

q-
6

(D) YOLOv5 + [18] 74.0 94.8 85.3 38 86.8 7.9 507 1598 17 35 80.4

Table 2. MOT evaluations of the different trackers on our dataset. (B) and (D) illustrate the interest of using the siamese tracker from [18],
compared to the original configuration (A). (C) and (D) integrates YOLOv5 as a detector in replacement of SSD.

catches detection artifacts better than DeepSORT’s Kalman
position prediction: trajectories are less fragmented (de-
crease of−47,−940 and−144 on FMs), and better tracked
(gain of +11.1%, +22.9% and +23.7% in MT).

Importance of the detector for our application: (C)
vs. (D) The evaluation of the system against DeepSORT
with YOLOv5 in detection instead of SSD shows the im-
portance of the detection quality in the context of a zenithal
view. Compared to the MOT Challenge for which the au-
thors show the effectiveness of their approach in these com-
plex situations, the zenithal view drastically reduces the
number of occlusions: the application of a powerful detec-
tor like YOLOv5 mechanically reduces the potential gain
brought by the tracker. However, we still observe a reduc-
tion of fragmentations, identity switches and a better cover-
age of the tracked targets.

5.3. Counting performance analysis

5.3.1 Counting metrics

As for detection and tracking, an automatic passenger
counting system can generate two types of errors within a
full counting sequence at a bus stop during the doors open-
ing: false positives (FP) and false negatives (FN). When the
automatic count of people is greater (resp. lower) than it
should be, it generates FP (resp. FN).

Few studies formalize precisely the metric used for pas-
senger counting, but it is nevertheless common to see two
types of errors advertised on the industrial market:

• the ”compensated” error, which is based on the overall
number of people on the bus, and for which the errors
can cancel each other out3;

3A false negative (resp. positive) on the way up can be compensated
for by a false negative (resp. positive) on the way down, or in the same
direction of travel, a false positive catches up with a false negative.

• the ”uncompensated” counting error where all the er-
rors made on the count (false positives and false nega-
tives) are cumulated in the metric.

A document published in 2018 by the German indus-
try forum of transport companies VDV gives recommen-
dations for the evaluation of automatic passenger counting
systems [32].

In particular, it sets the measure of overall error with
compensation as the difference between Pa the number of
people counted automatically by the system and Pm the
number of passengers counted manually i.e. the ground
truth (cf. equation 1). This measurement is applied dis-
tinctly to the upward and downward directions; the compen-
sation is then done in the same direction – a false positive
makes up for a false negative.

Eg(lobal) =
|Pa − Pm|

Pm
(1)

We can formulate this metric in terms of true/false pos-
itives and false negatives by the equation 2, considering
Pa = FP + TP , Pm = GT = FN + TP , and there-
fore :

Eg =
|(FP + TP )− (FN + TP )|

FN + TP
=
|FP − FN |
FN + TP

(2)

We propose to formalize the cumulative error Ec with-
out compensation by the equation 3, which accounts for the
totality of errors w.r.t. the groundtruth.

Ec =
FP + FN

FN + TP
(3)

For the sake of interpretability, we express the perfor-
mance of the counting system in terms of count rate with-
out/with compensation Tc = (1 − Ec) × 100 and Tg =
(1− Eg)× 100.



Up : GT = 118 Down : GT = 239 Global

Method FP FN TP Tc Tg FP FN TP Tc Tg Tc Tg

SSD + DeepSORT 5 19 99 79.7% 88.1% 21 12 227 86.2% 96.2% 84.0% 93.6%
YOLOv5 + [18] 10 7 111 85.6% 97.5% 11 19 220 87.5% 96.7% 86.8% 96.9%

Table 3. Final comparison of the complete counting system between the SSD + DeepSORT combination and YOLOv5 + [18].

Detection Tracking +
Counting Resolution Training

framework Optim. Platform FPS

SSD + DeepSORT 3 3 360× 480 Tensorflow - Jetson TX2 ∼20-23
YOLOv5 + [18] 3 3 360× 480 PyTorch - Titan Xp ∼31-37

YOLOv5 3 - 192× 224 PyTorch TensorRT Jetson TX2 ∼40*
YOLOv5 3 - 192× 224 PyTorch OpenVINO Intel Core i5 ∼50-70

*For a 3 images batch.
Table 4. Pre-port evaluations of the system. We evaluate SSD + DeepSORT on Jetson TX2, YOLOv5 + [18] on Titan Xp, as well as the
optimization with TensorRT and OpenVINO of YOLOv5 alone on TX2 and on Intel Core i5.

5.3.2 Quantitative results

Table 3 contains the count rates without/with compensation
for ups, downs, and for the overall count. In all cases, the
final version performs better than the SSD + DeepSORT
combination with gains of +5.9%, +1.3% and +2.8%
(resp. +9.4%, +0.5% and +3.3%) on the count rates with-
out compensation (resp. with compensation) in ascent, de-
scent and overall.

5.3.3 Qualitative results

A comprehensive analysis of count errors on the SSD +
DeepSORT method shows that among the count errors,
about : (i) 58% are related to false detections resulting in
the creation of false trajectories, (ii) 19% are caused by non-
detections and therefore uncounted trajectories, (iii) 23%
are due to bad associations from DeepSORT during track-
ing. The efficiency of the YOLOv5 detector as well as the
better tracking performance brought by the siamese one al-
low to improve the counting performance for such types of
errors.

5.3.4 Industrial requirements

The performance of our counting system is comparable to
the best sensors on the market claiming a count rate of be-
tween 95 and 99% according to the VDV standard: we thus
meet the specifications and present an industrially viable so-
lution in terms of counting quality. Moreover, as we will
show in the next section, our centralized architecture based
on ordinary 2D sensors makes it possible to integrate the
counting system while reducing the costs of the hardware
targets.

5.4. Embedded prototype and preliminary results

In Table 4, we present the on-going evaluations of our
system porting. In the first two rows, the complete counting
system is evaluated with the detection, tracking and count-
ing bricks, for an input image resolution of 360× 480. The
difference in FPS between SSD + DeepSORT and YOLOv5
+ [18] can be explained by the fact that the Siamese tracker
is applied on the patches at time instants t − 1 and t, with
a factor 2 to widen the search area, multiplying by 4 the
amount of pixels to be processed. Even if the network used
in [18] is lighter, it is executed a larger number of times
and on larger images. However, in both cases the networks
have not been transformed through TensorRT, so in addition
to having more powerful platforms than the Jetson TX2, a
margin of progress is possible thanks to the optimization
phase during the embedding process.

As an example, we evaluate YOLOv5 alone on images
whose size is divided by two, both on Jetson TX2 with
TensorRT and on Intel Core i5 processor with OpenVINO
(OpenVINO allows to optimize the networks for the Myr-
iad V2 but more globally for any Intel processor, Core i5
included). The execution speed observed (respectively 40
FPS for 3 processed video streams and between 50 and 70
FPS for one stream) confirms that the porting of the new
system is within our grasp while respecting the constraints
of the specifications.

6. Conclusion

Automatic passenger counting in city buses is usually
done thanks to independent processing units using 3D sen-
sors placed above the doors. In this paper, we propose an
embedded and centralized counting system using 2D cam-
eras and achieving a count rate comparable to the best sen-
sors on the market. To do so, we take advantage of recent



deep learning methods applied to computer vision and in-
tegrate a recent, compact and discriminative siamese multi-
object tracker used for both position regression and reiden-
tification, in the overall counting framework, enabling us to
reconstruct passengers trajectories and count them as they
cross the doorstep. We evaluate this method on our large
scale bus passengers dataset, which we annotated for detec-
tion, tracking and counting, and demonstrate performance
meeting the requirements both in terms of counting results
and speed.
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