
HAL Id: hal-03363389
https://hal.science/hal-03363389v1

Submitted on 3 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MetaStore: a task-adaptative meta-learning model for
optimal store placement with multi-city knowledge

transfer
Yan Liu, Bin Guo, Daqing Zhang, Djamal Zeghlache, Jingmin Chen, Sizhe

Zhang, Dan Zhou, Xinlei Shi, Zhiwen Yu

To cite this version:
Yan Liu, Bin Guo, Daqing Zhang, Djamal Zeghlache, Jingmin Chen, et al.. MetaStore: a task-
adaptative meta-learning model for optimal store placement with multi-city knowledge transfer. ACM
Transactions on Intelligent Systems and Technology, 2021, 12 (3), pp.28:1-28:23. �10.1145/3447271�.
�hal-03363389�

https://hal.science/hal-03363389v1
https://hal.archives-ouvertes.fr


28

MetaStore: A Task-adaptative Meta-learning Model

for Optimal Store Placement with Multi-city

Knowledge Transfer

YAN LIU and BIN GUO, Northwestern Polytechnical University, China

DAQING ZHANG and DJAMAL ZEGHLACHE, Télécom SudParis, France

JINGMIN CHEN, SIZHE ZHANG, DAN ZHOU, and XINLEI SHI, Alibaba Group

ZHIWEN YU, Northwestern Polytechnical University, China

Optimal store placement aims to identify the optimal location for a new brick-and-mortar store that can max-
imize its sale by analyzing and mining users’ preferences from large-scale urban data. In recent years, the
expansion of chain enterprises in new cities brings some challenges because of two aspects: (1) data scarcity
in new cities, so most existing models tend to not work (i.e., overfitting), because the superior performance
of these works is conditioned on large-scale training samples; (2) data distribution discrepancy among dif-

ferent cities, so knowledge learned from other cities cannot be utilized directly in new cities. In this article,
we propose a task-adaptative model-agnostic meta-learning framework, namely, MetaStore, to tackle these
two challenges and improve the prediction performance in new cities with insufficient data for optimal store
placement, by transferring prior knowledge learned from multiple data-rich cities. Specifically, we develop a
task-adaptative meta-learning algorithm to learn city-specific prior initializations from multiple cities, which
is capable of handling the multimodal data distribution and accelerating the adaptation in new cities com-
pared to other methods. In addition, we design an effective learning strategy for MetaStore to promote faster
convergence and optimization by sampling high-quality data for each training batch in view of noisy data
in practical applications. The extensive experimental results demonstrate that our proposed method leads to
state-of-the-art performance compared with various baselines.
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1 INTRODUCTION

Recent advances in internet technology and mobile computing lead to a collection of large
amounts of urban data from various sources in cities and significantly changes urban services and
related applications [14, 40, 42, 44, 50], such as intelligent transportation systems, public safety,
intelligent business, and so on. Intelligent business is a new business service in smart cities, which
comprises the strategies and technologies used by internet companies [5, 9, 35]. Specifically,
intelligent business technologies handle and analyze large amounts of business data to provide
large-scale, real-time, and personalized services for mass consumers (e.g., recommendation in
electronic commerce websites), as well as provide historical, current, and predictive views of
business operations with a competitive market advantage and long-term stability. Optimal store
placement is one of most fundamental services in intelligent business for the development of
brick-and-mortar chain enterprises (e.g., Starbucks, Walmart) [4, 8, 46], as it can provide insights
for the future success of the chain enterprise when placing a new store at the given candidate
location. Thereby, an effective store placement approach becomes necessary to help the enterprise
to improve the chain store’s profit.
In recent years, the proliferation of multi-source data in cities has fostered unprecedented op-

portunities to the data-driven store placement [2, 47], and it aims to analyze and mine users’ pref-
erences based on user-generated data (e.g., check-in data, rating data) to select the optimal location
for a new brick-and-mortar store that can maximize the sale of the store. The data-driven methods
in optimal store placement can help the company (e.g., chain stores) to predict the popularity of
the store at the given location accurately and intelligently via data mining and machine learning
techniques.
Traditionally, some basic regressionmodels are used for optimal store placement [18, 22, 39]. For

example, in Reference [39], three types of features are incorporated into a regression model to pre-
dict the number of check-ins at a candidate location. Nevertheless, these methods rely on expertise
feature engineering to characterize sophisticated influences and extract features from a single data
source, which fail to learn complex feature interactions from multi-source data. Recently, with the
rapid development of deep neural networks (DNNs), more and more works propose DNN-based
approaches [23, 48] to improve the performance of site selection by characterizing consumption
behavior based onmulti-source data. Themethod proposed in Reference [23] learns low- and high-
order feature interactions simultaneously to model complex user behaviors. However, the superior
performance of existing models is conditioned on large-scale training data, and most of them can-
not work in some new cities with a few historical consumption data where a chain enterprise just
develops its market at the initial phase.
Recently, transfer learning [7, 29, 41] has been proved to be an effective approach to solve

the data scarcity problem by transferring available knowledge from those cities with abundant
data (i.e., source city) to improve the performance in the data-scarce city (i.e., target/new city). In
Reference [43], the authors propose to transfer knowledge from a data-rich city to a data-scarce
city by learning an inter-city region matching function to match each target city region to a
similar source city region. Guo et al. [15] propose a two-fold knowledge transfer framework to
transfer chain store knowledge for chain store site recommendation in a new city. However, the
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major downside of these transfer models is that they focus on transferring knowledge from
only a single source city, which limits the performance of knowledge transfer, because knowl-
edge learned from multiple cities could be comprehensive and complementary. Furthermore,
the knowledge transfer could hurt the performance due to the negative transfer if the data
distribution between source city and target city are significantly different.
One of practical approaches to solve this issue is making sufficient use of samples in data-rich

cities and transferring knowledge from multiple source cities. In contrast to transfer learning,
meta-learning [12, 34] is a task-level learning method that has emerged recently aiming at learning
to learn, or learning from small amounts of new data quickly. Specifically, meta-learning aims to
accumulate knowledge/experience from learning multiple tasks and adapt to a new task rapidly
based on few samples by leveraging prior experience. In view of the store placement scenario in
new cities, we aim to develop a meta-learning approach to learn the prediction model in a new
city based on a small number of historical consumption data by leveraging prior knowledge from
multiple source cities.
In this article, we consider a state-of-the-art representative of meta-learning algorithms, namely,

Model-Agnostic Meta-Learning (MAML) [12], which is widely used to solve few-shot learning
problems because of its appealing performance. Specifically, it learns an initialization of a net-
work by a meta-learner on a set of tasks, which is then optimized to adapt a new task via a small
number of gradient updates. However, very few attempts have applied MAML to transfer city
knowledge from source city to target city in urban applications, and we are still faced with two
key technical challenges, which limit the effectiveness of this type of MAML-based approach for
solving our problem: (1) How to learn available knowledge from multiple cities simultane-

ously with different data distributions? Intuitively, the data distribution may vary from city
to city because of different characteristics of cities (e.g., POI distribution, road network). However,
many MAML-based methods assume that all training and testing tasks are drawn from the same
data distribution, and they aim to find a single meta-initialization, which could be difficult and
inappropriate to search, since the data distribution in different cities is different and multimodal.
Therefore, data distribution discrepancy among different cities poses a great challenge for trans-
ferring knowledge from multiple cities. (2)How to quickly adapt the knowledge to improve the

performance in a new city with limited examples while avoiding overfitting to these new

data? In real-world scenarios, many urban applications may suffer from data noisy issues. How-
ever, most conventional meta-learning methods randomly sample the training batch from each
task, which makes it difficult to efficiently adapt to a new city based on a small number of training
data, since the model tends to overfit on noisy data.
To tackle the aforementioned challenges, we propose MetaStore, a task-adaptative model-

agnostic meta-learning framework for optimal store placement in new cities with insufficient
data by transferring prior knowledge learned from multiple data-rich cities. Specifically, we pro-
pose a task-adaptative meta-learning algorithm to learn city-specific prior knowledge to solve the
first challenge. Different from previous MAML-based methods that seek a common initialization
shared across the entire task distribution, substantially limiting the diversity of the task distribu-
tions that they are able to learn from, our task-adaptative meta-learning algorithm learns a set
of meta-learned initializations from a variety of source cities, which is capable of tackling com-
plex multimodal data distributions and accelerating the adaptation in new cities. In particular, it
first leverages the attention network to generate a set of city-specific parameters according to
the characteristic of the city, which are fed in the prediction network to modulate meta-learned
initialization. Then, the modulated parameters are further updated using a few steps of gradient
descent to quickly adapt to the new city to improve its performance. Moreover, we design an effec-
tive learning strategy to solve the second challenge, which samples high-quality data in real-time
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for each training batch instead of observing samples at random to promote faster convergence
and stronger performance in view of noisy data in real-world situations. Note that although our
focus in this article is on optimal store placement, our proposed method can also handle other few-
shot learning problems with different models, such as spatial-temporal prediction, recommender
systems, and so on.
In summary, we make the following contributions:

• We present a task-adaptative model-agnostic meta-learning framework, namely, MetaStore,
to improve the prediction performance in new cities with limited data for optimal store
placement by transferring prior knowledge learned from multiple data-rich cities.

• We propose a task-adaptative meta-learning algorithm to learn city-specific prior knowl-
edge from multiple cities with the multimodal data distribution. It first learns a set of
meta-learned initializations from multiple source cites according to the characteristic of
the city, and then quickly adapts the well-generalized initialization of the prediction model
to obtain superior performance on a new city based on only a few numbers of historical
data.

• We design an effective learning strategy to promote faster convergence and optimization
by sampling high-quality data for each training batch in view of noisy data in practical
applications.

• We validate the effectiveness of our proposed model on a real-world dataset. Extensive
experiments are conducted from different perspectives, and the results demonstrate that
our proposed approach outperforms baseline methods.

The rest of this article is organized as follows: We begin by reviewing the related work in
Section 2. We present the preliminary in Section 3. Section 4 elaborates the detailed design of the
proposed MetaStore architecture. Empirical evaluation and discussion are reported in Section 5,
while the conclusion is enclosed in Section 6.

2 RELATEDWORK

In this section, we review the related work, including optimal store placement and knowledge
transfer.

2.1 Optimal Store Placement

In recent years, the proliferation of multi-source data in cities has fostered unprecedented oppor-
tunities to data-driven store placement, which aims to analyze and mine users’ preferences based
on user-generated data to select the optimal location for a new brick-and-mortar store [1, 17].

The earliest store placement methods are based on some basic regression models [18, 22, 51].
For example, Karamshuk et al. [18] mine geographic and user mobility features from check-in data
and predict the best placement of retail stores based on extracted features. Li et al. [22] extract
three types of features from cross-space data sources and then adopt supervised regression and
classification to solve two scale-specific chain store placement problems. In Reference [39], three
types of features are incorporated into a regression model to predict the number of check-ins at
a candidate location. Zeng et al. [51] extract features from heterogeneous urban data and then
predict the popularity of a new retail store in the candidate space using various machine learning
models. Unfortunately, these methods rely on feature engineering to extract features from a single
data source, which fails to learn complex feature interactions from multi-source data.
Recently, with the rapid development of DNNs [26, 37], more and more works propose DNN-

based approaches to improve the performance of store placement by characterizing consumption
behavior based on multi-source data [23, 48]. Liu et al. [23] propose a model named DeepStore,
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including the cross network, the deep network, and the linear component, thus, it can learn
low- and high-order feature interactions explicitly and implicitly from dense and sparse features
simultaneously to model complex user behavior. Xu et al. [48] propose an attentive neural method
to select promising business locations by fusing the discriminative features extracted from urban
data and satellite data. Specifically, it consists of three attention modules to learn deep feature
interactions according to business types and predict the business popularity of a given location.
However, these models rely on large-scale labeled data to train the prediction model, which

could not be satisfied in some cases. For example, there may exist only a few historical data in
some new cities when a chain enterprise just develops its market at the initial phase, and most of
previous works fail to address this problem due to the data scarcity problem. Different from most
of existing works based on enough training samples, we aim to tackle the data scarcity problem for
optimal store placement by transferring prior knowledge learned from data-rich cities to improve
the performance in a new city with a small number of data.

2.2 Knowledge Transfer

Recently, knowledge transfer has been studied as an effective solution to address the data scarcity
problem by avoiding expensive data labeling efforts. Specifically, transfer learning and meta-
learning are two major methods widely used to transfer knowledge and improve learning per-
formance.
Transfer learning. The objective of transfer learning is to transfer knowledge from some

source domains to the target domain when the latter does not have enough training data, including
instance-based [7], feature-based [29], model-based [13], and relation-based [25] methods. There
have been recently a few works that leverage transfer learning to deal with urban data scarcity
[15, 24, 43]. Guo et al. [15] propose a two-fold knowledge transfer framework to solve the cold-start
problem for chain store recommendation. Specifically, it builds correspondence between different
regions to bridge the discrepancy between the source city and the target city to transfer chain store
knowledge. Liu et al. [24] propose a domain adaption network for hotspots detection in a new city
by transferring hotspots knowledge learned from one source city with shared bikes. In Reference
[43], authors propose a cross-city transfer learning method for deep spatio-temporal prediction
tasks, which aims to transfer knowledge from a source city to a target city by learning an inter-
city region matching function to match each target city region to a similar source city region.
However, there are two downsides when using these transfer learning methods in our work.

First, most of works transfer knowledge with the similarity function based on the correlation
between source and target cities, which is hard to extend to solve our problem because of sophis-
ticated consumption behavior. Moreover, existing works mainly focus on transferring knowledge
from only a source city, which limits the performance of knowledge transfer, because knowledge
learned from multiple cities could be comprehensive and complementary. The knowledge transfer
could hurt the performance due to the negative transfer if the data distribution between source
city and target city is significantly different.
Meta-learning. Meta-learning has emerged recently in machine learning aiming at learning

knowledge/experience from a variety of learning tasks, and then transfer learned knowledge to a
new task with a few examples for fast adaptation. Different from transfer learning, meta-learning
can be capable of quickly adapting to new tasks that have never been encountered during training
time, thus meta-learning is also known as learning-to-learn.
Generally, meta-learning methods can be divided into three types: metric-based, model-based,

and optimization-based methods. Metric-based methods [36] learn a metric space in which learn-
ing is efficient, and they are mostly used for classification problems. Model-based methods [28]
use an external network to store experience to facilitate the learning process, but they could suffer
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from overfitting and show limited generalization ability, because they introduce additional pa-
rameters. Optimization-based methods [34] aim to adjust the optimization algorithm so the model
can be good at learning with a few examples. Specifically, it uses the meta-learner to update the
learner’s parameters so the learner can adapt to the new task quickly.
MAML [12] is a state-of-the-art representative of the optimization-based meta-learning ap-

proaches. Specifically, it learns a good parameter initialization of a network by a meta-learner on
a set of training tasks, which is then optimized to adapt a new task via a small number of gradient
updates. Especially, MAML is agnostic and does not expand the number of learned parameters, so
it is compatible with any models learned through gradient descent to solve a variety of problems
[21, 49, 52]. For example, Lee et al. [21] propose a recommender system based on MAML for the
cold-start problem, and it includes a meta-learned user preference estimator that can adapt to new
users based on a small number of item-consumption history. Inspired by MAML, a meta-learning
method is proposed by Yao et al. [49] to address spatial-temporal prediction in new cities with
only a short period of data collection. Specifically, the method learns a good initialization of the
spatial-temporal network, which can be quickly adapted to new cities. In Reference [52], Zhang
et al. propose a meta-learning method for clinical risk prediction with limited patient electronic
health records. Particularly, they adopt a model agnostic gradient descent framework, which trains
a meta-learner on a variety of tasks where the target clinical risks are relevant.
However, MAML aims to find a single meta-initialization, which could be difficult to search

for all tasks if the data distribution is different and multimodal; meanwhile, it could lead to bad
performance. For example, the data distribution differs among multiple cities in our problem. In
addition, conventional meta-learning methods randomly sample the training batch from each task,
which could bring random difficulties, since most urban data may suffer from data noisy issues in
the real-world scenario.
Inspired by above-mentioned works, we aim to leverage the model-agnostic meta-learning

method to address the data scarcity problem for optimal store placement by transferring prior
knowledge learned from other source cities to improve the performance in a new city with a small
number of data. Different from MAML-based methods above, our model learns city-specific prior
knowledge from multiple cities, which is capable of tackling complex multimodal data distribu-
tions and accelerating the adaptation in new cities. Furthermore, we present an effective learning
strategy to sample high-quality data for each training batch instead of observing samples at ran-
dom to promote faster convergence and optimization.

3 PRELIMINARY

In this section, we first describe the problem formulation. Next, we extract useful features from
multi-source data. Finally, we present the data analysis results. For brevity, we present a table of
notations used in our work in Table 1.

3.1 Problem Formulation

Definition 3.1 (User Consumption in a Store). In a city c , given a store sj located at lj , and a set of
users U = {u1,u2...ui ...} who have the possibility to consume in the store, we use yui ,sj to denote
the amount of consumption per customer ui in store sj during a given period of time T (e.g., a
month), which is to be predicted. Then, the overall sale of the store sj can be represented as the
total amount of consumption of all consumers in this store:M (sj ) =

∑
ui ∈U yui ,sj .

Definition 3.2 (Optimal Store Placement in a City). Given a set of candidate locations L =
{l1, l2...lj ...} to place a new store in a city, let M̂ (lj ) be the predicted sale of the store located at
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Table 1. Notations

Notation Description

Cs = {cs1 , cs2 ...csi ...} Source cities
Ct = {ct1, ct2 ...cti ...} New/target cities
Dtrain
Tcs

Support set of source city cs
Dtest
Tcs

Query set of source city cs
Dtrain
Tct

Training data of target city ct
Deval
Tct

Evaluation data of target city ct
θf The parameters of feature extractor
θy The parameters of label predictor
ω The parameters of attention network
λ The city-specific modulation vectors

the candidate place lj . The optimal store placement in a city can be defined that the candidate
location with the highest sale will be selected as the optimal location to place a new store.

Problem Statement. For a chain enterprise, assume that there are a set of source cities
Cs = {cs1 , cs2 ...csi ..., csm } with enough data and some new/target cities Ct = {ct1, ct2 ...cti ...} with lim-
ited data. In this article, we aim to solve the optimal store placement for this chain enterprise
in new cities based on only a small number of consumption records in stores, by leveraging and
transferring knowledge from multiple source cites.
Specifically, for a target city ct ∈ Ct , given a set of candidate locations Lt = {l t1 , l t2 ...l tj ...}, a set of

users U t = {ut1,ut2 ...uti ...}, and multi-source data (including consumption data, POI, etc.), the ob-
jective of this problem is to predict the consumption behavior of each user for each store located
at candidate places in the target city, denoted as ŷuti ,l tj . It should be noted that known the predicted

consumption behavior, we then compute the overall sale of the store M̂ (lj ) located at each candi-
date place lj , and hence the optimal store placement can be solved by selecting the optimal place
with the highest sales from Lt to place a new store in the target city.

3.2 Feature Extraction

In this work, we choose a retail enterprise for a case study, which owns a lot of brick-and-mortar
stores in some cities of China. The dataset is real-world urban data, which contains three types
of data for this work, including retail enterprise data, user data, and POI data. The details of the
dataset will be presented in the experiments. To predict the consumption behavior of each user in
stores, we extract useful features. Specifically, we mainly consider the following features extracted
frommulti-source data, including user features, geographic features, commercial features, and time
features.
User Features. Intuitively, identifying whether the candidate location is appropriate to place a

new store in the long term mainly depends on the nearby users. Following previous work [23],
we associate each user with a location-based community, which is a group of homes and other
buildings built together. To characterize potential customers in different communities, we consider
some demographic profiles, such as gender, age, profession, income level, and so on, and then make
statistics on the number of people with different profiles in each community as user features.
Geographic Features. The spatial characteristics of the place where the store resides affect the

possibility of users going to the store. We thus extract the following geographic features includ-
ing: (1) distance: the Manhattan distance between the community where people live and the store,
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Fig. 1. T-SNE visualization on different cities.

(2) traffic convenience: the total number of transportation stations (including bus stations and sub-
way stations) in the surrounding area, which is a disk centered at the store with radius r , (3) POI
set: the number of POIs of each category (e.g., shopping, food, company) that could attract poten-
tial consumers in the surrounding area, (4) neighbor’s entropy: POI entropy of different categories
in the surrounding area.
Commercial Features. Inspired by Reference [18], to characterize commercial features around

the area where the store resides, we extract three commercial features: (1) density: the total number
of stores of different categories in the surrounding area, which lie in a disk of radius r around the
store, (2) competitiveness: the proportion of neighboring places of the same type with respect to
the total number of nearby places, (3) complementarity: Jensen Quality [17] of the store to assess
the complementarity relationship of spatial interactions of places with respect to their ability to
attract other places of certain types pairs.
Time Features. We extract time features to capture consumer behavior in the store at dif-

ferent stages: (1) the date of establishment to place the store (e.g., the year), (2) the num-
ber of existing stores, (3) whether the time is the holiday when users consume in the store
(e.g., New Year’s Day and National Day).

3.3 Data Analysis

Intuitively, the data distribution may vary from city to city because of different characteristics of
cities, such as POI distribution, road network, and so on, thus a prediction model built for one
city may not predict well in other cities because of different data distributions. Furthermore, data
distribution discrepancy among different cities poses a great challenge for transferring knowledge
from multiple cities.
To illustrate data distribution discrepancy among different cities, we visualize t-SNE results over

the feature space. T-SNE [10] is an effective method to visualize the high-dimensional data distri-
butions. Specifically, we randomly sample some examples from three cities in China, including
Shanghai, Chengdu, and Xi’an, and then visualize the t-SNE embeddings of the feature repre-
sentations extracted from multi-source data. Figure 1 shows the feature distribution using t-SNE
embeddings under two kernel functions, respectively. As shown in Figure 1, when the number of
feature dimension is reduced to low dimension (i.e., 2 and 3), we can see the obvious data distribu-
tion difference among cities, especially between the tier-1 city (Shanghai) and tier-2 city (Chengdu
and Xi’an), which means that different tasks sampled from different cities with different distribu-
tions can require substantially different parameters of the prediction model in different cities. In
general, it is necessary to consider the data distribution discrepancy for the optimal store place-
ment in a new city when transferring prior knowledge learned from multiple source cities with
different data distributions.
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Fig. 2. The learning procedure of MetaStore.

4 THE METASTORE ARCHITECTURE

In this section, we describe the details of the MetaStore architecture. We first introduce the meta-
learning setup for optimal store placement. Next, we design a prediction model to predict the
consumption behavior of each user for each store. Finally, we propose a novel task-adaptative
meta-learning algorithm to learn city-specific prior knowledge from a variety of source cities in
view of multimodal data distribution. It should be noted that MetaStore is model-agnostic, thus it
can be easily extended to more sophisticated neural networks to solve various problems, such as
spatial-temporal prediction, recommender systems, and so on.

4.1 Meta-learning Setup

In this work, we aim to learn the prediction model for optimal store placement in new cities with
limited data by transferring and leveraging knowledge from multiple source cites with sufficient
data. However, traditional transfer learning would be constrained by the small number of training
samples, and most of transfer learning works mainly focus on transferring the knowledge from
only a single source city.
Different from transfer learning, meta-learning aims to train a model that can rapidly adapt to

a new task. Consequently, we take advantage of meta-learning to learn knowledge from multiple
source cities. The MAML provides us a parameter initialization strategy, and the parameters of
the model can be viewed as the knowledge learned from multiple tasks that can be transferred to
the new task. More formally, we regard each task as predicting consumer behavior in each city,
and the details on the design of the prediction model will be introduced in the next section.
As shown in Figure 2, the learning procedure of MetaStore consists of two phases: meta-training

and meta-testing. Specifically, meta-training aims to learn knowledge from a number of tasks sam-
pled from a set of source cities. A new task inmeta-testingwill start from that knowledge and adapt
to the new task quickly. In particular, in our work, a meta-training task is a regression taskTcs sam-
pled from each source city cs ∈ Cs , and a meta-testing example Tct is the same prediction task in
the target city ct ∈ Ct .
Meta-training Phase. The objective of meta-training is to learn an initialization of the model

by a meta-learner based on multiple source cities. In each source city, meta-training has a two-
stage optimization using two sets, respectively, namely, the support set and query set. During the
local update, the base-learner optimizes the parameters of the model by minimizing the training
loss on each support set Dtrain

Tcs
of source city cs sampled from the set of source cities Cs . During

the global update, for all source cities, the meta-learner trains the model parameters to minimize
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Fig. 3. The prediction model of MetaStore.

the testing losses using the locally adapted parameters on the query sets Dtest
Tcs

across cities, so the

globally updated parameters could fit into various cities.
Meta-testing Phase. After the meta-training phase, we could obtain the desirable initialization

of the prediction model, which can adapt quickly to various cities. Therefore, the parameters of the
model can be viewed as the knowledge learned from multiple source cities, which can be trans-
ferred to the new city for fast adaptation. The meta-testing phase aims to test the generalization
performance of the initialization learned by meta-learner to a new city. Specifically, given a new
city ct sampled from the target cities Ct , to improve the performance in the new city, we first
transfer the initialization of the prediction model, and then adjust the parameters to adapt to the
new city ct on training data Dtrain

Tct
(i.e., fast adaptation on each target city). Finally, we predict

the value of the target city ct using the adapted parameters and evaluate the prediction model on
evaluation data Deval

Tct
.

4.2 Prediction Model

The main idea of MetaStore model is to combine the base network and the attention network to
quickly adapt to a new city in view of multimodal data distribution. To acquire city-specific prior
knowledge learned by the meta-learner, we first leverage the attention network to generate a set
of city-specific parameters considering of the unique characteristic of the city, and then the output
vector of the attention network is fed in the base network to modulate parameters of the base
network through the attention-based modulation layer. Finally, the parameters of the modulated
base network are further updated to adapt to the new city by the base-learner. The prediction
model of MetaStore is shown in Figure 3.

4.2.1 Input Features. For each store, we first identify its neighbor area where most of potential
consumers live, such as the surrounding area that is a disk centered at the store with radius r .
Instead of considering each potential consumer as an entity in the prediction task, we associate
each user with a location-based community. Hence, we extract geographic features xf д , commer-
cial features xf c , and time features xf t of each store, and user features xf u of nearby communities
from multi-source data, as presented in Section 3.2. In addition, to further reinforce the consumer
behavior learning, we take the embedding vectors of city xec and the embedding vectors of
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community xem into consideration, which can be learned based on other related consumption
data (e.g., a large number of online consumption data).

4.2.2 Attention Network. The attention network aims to produce a set of city-specific parame-
ters for the base network based on the characteristic of the city. Instead of modulating all parame-
ters of the base network, we just focus on modulating parameters in feature extractor (the details
about feature extractor will be introduced in Section 4.2.3), because the feature extractor is capable
of obtaining the internal representation, which could be more transferrable. More specifically, to
module the parameters in the base network as good initialization that can be updated to adapt to
the new city efficiently, we propose to employ the attention mechanism on the output of each layer
in feature extractor in the base network. Moreover, the feature extractor could consist of multiple
layers, such as the convolutional layer, fully connected layer. Therefore, we apply multiple atten-
tion sub-networks (e.g., MLPs) to generate various modulation vectors for each layer of feature
extractor in the base network, which can be formulated as:

λi = дi (xec ;ω) ,where i = 1, . . . ,N , (1)

where N is the number of layers in feature extractor, and function дi with parametersω represents
the attention network. It should be noted that xec is the embedding vector of each city that encodes
the characteristic of a city. In this work, we learn the city embedding vector by unsupervised
learning approach in advance based on other related consumption data, and it can also be learned
by other methods in terms of different problems.

4.2.3 Base Network. We present the base model to predict the consumption behavior of each
user for each store located at candidate areas, which consists of the following two components:
feature extractor and label predictor.
Feature Extractor. Besides some valuable features extracted from multi-source data, we adopt

the feature extractor to learn their deep interactions based on the raw extracted features, since
consumer behavior is usually affected by various complicated factors simultaneously. Specifically,
the feature extractor contains N fully connected layers for deep feature representation learning:

x1 = σ
(
Wf 1x + bf 1

)
,

f = σ
(
Wf N xN−1 + bf N

)
,

(2)

where x = [xf д , xf c , xf t , xf u , xec , xem] is the input vector containing different types of features,
theW and b are weight and bias of the feature extractor, and σ is the non-linear activation function
for which we use ReLU. The output of the feature extractor is the final feature representation f ,
which will be fed in the label predictor.
In recent years, modulation operators have been widely used in modern deep learning models to

modulate neural networks for achieving the conditioning effects of data from different modalities.
There are some representative modulation operations, such as attention-based modulation [27, 38]
and feature-wise linear modulation (FiLM) [16, 30, 32]. For example, FiLM modulation has been
used in a variety of tasks and shows its effectiveness [11, 19, 31, 45]. Inspired by previous works,
we employ the modulation operation in our proposed meta-learning framework. To acquire city-
specific prior knowledge learned by meta-learner, we add attention-based modulation layers in
the feature extractor. The attention-based modulation layer aims to modulate parameters θf i =
{Wf i , bf i } of each layer of feature extractor using city-specific parameters λi , which is the output
of the attention network. Specifically, modulation vectors are used to scale the pre-activation of
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each feature extractor layer, which can be defined as:

xi =Wf ixi−1 + bf i ,
xi = σ (xi � λi ) .

(3)

Label Predictor. Label predictor aims to predict the amount of consumption of users in the
store located at the candidate place. According to the insights of the Wide&Deep model [6], we
consider low- and high-order feature interactions simultaneously for label prediction. Formally,
given the deep feature representation f from feature extractor and raw extracted features, we first
concatenate them to obtain the input vector of the label predictor, and then predict the amount of
consumption of potential customers based on the following operations. The layers can be formu-
lated as:

a = σ
(
Wy

[
f , xf д , xf c , xf t , xf u

]
+ by
)
,

ŷ = h
T
y a,

(4)

where theWy and by terms are weightmatrix and bias vector, respectively,σ is the ReLU activation
function, and hy denotes the neuron weights in the output layer.
In general, we use a parameterized function f with parameters Θ = {θf ,θy , λ to represent the

prediction model for optimal store placement, where λ denotes modulation vector, θf and θy de-
note parameters of feature extractor and label predictor, respectively. The prediction model can be
optimized by minimizing the loss function:

L (Θ) =
1

m

m∑

i=1

(ŷi − yi )2, (5)

where ŷ is the output of the prediction model ŷ = f (x;θf ,θy , λ), and y the ground-truth.

4.3 Task-adaptative Meta-learning Algorithm

To learn various knowledge and enable transferring knowledge across different modes of the
data distribution sampled from multiple cities, we propose a task-adaptative meta-learning al-
gorithm. Specifically, we first present the base-learner with feature reuse to facilitate the learning
for fast adaptation. Next, a novel task-adaptative meta-learner is proposed to learn city-specific
prior knowledge from a variety of cities in view of multimodal data distributions. Furthermore,
we introduce an effective learning strategy to sample high-quality data for each training batch to
promote faster convergence. Finally, Algorithm 1 and Algorithm 2 outline the meta-training and
meta-testing process, respectively.

4.3.1 Feature-reused Base-learner. Base-learner aims to locally update the model’s parameters
using one or more gradient descent steps by minimizing the training loss on the support set when
adapting to a city cs . Note that the attention network is used to generate a set of city-specific
parameters for the base network according to the characteristic of the city, thus, parameters ω of
the attention network are kept fixed during the local update.
Different from the base-learner in most existing works, in our proposed framework, we do not

update the parameters of the feature extractor in the base network to ensure the stability of the
learning process and reduce the learning time. The main reason is that the meta-initialization
already provides high-quality feature representations that could be more transferrable. In Ref-
erence [33], the authors have proved that the effectiveness of MAML is due to feature reuse with
meta-initialization via ablation studies. The experiments show that the meta-initialization has al-
ready learned good enough features that can be reused without needing to perform any rapid
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learning for each test task. Inspired by this work, we propose the feature-reused base-learner in-
stead of the standard base-learner inMAML. The feature-reused base-learner in our framework has
two advantages. On the one hand, the feature-reused base-learner significantly speeds up train-
ing, as it does not update the parameters of the feature extractor. On the other hand, it could avoid
overfitting on noisy data to some extent, because high-quality feature representations have been
learned on a lot of training data during the global update, and they are fixed during the local up-
date although there are a small amount of training data in each task. Specifically, for city cs , the
base-learner only updates the parameters θy in label predictor for fast adaptation:

θ
′
y,cs ← θy − α∇θyLcs

(
f
(
x;θf ,θy , λcs

)
;Dtrain

Tcs

)
, (6)

where α is a hyperparameter controlling the update rate, and λcs is the city-specific parameters
generated by the attention network.

4.3.2 Task-adaptative Meta-learner. The limitation of most MAML-based frameworks is that
they seek a common initialization shared across the entire task distribution, substantially limiting
the diversity of the task distributions that they are able to learn from. In our problem, the data
distribution may vary from city to city because of different characteristics of cities (e.g., POI dis-
tribution, road network). Therefore, we propose a task-adaptative meta-learning algorithm, which
is able to modulate its meta-learned prior parameters according to the characteristic of the city.
The objective of task-adaptative meta-learner is to acquire the task-specific prior knowledge (i.e.,
city-specific initialization of the prediction model), which can be transferred to adapt to various
tasks (i.e., cities) with different data distributions that achieve good performance after a few lo-
cal updates. As mentioned above, city-specific prior initialization is computed by modulating the
parameters of the base network using a set of city-specific parameters generated by the attention
network. Therefore, all parameters of the base network and attention network are globally up-
dated by meta-learner to minimize the testing losses using the locally adapted parameters θ

′
y,cs

on the query sets Dtest
Tcs

. The meta-optimization is performed using stochastic gradient descent as

follows, where β is the meta-learning rate:

θf ← θf − β∇θf
∑

cs ∈Cs

Lcs

(
f
(
x;θf ,θ

′
y,cs , λcs

)
;Dtest

Tcs

)
,

θy ← θy − β∇θy
∑

cs ∈Cs

Lcs

(
f
(
x;θf ,θ

′
y,cs , λcs

)
;Dtest

Tcs

)
,

ω ← ω − β∇ω
∑

cs ∈Cs

Lcs

(
f
(
x;θf ,θ

′
y,cs , λcs

)
;Dtest

Tcs

)
.

(7)

4.3.3 Learning Strategy. The conventional meta-learning methods randomly sample the train-
ing batch from each task, which could bring random difficulties. For example, in real-world sce-
narios, most urban data may suffer from noisy data issues, including feature and label noises. In
this case, it is difficult to efficiently adapt to a new city based on a small number of training data,
since the prediction model tends to overfit on noisy data. Inspired by curriculum learning [3],
which organizes examples by a better arrangement to promote faster convergence and stronger
performance, we present a learning strategy to sample high-quality data in a meaningful way for
each training batch instead of observing samples at random.
Given the prediction model represented by the parametrized function f with parametersΘ, our

proposed learning strategy is to update parameters by minimizing the following objective:

L (Θ) =
1

m

m∑

i=1

wi ( f (xi ;Θ) − yi )2, (8)
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ALGORITHM 1: MetaStore Training

Input: the set of source cities Cs , and step size hyperparameters α and β
Output: Feature extractor θf , label predictor θy , attention network ω
1: Randomly initialize θf , θy
2: Randomly initialize ω
3: while not done do
4: Sample batch of cities from Cs

5: for each source city cs do
6: Sample high-quality datapoints Dtrain

Tcs
,Dtest

Tcs
from DTcs

7: Compute city-specific parameters:

λcs = {дi
(
xec,cs ;ω

) |i = 1, . . . ,N }

8: Evaluate ∇θyLcs ( f (x;θf ,θy , λcs );Dtrain
Tcs

)

9: Local update:

θ
′
y, cs ← θy − α∇θyLcs ( f (x;θf ,θy , λcs );Dtrain

Tcs
)

10: end for

11: Global update:

θf ← θf − β∇θf
∑

cs ∈Cs

Lcs ( f (x;θf ,θ
′
y, cs , λcs );D

test
Tcs

)

θy ← θy − β∇θy
∑

cs ∈Cs

Lcs ( f (x;θf ,θ
′
y, cs , λcs );D

test
Tcs

)

ω ← ω − β∇ω
∑

cs ∈Cs

Lcs ( f (x;θf ,θ
′
y, cs , λcs );D

test
Tcs

)

12: end while

wherewi ∈[0,1] is a weight to quantify whether the ith example is a high-quality instance. Specif-
ically, the loss li between predicted value and label is the metric to choose high-quality samples,
li = ( f (xi ;Θ) − yi )2. Furthermore, we can choose easy samples based on fixing a threshold ahead
of time. For example, we adopt a classic curriculum in Reference [20] to identify the optimal weight
w as follows:

wi = I(li ≤ φ), i = 1, . . . ,n, (9)

where I is the indicator function, and the hyper-parameter φ controls the learning pace.
In our proposed framework, we build the task for each city with different distributions, and

multiple meta-training tasks are trained simultaneously by the task-adaptative meta-learner. Al-
though we add the weights for each sample in the loss function to choose high-quality samples,
the model only trained on high-quality samples with good performance could not lead to lower
predictability. There are two reasons: On the one hand, we just filter out the noisy data, which
not only makes almost no contribution to the model but also could hurt the performance of the
model. On the other hand, multiple meta-training tasks in our framework enhance the number of
training data and the diversity of training data. Therefore, our proposed learning strategy could
promote faster convergence and optimization.

4.3.4 Algorithm of Optimization. Algorithm 1 shows the detailed procedure of the meta-
training process, consisting of two main stages: local update and global update, to learn the prior
knowledge from multiple source cities, i.e., meta-initialization of the model. Note that the data
sampling shown in line 6 means that we update parameters based on high-quality examples using
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ALGORITHM 2: MetaStore Testing

Input: the set of target cities Ct , learned parameter θf , θy , ω, and step size hyperparameters α
Output: predicted value ŷ
1: for each target city ct ∈ Ct do

2: Sample high-quality datapoints Dtrain
Tct

from DTct \Deval
Tct

3: Compute city-specific parameters:

λct = {дi
(
xec,ct ;ω

) |i = 1, . . . ,N }

4: Evaluate ∇θyLct ( f (x;θf ,θy , λct );Dtrain
Tct

)

5: Parameter fast adaptation with gradient descent:

θ
′
y, ct ← θy − α∇θyLct ( f (x;θf ,θy , λct );Dtrain

Tct
)

6: Predict the result:
ŷ = f (x;θf ,θ

′
y, ct , λct ) x ∈ Deval

Tct

7: end for

our proposed learning strategy, instead of selecting high-quality data before the learning process.
During the local update (lines 5–10), the algorithm first computes the city-specific parameters,
and then updates parameters in label predictor based on modulated meta-initialization. During
the global update (line 11), all parameters are updated to minimize the testing losses of a batch of
cities using the locally adapted parameters until the stopping criteria is met.
Algorithm 2 presents themeta-testing process for fast adaptation on target cities. For each target

city ct ∈ Ct , the parameters of the attention network ω and parameters in feature extractor θf are
fixed, and parameters θy in label predictor are trained to adapt to city ct (line 5). Finally, we could
predict the result and evaluate the model in each target city.

5 EXPERIMENTS

In this section, we first introduce the experimental setup. Next, we compare our proposed algo-
rithm with baseline methods empirically. Finally, we discuss the deep insights and limitations of
our work.

5.1 Experimental Setup

5.1.1 Dataset. We choose a chain retail enterprise for a case study, which owns a lot of brick-
and-mortar stores in some cities of China. The datasets used in our experiments are real-world
urban data provided by commercial companies, including chain retail enterprise data, user data,
and POI data.
For the retail enterprise data, we collect data of the chain retail enterprise in 134 brick-and-

mortar stores from 22 cities in China during 15/01/2016 and 15/11/2019, including the profile
information and historical sales data of the store. The profile information contains the shop name,
city, location (e.g., longitude and latitude), and opening date. For the historical sales data, each
record contains the customer ID, shop name, and customer behavior. The amount of sales is
one of the important factors used to evaluate the location of the store, mainly including daily
sales, monthly sales, and annual sales. Generally speaking, daily sales has bigger uncertainty and
annual sales is too long-term, thus, we select monthly sales as the evaluation indicator. Therefore,
the units in our sales data represent the amount of money in RMB consumed in each store per
community per month.
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For the user data, we obtain data of users in 66,792 communities in 22 cities, including the
location information (i.e., the location of the community where users live) and profile information
(e.g., gender, age, profession, income level). To protect user privacy, in this work, we just collect the
information of a group of people as the units (i.e., the location-based community), which shares a
sense of place that is situated in a given geographical area (e.g., a neighborhood). More specifically,
a community in our dataset means a housing estate, which is a group of homes and other buildings
built together. Then, we make statistics on user information in the community. For the location
information, we obtain the number of people in a community and the location of the community.
For the user profile, we have the following information: the number of men or women in the
community, the number of people in different age groups, and so on.
For the POI data, it contains geographic information (e.g., name, location, and category) of mul-

tiple categories of POI related to the retail business. All the brick-and-mortar stores of the chain
retail enterprise are one type of stores, and they are similar to the supermarket (e.g., Walmart, Car-
refour), which mainly sell food (e.g., vegetables, fruits, seafood), commodities, and so on. However,
different from the supermarket, these stores are also similar to the restaurant that people could
also eat in the store after buying the seafood. Therefore, in this work, we consider 10 categories of
POI related to these stores, including shopping, food, transport, company, education, sport, service,
medical, hotel, and scene.

5.1.2 Compared Baselines. We compare the proposed method with two categories of methods:
transfer learning method and meta-learning method, since they can transfer learned knowledge
from source cities to improve the prediction accuracy in the target city. Note that we do not con-
sider traditional methods (e.g., GBDT, DNN) for comparison, because they cannot learn the pre-
diction model with limited examples in new cities. The structures of transfer learning method and
meta-learning method are the same as that of our proposed model.
Fine-tuned Method. For transfer learning, we could train the model on training data of source

cities to obtain general knowledge, and then fine-tune the pretrained model based on a few train-
ing data of target cities. Specifically, given multiple source cities, we first mix all examples from
all source cities, and then train the general model based on source cities for the adaptation in
target cities. It should be noted that we did not consider other transfer learning methods in our
experiment, such as RegionTrans [43], because we aim to study the consumption behavior in a
fine-grained manner, and it is improper to define the grid region in the city for optimal store
placement, which is used to transfer knowledge based on the similarity of different regions.
MAML-based Method (MAML). MAML is a state-of-the-art meta-learning method to learn a

better initialization of a network from a set of source cities, which is then optimized to adapt to a
new city via a small number of gradient updates. We present two variants of MAML according to
parameter optimization by base-learner. MAML-base locally updates all parameters of the model
by base-learner using one or more gradient descent steps when adapting to a city. Different with
MAML-base, MAML-fr only updates the parameters in the label predictor, and the parameters in
feature extractor will be not updated to facilitate the learning for fast adaptation.

5.1.3 Evaluation Metrics. We measure the prediction performance of our model and baselines
using the two metrics:
Mean Square Error. For each target city, our model predicts the total amount of consumption

that all users in each community consume in the store located at the candidate place. Thus, we use
Mean Square Error (MSE) for result comparison:

MSE =
1

m

m∑

i=1

(ŷi − yi )2, (10)
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where ŷi and yi are predicted and actual values, respectively, andm is the number of all samples
in the evaluation set in the target city.
Mean Absolute Error. For the optimal store placement, we assume that there could be several

candidate places to be chosen in the target city, and the objective of our problem is to select the
optimal location with the highest sale from a set of candidate places. In this way, we adopt Mean

Absolute Error (MAE) to evaluate the performance of the model for each store sj that will be located
at the candidate place lj , as follows:

MAE =
1

n

n∑

j=1

������
M̂j −Mj

Mj

������
, (11)

where n is the number of candidate locations to place the store in the evaluation set in the target
city, and Mj is the actual sale of store sj . M̂j is the overall sale of store sj predicted by the model,
which could be represented as the total amount of consumption of all potential consumers in this
store.

5.1.4 Implementation Details. In this work, for each store, we predict the consumption behavior
of users in onemonth. Based on the empirical knowledge and our previous studies [23], we identify
users who live in the communities within 5 kilometers of the store as all potential consumers in
the experiments. In addition, we extract the geographic features of surrounding areas, which lie
in a disk of radius 3 kilometers around the store and the community.
In the experiment, we consider 22 tasks sampled from 22 cities, and we select 6 typical cities

as new test cities (i.e., meta-testing tasks), including 2 tier-1 cities (Shanghai and Guangzhou) and
4 tier-2 cities (Nanjing, Hangzhou, Chengdu and Xi’an), respectively, to evaluate the performance
of the proposed model. Specifically, we learn a set of meta-learned initializations of a network by a
task-adaptative meta-learner on 16 source cities (i.e., meta-training tasks), and then, respectively,
optimize the prior initialization to adapt new cities (i.e., meta-testing tasks) via a small number of
gradient updates. More specifically, in the meta-testing phase, for each new test city, we further
split the data into training data and evaluation data. Instead of randomly selecting training data, we
select the store with the earlier opening date as training instances, because the prediction model
needs to predict the optimal location of a new store in practical applications. In general, there is
a total of 30 stores in the evaluation data of 6 new cities to measure the predictive ability of the
proposed model.
All experiments were implemented with Tensorflow using the following structure: For the

base network, two layers were used for the feature extractor, and one layer is used for the label
predictor. For the attention network, we use one fully connected layer to produce modulation
vectors. The dimensions of city embedding vectors and community embedding vectors are 17
and 128, respectively. Moreover, Batch normalization is employed to avoid over-fitting. We apply
mini-batch stochastic optimization with Adam optimizer, and set step sizes α and β to 0.001 and
0.01, respectively. The training batch size for each meta-iteration is set as 16, and the maximum
of iteration of meta-learning is set as 200,000.

5.2 Experimental Results

Having depicted the experimental setups and baselines, we present the experimental results to
evaluate our proposed method.

5.2.1 Performance Comparison of Different Models. The performance of different methods is
presented in Table 2. Note that MSE is the major metric to evaluate the performance of the pro-
posed method, and MAE is the additional result of computation based on predicted value. We find
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Table 2. Performance Comparison of Different Models

City Shanghai Nanjing Hangzhou Guangzhou Chengdu Xi’an

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Fine-Tune 115.39 0.376 74.21 0.155 86.67 0.364 137.07 0.395 100.29 0.343 82.63 0.387

MAML
MAML-base 106.81 0.330 70.80 0.057 69.65 0.328 118.50 0.319 99.81 0.315 83.33 0.351

MAML-fr 140.58 0.401 82.66 0.204 71.99 0.317 117.78 0.292 100.4 0.330 71.46 0.342

MetaStore
MetaStore-base 103.27 0.319 67.28 0.089 66.70 0.168 111.93 0.125 66.72 0.163 83.48 0.213

MetaStore-fr 98.91 0.308 62.13 0.081 63.76 0.184 101.00 0.275 67.04 0.195 78.49 0.187

that MAE values vary a lot from city to city and have no obvious patterns compared with MSE.
This is because we choose users who live in the communities within 5 kilometers of the store
as all potential consumers in the experiments, and some users could be missed. In addition, the
computation of MAE also could lead error to some extent.
According to these results, we draw the following conclusions:

• We can find that most of meta-learning methods outperform the fine-tuned method, espe-
cially the MetaStore method, which demonstrates that a better initialization could improve
the performance, and the meta-learned initialization has the advantage in adapting to a new
city rapidly based on few samples.

• In some cities, such as Hangzhou, MAML outperforms the fine-tuned method. However,
in other cities, such as Nanjing, the fine-tuned method achieves competitive performance
compared with MAML. One possible reason is that Nanjing is more similar to source cities
than Hangzhou. Different from MAML, which learns the initialization of the model that
a few gradient descent steps will lead to superior performance on a new city, the fine-
tunedmethod focuses on training the model that achieves superior performance on existing
source cities. Therefore, the fine-tuned method could obtain a good result only if a new city
is similar to source cities, and meta-learning methods have the ability to adapt to various
new cities quickly.

• MetaStore methods achieve better performance than MAML methods in most cities. This is
because MetaStore methods can acquire city-specific prior knowledge from a variety of
source cities in view of multimodal data distribution. However, in Xi’an, meta-learning
methods have almost no improvement compared to the fine-tuned method, and the best
result of MAML methods is better than the results of MetaStore methods. One possible
reason is that Xi’an is similar to source cities, so the fine-tuned method shows good per-
formance. Another possible reason is that MetaStore methods do not learn high-quality
city-specific knowledge due to embedding vectors of the city. The results implicitly indi-
cate that we should pay more attention to the embedding vector of the city that contains the
characteristic of the city, and then use them to obtain high-quality city-specific knowledge.

• Compared with MetaStore-base, MetaStore-fr improves performance in most cities. The re-
sults indicate that MetaStore learns the meta-initialization already providing high-quality
feature representations that could be more transferrable. Besides, MetaStore-fr only up-
dates parameters in label predictor instead of all parameters, and it significantly speeds up
training time.

• As we can see, MetaStore-fr achieves the best performance compared to baselines in most
cities. SinceMetaStore-fr learns city-specific prior knowledge frommultiple cities withmul-
timodal data distribution. Moreover, an effective learning strategy is adopted to sample
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Fig. 4. Impact of different number of inner iterations.

Fig. 5. Impact of different number of inner batch size.

high-quality data to promote convergence. In a nutshell, MetaStore shows superior perfor-
mance compared with MAML in some cities, which have unique characteristic with mul-
timodal data distribution. For example, the improvement of MetaStore in Chengdu is 30%
compared with MAML. For some cities that are similar to source cities, MetaStore-fr still
achieves good performance. Thus, learning a better and city-specific initialization is one of
effective methods to improve the performance in a new city with limited data.

5.2.2 Hyper-parameter Investigation. We evaluate how different selections of hyper-parameters
impact our model. Specifically, we study impacts of two key parameters of MetaStore-fr, i.e., the
number of inner iterations and batch size during the local update.
Inner Iterations. Figure 4 shows the performance of our method for varying the number of

inner iterations in two cities. We find that the performance dramatically increases at the beginning
for two cities. This is because the first local updates might bring the model drops into a local
optimum, and then further updates might simply escape from this local optimum. However, the
performance then decreases and increases later. One potential reason could be that we sample the
final batch (i.e., query set) from the same set of data as the earlier batches (i.e., support set), that
is to say, some samples in the final batch could have appeared in previous batches leading to the
model close to a local optimum. As shown in Figure 4, the results demonstrate that our proposed
method can adapt quickly after a few local updates, such as five local updates and three local
updates in Nanjing and Nantong, respectively.
Inner Batch Size.We fixed the number of inner iterations to five and instead varied batch size

during the local update. Figure 5 shows the similar change of the performance: The performance
increases at the beginning, but decreases a little later, and increases at the end. Specifically, for
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Fig. 6. Results with respect to different learning strategies.

batch sizes greater than 64, the final inner-loop batch for our method necessarily contains samples
from the previous batches. In general, as shown in Figures 4 and 5, the proposed method is sensi-
tive to the inner-loop hyperparameters, and the performance significantly drops if parameters are
selected in the wrong way.

5.2.3 Impact of the Learning Strategy. We evaluate the effects of different learning strategies
for MetaStore-fr by varying the hyper-parameter φ, which controls the learning pace to sample
high-quality data instead of observing samples at random. In this experiment, we compare the
performance of five learning strategies, as shown in Figure 6. Specifically, 0 means that φ is infinite
(i.e., sampling data at random), and φ decreases gradually from levels 1 to 5. It is easy to see that
better prediction results can always be achieved by adopting the learning strategy to sample high-
quality data for each training batch to improve the performance. We observe that the best setting
for φ varies on different cities, and the performance decreases when φ increases in some cities.
The reasons may be the total number of training examples decreases when we increase φ to filter
out noisy data and there is not enough training data for some cities to train the model.

5.3 Discussions

We next discuss the research findings from this work and potential future directions to improve
this work.
End-to-end Learning. The current work pre-trains the embedding vectors of cities to encode

the characteristics of different cities, which are learned based on other related consumption data.
Then, they are further used to modulate parameters of the prediction model by the attention net-
work to acquire city-specific prior knowledge. In the experiment, however, we observe that it is
difficult to guarantee that the embedding vectors of cities learned in advance could improve the
prediction model. In our future work, we intend to build an end-to-end learning model, such as
adopting the self-attention mechanism or external memory network to learn embedding vectors
of cities simultaneously.
Time SeriesModeling. In this article, we focus on predicting the consumption behavior of users

in a short period of time for store placement. Future studies should explore the dynamic consumer
behavior based on the sequence model to further improve the results, such as recurrent neural
networks.
Unsupervised Adaptation. In MetaStore, a few examples in a new city are used to fine-tune

the model learned by meta-learner for fast adaptation. However, for the cold-start problem that
we cannot access any training samples in a new city, it is impossible to quickly adjust the pre-
diction model to obtain a good performance in this city. Therefore, we are planning to study the
unsupervised problem by combining meta-learning and unsupervised adaptation.
Interpretable Model. Although we could obtain the weights of the output layer in Meta-

Store, they cannot disclose the impact of different categories of data, because the deep
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feature representations learned by the feature extractors contain low- and high-order fea-
ture interactions, which cannot be separated into different categories of data, such as users,
location, and communities. In our future work, we intend to improve our model by taking
into account interpretability, and we aim to provide not only the predicted value but also
the reason why we obtain the value for the commercial company to enhance the trust of
the model.

6 CONCLUSION

In this article, we study the optimal store placement problem in new cities with a small number of
data. We propose a task-adaptative model-agnostic meta-learning framework, namely, MetaStore,
which aims to address the data scarcity problem by transferring prior knowledge learned from
multiple source cities. Specifically, we develop a novel task-adaptative meta-learning algorithm
to learn city-specific prior knowledge from multiple cities with the multimodal data distribution,
which is then transferred to adapt to new cities quickly to obtain superior performance. Finally,
we conduct comprehensive experiments on the real-world dataset to compare the performance
of MetaStore and baseline methods, and the results demonstrate the superior performance of our
proposed approach.
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