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ABSTRACT
Agent-based transport models demand that the daily activity pat-
terns of artificial agents are described in great detail. While choice
models for residential locations or workplaces exist, only few
approaches are available to find locations for highly constrained
secondary activities such as grocery shopping or recreation at high
resolution. The paper describes a data-driven approach of assign-
ing viable locations to such secondary locations while maintaining
consistency with homes, workplaces and other fixed points in an
artificial traveler’s daily plan. Two use cases for Switzerland and Île-
de-France are presented, which show that the algorithm is able to
assign locations while providing realistic distance distributions that
are consistent with mode-specific travel times.
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1. Introduction

In recent years, agent-based transport models have gained large interest, not only from
researchers but also from practitioners. Main drivers of this development are cheap com-
puting power which allows for large-scale simulations with millions of agents and an
ever-growing amount of transport data.

Still, setting up agent-based transport models involves a considerable amount of
work. Contrary to more aggregate approaches, the attributes, intentions and interactions
betweenmany individual travelers need to bemodeled. While for many dimensions useful
data exists, such as census data to determine home locations of agents, commutermatrices
to assignworkplaces, or household travel surveys (HTS) todescribedailymobility schedules,
there are still gaps. One major unknown are usually locations of secondary activities, e.g.
where people go shopping, engage in leisure or eat. A reason for that is that such choices
aremuch richer andmoredetailed than residential orworkplace choices forwhich standard
approaches and detailed data are available.

Literature on residential location choice is vast and mostly related to discrete choice
modeling (McFadden 1978; Guo and Bhat 2007; Sener, Pendyala, and Bhat 2011; Schirmer,
van Eggermond, and Axhausen 2014). Likewise, models such as the gravity model have
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emerged as standard procedures for assigning work or education locations that resemble
well daily commuting patterns (Sá, Florax, and Rietveld 2007; Filippo et al. 2012; Masucci
et al. 2013; Yang et al. 2014). Also, models have been presented for capacitated work loca-
tion choice (e.g. Vitins, Erath, and Axhausen 2016). Unfortunately, these approaches are
difficult to apply to secondary locations. Those often ‘fill’ gaps between the primary home,
work and education activities of people. Therefore, they are much more constrained in
terms of reachability and, at the same time, depend highly on individual taste variations,
with hundreds or thousands of potential alternatives. For instance, Kusumastuti et al. (2010)
perform a structured survey to qualitatively reveal the stages and preferences constituting
the choice-making process for leisure shopping activities.

Some discrete choice models have been proposed that give insight into the choice
behavior for certain, very specific activity typesgivencertain attributesof locationsor zones.
For instance, Erath et al. (2007) develop a discrete choicemodel explainingwhich attributes
of potential shoppingdestinations influence the location choice of thepeople, andPozsgay
and Bhat (2001) look at home-based recreational activities with aggregated zones as poten-
tial destinations. Hence, both approaches do not provide sufficient detail to select discrete
locations from a given set of alternatives.

To achieve this level of detail, a range of studiesmakes use of the geographic concept of
space-time prisms. In the relevant studies, first, a set of viable secondary activity locations is
generated. The approach considers network travel times andmakes sure that only locations
are selected that can be reached under consideration of time constraints for the depar-
ture and arrival at surrounding fixed activities and opening times of the secondary activity
locations. After that, choice models are used to select a specific location from the obtained
choice set (Yoon et al. 2012; Justen, Martínez, and Cortés 2013). Ma and Klein (2018) extend
the approach by making use of specific heuristics for location choice preferences using
Bayesian networks. These approaches are merely used in the context of geographic stud-
ies, where the reachability and accessibility of locations, given current traffic conditions, is
of interest. They have in common, that information on travel times at the relevant times of
day must be available. It is hence difficult to use these models as a preparatory stage for
traffic simulation as the travel times usually are the very outcome of those simulations.

The problem of secondary location choice seems to be a challenge that is inherent
to agent- and activity-based models, because often not only peak hour commuter traffic
is considered, but whole day mobility patterns. Furthermore, discrete locations are con-
sidered rather than aggregate zones. Since such models have only gained widespread
interest in recent years, literature on secondary location choice is scarce and no standard
approach has emerged so far. Yet, a search for secondary location choice or destination
choice yields a number of various approaches that are linked to activity-based model-
ing. For instance, ALBATROSS (Arentze et al. 2000; Arentze and Timmermans 2007) and
TASHA (Miller and Roorda 2003) each apply different strategies of implementing location
choices into their activity scheduling frameworks by different heuristic means of reduc-
ing the available choice set and fulfilling travel time constraints as in the space-time prism
approach.

In the context of the agent-based transport simulation frameworkMATSim (Horni, Nagel,
and Axhausen 2016) efforts have been pushed to put location choice into its evolution-
ary model where agents make random decisions (such as selecting a location nearby an
existing choice) and keep promising updates while discarding those that are not beneficial.
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Marchal andNagel (2005) consider a limitedagentmemoryof known facilities for secondary
locations, while Horni et al. (2009) explore the use of the concept of ‘frozen randomness’
which applies constant error terms to the attractiveness of each possible secondary activity
location. Again, the approach solves the problem of secondary location choice by defining
limited search spaces to cope with the vast amount of options. Unfortunately, it is part of
a computationally heavy agent-based simulation framework. Hence, it is useful for refining
agent decisions, but not for generating location choices from scratch.

In recent years, data-driven approaches have emerged that create synthetic human
mobility traces fromphone data.While those approaches represent well the generalmove-
ment patterns of the share of the population which are customers of a specific provider,
they may not be representative for the whole population. Furthermore, while providing
spatial detail, they commonly do not provide additional information such as activity types
along the mobility traces or sociodemographic attributes of the travelers (Jiang et al. 2016;
Anda, Ordonez Medina, and Axhausen 2021).

To summarize, existing approaches related to secondary location choice either require
a priori information which is not available in the context of transport simulation (mainly
travel times) or requires to estimate detailed choice models, which is a time-consuming
and very case-specific process. For agent-based transport simulations, which may be able
to adaptively refine location decisions, useful starting solutions are necessary.

In this paper, we describe a new approach for finding viable locations for secondary
activities based on Euclidean distances as a universally available information from house-
hold travel surveys and similar data sets. Contrary to existing approaches, which have
focused on explaining people’s choice behavior and replicating those choices, the pro-
posedmethod is data-driven in the sense that we replicate reference distance distributions
and their correlations to trip attributes. The algorithm is neither dependent on travel times
(which are often the very outcomes of the transport simulations for which the location
choice is supposed to be performed in the first place), nor on the modeling of sophis-
ticated decision processes. Furthermore, it allows to select from a large set of discrete
locations. The algorithm, hence, strives to provide a starting solution of secondary loca-
tions for agent-based simulation models which approximates the spatial structure of real
activity chains by imitating existing correlations, but without giving a causal explana-
tion for those structures. The selected locations can be be refined using more behavioral
approaches.

The remaining part of the paper is structured as follows. First, we describe our method
in detail. Afterwards, we present results for two large-scale agent-based simulationmodels
of Switzerland and Île-de-France. Finally, we provide a discussion including pathways for
future research, followed by concluding remarks.

2. Method

The algorithm that is presented in the following section operates on chains of activities
which are connected by trips. Some activities already have a location in space assigned.We
define those as fixed activities. The algorithm has the purpose to find sensible locations for
all other activities, which we call variable activities. For instance, a typical activity chain in
agent-based transport modeling would have a fixed home location for each agent and its
workplace may be known from a separate commuting destination model. In such a case, it
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Figure 1. One-sided constraint and two-sided constraint assignment problems.

remains to determinewhere an agentwould perform secondary activities such as shopping
or leisure.

The distinction between fixed and variable activities allows us to split up awhole activity
chain into smallerassignmentproblems, which canbe classified into two types. The first type
is a one-sided constraint problem as is shown in Figure 1 on the left. These problems appear
generally at the start and end of an activity chain, for instance, when an agent comes home
on Monday from a weekend leisure activity. Note that most transport models specify that
agents need to start and end their activity chain at home. In those cases, the one-sided
constraint problem is not relevant.

The second assignment problem type is the two-sided constraint problem. This problem
is themain focus of this work and is defined by two fixed activity locations with an arbitrary
number of variable activities between them. The task is then to find locations for those vari-
able activities such that certain criteria aremet. Our criteria, which are detailed below,make
sure that the algorithm produces realistic distance distributions.

In any case, the assignment problem does not only consist of finding continuous loca-
tions in Euclidean space for all variable activities, but to select candidates from a given set
of discrete locations. Such discrete locations are generally known upfront, e.g. as a list of all
shops in a city. Furthermore, the assignment process may rely on additional information
about the activities in the chain and attributes on their connecting trips. This way, a certain
type of activity may demand that it is assigned to a discrete location where such an activ-
ity can be performed. Likewise, a known transport mode on a certain trip may restrict the
distance between two activities.

To solve the assignment problem, we propose a two-step algorithm. In the first step, the
relaxationproblem is solved. Its purpose is to find viable locations for all variable activities in
continuous Euclidean space. Afterwards, the discretization problem is solved in the second
step. There, candidates are chosen from the set of discrete locations and assigned to the
variable activities. The result of the relaxation problemhas a strong influence on this choice
process. Finally, a convergence metric tests whether the algorithm should start again with
the relaxation phase or can terminate for a certain assignment problem.

There are multiple ways of how the two partial problems can be solved and linked. The
following sections detail the implementation in this research.

2.1. Relaxation problem

While the discretization phase in this paper is rather seen as a way to ‘correct’ continuous
locations to the set of discrete locations, the relaxation solver is the heart of the algorithm.
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At this stage, our aim is to choose locations for all variable activities in an assignment
problem such that we recover a given distance distribution from reference data. In this
specific case, we only consider Euclidean distances.

In the case of the one-side constraint assignment problem (see Figure 1), we apply a
simple algorithm that constructs a chain of locations around the only fixed one. First, we
sample a random angle around the fixed location. Thenwe sample a distance from the pre-
defined distance distribution. Knowing these two values, the location of the first variable
activity is completely specified. If there is another variable activity, we can repeat the pro-
cedurebut take thepreviouslydefined locationas the startingpoint.Wecall this process the
angular solver to the one-side constrained assignment problem. It is shown systematically
in Algorithm 1.

Algorithm 1 Angular relaxation solver
Input: Fixed location (x0, y0)
Initialize: i = 1
While i ≤ Number of variable activities n

r ∼ Distance distribution
α ∼ U(0, 2π)

(xi, yi) = (r cos(α) + xi−1, r sin(α) + xi−1)

Continue
Return (x1, y1), . . . , (xn, yn)

The relaxation problem is more interesting in the two-side constrained case. First,
assume that only one variable activity is framed by two fixed ones. Let c define their direct
Euclidean distance. Further, assume that two distances (d1, d2) have been sampled. Such a
case is shown inFigure2on the left. In exampleA, the conditiond1 + d2 < c is true, i.e. given
these two distances, there is no feasible solution to the problem of placing the variable
activity in such a way that it has distance d1 to the first fixed activity and distance d2 to the
second fixed activity. The special case d1 + d2 = c is shown in example B. There, one solu-
tion exists to the problem, which is to place the variable activity on a straight line between
the fixed ones such that the distances match. Increasing distances even more, we arrive in
example C,where d1 + d2 > c is true. In that case two solutions exist, which canbemirrored
at the straight line connecting the fixed activities. The exact locations can be obtained geo-
metrically by intersecting two circles around the fixed activities with the respective radii d1
and d2.

These examples show one component of our proposed relaxation algorithm: Given a list
of distances (which we regard further below), we want to place variable activities in such
a way that the Euclidean distance between their locations matches the sampled reference
distances. This implies that there is no ‘gap’ in the chain.

How does the problem look like with more than one variable activity? Such a case is
presented as example D in Figure 2. It is easy to imagine that all dashed points can be
moved around in space almost freely while still maintaining all the correct distances. Only
one needs to ‘pull’ or ‘push’ other points to do so. This thought directly leads to the solu-
tion algorithm in this case, where we apply a force model. First, all variable activities are
put on a straight line between the fixed activities, according to their order. Then, a small
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Figure 2. Possible solutions to the relaxation problem.

lateral deviation from that straight line is sampled for each activity and applied to the ini-
tial location. After that, a force model is run over multiple iterations. In this model, we loop
through all the variable activities and calculate their current distances to their neighbors.
If a distance is longer than the reference distance di the current point is moved towards
the neighbor, if it is shorter than expected, the point is moved away from the neighbor.
The displacement �p is calculated along the direction vectors to the neighbors with p
being the current location in Euclidean space, p′ being the neighbor and d the reference
distance:

�p′(p, p′, d) = γ · (‖p − p′‖ − d) · (p − p′)
‖p − p′‖ (1)

With pL being the left neighbor and pR being the right neighbor the total displacement is
then

�p = f (·) = �p′(p, pL, dL) + �p′(p, pR, dR) (2)

The parameter γ is a learning factor that determines how strongly the force model is
evolving. A low γ leads to slow convergence (i.e. more iterations) to the equilibrium state,
while a high γ tends to lead to oscillations with points making large jumps in space.
Note that in equilibrium the distance between the observed distance and d vanishes and
therefore no displacement takes place. Generally, this state is only achieved exactly after
an infinite number of iterations. Therefore, we define a threshold value T. The algorithm
then finishes as soon as all differences between expected and observed distances fall
below T or a maximum number of iterations is reached. The full procedure is shown in
Algorithm 2.

In Figure 3, the procedure is visualized. In the presented case, currently one variable
activity in a chain is chosen (at location p) in a chain of two fixed activities (filled circles) and
two variable activities (dashed circles). The left neighbor of p is shown in red, and the right
neighbor is shown in blue, with current positions pL and pR. The large dashed circles show
thedesireddistancesdL anddR between the twoneighbors and the selectedactivity, respec-
tively. For L, p is closer than the desired distance. Hence, a displacement towards the outer
circle �pL is calculated. Compared to the desired distance towards R, the selected activity
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Algorithm 2 Force-based relaxation solver
Input:
Fixed locations p0 = (x0, y0) and pN = (xN, yN)

Reference distances d0, . . . , dN−1

Initial locations:
c = ‖p0 − pn‖ (Direct distance)
u = (pn − p0)/c (Normed direction vector)
pi = p0 + u · (i/n) ∀i ∈ {1, . . . ,N − 1}

Lateral deplacement:
q = (ux ,−uy) (Normal vector)
pi = pi + q · ei with ei ∼ N (0, σ) for all i

Do (Force model)
pi = pi + f (pi, pi−1, pi+1, di−1, di) for all i
Converged = ‖pi+1 − pi‖ ≤ di for all i

Until Converged Ormaximum iterations reached
Return Converged, (p1, . . . , pn)

is too far away. Hence, a displacement towards R is calculated as�pR. The overall displace-
ment of the selected activity in this iteration is then�p = �pL + �pR. After this calculation,
the selected activity is moved to the newly calculated position which lies in the direction of
the crossing point of the large dashed circles. Afterwards, the point currently denoted as pL
will be treated the sameway, with the spot in gray being its left neighbor and the currently
selected activity being its right neighbor. Iteration by iteration, both points will then move
towards their ideal position to replicate the three desired distances (the ones between the
fixed activities and their direct variable neighbors, and the one between the two variable
activities).

It is now defined howwe solve the relaxation problem: In the case of one variable activ-
ity, the solution does not exist, is unique or chosen at random between the two mirrored
options. Note that the implemented algorithmwill still try to find a best guess solution (e.g.
placing the location directly between the two fixed activities) while reporting that it did not
converge if there is not a feasible solution. In the case of more than one variable activity,
the force model is used.

2.2. Feasible distances

In the previous section, it already has been pointed out that given two distances d1 and
d2 the relaxation problem is infeasible if their sum is smaller than the Euclidean distance
between the fixed activities. This criterion can be generalized to more than one variable
activity. Consider a chainof two fixedactivities and twovariableones as in Figure 2, example
E. In this case, the first distance is quite long, such that the next variable locationmust be far
away from the fixed point. However, the two other distances are so short, that they cannot
cover the whole way back to the second fixed location. The feasibility condition for the
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Figure 3. Visualisation of the force model.

relaxation problemmust therefore be generalized to:

di ≤ c +
∑
i �=j

di ∀i (3)

The condition says that no distance di can be larger than the sum of all other distances,
plus the direct distance between the fixed points, which can be interpreted as the slack
of the distance chain. Even before the relaxation algorithm can be run as stated above
we therefore need to make sure that the provided distances fulfill these conditions. While
more intelligent sampling approaches could be used in the future, we use the straight-
forward scheme in Algorithm 3. There, we sample N distances, check whether they fulfill
the condition of Equation 3, and, if not, repeat the sampling.

2.3. Discretization problem and convergence

Thediscretizationproblemcanbe solved inmanyways. Here,wedecide touse the arguably
simplest approach. Given a sampled chain of locations from the relaxation solver, we find
the closest discrete location in terms of Euclidean distance, which fulfills certain criteria (for
instance, it should be compatible with the respective activity type).
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Algorithm 3 Feasible distance chain sampler
Input: Distance distributionD
Do

di ∼ D for all i
Converged =

∑
i �=j di − c ≥ di for all i

Until Converged Ormaximum iterations reached
Return Converged, (di)

More elaborate approaches would be possible, such as finding the M closest discrete
locations and sampling from them, or sampling from candidates within a specified radius
around the relaxed location. For the purpose of the case study presented below, the sim-
ple approach yielded sufficiently satisfying results, but we provide further options and
pathways for improving the discretization step in the discussion section.

The discretization objective can be defined inmanyways. In this research, we determine
convergence by comparing the reference distances from the relaxed solution with those
in the discretized solution. As before, let pi be the relaxed locations (with p0 and pN as the
fixed ones). Let li be the discretized locations in Euclidean space. We can then define

δi = |‖pi+1 − pi‖ − ‖li+1 − li‖| (4)

as the absolute discretization error for each trip i. Based on the trip characteristics, we
can define a desired upper bound δi for each trip i. Only if then δi ≤ δi ∀i we say that the
discretization problem is converged. If not, new discrete locations can be sampled until
convergence is achieved or the maximum number of iterations is reached. Note that in the
discretization approach presented here there is no need yet for performingmore than one
iteration, because given a set of relaxed locations the result will always be the same.

The upper bounds δ̄i need to be defined by the modeler. They will strongly depend on
what information is available on the activities to be connected and the connecting trips. For
instance, in the case study below, the transport mode of a connecting trip will be known. In
that case, wewill use a smaller upper bound for walk trips than for car trips. It would equally
possible to define a generic threshold based on modeling experience or the level of detail
of the underlying data sets.

2.4. Summary

The individual componentsof our approachare linkedasdescribed inAlgorithm4. First, fea-
sible distances di are sampled (or nearly feasible ones if the algorithm has not converged);
second, the relaxationproblem is solved,which yields locations in Euclidean spacepi aswell
as information onwhether the algorithmhas converged; third, the locations are discretized
to li given the Euclidean-space locations and desired distances. Also, the discretization step
yields whether the discretized locations fall well into the defined requirements.

To complete the algorithm, an objective is calculated which quantifies the aptness of
the current solution. Here, we define J = max(δi), i.e. the maximum deviation between the
distance between two activities and their desired distance. Thismeans the better thewhole
process has assigned locations, the better the objective will be. If all distance requirements
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are met perfectly, the objective will be zero. Also, we define that the overall algorithm has
converged once the three sub-stages have completed successfully as well.

Finally, we can define the objective for the upper-level assignment problem solver. In
our current approach, we simply define J = max(δi). This way, even if the whole algorithm
may not converge perfectly, we always yield the solution with the smallest maximum devi-
ation. For the whole assignment problem, we define convergence when all parts, feasible
distance sampler, relaxationmodel, discretization solver, have converged. The current best
solution is then updated either if we have found an objective that is better than before or
if we have found a converged solution. In that case, the algorithm is aborted and the solu-
tion is returned. In case, the current iteration has not converged in all stages, the sequence
is repeated. The algorithm proceeds iteratively until a valid solution is found or until a
maximum number of iterations has been reached.

Algorithm 4 Assignment Problem Solver
Input: AssignmentProblem
Initialize: BestSolution = Null, J∗ = ∞
Do:

CF , di = SampleFeasibleDistances (AssignmentProblem)
CR, pi = SolveRelaxationProblem(AssignmentProblem, di)
CD, li, δi = SolveDiscretizationProblem(AssignmentProblem, di, pi)

J = maxi{δi}
Converged = CF ∧ CR ∧ CD

If J < J∗ ∨ Converged Then:
J∗ = J
BestSolution = li

End If
Until Converged Ormaximum number of iterations is reached
Return Converged, BestSolution

Figure 4 summarizes the relaxation–discretization algorithm. In state (a), a whole activ-
ity chain of an artificial traveler is shown. The traveler starts at home, goes to a shopping
activity, and then to a leisure activity. Afterwards, he goes to work and back home. Loca-
tions are already known for home and work, but not for the two other activities. As the
next step, feasible distances are sampled from a predefined distribution. The lengths of the
blue dotted lines in (b) represent those distances. Note that initially the distance between
the variable activities are smaller than the sampled ones. Therefore, the forcemodelmoves
the activity locations until they reside in the blue equilibrium state. Given the equilibrium
state, the activity locations are discretized in step (c). For both activities, a number of can-
didates are available fromwhich the closest one is chosen. Finally, in (d), we can look at the
relaxed locations and their respective discretized versions and check how their connect-
ing distances compare to each other. Clearly, there is a discretization error for both trips,
e.g. the discretized distance from home to the shopping activity is longer than the sampled
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Figure 4. Summary of relaxation–discretization assignment problem.

distance. The algorithm would now determine whether the deviations are too large and
continue with the next iteration if necessary.

3. Experiments

The algorithm has successfully been applied to the synthesis of various populations for
agent-based transport simulations. The following sections show two of the existing use
cases. In each case – for thewhole country of Switzerland and for the regionof Île-de-France
around Paris – similar data sets are used, which we first introduce briefly. Afterwards, we
give some background on the respective simulation models and detail which data is rel-
evant to the location assignment process. Finally, we report results on the respective use
cases.

3.1. Case studies

We consider two synthetic travel demand models, reflecting households, persons,
and their daily activity chains – one for the region of Île-de-France (Hörl, Balac, and
Axhausen 2019; Hörl and Balac 2021) and one for Switzerland (Balac et al. 2019; Hörl,
Becker, and Axhausen 2021). They are intended for the use in MATSim (Horni, Nagel, and
Axhausen 2016), a framework for agent-based transport simulation where the movements
of people, which are defined in detail using the travel demand data sets, can be simu-
lated in detail. Each of the two use cases has its own data pipeline, but the process is
very similar. First, census data is used to synthesize an artificial population that resembles
well the sociodemographic structure of the region. Second, the respective HTS is used to
attach an activity chain to each of the synthetic persons, based on a number of predefined
person and household attributes. While the home location of agents is known from the
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census data in both cases, activity locations for work and education are assigned based on
knownODmatriceswhich exist as public andproprietarydata for Île-de-France andSwitzer-
land, respectively. What remains then is to find locations for all non-primary activities, i.e.
shopping, leisure and others.

Based on the synthetic populations, we search for primary activities (home, work, edu-
cation) and cut the activity chains such that we arrive at assignment problems that start
with one primary activity, followed by one or multiple secondary activities which have not
been assigned a location yet, followedby another primary activity. As the activity chains are
generated by attaching chains from the HTS to a set of synthetic persons, also the observed
transport mode between two activities and the observed travel time are known. Further-
more, the type of each activity is noted down. Themodels distinguish between home,work,
education, shopping, leisure, and other, which is a common level of granularity for synthetic
populationswhich are intended to be used as input to the agent-based transportmodeling
framework MATSim. Also, these activity types roughly represent the location information
that is available from official data for the use cases. An extracted assignment problem con-
sists hence of the locations of the enveloping primary activities, the number of secondary
activities in between, the transportmodes and travel times of the trips between all involved
activities and the type of each activity.

Furthermore, distributional information on travel times and distances is available from
the respective HTS, and a set of discrete locations by activity is available in each case based
on the respective enterprise census. Details on the processing of the data sets in the two
use cases are given in the references provided above.

The assignment problem for thesemodels is defined as follows:We seek to find locations
for secondary activities such that the overall distribution of distances matches well what
we observe in the respective HTS. At the same time, we want to make sure that distances
between synthetic activitiesmake sensegiven the travelmodeand time in the initial activity
chains that are attached to the agents. Also, activities should only take place at locations
where a viable discrete location exists.

Note that this is only an initial assignment. MATSim is used later on to simulate this syn-
thetic population. Then, agents are able to make new mode decisions dynamically given
the traffic conditions. In that sense, we seek to establish a credible starting solution for
the dynamic simulation. Since location choice is not (yet) part of our simulation, the ini-
tial assignment must be of high quality as the generated distance distribution has a strong
influence on the mode choice behavior, which is the focus of those simulations.

3.2. Location assignment process

In line with the requirements above, we first track distance distributions by travel mode
and time bins in both use cases. We consider all trips in the respective HTS that do not
solely connect fixed activity types (home,work, education). As the next step, for eachmode,
we define travel time bins by segmenting the distribution into N quantiles such that each
quantile contains at least 400 samples. The result is shown in Figure 5. In the case of Switzer-
land, we arrive at 26 travel time bins for the ‘car driver’ transport mode. Each of those bins
then represents a distribution of Euclidean distances and Figure 5 shows their mean. For
the ‘car driver’ and ‘public transport’ modes also the area between the 10% and 90% per-
centiles is shown in the background. As an example for reading the plot, one can look at
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Figure 5. Input distributions to the location assignment algorithm. For all transport modes, the mean
distance is shown for travel time bins. The points indicate the upper bound of each bin. For driving a car
and public transport the range between the 10% and 90% percentile of the respective distributions in
each bin is indicated as a shaded area.

the ‘car driver’ graph for the travel time bin between 30 and 40min. For these travel times,
a distance distribution exists which has a mean of around 19 km.

Note that distributions of Euclidean distances are considered. This means that also for
long travel times rather short distances can be observed. Reasons for that can be ‘loops’
where people have reported that they just went for a round trip (and definitions of whether
to report an activity in between vary between different HTS). Especially, for Switzerland,
winding mountain roads may also explain rather short distances for long travel times.

In the location assignment algorithm, the distributions are used as follows. When sam-
pling feasible distances for an assignment problem, the means of transport and initial
survey travel time is known for each trip. Based on these two values, a distance distribu-
tion is selected from the data presented in Figure 5, and distance observations are sampled
for all trips. This way trips by bike receive different distances than trips by public transport,
for instance.

In the standard form of the algorithm, which is used actively in our model development,
we use the following inputs and parameters:

• Data
◦ Distance distributions by mode and travel time
◦ Discrete locations by activity type
◦ Structural chains of activities with

− activity types
− connecting transport modes and expected travel time

• Forcemodel
◦ Lateral deviation:N (0, σ = 10m)

◦ Displacement factor γ = 0.1
◦ Convergence threshold: T = 10m
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• Maximum iterations
◦ Feasible distance sampler: 1000
◦ Force model: 1000
◦ Assignment solver: 1000

• Maximum discretization errors δ̄

◦ Car driver, car passenger, public transport: 200m
◦ Walk, bike: 100m

The last parameters have a strong influence on the model performance. If they are very
low, many solutions will not be accepted as the discretized distances will be too far off
from the freely generated distances. Hence, the algorithm will need to perform an increas-
ing number of iterations to find a solution, or, when the iteration limit is reached, mark
an increasing number of problems as unresolved. This is especially the case if the available
discrete locations are sparsely distributed. If the thresholds are toohigh, an increasingnum-
ber of problems will be solved with few iterations, but discretization will increasingly blur
the dependency of the sampled distance on the input characteristics of the trips (e.g. the
relation between distance and modal travel time, in this case).

The values of 100 and 200m have been chosen based on experience and after applying
the algorithm multiple times on the presented data sets during the development process.
Usually, below these thresholds, we recognize a drop of resolved assignment problems and
a strong increase in runtime. A value beyond seems too rough aswe assume that a distance
of 100m would not make a large difference in finding a feasible destination for the active
modes, and 200m seems far enough to acknowledge that people may need to find a park-
ing spot or use a specific transit stop to reach the actual destination. In any case, the values
are arbitrarily defined and merely control the number of attempts that the algorithm will
perform to find a valid assignment. In another implementation, relative thresholds could
be used as well.

3.3. Resampling of input distributions

In terms of model calibration, the two input data sets represent our degrees of free-
dom. Especially the input distribution can heavily affect the distance distribution of the
assigned activity chains. In fact, preliminary experiments have shown that the algorithm
tends to skew the distance distribution. This can be explained by the constrained way
in which feasible distances are sampled (see Section 2.2). Equation (3) evaluated for two
distances gives |d1 − d2| ≤ c. Here, d1 and d2 have been sampled from their respective
trip-dependent distance distributions and c is the direct distance between the framing
activities. Hence, with increasing values for both distributions, the probability decreases
that the constraint can be fulfilled. Furthermore, it depends on how often samples from
different trip types are evaluated in combination. Conceptually, a distribution with a
focus on shorter distances will be skewed towards longer distances, while a distribu-
tion with focus on longer distances will be skewed towards shorter ones if evaluated
in combination. A solution to overcome the skewing effect is to reweight the distances
in all distributions. How to perform this reweighting efficiently and in a mathematically
exact way is a complex problem and could provide an interesting pathway for future
research.
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Table 1. Reweighting factors for the input distance distributions.

Car driver Car passenger Public transport Bike Walk

Switzerland 0.8 1.0 1.0 0.0 0.0
Île-de-France 0.0 0.1 0.5 0.0 −0.5

For our practical use case, we define a method to reweigh the input distributions based
on skew factors that can be calibrated by the user. Hence, as input to the algorithm, we do
not use the exact input distributions as shown in Figure 5, but we perform a resampling
of the data points according to the following scheme. Let di < di+1 be the ordered dis-
tance samples in any of themode and travel time bins and let f (di) be their normedweight
(
∑

i f (di) = 1). We then perform a linear reweighing according to

f ′(di) =
{
f (di) · (1 + α · (i/N)) if α ≥ 0

f (di) · (1 + |α| · [1 − (i/N)]) else
(5)

Afterwards, the weights are normalized again. Later, they are used when sampling feasi-
ble distances. Note that if the reweighing factor α ≥ 0, we oversample long distances, and
when α < 0 we focus on short distances. The values for the experiments in the paper at
hand are documented in Table 1. They have been found by manually setting the values,
comparing the model outputs as in the following section, and repeating the process until
an acceptable fit was found. In future adaptations of the algorithm, this process may be
automated.

3.4. Results

The location assignment model was run with the parameters and input as specified above.
Figure 6 shows the resulting distance distribution in comparison to reference data from
the HTS. After resampling, we get a very good fit for all modes of transport. Note that the
reference data is sometimes too coarse to make a more analytical comparison in the sense
of a Kolmogorov–Smirnoff test, or similar, feasible. For instance, the data for Île-de-France
shows heavy rounding of short distances, as can be seen in the lower right part of Figure 6.
Because of the binning of the data, the plot of the reference data appears as a step function
for short distances.

Figure 7 shows the mean, median and 90% quantile of mode-indepependent distribu-
tions of Euclidean distances by travel time bin. Note that the travel times in the assignment
cases come from the activity chains of the agents while the Euclidean distances are derived
from the discrete locations that have been assigned in the location assignment process.We
see that, as expected from the sampling, thedistancedistributionsmatchwell the reference
values.

In Table 2, we provide some keymetrics for the algorithm. Considering the large number
ofproblems that need tobe solved, the algorithm runs fairly quickly. It is possible to reassign
awhole agent population in amatter of fewhours.We yet have to perform a detailed analy-
sis of the performance of the algorithm.With the convergence rate presented in Table 2we
obtain a good match in distance distributions. It will be interesting to explore how chang-
ing the convergence thresholds would affect the precision and runtime of the algorithm.
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Figure 6. Comparison of assignment results with HTS data in terms of Euclidean distance distributions
by mode.

The lower part of Table 2 shows the resulting errors. On average, our discretization error
is less than 100m. The excess error describes the distance that exceeds the defined dis-
tance thresholds. With a value of less than 30m this indicates that the algorithm not always
converges, but if it does not, the maximum deviation is only 30m on average.
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Figure 7. Comparison of Euclidean distance distribution for specific travel time bins by mean, median
and 90% centile. The reference data is given in black.

Table 2. Key metrics for performance and convergence
of the algorithm.

Switzerland Île-de-France

Performance
Runtime 170 min 400 min
Agents 8 million 13 million
Assignment problems 8,135,921 13,718,250
Average trips per problem 2.3 2.35
Convergence
Feasible distance sampler 99.3% 98.7%
Relaxation 93.2% 92.4%
Discretization 98.3% 97.2%
Assignment 92.5% 91.0%
Errors
Mean discretization error 92 m 89 m
Mean excess error 19 m 29 m

4. Discussion

To start the discussion about our algorithm, it needs to be pointed out that the algorithm
is consideredmainly data-driven in the sense that it does not try to uncover the underlying
process of choosing activity locations. This is the big difference to existing activity-based
models where often choice models are applied to make decisions. Therefore, we consider
the algorithm a data-driven location assignment approach, rather than a location choice
process.

Therefore, we do not get any deeper insight from our algorithm on why people go to
certain locations. We only reproduce the distances that can be observed. While this can
be seen as a big drawback of the presented algorithm, we need to state that the foremost
objective of developing it was to find an easy and practical way of assigning secondary
locations such that they can serve as input to an agent-based transport simulation. In that
sense, the algorithmperformswell. In fact, theonly inputs it needs are the assignmentprob-
lems (or whole activity chains), the reference distance distributions, and a list of discrete
locations. Given these data sets, which are usually easy to obtain, researchers and practi-
tioners can set up the code in a couple of minutes and the runtimes we report in Table 2 for
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fairly large agent populations give an idea of the expected run time. Note that only a very
limited calibration effort is needed, and no models need to be estimated prior to applying
the algorithm. This is a major difference compared to elaborate methods around the con-
cept of space-time prisms and potential path areas, where initial input on travel times is
needed.

There are multiple points how the algorithm can be improved. The most important
future stepwe see is to verify spatial consistency. Our experimentswith Switzerland and Île-
de-Francehave shown that realistic distancedistributions emergenot only globally but also
in comparison between rural and urban regions. A potential reason for that is that the con-
straints that are imposed by the fixed and discrete locations automatically lead to distance
distributions that are spatially context-dependent. However, a more rigorous spatial vali-
dation would be interesting in the future. Also, comparing the reference and synthesized
joint distribution of sequential trip lengths will be an interesting analysis.

Furthermore, there is reason to believe that secondary locations are distributed rather
evenly within their respective spatial context. In our current approach, we do not con-
sider attractiveness levels for discrete locations or their surrounding neighborhoods. In that
sense, large shoppingmalls arenot assignedmore frequently than smaller shops. Therefore,
implementing an attractiveness measure into the discretization process will be an inter-
esting task for the future. Another interesting aspect that goes beyond a simple sense of
attractiveness is the capacity of discrete locations. Applying thewhole algorithm in an itera-
tive fashionor trackingoccupancy rates during runtime couldbe twopossibleways forward
in that direction.

A last drawback we want to mention is that the current setup makes heavy use of
Euclidean distances. One can actually think of using routed (maybe even congested)
network distances at several points in the algorithm. The most complicated idea would
probably be to replace the force-based relaxation process by one that meanders the net-
work to find ‘network-relaxed’ locations. This could maybe even happen in a two-step
process where the force model gives a first starting solution. A simpler approach would
be to integrate network distances into the assignment objective. Then, one could perform
a routing only after all discrete locations have been assigned. One could compare them to
sampled network distances that were fed into the force model, maybe with a certain factor
that translates roughly between network and Euclidean distance. Furthermore, including
network travel times for routing would then lead us back to potential path areas for which
the present approach could be regarded as a sampling approach.

5. Conclusion

In conclusion, we have presented a novel location assignment algorithm that, based on
limited information on the chain structure and Euclidean distances between activities can
provide a starting solution for more evolved modeling approaches. Contrary to discrete
choicemodels, gravitymodels or evenmore advancedmodeling techniques, thepresented
approach requires only very limited calibration effort as it does not aim to recover behav-
iorally correct decisions but rather to reconstruct activity locations that provide a high level
of spatial integrity in terms of distances between activities. It is, therefore, highly useful
to prepare input data for agent-based or activity-based transport models. The algorithm
has low demand on input data that needs to be prepared a priori, and it shows good
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run times on fairly large simulation scenarios. While the general algorithm structure is
straightforward, we give a non-comprehensive list of potential improvements that can be
made to the basic version that is presented in this paper.
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