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Store site recommendation aims to predict the value of the store at candidate locations and then recommend
the optimal location to the company for placing a new brick-and-mortar store. Most existing studies focus on
learning machine learning or deep learning models based on large-scale training data of existing chain stores
in the same city. However, the expansion of chain enterprises in new cities suffers from data scarcity issues,
and these models do not work in the new city where no chain store has been placed (i.e., cold-start problem).
In this article, we propose a unified approach for cold-start store site recommendation, Weighted Adversarial
Network with Transferability weighting scheme (WANT), to transfer knowledge learned from a data-rich
source city to a target city with no labeled data. In particular, to promote positive transfer, we develop a
discriminator to diminish distribution discrepancy between source city and target city with different data
distributions, which plays the minimax game with the feature extractor to learn transferable representations
across cities by adversarial learning. In addition, to further reduce the risk of negative transfer, we design
a transferability weighting scheme to quantify the transferability of examples in source city and reweight
the contribution of relevant source examples to transfer useful knowledge. We validate WANT using a real-
world dataset, and experimental results demonstrate the effectiveness of our proposed model over several
state-of-the-art baseline models.
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1 INTRODUCTION

Store site recommendation is one of the essential business services in smart cities for the company
(e.g., chain enterprises) to evaluate candidate locations and select the optimal one for placing a
new brick-and-mortar store. Traditional store placement methods rely on many professionals to
make a detailed investigation of demographics and human flow statistics from all candidate places,
which are time-consuming and do not scale up well. In recent years, with the development of in-
ternet technology and mobile devices, a large amount of user-generated data in cities has grown
explosively, which provides new opportunities to the data-driven methods for store site recom-
mendation. Specifically, data-driven store site recommendation aims to leverage the techniques of
data analysis or machine learning to mine users’ preferences and predict the popularity of candi-
date locations based on large-scale data for identifying the most promising one.

Traditionally, some basic regression models based on extracted features are used for store site
recommendation. For example, Karamshuk et al. [16] mine useful features from check-in data con-
sidering of geographic and user mobility factors, and then adopt supervised machine learning to
predict the popularity of retail stores at a set of candidate areas for a new store. However, these
approaches depend on expertise feature engineering to analyze complex factors and extract avail-
able features from a single data source, which fail to characterize complicated influences from
multiple factors and learn feature interactions from multi-source data. Recently, with the rapid
development of deep learning techniques, many deep neural networks (DNNs) are used to learn
deep representations from raw data. More and more works thus resort to the advanced deep learn-
ing methods to improve the performance of store site recommendation by learning deep feature
interactions and modeling consumer behaviors from multi-source data. For example, Liu et al. [18]
propose the unified interaction-aware model with attentional spatial embedding for store site rec-
ommendation, which aims to learn low- and high-order feature interactions based on latent feature
representations.

However, most existing studies are conditioned on large-scale labeled data and learn a model
based on the features of existing chain stores in the same city, these supervised methods, thus, suf-
fer from the data scarcity and cold-start issues in many practical applications. For example, a chain
enterprise usually lacks historical consumption data in some new cities where no chain store has
been placed, and most of previous works fail to address the cold-start store site recommendation
when a chain enterprise extends its business in a new city. Therefore, it motivates us to exploit
enough data in other cities to solve this problem. The main challenge is that most supervised learn-
ing models are based on the assumption that the training and testing data are sampled from the
same feature space with the same data distribution, but this assumption cannot hold because the
data distributions vary from city to city due to different characteristics of multiple cities (e.g., point
of interest (POI) distribution and road networks), thus a prediction model built for one city may
not predict well in other cities because of different data distributions.

Transfer learning [26] has been proved to be an effective method to transfer knowledge across
different domains in various applications. Recently, many works adopt transfer learning to deal
with data scarcity by transferring available knowledge from source cities with rich training data
to improve the performance in the data-scarce target city. Wang et al. [41] propose to transfer
knowledge from a source city to a target city for spatio-temporal prediction tasks, by learning a
matching function to match the region in target city to a similar source region. Guo et al. [13]
propose a two-fold knowledge transfer framework to transfer inter-city and intra-city knowledge
to solve the store placement recommendation in a new city for chain enterprises. However, these
transfer learning methods mainly rely on building correspondence between two cities via the re-
gion matching function to transfer knowledge, which are hard to extend to solve our problem
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because the naive function cannot build the correspondence of sophisticated consumer behavior.
In addition, these models ignore the distribution shift and cannot reduce the effect of distribution
discrepancy between source and target cities, which could lead to negative transfer when data
distributions in source and target cities are significantly different.

Domain adaptation, a special scenario of transfer learning, is highly desirable to reduce the ef-
fect of domain discrepancy, which aims to minimize the domain gap and transfer knowledge across
domains [8, 25]. Recently, most existing studies on domain adaptation learn domain-invariant rep-
resentations by minimizing the distribution distance between two domains, or learning the feature
representation that cannot be distinguished by adversarial learning. Although many domain adap-
tation methods show the superior performance in various computer vision and natural language
processing tasks [7, 32, 34, 37], very few attempts have applied domain adaptation methods to
transfer city knowledge from source city to target city in urban applications due to two key tech-
nical challenges: (1) How to bridge different cities with various data distributions? The complex data
distributions of different cities in practical applications lead to the distribution discrepancy, and
naively transferring knowledge between two cities may hurt the performance in the target city if
the data distributions in source and target cities are significantly different. (2) How to reduce nega-

tive transfer of useless source samples? Existing domain adaptation methods mainly align the data
distribution in the entire feature space to reduce distribution discrepancy between two domains,
which will further trigger the negative effects of untransferable source samples on domain align-
ment. Intuitively, some examples in source city should not be transferred to the target city, such as
low-quality examples or irrelevant examples, and directly aligning all examples in two cities could
cause negative transfer.

To address the aforementioned challenges, we propose a unified framework for the cold-start
problem, Weighted Adversarial Network with Transferability weighting scheme (WANT), to learn
disentangled and transferable feature representations and transfer knowledge between two cities.
In contrast to other methods, WANT is capable of reducing the risk of negative transfer by select-
ing transferable source examples. To solve the first challenge, we develop a domain discriminator
to minimize the domain discrepancy by adversarial learning in order to bridge different cities with
different data distributions. Specifically, the domain discriminator distinguishes the source data
from the target data, and plays the minimax game with the feature extractor to guide it to learn
transferable and domain-invariant feature representations across cities to promote positive trans-
fer. To tackle the second challenge, we design a transferability weighting mechanism to highlight
the contribution of useful source examples to the training of the transfer model in order to pre-
vent negative transfer. Specifically, WANT first automatically quantifies the transferability of each
source example with the weighting scheme based on the quality of source example and the simi-
larity of source example to target data, which is then used to weigh its contributions to both the
domain discriminator and the label predictor for transferring useful source examples.

In summary, the main contributions of this article are:

—To the best of our knowledge, this is the first work that studies how to transfer useful
knowledge from a data-rich source city to a target city with no labeled data at both the
feature level and the instance level on account of transfer tasks in some practical spatio-
temporal applications.

—We propose a unified transfer framework, WANT, which effectively enables knowledge
transfer across cities to solve cold-start store site recommendations. In contrast to existing
transfer learning methods, WANT learns transferable and invariant feature representations
itself across cities by adversarial learning, and transfers useful source examples to improve
the performance of knowledge transfer in target city.
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—We design a transferability weighting mechanism to quantify the transferability of exam-
ples in source city, and highlight their contributions to knowledge transfer to mitigate neg-
ative transfer. In particular, our proposed weighting scheme is capable of reducing negative
effects of untransferable source examples to make the model more efficient and robust.

—Extensive experiments on the real-world dataset show the effectiveness and efficiency of
the proposed method compared to several state-of-the-art models.

The remainder of this article is organized as follows. We begin by reviewing the related work in
Section 2. We present an overview of our proposed framework in Section 3. Section 4 elaborates
the detailed design of the proposed model. Empirical evaluation and discussion are reported in
Section 5, while the conclusion is enclosed in Section 6.

2 RELATED WORK

In this section, we briefly review the works in two categories: store site recommendation and
transfer learning.

2.1 Store Site Recommendation

In recent years, the proliferation of multi-source urban data has fostered unprecedented oppor-
tunities to the data-driven store placement approaches, which aim to analyze and mine users’
preferences based on user-generated data to select the optimal location for placing a new brick-
and-mortar store.

The earliest store placement methods are based on some basic regression models. For exam-
ple, Karamshuk et al. [16] mine geographic and user mobility features from check-in data and
predict the best placement of retail stores based on extracted features. Li et al. [17] first extract
some associative features from cross-space data sources, and then adopt supervised regression
and classification to solve two scale-specific chain store placement problems. In [39], the authors
consider three types of features: review-based attractiveness, review-based competitiveness, and
geographic features of a location, which are used to predict the number of check-ins at a candidate
location by the regression model. Zeng et al. [44] extract features from heterogeneous urban data,
and then predict the popularity of a new retail store in the candidate space using various machine
learning models. Unfortunately, these methods rely on expertise feature engineering to character-
ize sophisticated influences and extract features from a single data source, which hardly generalize
to other applications and fail to learn complex deep feature interactions from multi-source data.

Recently, with the rapid development of DNNs [23, 24], more and more works adopt DNNs to
improve the performance of store placement, which can characterize complex consumption be-
havior by learning deep feature representations based on multi-source data. Liu et al. [18] propose
a model named DeepStore, which consists of the cross network, the deep network, and the linear
component, thus, it can learn low- and high-order feature interactions explicitly and implicitly to
model complex user behavior. Xu et al. [43] propose an attentive neural method to predict the busi-
ness popularity of a given location. Specifically, it consists of three attention modules to learn deep
feature interactions based on the discriminative features extracted from urban data and satellite
data.

However, most existing studies learn the prediction model based on the large-scale labeled data
of existing chain stores in the same city, and these supervised methods suffer from the data scarcity
and cold-start issues in many practical applications. For example, a chain enterprise usually lacks
historical consumption data in some new cities where no chain store has been placed. Therefore,
the expansion of chain enterprise in new cities is faced with the cold-start problem, and most of
existing works fail to address this cold-start store site recommendation. Different from most of
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previous works based on a large set of training samples, we aim to tackle the cold-start problem
for store site recommendation, by transferring knowledge learned from rich labeled training data
in source city to improve the performance in a new city.

2.2 Transfer Learning

In recent years, transfer learning has been studied as an effective solution to address the data
scarcity problem by avoiding expensive data labeling efforts [35]. Different from traditional ma-
chine learning based on the assumption that training data and testing data are sampled from the
same feature space with the same data distribution, which does not always hold in many prac-
tical applications. Transfer learning allows the domains, tasks, and distributions used in training
data and testing data to be different. In general, the objective of transfer learning is to transfer the
knowledge from some source tasks/domains to the target task/domain when the latter does not
have enough training data [26].

2.2.1 Transfer Learning in Urban Computing. There have been recently a few works that lever-
age transfer learning to deal with the data scarcity in urban computing [42]. The main challenge
in urban applications is that different cities usually have different distributions, which has posed
a major bottleneck for adapting prediction models across cities. Intuitively, one typical solution
is to choose similar source examples for transferring. For example, in [41], the authors present
cross-city transfer learning method to solve spatio-temporal prediction problems, which transfers
knowledge from a data-rich source city to a data-scarce target city by learning an inter-city region
matching function in the label space to match each region in target city to a similar source city
region. However, in cold-start store site recommendation, it is impossible to build the relationship
between two cities in label space because the target city has no labeled information. Another pos-
sible way is to match two cities between data distributions in terms of the feature space. Guo et al.
[13] propose a two-fold knowledge transfer framework called CityTransfer to solve the cold-start
problem in chain store site recommendation. Specifically, CityTransfer first builds correspondence
between different regions in source and target cities to bridge the distribution discrepancy, and
then transfers chain store knowledge from a relevant source city with rich knowledge.

However, there are some difficulties to adopt previous transfer learning methods to solve our
problem. First, some traditional transfer learning methods are not designed for deep learning
model, which fail to address some complex problems in urban computing. Second, most of the pre-
vious methods mainly focus on transferring knowledge by building correspondence between the
source and target regions, which are hard to extend to solve our problem, because naive matching
function (e.g., Pearson correlation coefficient (PCC)) cannot build the relationship of sophisticated
user consumption behavior. Third, knowledge transfer based on the matching function between
source city and target city could lead to negative transfer if data distributions in two cities are
significantly different, because they ignore the distribution shift and are not capable of reducing
the distribution discrepancy.

Recently, some effective transfer learning methods have been proposed to solve the cold-start
recommendation problems in social networks. Qi et al. [29] predict future links in a growing net-
work with the use of the existing network structure to perform cross-network link inference by
transfer learning methods, and a network re-sampling technique is proposed for calibrating the
portions of the source network to be used in the transfer process. Wang et al. [40] propose to exploit
media contents and link structures between users and groups to automatically recommend groups
to users. However, it is not feasible to solve the cold-start store site recommendation problem via
this type of cross-network transfer learning methods in social networks. First, the proposed meth-
ods are mainly based on the link structure or media contents in social networks, but the additional
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linkage information in networks or enough content information is unavailable in most spatio-
temporal scenarios (e.g., site recommendation), which cannot be further used to learn transferable
and structural knowledge of different networks. In addition, most networks in existing cold-start
recommendations between social networks are homogeneous, which only model the structural in-
formation in terms of one type of nodes. But in the store site recommendation problem, the linkage
behavior between people and places should also be taken into consideration. Last but not least,
the store site recommendation focuses on predicting the complex consumer behavior of people in
each candidate place, not just inferring the links between different nodes.

2.2.2 Transfer Learning on Domain Adaptation. Domain adaptation, a special scenario of trans-
fer learning under the domain shift between training and testing data distributions, which aims
to reduce the effect of distribution discrepancy to transfer knowledge across domains [8, 21, 25].
In recent years, most studies on domain adaptation apply DNNs to learn domain-invariant feature
representations because of its advantage of learning more transferable representations [4, 10, 11,
27].

Previous works focus on learning transferable representation by minimizing the distribution
distance between two domains. Tzeng et al. [38] propose a convolutional neural network (CNN)
architecture to solve both supervised and unsupervised adaptation, which adds an adaptation layer
into the deep neural network along with an additional domain confusion loss based on the Maxi-
mum Mean Discrepancy (MMD) to learn domain-invariant representation. In [20], a Deep Adap-
tation Network (DAN) model is proposed, which extends the deep CNN for domain adaptation
applications. Particularly, DAN learns transferable features by reducing the multi-kernel MMD of
hidden representations of task-specific layers between source and target domains in reproducing
kernel Hilbert space. Long et al. [21] propose joint adaptation networks to learn transferable fea-
tures, which can reduce the effect of domain discrepancy based on a joint MMD criterion in joint
distributions of the representations of multiple domain-specific layers across domains.

Recently, inspired by the idea of adversarial learning [22], adversarial domain adaptation meth-
ods have gained growing interest, which aim to learn the domain-invariant feature representation
that cannot be distinguished by adversarial learning [31, 46]. Ganin et al. [8] propose the Domain-
Adversarial Neural Networks (DANN) for domain adaptation in deep architectures, which can
jointly learn discriminative and invariant features. Specifically, it adds a sub-network as the do-
main discriminator to distinguish source and target data, which makes the feature extractor to
learn transferable features to confuse the domain discriminator by adversarial learning. Tzeng
et al. [37] propose an Adversarial Discriminative Domain Adaptation (ADDA) model, and it al-
lows independent source and target feature extractors with unshared weights, which is flexible
to learn more domain-specific features. Cao et al. [2] present a Selective Adversarial Network
(SAN) for partial transfer learning, which transfers knowledge from existing large-scale domains
to small-scale domains. In particular, SAN includes multiple class-wise domain discriminators, and
each domain discriminator is applied to align the source and target domain data associated with
different labels to reduce negative transfer. Zhang et al. [45] propose an Importance Weighted Ad-
versarial Nets (IWAN) model, which is capable of detecting outlier classes in source domain by an
additional domain classifier to reduce the domain shift in partial domain adaptation. Shu et al. [33]
propose a Transferable Curriculum Learning (TCL) method, which combines curriculum learning
and adversarial learning to learn a robust model with transferable curriculum to deal with noisy
data for weakly-supervised domain adaptation. Cao et al. [3] design an Example Transfer Net-
work (ETN) for partial domain adaptation, and a weighting scheme is proposed for classification
problems to promote positive transfer by identifying outlier classes in the source domain. Al-
though these works have explored the transfer models in different fields, we also note that the
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improvement of our work over these representative models. In this work, we aim to improve the
DANN by designing a transferability weighting mechanism to transfer useful source samples, be-
cause DANN directly matches all examples in the source domain, which could cause negative
transfer. Generally, the knowledge learned from some useless samples in the source city could
hurt the performance of the model in the target city. In addition, we wish to utilize a shared fea-
ture extractor for both source and target cities, instead of including the independent source and
target feature extractors with unshared weights in ADDA. Furthermore, our goal differs from most
existing transfer models (e.g., IWAN, TCL, and ETN) for classification tasks, instead, we focus on
establishing a unified transfer model for most regression tasks in practical scenarios, which is ca-
pable of reducing negative transfer of both dataset shift and noisy source examples to make the
model more efficient and robust.

Most current works on transfer learning have explored how to avoid negative transfer. Qi et al.
[30] present a joint Intermodal and Intramodal Label Transfer algorithm from texts to images for
image classification tasks, which combines the advantages of both image labels and text labels in
the context of a label transfer task to prevent the negative transfer. [28] proposes a cross-category
label propagation approach that learns and leverages cross-category label correlations to transfer
knowledge from different source categories to the target category. Nevertheless, these transfer
learning methods are explored to reduce negative transfer by weighting the samples in the source
domain based on label correlations in classification tasks, which are not effective to solve some
complex regression tasks in most practical scenarios, because some extra information (e.g., label
correlations) cannot be fully utilized and some crucial factors are not considered, which could lead
to negative transfer. Different from most existing transfer learning methods that are proposed to
reduce feature distribution shift or label distribution shift for classification tasks, we aim to propose
a unified transfer learning approach for regression tasks to reduce negative transfer of both dataset
shift and noisy source examples.

In recent years, most of domain adaptation methods are applied in the field of computer vision
and natural language processing [7, 32, 34, 37], very few attempts have been made on transferring
knowledge in urban applications due to complex data distributions among different cities. Liu
et al. [19] propose a City Domain Adaptation Network named ConvCDAN for hotspots detection
in a new city, consisting of a FeatureNet, a DensityNet, and a DomainNet, which can transfer
hotspots knowledge learned from one source city with shared bikes. Nevertheless, ConvCDAN
simply aligns the data distribution in the entire feature space between two cities, which could
result in the negative transfer, because some irrelevant examples in source city should not be
transferred to the target city.

Inspired by above-mentioned works, we aim to take full advantage of domain adaptation ap-
proaches to solve cold-start store site recommendation, by transferring knowledge learned from a
source city with enough labeled data to improve the performance in a target city with no labeled
data. Different from existing works, we design a unified framework for cold-start store site recom-
mendation that can learn disentangled and transferable feature representations to transfer useful
knowledge learned from the data-rich source city to a new city with unlabeled data. In addition,
we present a transferability weighting mechanism, which is capable of reducing the risk of the
negative transfer by reweighting the contribution of each source example.

3 OVERVIEW

In this section, we begin by introducing the definitions and the problem statement. Next, we extract
useful features from multi-source data. Based on extracted features, we further present compre-
hensive analysis results. Finally, we describe the framework of the proposed model. For brevity,
we present a table of notations used in our work in Table 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 47. Publication date: April 2021.



47:8 Y. Liu et al.

Table 1. Notations

Notation Description

cs , ct Source city, target city
Ds = {(xs

k
,ys

k
)}ns

k=1 Source dataset including ns labeled examples in source city cs

Dt = {xt
k
}nt

k=1 Target dataset including nt unlabeled examples in target city ct

ymi ,lj
The amount of consumption per community mi in the store located at lj

Gf The function of feature extractor with parameters θf

Gy The function of label predictor with parameters θy

Gd The function of adversarial domain discriminator with parameters θd

Gt The function of non-adversarial domain discriminator with parameters θt

w The transferable weight of the source example

3.1 Problem Formulation

Definition 3.1 (Location-based Community in a City). Considering that geographical factor is one
of the main impacts of consumer behavior in brick-and-mortar stores, thus, we spatially divide a
city into a set of location-based communities. Specifically, each user in the city is associate with a
community (i.e., a housing estate), which is a group of homes and other buildings built together.

Definition 3.2 (User Consumption in a Store). In a city c , given a store sj located at lj and the set of
nearby communitiesM = {m1,m2 . . .mi . . .} that people in each community have the possibility
to consume in the store. The user consumption in store sj is denoted as Ysj

= {ymi ,sj
|mi ∈ M},

where ymi ,sj
is the amount of consumption per communitymi in store sj during a given period of

timeT , which is to be predicted in view of the information of users and stores. Then, the overall sale
of the store sj can be represented as the total amount of consumption of all potential consumers
in this store S (sj ) =

∑
mi ∈M ymi ,sj

.

Problem Definition: Store site recommendation in a new city. For a chain enterprise, sup-
pose that we have a source city cs with enough consumption data and a target city ct where no
chain store has been placed yet, our goal in this article is to solve the cold-start store site recommen-
dation for this chain enterprise in a new city by leveraging and transferring available knowledge
learned from the source city.

Specifically, given the set of candidate placesLt = {l t1 , l t2 . . . l tj . . .}, the set of communitiesMt =

{mt
1,m

t
2 . . .m

t
i . . .}, andDt = {xt

k
}nt

k=1 with nt unlabeled examples in target city ct , as well asDs =

{(xs
k
,ys

k
)}ns

k=1 with ns labeled examples in source city cs . The objective of our problem is to predict
user consumption in each store located at candidate places in the target city, denoted as ŷmt

i ,l
t
j
.

Known the predicted consumption behavior, we then compute the overall sale of the store sj

located at each candidate place lj , Ŝ (lj ) =
∑

mt
i ∈Mt ŷmt

i ,l
t
j
. Finally, the store site recommendation

can be solved by selecting the optimal location with the highest sale Ŝ from Lt to place a new
store in the target city.

3.2 Feature Extraction

In this work, we choose a chain retail enterprise for a case study, which owns many brick-and-
mortar stores in some cities of China. Specifically, multi-source urban data is collected in view of
three major stakeholders, including chain retail enterprise, potential consumers and POIs. Chain

retail enterprise data contains profile information (e.g., name and location) and historical sale in-
formation (e.g., consumers and their expenditure). User data includes user location information
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and profile information (e.g., gender, age, and profession). It should be noted that we associate
each user with a community in order to protect user privacy, and only obtain the statistical infor-
mation about users in the community. POI data contains the characteristics (e.g., name, location,
and category) of different places related to people’s consumption behavior, such as shop, food, and
transport facilities.

For each store in a city, we aim to predict the total amount of consumption that people in each
community consume in the store. Therefore, for each <store, community> pair, we treat it as an
entity and extract useful features. Specifically, we mainly consider the following features extracted
from multi-source data, which are classified into four categories: user features, geographic features,
commercial features, and time features.

User Features. The possibility of people consuming in chain stores depends on the user at-
tributes to a great extent. Furthermore, the amount of consumption in the store is closely related
to the user’s income level. Therefore, to characterize potential consumers in different communities
around the store, we take some demographic profiles into consideration, and further obtain the
statistical information about the number of people with different profiles in each community, such
as the number of men or women in the community and the number of people on different income
levels.

Geographic Features. In urban areas, the popularity of a store is related to spatial character-
istics of the place where the store resides. Inspired by [13], we consider the following features to
represent the geographic characteristics of a store and its surrounding area, which is a disc cen-
tered at the store with radius r . Distance: we consider the Manhattan distance between the store
and the community where people live. Traffic convenience: we use the total number of public trans-
portation stations (including bus stations and subway stations) in the surrounding area to denote
the traffic convenience. POI set: although our prediction objects are retail shops, we consider all
types of POIs (e.g., shop, food, and company) that could attract potential consumers, and compute
the number of POIs of each category in the surrounding area. Neighborhood Entropy: it refers to
an entropy measure [5] of the frequency of place categories near the store, assessing the spatial
heterogeneity of the area around the store. A high entropy value indicates more diversity towards
a lot of POI categories.

Commercial Features. The commercial environment around the store impacts the performance
of the store, we thus extract the following three commercial features. Density: it refers to the total
number of neighbors (i.e., market and restaurant) around the store, which could reflect what extent
the popularity of a place. Competitiveness: known the type of the chain store, the competitive
relationship of the store is defined as the proportion of neighboring places belonging to the same
category with respect to the total number of places located in the surrounding area. Jensen Quality:
we consider the complementarity relationship between different categories in the same area, which
is measured by the Jensen Quality [14] to access the spatial interactions of the places with respect
to their ability to attract other places of certain types.

Time Features. We consider time features to capture the temporal profile of the chain store
and the temporal pattern of consumer behavior. Intuitively, we use the date of establishment (e.g.,
the year) and the number of existing stores to evaluate the popularity of the brand in users. In
addition, we consider the date when users consume in the store to reflect the consumption habits,
such as seasonal characteristics and the holiday (e.g., New Year’s Day and National Day).

3.3 Data Analysis

3.3.1 Feature Correlation Analysis. To understand the impact of different features on chain store
site selection, we analyze the feature correlation between the amount of consumption and different
types of features in multiple cities, including two tier-1 cities (Beijing and Shanghai) and two tier-2
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Table 2. The Impact of User Features with PCC in Different Cities

User features Beijing Shanghai Chengdu Xi’an

Gender
0 0.20 0.09 0.15 0.16
1 −0.17 −0.11 −0.14 −0.13

Age

0 −0.10 −0.09 −0.14 −0.13
1 0.03 −0.05 0.01 −0.06
2 0.13 0.14 0.15 0.14
3 0.07 0.01 0.11 0.19

Consumption level
0 −0.18 −0.08 −0.19 −0.22
1 −0.19 −0.18 −0.20 0.24
2 0.23 0.17 0.27 0.38

Car
0 −0.17 −0.09 −0.17 −0.21
1 0.17 0.09 0.18 0.21

cities (Chengdu and Xi’an). Specifically, to guarantee the comprehensive analysis, we first compute
the PCC, and then present the feature importance in GBDT model for different cities.

Table 2 lists the PCC between the amount of consumption and user features. More specifically,
to protect user privacy, we just present the impact of different types in each user attribute, includ-
ing gender, age, consumption level, and car. For example, different kinds of age attribute refer to
different age groups, such as kid, youth, and old age. In the car attribute, 0 represents that peo-
ple have the private car or not, and 1 represents the opposite. It should be noted that the main
reason that the coefficients are all below 0.5 could be that the complex feature interactions from
multi-source data play the important role in optimal site selection instead of a single feature, and
PCC measures the linear correlation between the amount of consumption and one of the features.
Intuitively, from the statistic results, we can observe that one gender has a positive linear correla-
tion, and the other has a negative linear correlation with the amount of consumption for all four
cities. Similarly, in all four cities, different consumption levels also have various correlations, such
as level 2 has a significant positive linear correlation with the amount of consumption. The results

indicate that the potential consumer groups of the same chain enterprise are similar in different cities,

which inspires us to transfer enterprise bias knowledge learned from the source city to the target city

for chain store site selection.
Furthermore, to obtain a better insight into the impact of different features in chain store site

selection, we adopt the gradient boosting decision tree (GBDT) model, one of the effective boosted
tree models, which is capable of modeling feature interactions and obtaining non-linear correla-
tion, to compute the feature importance in different cities. Specifically, we first train the unique
GBDT model under the same setting based on extracted features for each city, and then compute
the importance value of feature Xi by variable importance measures [36].

Specifically, given n trees in GBDT, for a single tree Tj , the measure of variable importance Xi

is defined as follows:

V IM (Xi ,Tj ) =
∑

m∈Tj

ΔI (Xi ,m), (1)

where ΔI (Xi ,m) is the decrease in impurity as a result of an actual split on variable Xi at a node
m of the optimally pruned tree Tj . Node impurity for our regression problem is defined as:

I (m) =
∑

i ∈m

(yi − y)2

N (m)
, (2)
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Table 3. Feature Importance in GBDT for Different Cities

Features Beijing Shanghai Chengdu Xi’an

Distance 0.168 0.108 0.119 0.185

User attributes

Gender 0.072 0.028 0.037 0.015
Age 0.082 0.082 0.193 0.154

Consumption level 0.156 0.127 0.162 0.164
Car 0.037 0.015 0.026 0.031

POI attributes

Transport 0.004 0.004 0.003 0.003
Company 0.009 0.003 0.006 0.010
Shopping 0.004 0.006 0.002 0.004

Food 0.003 0.004 0.003 0.004
Hotel 0.016 0.007 0.003 0.006
Sport 0.007 0.002 0.004 0.003

where the sum and mean are taken over all observations i in node m, and N (m) is the number of
observations in nodem.

Therefore, the importance value of feature Xi in GBDT is simply averaged over n trees:

V IM (Xi ) =
1

n

n∑

j=1

V IM (Xi ,Tj ). (3)

Table 3 shows the feature importance in GBDT for four different cities. In particular, we compute
the total importance value of each user attribute, instead of presenting values of all types in each
user attribute. For example, the importance value of the age attribute is the sum of different age
groups. We can find that the importance values of age and consumption level are higher than other
user attributes for all four cities, which is further evidence that there is chain enterprise bias on
consumer groups in different cities. However, we also observed that there are certain differences
in terms of the feature importance of POI attributes among different cities. For example, the most
important POI categories in Beijing are company and hotel, which are different from Chengdu. One
possible reason is that different cities have different urban geographical structures, which could affect

consumer behavior in brick-and-mortar stores to some extent. Therefore, it is necessary to consider the

diversity of different cites when transferring knowledge.

3.3.2 Feature Distribution between Different Cities. Generally, most cities have many differ-
ences in POI distributions, road networks, and so on, which could lead to feature distribution
differences among multiple cities. Furthermore, the feature shift between two cities poses a ma-
jor bottleneck for transferring knowledge and adapting the prediction model from source city to
target city.

To quantitatively measure the discrepancy of feature distributions in different cities, we adopt
MMD [12] to compute the distance between two feature distributions. MMD is a nonparamet-
ric statistic that measures the distribution difference in terms of the distance between the mean
embedding representations of the source and target data in the reproducing kernel Hilbert space
H . Formally, given feature distributions pcs

and qct
in two cities, respectively, the MMD distance

between source city cs and target city ct is defined as:

MMD (pcs
,qct

) � ‖Epcs
[ϕ (xcs

)] − Eqct
[ϕ (xct

)]‖2H , (4)
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Table 4. MMD Distance for Different Cities

City 1 City 2 MMD-Linear MMD-Gaussian

Beijing Shanghai 15.696 0.165
Beijing Chengdu 41.001 0.339

Shanghai Chengdu 33.293 0.326
Beijing Xi’an 42.712 0.407

Chengdu Xi’an 12.514 0.154

Fig. 1. T-SNE of features on different cites.

where ϕ (.) is the kernel function that maps the raw features intoH , Epcs
[ϕ (xcs

)] and Eqct
[ϕ (xct

)]
are the kernel mean embeddings of cs and ct , respectively.

Table 4 lists the MMD distance of feature distributions in four cities under the linear kernel
and Gaussian kernel settings respectively. We can find that distance between city pairs (Beijing,
Chengdu) and (Beijing, Xi’an) are significantly larger than the distance between city pairs (Beijing,
Shanghai) and (Chengdu, Xi’an), which indicates the obvious feature discrepancy between tier-1
cities (Beijing, Shanghai) and two tier-2 cities (Chengdu, Xi’an). The reason is that tier-1 cities have
more diversified users and richer POI structures than tier-2 cities. In addition, the MMD distance
between Beijing and Shanghai is larger than the threshold for rejecting the hypothesis although
they are both tier-1 cities.

To further show the distribution difference among four cities, we visualize the feature distribu-
tion in Figure 1 using t-SNE embeddings [6]. Similarly, we can observe that feature distributions
on tier-1 cities and tier-2 cities have obvious difference. In general, all the above observations in-

dicate the feature distribution shift among different cities. Therefore, we need to reduce the feature

distribution discrepancy between different cities so that the knowledge learned from source city can

be effectively transferred to target city to improve its performance.

3.4 The WANT Framework

In this article, we focus on the cold-start store site recommendation. We assume to have source city
dataset Ds = {(xs

k
,ys

k
)}ns

k=1 consisting of ns labeled examples and target city dataset Dt = {xt
k
}nt

k=1
with nt unlabeled examples. From the data analysis in the last section, we observe that the source
city and target city follow different distributions p and q, respectively. The goal of our proposed
method is to build a prediction model, which can minimize the target city error, by transferring
knowledge learned from the source city to help a target city.
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Fig. 2. The framework of WANT.

Nevertheless, the domain shift between source and target cities poses two key challenges to en-
able effective knowledge transfer: (1) How to bridge different cities with different data distributions?

Intuitively, naively transferring knowledge from the source city to the target city could hurt the
performance in the target city due to data distribution discrepancy. Therefore, we need to bridge
different cities by reducing the data distribution discrepancy to promote positive transfer between
two cities. One possible way to enforce distribution consistency is learning the feature represen-
tations that are invariant to the domain shift, which could reduce negative transfer at the feature
level. (2) How to reduce negative transfer of useless source samples? Existing domain adaptation
methods mainly align the data distribution in the entire feature space to reduce distribution dis-
crepancy between two domains, which will further trigger the negative effects of untransferable
source samples on domain alignment. Generally, urban data could suffer from data noisy issues
in many practical applications. If we directly align the entire data spaces in source city and target
city, noisy data in source city will result in negative transfer. In addition, forcefully matching all
examples in source city and target city if some source examples are significant irrelevant will also
lead to weak transferability. Therefore, it is necessary to automatically choose useful examples in
source city that are transferable to target city, such that the distribution alignment based on trans-
ferable examples can be done to mitigate the negative effects of untransferable source samples at
the instance level.

To address these two challenges, we propose WANT, to transfer the knowledge learned from a
data-rich source city to a target city with no labeled data. The framework of WANT is illustrated in
Figure 2, which mainly consists of four major components: feature extractor, domain discriminator,
label predictor, and transferability weighting quantification.

Feature extractor Gf learns deep feature interactions f based on raw extracted features x,
which is used for both source city and target city.

Domain discriminator Gd aims to align the feature distributions of the source data and target
data to bridge different cities to solve the first challenge. Specifically, it distinguishes the source
data from the target data, and plays the minimax game with the feature extractor Gf to guide
it to learn transferable and domain-invariant feature representations by adversarial learning to
promote positive transfer. Note that we utilize the Gradient Reversal Layer (GRL) to reverse the
gradient between the feature extractor Gf and adversarial domain discriminator Gd in backward
propagation for domain adversarial training.
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Label predictor Gy is trained based on the transferable and domain-invariant feature represen-
tations f of labeled source samples, which could be applied to predict the label of target samples,
i.e., the amount of consumption per community in each store in the target city.

Transferability weighting quantification computes the transferability weight w of the
source sample, and further highlights the contribution of transferable source examples to tackle
the second challenge. Specifically, we reweigh the source examples in the loss of adversarial do-
main discriminator Ld and source predictor Ly for transferring useful source examples to prevent
negative transfer. The dotted lines in Figure 2 indicate the process of transferability weighting
schemew , which is based on both the non-adversarial domain discriminatorGt to obtain the sim-
ilarity of the source example to target data and the label predictor Gy to obtain the quality of the
source example. It should be noted that non-adversarial domain discriminator Gt is only applied
for computing the similarity of source example to target data, thus, the gradient of Gt will not be
back-propagated to update the feature extractor during the training procedure.

4 METHODOLOGY

In this section, we describe the details of the WANT to solve the cold-start problem in chain store
site recommendation. WANT consists of four major components: feature extractor, domain dis-
criminator, label predictor, and transferability weighting quantification. We first describe each of
the four components, and then present the minimax optimization problem with joint optimization.

4.1 Feature Extractor

Generally, consumer behavior is usually affected by various complicated factors simultaneously.
Therefore, besides some valuable features extracted from multi-source data, as presented in Sec-
tion 3.2, we further adopt a feature extractor to learn latent factors and deep feature interactions
based on the raw extracted features.

Formally, the feature extractor Gf is a feed-forward neural network including N -layer fully-
connected layers for mapping the input from source and target cities into a common feature space.
Given the raw feature vectors x as the input, feature extractor is defined as follows:

f1 = σ (Wf 1x + bf 1),

f = σ (Wf N fN−1 + bf N ),
(5)

where x = [xд , xc , xt , xu ] is the input vector containing geographic features xд , commercial fea-
tures xc , time features xt , and user features xu . Wf denotes the weight matrices and bf represents
the bias vectors. σ is the ReLU function. The output of feature extractor is the final deep feature
representation f = Gf (x), which will be applied in label predictor and domain discriminator.

It is noteworthy to specify that a feature extractor is used for both source city and target city,
because we find it is beneficial to consider shared feature space between two cities. In addition, the
feature extractor is capable of learning transferable and invariant feature representations across
cities by adversarial learning, and the details will be introduced in the next section.

4.2 Domain Discriminator

To transfer knowledge across cities with different data distributions, it is necessary to bridge the
gap between the source city and the target city in the presence of domain shift by reducing the
distribution discrepancy. Therefore, it is essential to measure the difference between the source and
target domains in the probability distribution space, then the transferable feature representations
across two cities could be learned to minimize that distance. Inspired by DANN [9], we adopt a
domain discriminator Gd to distinguish the source from the target.
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Intuitively, if the feature representation is transferable across cities, it should be invariant so
that a classifier cannot discriminate which city the sample is from. Formally, we model the domain
discriminator as a binary domain classifier to predict the domain labels, where label 1 represents
the example belong to the source city, and label 0 from the target city. Given the input x from
source data or target data, the domain discriminator Gd takes the output of feature extractor f

as input, and then calculates the probability d̂ = Gd (f ) that x comes from the source data by the
following process:

d1 = σ (Wd1f + bd1),

d2 = σ (Wd2d1 + bd2),

d̂ = siдmoid
(
hT

d d2

)
,

(6)

where the Wd and bd are weight and bias terms of domain discriminator, respectively, and hd

represents the weights of the output layer.
Given the domain label di of instance xi from source city or target city, the objective function

of domain discriminator Gd is formulated as:

EGd
=

1

ns + nt

∑

xi ∈Ds∪Dt

Ld (Gd (Gf (xi )),di )

= − 1

ns

∑

xi ∈Ds

log(Gd (Gf (xi ))) − 1

nt

∑

xi ∈Dt

log(1 −Gd (Gf (xi ))).
(7)

However, the goal of the general training process for the classifier is to minimize the classifica-
tion error, i.e., to distinguish the two domains as accurately as possible. Nevertheless, the objec-
tive of our approach is to reduce the effect of distribution discrepancy and learn invariant features
which the domain classifier cannot discriminate between domains, it means that a classifier should
have very low accuracy.

To solve this problem, we take advantage of adversarial learning. Specifically, to align the distri-
bution of feature representations from different cities, we apply adversarial learning to force our
model to learn transferrable representations that can confuse the discriminator trained to distin-
guish which domain a representation vector is from.

More formally, a two-player minimax game is constructed, in which the first player is the feature
extractorGf , and the second player is the domain discriminatorGd . One the one hand, the domain
discriminator is trained to distinguish the source from the target by minimizing the classification
loss EGd

. On the other hand, the feature extractor aims to learn domain-invariant representations
to confuse the domain discriminator, i.e., parameters of the feature extractor are learned simulta-
neously by maximizing the loss EGd

of domain discriminator.

max
Gf

min
Gd

EGd
. (8)

4.3 Label Predictor

After obtaining transferable feature representations, we then use them to predict the amount of
consumption of consumers in the store. Therefore, we adopt a label predictor Gy to produce pre-
dicted value ŷ, and the layers can be formulated as:

y1 = σ (Wy1f + by1),

y2 = σ (Wy2y1 + by2),

ŷ = hT
y y2,

(9)
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where f is deep feature representation from the feature extractor Gf , the Wy and by are weight
and bias of the label predictor, respectively, σ is the non-linear activation function for which we
use ReLU , and hy denotes the neuron weights in the output layer.

Given the labeled data from source city, label predictorGy is learned by minimizing the following
objective function:

EGy
=

1

ns

∑

xi ,yi ∈Ds

Ly (Gy (Gf (xi )),yi ), (10)

where Ly is the loss function of regression problem. The label predictor Gy trained only using
examples in source city is capable of predicting the consumer behavior in target city, because the
feature representations from feature extractor are transferable and invariant across cities.

4.4 Transferability Weighting Quantification

Intuitively, not all examples in source city are equally transferable, and some examples could be
more transferable than others. On the one hand, some source examples that are significantly dis-
similar to target data will lead to weak transferability. On the other hand, noisy data in source city
will also result in negative transfer. Therefore, we design the transferability weighting mechanism
to quantify the transferability of each example in source city based on the similarity of source
example to target data and the quality of source example.

4.4.1 The Similarity of Source Example. It is obvious that examples in source city which are
similar to the target city should be more transferable. Intuitively, we could adopt the domain dis-
criminator to generate the similarity value for each source example, and the examples that are
more similar to target data have larger values. However, the adversarial domain discriminator
presented in the previous section aims to match source examples and target examples, if we ap-
ply the output of adversarial domain discriminator as weights to select transferable examples, the
theoretical results of the minimax game will not be reducing the distribution divergence [45].

Therefore, we adopt an additional non-adversarial domain discriminator Gt consisting of two
fully connected feed-forward layers, and use the activations of the non-adversarial domain dis-
criminator as an indicator of the similarity, which is defined as:

t̂ = Gt (Gf (xi )), (11)

where t̂ is the output of non-adversarial domain discriminator that indicates the possibility of
instance xi belonging to the source city, and smaller t̂ means that it is more similar to the target
data. Thus, we obtain the similarity value of each example s (xi ) that denotes the probability of
classifying the instance xi coming from the target city:

s (xi ) = 1 − t̂ = 1 −Gt (Gf (xi )). (12)

It is noteworthy to specify that the gradient of non-adversarial domain discriminator Gt will
not be back-propagated to update the feature extractor Gf since Gf is not learned to confuse Gt ,
and Gt is only trained to distinguish the source and target examples by minimizing the following
objective function:

EGt
=

1

ns + nt

∑

xi ∈Ds∪Dt

Lt (Gt (Gf (xi )),di ), (13)

where di is the domain label of instance xi , and Lt is the domain classification loss (i.e., cross-
entropy loss).
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4.4.2 The Quality of Source Example. To improve the robustness of the model, we also expect
transferable examples in source city are high-quality. However, urban data could suffer from data
noisy issues in many practical applications. If we forcefully match all source examples with target
examples, noisy data in source city will result in negative transfer.

Inspired by curriculum learning [1], which organizes examples by a better arrangement to pro-
mote stronger optimization, we aim to select high-quality source data and transfer them to re-
duce negative transfer. Our intuition is that smaller loss means more confident prediction, thus,
we construct the self-paced curriculum by assigning higher weights to easier examples that have
smaller loss, and selecting them into training iteratively [15]. Specifically, the loss l (xi ) between
the predicted value and label can be view as the criterion to choose easy examples, and we select
high-quality examples based on predefined curriculum:

l (xi ) = Ly (Gy (Gf (xi )),yi ), (14)

q(xi ) = I(l (xi ) ≤ γ ) (15)

where I is the indicator function, the hyper-parameter γ controls the learning pace, and q(xi ) ∈
[0, 1] is a weight to quantify whether xi is a high-quality instance.

4.4.3 Transferability of Source Example. After getting the similarity of source example to target
data and the quality of source example, we compute the transferable weights of each example in
source city to target city, which is represented as:

w (xi ) = s (xi )q(xi ), q(xi ) ∈ [0, 1]. (16)

In general, the low-quality examples in source city are filtered out first, and then the high-quality
examples whose representations are more similar to target data will be weighted by larger weight
values. In this way, the transferability weighting mechanism is capable of selecting transferable
examples from high-quality source data. Furthermore, we could highlight their contributions to the
transfer model by reweighing the source examples to improve the process of distribution alignment
to prevent negative transfer.

4.5 Jointly Optimization

As explored in the last section, to enhance positive transfer and reduce negative transfer, we de-
velop a transferability weighting mechanism to quantify the transferability of source examples.
Therefore, we construct new objectives for adversarial domain discriminator Gd and label pre-
dictor Gy based on the transferable weight of each source example w (xi ). Our intuition is that
a source example with a larger weight should contribute more to the transfer model to promote
positive transfer.

For adversarial domain discriminator Gd , we reweigh the source examples in the loss, which
means that we focus on aligning the feature distributions of transferable source examples and tar-
get examples to promote positive transfer. In our work, we aim to obtain the relative transferability
of source samples, thus, we normalize the weight of each source examplew (xi ) in each mini-batch

of batch size B as: w (xi ) = w (xi )
1
B

∑B
j=1 w (xj )

.

EGd
= − 1

ns

∑

xi ∈Ds

w (xi ) log(Gd (Gf (xi ))) − 1

nt

∑

xi ∈Dt

log(1 −Gd (Gf (xi ))). (17)

In addition, we also reweigh the source loss of label predictor Gy , which significantly reduces
the risk of negative transfer by diminishing the contribution of irrelevant source examples.

EGy
=

1

ns

∑

xi ,yi ∈Ds

w (xi )Ly (Gy (Gf (xi )),yi ). (18)
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With the weighted loss of adversarial domain discriminator and label predictor based on the
transferability of source examples, we now present the final optimization procedure in detail. Our
proposed model, WANT, jointly optimizes over label classification error EGy

, domain classification
error EGt

, and domain adversarial error EGd
. Thus, the total objective function can be written as

follows:

E (θf ,θy ,θd ,θt ) = EGy
+ αEGt

− βEGd
, (19)

where θf ,θy ,θd ,θt are parameters ofGf ,Gy ,Gd ,Gt , respectively, and the hyper-parameters α and
β control the trade-off between the objectives of non-adversarial domain discriminator and adver-
sarial domain discriminator in the unified optimization problem.

The objective of the minimax optimization problem is to find the network parameters θ̂f , θ̂y , θ̂d

and θ̂t by the following operations:

(θ̂f , θ̂y ) = arg min
θf ,θy

EGy
− βEGd

,

θ̂d = arg max
θd

EGy
− βEGd

,

θ̂t = arg min
θt

αEGt
.

(20)

To be noted, adversarial domain discriminatorGd plays the minimax game with the feature ex-
tractorGf for updatingGf , but non-adversarial domain discriminatorGt is only used for obtaining
the similarity of source examples to target city. In summary, the feature extractor is trained to min-
imize the label classification loss and maximize domain adversarial loss simultaneously, thus, the
WANT is the capability to simultaneously learn transferable and discriminative features. In addi-
tion, WANT reduces the risk of negative transfer by learning to transfer useful examples in source
city based on a transferability weighting mechanism.

In this work, we utilize the GRL [9] to reverse the gradient between the feature extractor and
adversarial domain discriminator in order to jointly learn all parameters in an end-to-end frame-
work, as shown in Figure 2. The proposed optimization procedure is summarized as a pseudocode
in Algorithm 1.

5 EXPERIMENTS

In this section, we systematically evaluate our proposed model on real-world datasets. After giving
the detailed experimental settings, we investigate the effectiveness of our approach and compare it
with several state-of-the-art methods for cold-start store site recommendation. Finally, we discuss
the limitations of our work and future work.

5.1 Experimental Settings

5.1.1 Data Description. The datasets we used to evaluate the performance of our model and
baselines are real-word datasets from a chain retail enterprise, which owns a lot of brick-and-
mortar stores in multiple cities of China. In our experiments, we obtain 6 datasets that contain
over 100 stores with more than 50,000 communities from 6 different cities in China, including 3
tier-1 cities (i.e., Beijing, Shanghai, and Guangzhou) and 3 tier-2 cities (i.e., Chengdu, Hangzhou,
and Xi’an), respectively. For each city, we collect three types of data, including store data, user
data, and POI data. Store data contain the basic information of different stores (e.g., name and
location), as well as the set of consumption records of each user in each store (e.g., the amount
of consumption). User data provide basic user information in each community, including profile
information (e.g., gender, age, profession, and income level), and location information (i.e., the
location of the community where the user lives). POI data include the information (e.g., name,
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ALGORITHM 1: Learning Algorithm for WANT

Input: Labeled dataset in source city Ds = {(xs
i ,y

s
i )}ns

i=1, unlabeled dataset in target city Dt = {xt
j }

nt

j=1.

Output: Learned parameters (θ̂f , θ̂y , θ̂d , θ̂t ).

Randomly initialize θf ,θy ,θd ,θt ;

while not done do

Sample k labeled examples {(xs
i ,y

s
i )}ki=1 and k unlabeled examples {xt

j }
k
j=1 uniformly from Ds and Dt ,

respectively;

Compute transferable weights for k source examples: w (xs
i ) in Equation (16);

Update θd by minimizing the following objective EGd
:

EGd
= − 1

k

∑k
i=1w (xs

i ) log(Gd (Gf (xs
i ))) − 1

k

∑k
j=1 log(1 −Gd (Gf (xt

j )));

Update θy by minimizing the following objective EGy
:

EGy
= 1

k

∑k
i=1w (xs

i ) ((Gy (Gf (xs
i )) − ys

i ))2;

Update θf by simultaneously minimizing the objective EGy
and maximizing the objective EGd

based on

the reversed gradient between Gd and Gf ;
Update θt by minimizing the following objective:

EGt
= − 1

k

∑k
i=1 log(Gd (Gf (xs

i ))) − 1
k

∑k
j=1 log(1 −Gd (Gf (xt

j )));

end

location, and category) of 12 different categories of POI related to the retail business, such as shop,
food, transport, company, and education.

5.1.2 Evaluation Metrics. In our experiments, we adopt Mean Square Error (MSE) and Mean
Absolute Error (MAE) defined as follows as the evaluation metrics.

—MSE. Our model predicts the amount of consumption per community in each store located
at the candidate places in target city. Therefore, we adopt MSE for result comparison, as
shown in follows:

MSE =
1

n

n∑

i=1

(ŷi − yi )2, (21)

where n is the number of instances in the target city, and ŷi and yi are predicted result and
ground truth, respectively.

—MAE. The objective of the store site recommendation is to assess the value of the store at
candidate locations and then select the optimal one from a set of candidate locations for the
company to place a new brick-and-mortar store. In this way, we use MAE to evaluate the
performance of our model for each store sj , which will be placed at the candidate location
lj ,

MAE =
1

m

m∑

j=1

�
�
�
�
�
�

Ŝj − Sj

Sj

�
�
�
�
�
�

, (22)

wherem is the number of candidate locations to place the new store in target city ct , and Sj

is the actual sale of store sj . It should be noted that Ŝj is the predicted sale of store sj , which
is represented as the total amount of consumption of all potential consumers in this store;
Ŝj =

∑
mi ∈Mj

ŷmi ,lj
, and ŷmi ,lj

is the amount of consumption per community mi in store
sj located at lj . Note that we identify the set of nearby communitiesMj around store sj as
most of the potential consumers (i.e., lying in a disk of radius r around the store), instead
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of considering all people in target city as potential consumers on account of users’ mobility
patterns in the physical world.

5.1.3 Compared Methods. We compare our approach with several state-of-the-art transfer
learning methods. Note that the structures of baseline methods are the same as that of our proposed
model. We also note that we don’t consider other transfer models for store site recommendation in
our experiment, such as Citytransfer [13], because it cannot recommend the optimal location from
any given candidate locations (e.g., the street or the shopping mall) for a new brick-and-mortar
store to solve our proposed problem.

—DNN(Source-only). This method simply uses labeled data in source city to train the pre-
diction model for target city without any adaptation.

—DANN. DANN [9] is a representative method based on adversarial learning for domain
adaptation, which includes a feature extractor, a label predictor, and a domain classifier to
learn discriminative and domain-invariant features for cross-domain transfer.

—ADDA. ADDA [37] is an asymmetric domain adaptation framework. It first pre-trains a
source feature extractor using labeled source examples, and then performs adversarial adap-
tation to learn a separate feature extractor in target domain that maps the target examples
to the same space by a domain discriminator.

—IWAN. IWAN [45] extends ADDA by considering an additional domain classifier to detect
the source samples that are potentially from the outlier classes and identify the importance
weights of source samples.

—TCL. TCL [33] transfers relevant and clean source data by learning a transferable curricu-
lum to address weakly-supervised domain adaptation, which consists of a feature extractor,
a domain discriminator and a label classifier.

5.1.4 Implementation Details. In this work, we aim to predict the amount of consumption per
community in the store, and then obtain the total amount of consumption of all potential con-
sumers in each store for recommending the optimal location to the company to place a new brick-
and-mortar store. Based on the empirical knowledge and previous studies [18], we choose people
who live in the communities within 5 kilometers of the store as all potential consumers in the
experiments. In addition, we extract the geographic features of surrounding areas, which lie in a
disk of radius 3 kilometers around the store and the community.

The models including the proposed WANT and baseline methods in our experiments are im-
plemented with Tensorflow. In detail, the structure of WANT contains four components: feature
extractor consists of 2 fully connected layers with 256 nodes each; two layers are used for the label
predictor layers, and the dimension of the hidden layer is set as 256; adversarial domain discrim-
inator consists of 2 fully connected layers with 128 nodes for the hidden layer, which plays the
minimax game with the feature extractor to learn transferable and domain-invariant feature rep-
resentations. Similarly, we employ the same architecture with the hidden dimension of 128 as the
non-adversarial domain discriminator, to identify the similarity of source examples for target data.

For training, we apply mini-batch stochastic gradient descent (SGD) with momentum of 0.9 to
update all the parameters, and the learning rate is adjusted during SGD using the following sched-
ule implemented in DANN [9]: lr = λ

(1+αp )β , where p is the training progress linearly changing

from 0 to 1, α and β are set as 10 and 0.75, respectively, and λ is the upper bound of learning rate
set as 0.0001 in our experiments. The batch size and the maximum number of epochs are set as
32 and 10,000, respectively. In addition, to avoid over-fitting, we adopt the dropout strategy with
dropout rate set as 0.5. It should be noted that under the setting of the cold-start recommenda-
tion problem, no labeled data are available for the target city. Therefore, we only use the labeled
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Table 5. Performance Comparison of Different Models

Transfer tasks Beijing→Xi’an Chengdu→Xi’an Guangzhou→Xi’an Shanghai→Hangzhou

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

DNN(Source-only) 145.211 0.4634 206.263 1.3185 206.260 1.3185 356.353 1.1748

DANN 128.518 0.7015 68.919 0.1662 94.658 0.4764 202.285 0.4401

ADDA 184.243 0.3437 148.881 0.4754 189.305 0.2252 259.866 0.4785

IWAN 151.895 0.2764 137.520 0.2484 177.059 0.2372 296.701 0.7270

TCL 92.096 0.6522 67.812 0.1595 94.243 0.5391 248.408 0.5516

WANT 79.463 0.3451 66.708 0.1473 82.428 0.2250 146.376 0.4394

training data from source city and unlabeled training data from target city to train the prediction
model.

5.2 Experimental Results

We conduct the following experiments on the cold-start scenario, and present the experimental
results to evaluate our proposed method.

5.2.1 Performance Comparison of Different Models. In this experiment, we consider four un-
supervised transfer tasks, including Beijing→Xi’an, Chengdu→Xi’an, Guangzhou→Xi’an, and
Shanghai→Hangzhou. The comparison results with various baselines are shown in Table 5. It
should be noted that MSE is the major metric to evaluate the performance of the prediction model,
and MAE is the additional result of computation based on predicted value. We find that the per-
formances of all methods are consistent over two metrics in most cases, but MSE and MAE results
sometimes conflict. There are two possible reasons. First, we choose people who live in the com-
munities within 5 kilometers of the store as all potential consumers in the experiments, and some
users could be missed. In addition, the computation of MAE also could lead to error to some ex-
tent, for example, given the MSE value, MAE calculated by adding up predicted values could be
large because of error accumulation, or small because of error elimination. Therefore, we mainly
consider MSE values for results comparison.

According to these results, we draw the following observations:

—DANN significantly outperforms DNN(Source-only) in terms of MSE on all transfer tasks,
because DANN considers the difference of data distribution between source city and target
city, and adopts a domain discriminator to facilitate the prediction model to learn invariant
features. The results verify that feature adaptation is effective for knowledge transfer be-
tween two cities with different data distributions. In addition, DANN is a simplified model
of our proposed WANT without the transferability weighting mechanism, which also indi-
cates that adversarial learning in our framework is effective to learn the domain-invariant
feature representation for knowledge transfer between two cities with different data distri-
butions.

—We observe that ADDA and IWAN perform worse than DANN. One possible reason is that
ADDA and IWAN first pre-train a feature extractor in source city, and then learn a separate
feature extractor in target city, so that deep features in source city and target city cannot be
matched adequately, and label predictor trained based on some irrelevant source examples
may hurt the performance.

—WANT achieves more superior results than DANN, especially on tasks Beijing→Xi’an and
Shanghai→Hangzhou. It indicates that general transfer learning methods are prone to
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Table 6. Performance Comparison of WANT and Its Variants

Transfer tasks Beijing→Xi’an Chengdu→Xi’an Guangzhou→Xi’an Shanghai→Hangzhou

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

WANT w/o quality 145.058 0.7839 64.847 0.2088 96.861 0.2861 223.850 0.3717

WANT w/o predictor 108.275 0.5381 68.790 0.2271 88.672 0.2274 223.523 0.3584

WANT 79.463 0.3451 66.708 0.1473 82.428 0.2250 146.376 0.4394

negative transfer if data distributions between source city and target city are significantly
different, because they ignore some source examples irrelevant to target city that could lead
to negative transfer. Thus, it is not an effective way to transfer all examples in source city.

—We find that WANT achieves better performance than DANN and TCL on most trans-
fer tasks, which proves the effectiveness of transferable weighting mechanism. How-
ever, DANN and TCL achieve competitive performance compared with WANT in
Chengdu→Xi’an task. One possible reason is that most examples in source city are useful
and relevant to target city, thus directly matching all source examples to target examples
could also obtain good results.

—As we can see, our proposed WANT is superior to all the state-of-the-art methods on most
tasks, showing its power to transfer useful source examples to target city. Specifically, com-
pared with the non-transfer learning method (i.e., DNN(Source-only)), WANT achieves 45%
improvements in terms of MSE on transfer task Beijing→Xi’an, similar improvements can
be found in the other three transfer task. The results demonstrate the advantages of WANT
in learning transferable weights and filtering outlier noisy data from source city, which di-
minishes the negative impact of irrelevant and noisy source examples and promotes positive
transfer.

—It can be observed that the performances of knowledge transfer from different source
cities are a little different. Specifically, for the target city Xi’an, WANT achieves the
best performance in Chengdu→Xi’an task, followed by Beijing→Xi’an task, and finally
Guangzhou→Xi’an task. This is intuitive because Chengdu and Xi’an are both tier-2 cities,
which could have similar feature distributions. This implicitly indicates that choosing an
appropriate source city can improve the performance to some extent.

5.2.2 Impact of the Transferability Weighting Mechanism. To reduce the risk of negative trans-
fer, we propose a transferability weighting scheme to quantify the transferability of examples in
source city, and highlight their contributions to knowledge transfer. In order to evaluate the ef-
fectiveness of our proposed transferability weighting mechanism, we investigate two variants of
WANT:

(1) WANT w/o quality is the variant by removing the quality of source example term q(xi )
from the transferable weights w (xi ) in Equation (16) on the domain discriminator and
label predictor.

(2) WANT w/o predictor is the variant by removing the transferable weights w (xi ) for the
source examples on the label predictor.

(3) WANT considers the transferable weights for the source examples on both the domain
discriminator and label predictor.

The experimental results of different variants of WANT are shown in Table 6, we can observe
that:
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Fig. 3. Results with respect to different thresholds.

—WANT outperforms WANT w/o quality, which indicates that noisy data in source city could
lead to negative transfer. Thus, it is necessary to consider the quality of source example in
the weighting mechanism to filter out low-quality examples, so that the noisy data in source
city have little influence on knowledge transfer to the target city.

—WANT outperforms WANT w/o predictor, which demonstrates that the weighting mecha-
nism on the label predictor can reduce the negative influence of irrelevant source examples
and focus on the transferable examples in source city.

—In general, WANT can successfully select high-quality and relevant source examples, and
highlight their contributions to knowledge transfer to promote positive transfer and cir-
cumvent negative transfer.

5.2.3 Hyper-parameter Investigation. To reduce negative transfer in view of noisy data in prac-
tical applications, we construct the self-paced curriculum to transfer high-quality source data,
where a threshold γ is defined to control the learning pace, and the source example that its loss
is smaller than γ will be selected into the curriculum learning procedure. In this experiment, we
evaluate how different selections of the hyper-parametersγ in the transferability weighting mech-
anism impact our proposed model’s performance.

Figure 3 shows the performance of WANT for varying different thresholds γ on transfer task
Shanghai→Hangzhou. We find that the performance improves with the decreasing thresholds at
first, because smaller threshold could filter out more noisy data, which proves that the transferabil-
ity weighting mechanism is capable of selecting high-quality examples in source city. However,
the performance drops later with the decrease of thresholds. One possible reason is that the total
number of training examples decreases when we decrease γ , and there is no enough training data
for source city to train the model.

5.2.4 Feature Visualization. To transfer knowledge between different cities, we present a
domain discriminator to align the feature distributions of source city and target city, which
further guides the prediction model to learn transferable feature representations. In order to
understand the transferable representation learned by WANT, we visualize the feature represen-
tation generated by feature extractor in two transfer tasks, including Shanghai→Hangzhou and
Beijing→Xi’an.

In practice, we randomly sample some samples from source city and target city, respectively,
and then use t-SNE [6] to reduce the dimensionality of feature vectors to 2. In this experiment, we
plot the feature representations learned by DNN and WANT, and the results are shown in Figures 4
and 5. Note that features learned by DNN represent the features without adaptation, and features
leaned by WANT represent the features after adaptation.
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(a) No adapted (b) Adapted

Fig. 4. The T-SNE visualization of Shanghai→Hangzhou adaptation.

(a) No adapted (b) Adapted

Fig. 5. The T-SNE visualization of Beijing→Xi’an adaptation.

Table 7. Performance Comparison of DNN and WANT in

Terms of MSE

Transfer tasks Shanghai→Hangzhou Beijing→Xi’an

No adapted (DNN) 356.353 145.211
Adapted (WANT) 146.376 79.463

As shown in Figures 4 and 5, we can observe that the distributions of source and target features
learned by WANT with adaptation are more closer and indistinguishable compared to features
without adaptation, which proves that WANT is capable of aligning the feature space and learn-
ing transferable features to reduce the feature distribution discrepancy between source city and
target city. Especially, the results in Table 7 intuitively show that the improvement of WANT in
Beijing→Xi’an task is 45%, and the improvement in Shanghai→Hangzhou is over 50% compared
with DNN in terms of MSE. In general, the results indicate that WANT can learn both disentangled
and transferable feature representations for knowledge transfer.

5.3 Discussion

We next discuss the research findings from this work and potential future directions to improve
this work.

—Multi-city Knowledge Transfer. WANT focuses on transferring knowledge from a sin-
gle source city to the target city, and the experiments indicate that the performances of
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knowledge transfer from different source cities vary a little because of distinct city char-
acteristics. Intuitively, the knowledge learned from multiple cities could be comprehen-
sive and complementary. Therefore, we plan to transfer knowledge learned from multiple
source cities to improve the performance of knowledge transfer and increase the stability of
transfer.

—Time Series Modeling. The current work aims to predict consumer behavior in a short
period of time for store placement. Future studies should explore the dynamic consumer
behavior based on the sequence model (e.g., Recurrent Neural Network or Long Short-Term
Memory), and combine it with our proposed model to further improve the results.

—Experiments for other Chain Enterprises. In this article, we use a chain retail enterprise
for a case study to evaluate our proposed model in the experiments, because the real-world
commercial dataset is not easy to be obtained. In our future work, we intend to have more
collaboration with other commercial companies which own a larger number of stores to
obtain enough data, and further validate the effectiveness and robustness of our framework.

—The Extension and Usage of WANT to other Applications. Although our focus in this
article is on the cold-start store site recommendation, our proposed WANT can also handle
the data scarcity problem in other applications by transferring knowledge learned from
source domains, such as spatial-temporal prediction and image classification. For different
problems, there might be various types of feature representations learned by the feature
extractor that can be transferred and integrated. Thus, we plan to extend our model by
combining it with other network structures (e.g., CNN or Recurrent Neural Network), and
apply them to different applications.

6 CONCLUSION

In this article, we present WANT for cold-start store site recommendation. Unlike previous transfer
learning methods, our proposed approach focuses on transferring useful examples in source city
by considering the transferability of different examples to reduce negative transfer. In particular,
we propose a transferability weighting mechanism, which quantifies the transferability of source
examples according to both the similarity of source examples to target data and the quality of
source examples. Finally, we demonstrate that our model achieves the best performance on the
real-world dataset among several state-of-the-art transfer learning approaches.
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