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Despite extensive research effort in contact-free sensing using RF signals in the last few years, there still exist significant

barriers preventing their wide adoptions. One key issue is the inability to sense multiple targets due to the intrinsic nature of

relying on reflection signals for sensing: the reflections from multiple targets get mixed at the receiver and it is extremely

difficult to separate these signals to sense each individual. This problem becomes even more severe in long-range LoRa

sensing because the sensing range is much larger compared to WiFi and acoustic based sensing. In this work, we address

the challenging multi-target sensing issue, moving LoRa sensing one big step towards practical adoption. The key idea is to

effectively utilize multiple antennas at the LoRa gateway to enable spatial beamforming to support multi-target sensing. While

traditional beamforming methods adopted in WiFi and Radar systems rely on accurate channel information or transmitter-

receiver synchronization, these requirements can not be satisfied in LoRa systems: the transmitter and receiver are not

synchronized and no channel state information can be obtained from the cheap LoRa nodes. Another interesting observation

is that while beamforming helps to increase signal strength, the phase/amplitude information which is critical for sensing can

get corrupted during the beamforming process, eventually compromising the sensing capability. In this paper, we propose

novel signal processing methods to address the issues above to enable long-range multi-target reparation sensing with LoRa.

Extensive experiments show that our system can monitor the respiration rates of five human targets simultaneously at an

average accuracy of 98.1%.
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1 INTRODUCTION

In recent years, wireless sensing has attracted lots of attention from both academia and industry. Various
wireless technologies traditionally mainly used for data communication, have now been exploited for contact-
free wireless sensing. These wireless technologies include WiFi [1][2], RFID [3][4], 60GHz [5][6], UWB [7][8],
ultrasound [9][10] and even visible light [11][12]. A large variety of new applications have been enabled by
contact-free sensing ranging from fine-grained respiration monitoring [2], finger tracking [16] to coarse-grained
fall detection [17], gait sensing [18] and daily activity recognition [19]. Though promising, one critical limit still
remains: wireless sensing intrinsically has difficulties working with multiple targets. This is because wireless
sensing relies on reflection signals from the subject to obtain the subject information such as movement direction
and speed. When there exist multiple subjects, the reflections from multiple subjects get mixed at the receiver
and the superimposed signal can not be utilized to sense any single subject. This limitation constrains wireless
sensing to work with only single subject, preventing it from being used in most real-life scenarios with multiple
subjects. For instance, to assess the sleep quality of a human subject, the vital signs (e.g., respiration) need to be
continuously monitored to detect abnormal events such as sleep apnea. However, when there is a couple (Figure 1),
obtaining the information from one of them becomes challenging because the signal reflected from the other
individual can severely interfere. Sensing multiple targets is therefore a well-known challenge in contract-free
wireless sensing.

Recently, researchers propose to employ LoRa signals to address another critical issue in wireless sensing: a
small sensing range. This is because wireless sensing relies on reflection signal for sensing and the reflection
signal is much weaker compared to the direct path signal. Therefore, even though the communication range of
WiFi can reach tens of meters, the sensing range is just 6-8 meters [30]. The sensing range of acoustic signals is
even smaller (1-2 m) [10]. The small sensing range further imposes restrictions on wireless sensing: the sensing
target and the sensing device need to be in the same room and the target needs to be close to the sensing device
in order to be sensed. These restrictions can not always be satisfied in reality. For example, the WiFi router may
be in the living room and in this case, it is challenging to monitor a target in the bedroom. LoRa, on the other
hand, provides us new opportunities to address this limited sensing range issue. LoRa is originally designed
for long-range communication among IoT devices. The communication range is orders of magnitude higher
than WiFi. In rural area, the transmission range can be up to a few kilometers [14]. The key to enable this
long-range transmission is the Chirp Spread Spectrum (CSS) modulation and its high coding gain. Compared
to WiFi which requires a 0-5 𝑑𝐵 SNR for decoding, LoRa signal can still be decoded even when the SNR is as
low as −20 𝑑𝐵 [20, 21]. Therefore, recently researchers propose to employ LoRa signals to significantly increase
the sensing range from the state-of-the-art 6-8 m to 25-50 m [46][48]. While this is an applaudable step towards
more practical wireless sensing, the interference issue becomes even more severe for LoRa sensing because a
larger sensing range also means a larger interference range.
To address the interference issue, the straightforward solution is to separate signals reflected from multiple

subjects and then sense each individual. Due to the narrow frequency bandwidth (i.e., 125 kHz) at LoRa, it is not
possible to separate signals in time domain due to the low sampling rate. On the other hand, multiple antennas
do exist on commodity LoRa gateway [15][32]. Therefore, in this work, we propose to employ multiple antennas
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Fig. 1. Sleep monitoring of a couple.
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Fig. 2. LoRa beamforming for multi-target sensing.

to separate the signals in space domain to realize multi-target sensing. As illustrated in Figure 2, the basic idea of
multi-antenna based beamforming is to strengthen signal reception at a specific direction so signals from other
directions are much weaker which do not interfere the sensing at the specific direction.
However, we quickly found multiple challenges need to be tackled before this idea can be applied to enable

multi-target sensing with LoRa.

• The first challenge is that traditional beamformingmethods can not be applied on LoRa. To enable beamform-
ing, either the transmitter-receiver pair needs to be synchronized (e.g., radar) or the channel information
needs to be obtained (e.g., 802.11 ac WiFi). These two conditions can not be met for LoRa. The transmitter
and receiver are spatially separated. Also, because the LoRa technology does not need to support high data
rate like WiFi, the channel information which is used for MIMO transmission at WiFi is also not available
with LoRa.

• The second challenge is that although beamforming helps to separate signals, the beamforming process
can corrupt the signal amplitude and phase information which are the key parameters for wireless sensing.

• The third challenge for multi-target sensing is that traditional respiration sensing methods are location-
dependent. When there are multiple targets, there is a high chance that some of the targets experience
poor performance and even are undetected.

To tackle the aforementioned challenges, we develop a new LoRa beamforming technique which does not
require transmitter-receiver synchronization or channel information. What is more important is that through
careful signal processing, we make sure the beamforming procedure does not corrupt the signal amplitude/phase
variation which is the key for sensing.

Specifically, to enable beamforming using unsynchronized LoRa transmitter-receiver, we need to deal with the
carrier frequency offsets (CFO) and sampling frequency offsets (SFO). To eliminate the effects of these offsets, we
propose a novel signal processing technique by constructing a “beam nulling” signal as a reference. By dividing
the beamformed signal with the reference signal, we can successfully eliminate the unwanted phase offsets
without corrupting the sensing information.

To address the location-dependent issue of traditional respiration sensing methods, we propose to exploit the
dynamic path signal rather than the composite signal for sensing. Novel signal processing methods are proposed
to obtain the location-independent chest displacement information for respiration sensing.

To validate the proposed ideas, we implement a real-time multi-target respiration monitoring system using a
commodity LoRa node and a USRP based LoRa gateway. Extensive experiments conducted in different indoor
environments show that the proposed system can detect and estimate the respiration rates of multiple human
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subjects in close proximity with higher than 96% accuracy even at a distance of 24 m. A demo video can be found
at https://youtu.be/_4RkDr3ZOyg.

The main contributions of this work are summarized as below:

• It enables long-range multi-target respiration sensing using LoRa signals.
• We propose the “beam nulling” method to address the unsynchronization issue between LoRa transmitter
and receiver to enable beamforming.

• Different from traditional respiration sensing methods which employ the received composite signal for
sensing, we propose novel signal processing method to exploit the dynamic component signal to address
the location-dependent issue in respiration sensing.

• We prototype our design which can support multi-target respiration sensing in real time. Comprehensive
experiments demonstrate its superior performance in terms of accuracy, sensing range and through-wall
penetration capability compared with existing WiFi, mmWave radar and IR-UWB based solutions.

2 BACKGROUND KNOWLEDGE

2.1 LoRa Primer

LoRa adopts Chirp Spread Spectrum (CSS) modulation in the physical layer (PHY), which is tailored for long-range,
low-power wireless communication. In LoRa, transmitted data is modulated as linear chirp signals. Given a certain
carrier frequency denoted by 𝑓𝑐 , a linear chirp’s instantaneous frequency increases from 𝑓𝑐 − 𝐵

2 to 𝑓𝑐 + 𝐵
2 over

−𝑇
2 ≤ 𝑡 ≤ 𝑇

2 , where 𝐵 is the bandwidth, and𝑇 is the time duration of a chirp. The slope of a chirp, 𝑘 = 𝐵
𝑇 , captures

the rate of frequency change. A transmitted chirp signal can thus be represented as a complex exponential [29]:

𝑆 (𝑡) = 𝑒 𝑗2𝜋 𝑓𝑐𝑡+𝑗𝜋𝑘𝑡
2

. (1)

2.2 LoRa Signals in Contact-free Sensing

In contact-free sensing, we consider a signal traveling from a LoRa node (i.e., transmitter) to a LoRa gateway

(i.e., receiver). Suppose that the LoRa node generates a chirp signal 𝑆𝑇 (𝑡) = 𝑒 𝑗2𝜋 𝑓𝑐𝑡+𝑗𝜋𝑘𝑡
2
. The received signal

consists of two components: a static component and a dynamic component. The static component, denoted by a
vector 𝐻𝑠 , is the result of signal propagation along the direct line-of-sight (LoS) path between the transmitter and
receiver, and reflection paths from stationary objects in the environment. The dynamic component corresponds
to reflection signals from moving targets. The superimposed received signal can thus be represented as:

𝑆𝑅 (𝑡) = 𝑒 𝑗𝜋𝑘𝑡
2+𝑗2𝜋 𝑓𝑐𝑡 (𝐻𝑠 +𝐴𝑒−𝑗

2𝜋𝑑 (𝑡 )
𝜆 ). (2)

where 𝐴 is the amplitude of dynamic path component, 𝑑 (𝑡) is the length of the dynamic path, and 𝜆 is the signal

wavelength. The LoRa receiver demodulates the received signal by multiplying it with 𝑒−𝑗2𝜋 𝑓
′
𝑐 𝑡 , where 𝑓 ′𝑐 is the

carrier frequency at the gateway. Note that ideally the carrier frequency at the transmitter should be the same
as the carrier frequency at the receiver: 𝑓 ′𝑐 = 𝑓𝑐 . In reality, there is always a small difference between 𝑓 ′𝑐 and 𝑓𝑐
which is called Carrier Frequency Offset (CFO). The demodulated signal can then be represented as:

𝑅(𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) (𝐻𝑠 +𝐴𝑒−𝑗

2𝜋𝑑 (𝑡 )
𝜆 ), (3)

where 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) is random phase offset caused by CFO and SFO. 𝜙𝑐 = 2𝜋 (𝑓𝑐 − 𝑓

′
𝑐 )𝑡 is the CFO. Due to

unsynchronized clocks at LoRa transceivers, 𝜙𝑠 is the phase error introduced by Sampling Frequency Offset (SFO).
CFO and SFO are caused by the asynchronous transmitter and receiver which is different from the case (transmitter
and receiver are synchronized) in radar systems.
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2.3 Beamforming

Beamforming is a powerful technique which has been widely used in radar and modern communication systems
(e.g., IEEE 802.11 ac). The basic idea is through signal processing, a stronger reception/transmission at the direction
of interest is achieved. Beamforming techniques can be broadly divided into two categories: 1) mechanically
switched beamforming and 2) phase-array based beamforming [13]. Phase-array based beamformers can tune the
beamforming direction quickly by varying the signal amplitude and phase at each antenna element. Compared to
mechanically switch beamforming, phase-array based beamformers can switch signal directions much faster.

3 LORA BEAMFORMING

In this section, we introduce the design of LoRa beamforming, which serves as the basis of multi-target sensing.

3.1 Beamforming Design

To illustrate the concept of beamforming at LoRa, we consider a LoRa gateway with a linear array of𝑀 antennas.
As shown in Figure 3, the chirp signal reflected from a human body experiences different amounts of propagation
distances at different antennas. We denote the path lengths of the signal from the human subject to the 𝑀
antennas as 𝑑1 (𝑡), 𝑑2 (𝑡),.. and 𝑑𝑀 (𝑡), respectively. Note that besides the dynamic signal reflected from the human
subject, there are direct-path LoS signal between the transmitter-receiver pair and also reflection paths from
static objects in the environment such as walls and furniture. We use a vector to represent the dynamic signal
and another vector to represent the grouped static signal at each antenna element. The corresponding dynamic
vectors and static vectors at the 𝑀 antenna elements are denoted as 𝐻𝑑1, 𝐻𝑑2, ..., 𝐻𝑑𝑀 and 𝐻𝑠1, 𝐻𝑠2, ..., 𝐻𝑠𝑀 ,
respectively. At each antenna element, the static vector is a constant. The amplitude of the dynamic vector can
also be considered as a constant for a small displacement (e.g., 5 mm) induced by movements such as human
respiration. On the other hand, the phase change is significant. For a displacement of 5 mm, the phase change is
11◦ which can not be ignored. Therefore, in the complex I-Q domain as shown in Figure 3, if we visualize the
relationship between the static vector and dynamic vector, the dynamic vector rotates with respect to the static
vector during the process of human respiration.

RReflected 
path

1 2 M-1 M

1d (t)
d

k

dsinθ

y

LoS path

2d (t)

Subject

LoRa GatewayLoRa Node

x

d

d1H d2H

s1H s2H

M-1d (t)
Md (t)
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Fig. 3. Static and dynamic components at multiple LoRa gateway antennas.
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Because the signals received at multiple antennas are from a single source, the sweep parameters of these
chirp signals are the same. From Eq. (3), the demodulated baseband signals obtained at the𝑀 receiving antennas
are given by:

𝑅1 (𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) (𝐻𝑠1 +𝐴1𝑒

−𝑗 2𝜋𝑑1 (𝑡 )𝜆 ),
𝑅2 (𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡

2+𝜙𝑐+𝜙𝑠 ) (𝐻𝑠2 +𝐴2𝑒
−𝑗 2𝜋𝑑2 (𝑡 )𝜆 ),

...

𝑅𝑀 (𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) (𝐻𝑠𝑀 +𝐴𝑀𝑒

−𝑗 2𝜋𝑑𝑀 (𝑡 )
𝜆 ).

(4)

To achieve a stronger signal reception at a particular direction, we can sum up the delayed version of signals
from multiple antennas. Suppose the linear antenna array is uniformly spaced with a spacing of 𝑑 between
adjacent antennas. Note that for LoRa signal at 915 MHz, 𝑑 = 16 cm. On the other hand, the distance between the
target and the antenna array can be tens of meters, which is much larger than 𝑑 . Therefore, we can assume the
angles from the target to each antenna are the same.

The signals received at the 2nd antenna to𝑀th antenna are delayed versions of the signal received at the 1st
antenna. Therefore, there is an extra amount of signal propagation in the air and accordingly an additional phase
rotation at the𝑚th antenna with respect to the first antenna. When the signal arrival angle is 𝜃 as shown in
Figure 3, the phase difference between the dynamic signals arriving at the𝑚th and the first antenna is given by:

Δ𝜙𝑚 (𝜃 ) = (𝑚 − 1) · 2𝜋
𝜆

· 𝑑 · 𝑠𝑖𝑛(𝜃 ). (5)

For an arbitrary signal arrival angle 𝜃 , a steering vector is thus defined to represent the phase difference
between the rest antennas and the first antenna as:

𝜔 (𝜃 ) = [𝑒 𝑗Δ𝜙1 (𝜃 ) , 𝑒 𝑗Δ𝜙2 (𝜃 ) , . . . , 𝑒 𝑗Δ𝜙𝑀 (𝜃 ) ] . (6)

Formally, by computing the weighted sum of the received signals at all𝑀 antennas, we construct the beam-
formed signal received at direction 𝜃 as follows:

𝑦 (𝜃, 𝑡) =
𝑀∑
𝑖=1

𝜔𝑖 (𝜃 ) · 𝑅𝑖 (𝑡) =
𝑀∑
𝑖=1

𝑒 𝑗Δ𝜙𝑖 (𝜃 )𝑅𝑖 (𝑡)

= 𝑒
𝑗 (𝜋𝑘𝑡2+ 𝜙𝑐 + 𝜙𝑠 )
︸����������������︷︷����������������︸

unwanted phase shift caused by CFO and SFO

·[
𝑀∑
𝑖=1

𝐻𝑠𝑖 · 𝑒 𝑗Δ𝜙𝑖 (𝜃 )

︸��������������︷︷��������������︸
Static vector combination

+
𝑀∑
𝑖=1

𝐴𝑖 (𝑡) · 𝑒−𝑗
2𝜋𝑑𝑖 (𝑡 )

𝜆 · 𝑒 𝑗Δ𝜙𝑖 (𝜃 )

︸��������������������������������︷︷��������������������������������︸
Dynamic vector combination

] . (7)

To simplify Eq. 7, we further denote static vector combination
∑𝑀

𝑖=1𝐻𝑠𝑖 · 𝑒 𝑗Δ𝜙𝑖 (𝜃 ) as 𝐻𝑏𝑒𝑎𝑚
𝑠 which is a constant.

The dynamic vector combination can be simplified as below:

𝑀∑
𝑖=1

𝐴𝑖 (𝑡) · 𝑒−𝑗
2𝜋𝑑𝑖 (𝑡 )

𝜆 · 𝑒 𝑗Δ𝜙𝑖 (𝜃 ) =
𝑀∑
𝑖=1

𝐴𝑖 (𝑡) · 𝑒−𝑗
2𝜋 (𝑑𝑖 (𝑡 )−(𝑖−1)𝑑 ·𝑠𝑖𝑛 (𝜃 ) )

𝜆 =
𝑀∑
𝑖=1

𝐴𝑖 (𝑡)𝑒−𝑗
2𝜋𝑑1 (𝑡 )

𝜆 (8)

Note that 𝑑𝑖 (𝑡) − (𝑖 − 1)𝑑𝑠𝑖𝑛(𝜃 ) exactly equals to 𝑑1 (𝑡), which means the phases of signal at the 2𝑛𝑑 antenna

to 𝑀𝑡ℎ antenna are aligned with the first antenna. Let 𝐴𝑏𝑒𝑎𝑚 =
∑𝑀

𝑖=1𝐴𝑖 (𝑡) be the energy sum of the dynamic
components at all𝑀 antennas. Eq. 7 can thus be simplified as:

𝑦 (𝜃, 𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) (𝐻𝑏𝑒𝑎𝑚

𝑠 +𝐴𝑏𝑒𝑎𝑚𝑒−𝑗
2𝜋𝑑1 (𝑡 )

𝜆 ). (9)
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From Figure 4 and Eq. (9), we know that the beamformed signal consists of both static and dynamic components.
By choosing the right 𝜃 , the reflection signals (dynamic components) from the target at 𝑀 antennas add up
constructively while those (static components) randomly add up.
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φ
φ

Phase
Alignment
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I

Randomly
add up
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d MH

s MH

Subject

Beam
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Beam
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Phase
Alignment

I

Q
Signal with term

Ideal
beamforming

Fig. 4. Composition of static and dynamic vectors from multiple antennas.

Figure 4 provides an illustrative example of this process. We can see that after beamforming, dynamic vector (red
arrow) containing the target information is greatly enhanced (due to constructively added up) while the amplitude
of the static vector does not change much (due to randomly added up). Therefore, in the vector space, now the
dynamic vector rotates with respect to the static vector, inducing a larger signal variation compared to that before
beamforming. However, this large variation still can not present us clear target information because the phase
and amplitude changes are corrupted by the CFO and SFO which are time varying.
We can view the resulted signal as a dynamic vector rotating around a static vector in the I/Q complex

domain. To eliminate the undesired random phase rotation caused by CFO and SFO, we need to remove the term

𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) in Eq. (7). Note that for radar system with synchronized transmitter and receiver, CFO and SFO

are both 0. However, the LoRa transmitter and receiver are spatially separated and unsynchronized, and the
receiver does not know the transmitted signal. Thus, traditional beamforming method does not work with LoRa.
Existing LoRa sensing work [46] calculates the ratio of two signals obtained from two antennas at the receiver to
eliminate the random phase offsets. However, during this process, the sensing information (signal phase and
amplitude) are corrupted because the signal received at each antenna always contains the time-varying dynamic
component. Therefore, we need to find another reference signal without the dynamic component to eliminate
the random phase offset and at the same time still preserve the information for sensing.

Next, we explain how to accomplish this. Our objective is to find a reference signal that can cancel the unwanted
part containing the random phase offsets (CFO and SFO). We also need to make sure during the process, the
dynamic component which contains the target sensing information is not affected. To achieve this, we perform
the opposite operation of the beamforming process to destructively combine the dynamic component received at
multiple antennas. We term this process “beam nulling". Let𝑊 = [𝑟1𝑒 𝑗𝜀1 , 𝑟2𝑒 𝑗𝜀2 , ..., 𝑟𝑀𝑒 𝑗𝜀𝑀 ] be a 1 ×𝑀 weight
vector with 2𝑀 parameters to be determined. We multiply the signal received at each antenna with the weight

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 85. Publication date: June 2021.



85:8 • Zhang et al.

and sum them together. The weighted sum of signals at these antennas is thus given by:

𝑀∑
𝑖=1

𝑊𝑖 · 𝑅𝑖 (𝑡) =
𝑀∑
𝑖=1

𝑟𝑖𝑒
𝑗𝜀𝑖𝑅𝑖 (𝑡)

= 𝑒
𝑗 (𝜋𝑘𝑡2+ 𝜙𝑐 + 𝜙𝑠 )
︸����������������︷︷����������������︸

Unwanted phase rotation caused by CFO and SFO

·[
𝑀∑
𝑖=1

𝐻𝑠𝑖 · 𝑟𝑖𝑒 𝑗𝜀𝑖

︸�����������︷︷�����������︸
Static vector combination

+
𝑀∑
𝑖=1

𝐴𝑖 (𝑡) · 𝑒−𝑗
2𝜋𝑑𝑖 (𝑡 )

𝜆 · 𝑟𝑖𝑒 𝑗𝜀𝑖

︸�����������������������������︷︷�����������������������������︸
Dynamic vector combination

] . (10)

As shown in Figure 5, to null out the dynamic component, one needs to find a 1×𝑀 weight vector𝑊 such that:

𝑀∑
𝑖=1

𝐴𝑖 (𝑡) · 𝑒−𝑗
2𝜋𝑑𝑖 (𝑡 )

𝜆 · 𝑟𝑖𝑒 𝑗𝜀𝑖 = 0. (11)

s

Fig. 5. Beam nulling: null out dynamic vectors by a weighted sum of different antennas.

However, since we have no priori knowledge about the magnitude of the dynamic vector at each antenna, it is
not possible to obtain the weight solution𝑊 by directly solving Eq. (11). Instead, we formulate it as an optimizing
problem. Specifically, given𝑊 , we define the corresponding energy ratio of the dynamic frequency components
to the total signal energy as follows:

Definition 3.1. Energy ratio of the dynamic frequency component is defined as the ratio of subject motion1

energy to the overall energy in the frequency spectrum. Specifically, the calculation of energy ratio consists
of two steps: 1) the dynamic frequency component is obtained by taking Fast Fourier Transform (FFT) of the
weighted sum signal over a time window; 2) the energy sum of bin containing the FFT peak and its adjacent bins
divide by the energy sum of all FFT bins.

To find the optimal𝑊 , we apply the stochastic optimization algorithm [55] to iteratively refine the search. Let
𝑊 ∗ be the resulted solution and the resulted beam-nulled signal from Eq. 12 is:

𝑅𝑒 𝑓 (𝑡) =
𝑀∑
𝑖=1

𝑊 ∗
𝑖 · 𝑅𝑖 (𝑡) =

𝑀∑
𝑖=1

𝑟 ∗𝑖 𝑒
𝑗𝜀∗𝑖 𝑅𝑖 (𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡

2+𝜙𝑐+𝜙𝑠 ) ·
𝑀∑
𝑖=1

𝐻𝑠𝑖 · 𝑟 ∗𝑖 𝑒 𝑗𝜀
∗
𝑖 . (12)

Thus we can quickly obtain the “beam null” reference signal containing only the static component and the

unwanted part. We denote this signal as 𝑅𝑒 𝑓 (𝑡) = 𝑒 𝑗 (𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 ) · 𝐻𝑅𝑒𝑓

𝑠 and 𝐻
𝑅𝑒𝑓
𝑠 =

∑𝑀
𝑖=1𝐻𝑠𝑖 · 𝑟 ∗𝑖 𝑒 𝑗𝜀

∗
𝑖 .

Now, to cancel out the unwanted part, we divide 𝑦 (𝜃, 𝑡) by 𝑅𝑒 𝑓 (𝑡) using Eq. 9 and Eq. 12 as follows:

𝑦 (𝜃, 𝑡) = 𝑦 (𝜃, 𝑡)
𝑅𝑒 𝑓 (𝑡) =

�����𝑒𝜋𝑘𝑡
2+𝜙𝑐+𝜙𝑠 (𝐻𝑏𝑒𝑎𝑚

𝑠 +𝐴𝑏𝑒𝑎𝑚𝑒−𝑗
2𝜋𝑑1 (𝑡 )

𝜆 )
�����𝑒𝜋𝑘𝑡

2+𝜙𝑐+𝜙𝑠 · 𝐻𝑅𝑒𝑓
𝑠

= �𝐻𝑏𝑒𝑎𝑚
𝑠 +�𝐴𝑏𝑒𝑎𝑚𝑒−𝑗

2𝜋𝑑1 (𝑡 )
𝜆 , (13)

1If the subject motion is human respiration, we set the frequency range (i.e., 0.1-0.5 Hz) of normal respiration rate (10-30 BPM).
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where �𝐻𝑏𝑒𝑎𝑚
𝑠 = 𝐻𝑏𝑒𝑎𝑚

𝑠

𝐻
𝑅𝑒𝑓
𝑠

is the estimated constant static vector and �𝐴𝑏𝑒𝑎𝑚 = 𝐴𝑏𝑒𝑎𝑚

𝐻
𝑅𝑒𝑓
𝑠

is the enhanced beamformed

dynamic vector.
From Eq. (13), we can see that the varying random phase offsets are eliminated. The remaining part only

depends on the dynamic path length 𝑑1 (𝑡) and some constants (i.e., the static vector). The dynamic component
gets strengthened without corrupting the sensing information.

3.2 Understanding the Effects of LoRa Beamforming

Next, we employ LoRa beamforming to sense movements of multiple targets and present the results from our
benchmark experiments.

First, we simulate the beam patterns by steering the beam at different directions. In the simulation, the gateway
is configured with 4 antennas, and the beam steering direction is set to 60◦, 30◦, 0◦, −30◦ and −60◦. As shown in
Figure 6, with phase compensation and normalization, the beam is effectively pointed at the specified directions.
We can observe that the sidelobes of the beam pattern for larger angles (60 and -60) are more pronounced than
those at small angles. However, the main lobe still points quite accurately towards the targeted direction. If the
number of antennas increases, the beam width is thinner, resulting in a higher spatial resolution.

Fig. 6. Effects of beamforming.

Next, we carry out beachmark experiments to validate the proposed beamforming technique for sensing the
movements of multiple targets. In Figure 7a, we place objects at five different locations in an indoor environment.
These locations are at different beam steering angles with respect to the LoRa device, ranging from 60◦ to −60◦
at a step size of 30◦. The objects (i.e., metal cylinders as shown in Figure 7b) move along a sliding track of 1𝑚
forward and backward controlled by a Raspberry Pi 3 Model B. Five different speed levels are considered including
very fast (12 cm/s), fast (6 cm/s), medium (3 cm/s), slow (1.5 cm/s) and super slow (0.7 cm/s).

In this experiment, we would like to study if the information of each target can be clearly obtained without
being interfered by applying the proposed beamforming method. Note that, if we do not apply the proposed
beamforming technique, signal reflections from multiple targets are mixed and it is challenging to sense any of
the targets.
Figure 8 shows the normalized amplitudes of the signals from each target. When there are three objects

moving at speed of 6 cm/s, 12 cm/s and 3 cm/s at locations 𝑃2, 𝑃3 and 𝑃4 respectively (Figure 8a), we observe the
beamformed signals at the direction of 𝑃2, 𝑃3 and 𝑃4 exhibit clear cyclic patterns, corresponding to the target
movements. Note that the speed information of each target is also accurately captured. We can observe 11, 22 and
5.5 cycles over a 30-second interval corresponding to three different speeds (6 cm/s, 12 cm/s and 3 cm/s). Note
that for a 6 cm/s of speed, 30 s means a movement of Δ𝑑 = 180 𝑐𝑚. The theoretical number of signal variation
cycles is 2Δ𝑑/𝜆 = 360 𝑐𝑚/32.79 𝑐𝑚 = 11. We can see that the experiment results perfectly match the theoretical
analysis.

The signal variations at other directions (i.e., 𝑃1 and 𝑃5) are much weaker because there are no target reflections
from those directions. The average signal variance from a direction with no object is less than 20% of that in the
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Fig. 7. LoRa beamforming validation.
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Fig. 8. LoRa beamforming validation.

direction with a moving object. Similar observations can be made with five objects in Figure 8b. Furthermore, from
the figures, different speeds can be clearly identified from the frequencies of the waveforms. These experiments
demonstrate the promises of the proposed beamforming technique and signal representation scheme in separating
moving targets in different directions and estimating their respective moving speed.

4 MULTI-TARGET RESPIRATION SENSING

In this section, we build upon the proposed LoRa beamforming technique to develop novel methods for fine-
grained multi-target respiration sensing. First, we illustrate how subtle chest displacements induced by human
respiration affect LoRa signals, and discuss the challenges in estimating respiration rates. Next, we introduce the
location-dependent issue when employing the composite signal for respiration sensing and present our method
to exploit the dynamic signal to achieve location-independent sensing. We also show how the proposed method
can be applied to distinguish subjects with similar respiration rates which is also a challenge in multi-target
respiration sensing.

4.1 Dynamic Vector vs. Composite Vector for Sensing

According to the previous study [22], chest displacements during respiration are about 1 mm–12 mm. The
inhalation and exhalation of chest motions cause path length change of the reflected LoRa signals, denoted by
Δ𝑑 . We convert such path length change to corresponding rotation of the dynamic vector in the complex I-Q

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 85. Publication date: June 2021.



Unlocking the Beamforming Potential of LoRa for Long-range Multi-target Respiration Sensing • 85:11

plane. The rotation angle 𝜙 caused by respiration is calculated as 𝜙 = 2𝜋 × 2Δ𝑑
𝜆 . 𝜆 is the wavelength of the LoRa

signals, which is 32.79 cm for 915 MHz carrier frequency. Therefore, the dynamic vector rotates 2.2◦–26◦ for a
chest displacement of 1 mm–12 mm.

Beam
 sH

Beam
 sH

Beam
 dH

Beam
 dH

Subject1

Subject2

LoRa Node

LoRa 
Gateway

22o

22o

Amplitude variation of 
the composite signal

Large variation

Small variation

Fig. 9. Sensing two targets’ respiration at different beam directions.

Now we consider two subjects breathing naturally at two different locations. For a chest displacement of 1 cm,
the dynamic vector rotates 22◦, as illustrated by the red and yellow arcs in Figure 9. However, note that the signal
retrieved from the receiver is the composite signal which is a superposition of the static and dynamic signals. As
the static signal component is unknown, the dynamic signal component can not be obtained. Therefore, existing
sensing systems exploit the composite signal for sensing. However, one critical issue exists and we illustrate the
issue below.
Let us assume the chest displacements of the two subjects are the same (1 cm). As shown in Figure 9, the

red arc and yellow arc are of the same length. The blue color arrows indicate the composite signals and the
blue color waves represent the amplitude change of the composite signals. Some interesting observation can be
obtained: the same amount of dynamic component rotation causes dramatically different amounts of composite
signal variations when the subjects are located at different locations. This brings in one severe issue: the sensing
performance is location dependent and therefore is unstable. When the target is located at some “bad” locations,
the sensing performance is poor. Poor performance corresponds to a smaller composite signal variation which
can easily be buried in noise without being detected. When there are multiple targets, if we employ the composite
signal variation for sensing, some targets at “bad” locations can be undetected. Therefore, in this paper, we
propose to exploit the dynamic signal component for sensing. This is a non-trivial task and we present our novel
solution in the next section.

4.2 Exploiting the Dynamic Signal Component for Sensing

From the previous section, we know that when the composite signal is used for sensing, the sensing performance
is location dependent. To address this issue, the straightforward solution is to remove the static signal component
and only keep the dynamic signal component. The variation of the dynamic component is location independent.
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To remove the static component, existing system [52] estimates the static component by averaging the signal
samples collected for a full cycle (the dynamic vector rotates for 360◦). This method works because the dynamic
components collected during a full cycle can cancel each other. The static component can thus be obtained and
removed from the composite vector to obtain the dynamic vector. However, this method requires a subject to
move a relatively large distance in order for the dynamic vector to rotate for 360 degrees. In the case of respiration
with just subtle chest displacements, the amount of dynamic vector rotation is much less than 360◦ (22◦ for a
chest displacement of 1 mm). Therefore, for respiration, the static component cannot be estimated using this
method.
In this paper, we propose a new method to deal with the location-dependent issue of the composite signal

when used for sensing. The key observation to make this happen is that for respiration sensing, the two key
parameters, respiration rate and respiration depth (chest displacement) can be obtained from the phase rotation
of the dynamic vector. We propose to calculate the phase rotation of the dynamic vector using just the composite
vectors available at the receiver. The key concept is illustrated as below. As shown in Figure 10, the dynamic
vector rotates during the process of respiration. The amount of rotation can be used to determine the chest
displacement. As shown in previous section, a chest displacement of 1 mm corresponds to a 22 degree of dynamic
vector rotation. Inversely, if we know the amount of dynamic vector rotation, we can calculate the amount of
chest displacement. The time interval taken for the dynamic vector to rotate corresponds to the respiration rate.
A smaller time interval indicates a faster respiration rate.

Note that if we know the vectors for 3 adjacent points on the arc (e.g., A, B, C as shown in Figure10) of the
dynamic vector, we can calculate the curvature of the circle and fully characterize the rotation of the dynamic
vector. However, at the receiver, the dynamic vector is not available and only composite signal (vector) can be
obtained. Interestingly, as the static vector is a constant, we can use the three corresponding composite vectors (A’,
B’ and C’ as shown in Figure 10) to calculate the curvature of the arc, equivalent to using the three dynamic
vectors (A, B and C).

This curvature information presents us two more unique advantages for multi-target sensing. As shown in
Figure 12, we present the curvature plots for two subjects with similar respiration rate. The first unique advantage
is that we can use the large changing point to detect a target. As the curvature value of the changing point
is very large, we can achieve very robust performance for target detection. The second unique advantage is
that the curvature curve can be used to differentiate two targets. Even they have the same respiration rate, it is
very unlikely for their respiration process to be time-synchronized (the changing points occur exactly at the
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Fig. 12. Curvature of arc in time domain.
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same time) in time domain. Therefore, we can use the curvature curve to differentiate targets even with similar
respiration rates.

Now, let us illustrate how to calculate the curvature using three adjacent vector points on the arc. The curvature
of the arc at point 𝑝 is the rate of change at the tangential direction. As an example, consider three points 𝐴, 𝐵, 𝐶

in Figure 11. Let Δ𝛼 = 𝐴𝑛𝑔𝑙𝑒 (−→𝐴𝐵) −𝐴𝑛𝑔𝑙𝑒 (−→𝐵𝐶) be the change of tangential angles between 𝐴 and𝐶 and Δ𝑠 is the
length of arc 𝐴𝐶 . The curvature 𝜅 at 𝐶 is thus computed by moving 𝐴 and 𝐶 infinitely closer to 𝐵 as:

𝜅 = lim
Δ𝑠→0

|𝐴𝑛𝑔𝑙𝑒 (
−→
𝐴𝐵) −𝐴𝑛𝑔𝑙𝑒 (−→𝐵𝐶)

Δ𝑠
| = lim

Δ𝑠→0
|Δ𝛼
Δ𝑠

| (14)

Figure 12 shows the estimated curvature curves over time associated with chest motions during respiration.
The peak curvatures indicate the transition between exhalation and inhalation. Most importantly, the curvature
information is location independent and is only related to the characteristic of the respiration process.

4.3 Multi-target Detection and Respiration Rate Estimation

Figure 13 illustrates the complete pipeline of the proposed multi-target detection and respiration rate estimation
process. It consists of three core modules: (1) beamformed signal construction, (2) direction-frequency spectrogram
pre-processing, and (3) multi-target detection and respiration rate estimation. Next, we present the details of
each module.

Fig. 13. The process of multi-target detection and respiration rate estimation.

4.3.1 Beamformed Signal Construction. First, we scan all directions between −80◦ and 80◦ (at a step size of 1◦).2

To scan each direction, the raw signal vector is multiplied by the corresponding steering vector to strengthen the
signal at this direction. Since the phases of these beamformed signals still contain phase offsets caused by CFO
and SFO, we apply the “beam nulling” scheme presented in Section 3.1 to construct the reference signal. Next,
we divide the beamformed signal by the reference signal to cancel out the random phase offsets. The resulted
representation is a complex signal.

4.3.2 Direction-Frequency Spectrogram Pre-processing. To pre-process the beamformed signals, we generate a
Direction-Frequency spectrogram. Firstly, we apply the Fast Fourier Transform (FFT) to the beamformed signals
in the complex plane in each direction. Then a band-pass filter in the range of human respiration rate (0.1-0.5 Hz)
is applied. The resulted Direction-Frequency spectrogram thus characterizes the distribution of respiration signal
energy at various directions. An example can be found in Figure 14, where four people breathe naturally in one

2The speed of digital scanning is very fast. According to our experiment, it only takes 1.25 ms to scan one direction and 200 ms to scan the

whole range of 160◦.
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room. Their location directions are −40◦, 0◦, 20◦ and 40◦ with respect to the LoRa devices, and their respective
respiration rates are 0.23 Hz, 0.37 Hz, 0.23 Hz, 0.23 Hz. From the generated direction-frequency spectrogram
in Figure 15, one can clearly observe three bright clusters. The first subject with a 0.23 Hz respiration rate sits
at −40◦, and the second subject with a 0.37 Hz respiration rate sits at 0◦. Since subject 3 and 4 have the same
respiration rate and are at close directions, they are not distinguishable in the spectrogram. We will present how
to distinguish them below.

4.3.3 Multi-target Detection. In the direction-frequency spectrogram, each subject is associated with two features:
direction and frequency. However, subject detection still faces a problem. Due to the existence of beamforming
side lobes, one subject can be detected in multiple directions. If there is only one target, we can simply select
the direction with a stronger signal. However, when there are multiple targets, two targets may have the same
rate (frequency) and therefore, we can not adopt a simple threshold to detect targets.

To address this problem, we propose a dynamic threshold-based frequency and direction scanning approach to
detect targets. The key insight is, even multiple targets may have the same respiration rate, it is very unlikely
for their respiration to be synchronized in time. Therefore, we can use the timing of the peaks in the curvature
curves (presented in Section 4.2) to distinguish targets even with same rate and located at the same direction. We
dynamically adjust the energy threshold and sequentially perform frequency scanning and direction scanning to
remove false positives caused by side lobes and detect targets.

Specifically, in Frequency Scanning, we consider signals with high periodicity and large variations as candidates.
We select the maximum energy among all directions in the direction-frequency spectrogram for each frequency.
Figure 16 shows the result of frequency scanning for the 4 subjects whose direction-frequency spectrogram
was given in Figure 15. In this example, we plot the blue line indicating the signal energy for each frequency.
The maximum and minimum energy levels are 3.566 and 0.502, and the dynamic threshold is set to 1.726.3

Consequently, 0.23 Hz and 0.37 Hz can be selected as candidate frequencies.
In Direction Scanning, we detect the targets from the candidates obtained in the frequency scanning step.

Specifically, for a candidate frequency, the directions with energy higher than a threshold are selected as candidate
directions. Here, we also calculate the dynamic threshold based on the maximum and minimum energy at this
frequency. As shown in Figure 17a and Figure 18a, the peaks above the chosen threshold are candidate target
directions. By using just the direction information, subject1 can be separated from subject3 and subject4. However,
when two subjects (subject3 and subject4) have similar respiration rates and are also physically close to each other,
direction information is not enough to separate them. To handle this challenge scenario, we further compare

3The threshold is set to the difference between the maximum and minimum energy multiplied by an empirical constant. The frequencies

with an energy higher than the threshold are selected as candidate frequencies.
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Fig. 18. Direction scanning at 0.37Hz.

the timing of the peaks in the curvature lines (Section 4.2). If two candidate peaks are separated in time, it is
very likely they correspond to the different targets. Therefore, even subject3 and subject4 are located at the same
direction which can not be separated by direction information in Figure 17a, we can utilize the clear timing
difference in Figure 17b to separate them. With frequency, angle and timing information, the signals from the
three subjects are separated and all three subjects can be simultaneously sensed. Another subject2 is presented in
Figure 18. In this case, only one target can be identified. In summary, the proposed method is able to separate
subjects using angle information (different directions), frequency information (different respiration rates) and
time information (different initial phases).

5 PERFORMANCE EVALUATION

In this section, we present experiment settings and detailed performance evaluation of the proposed multi-target
sensing system.

5.1 System Implementation and Setup

Our LoRa-based sensing system consists of one LoRa node and one gateway. The LoRa node is a Semtech SX1276
LoRa radio [23] connected to an Arduino Uno [24]. One antenna is connected to the LoRa node. The LoRa node
transmits signals at the 915 MHz frequency band with a channel bandwidth of 125 kHz. The LoRa gateway is
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implemented on USRP X310 [25] and equipped with four commonly-used directional antennas (TX900-PB-1313).
The LoRa gateway is connected to a laptop with an Intel Core i7 CPU and 16GB RAM. It collects data at a rate of
1000 samples per second per antenna and processes them using MATLAB in real time.

To monitor the respiration of multiple targets, we obtain four signal streams (one from each antenna) simulta-
neously. The signal streams are processed over a sliding window of 30 s at a time. For each steering direction,
we compute the signal representations in the complex plane and apply a bandpass filter to remove outliers and
high frequency noise. Next, the curvature lines are calculated to characterize human respiration. By analyzing
the respiration patterns (both in frequency and time domains), we are able to determine the number of subjects
and their corresponding respiration rates. A respiration monitor belt logger sensor NUL-236 [26] is employed to

provide ground truth data. The ground truth respiration rate is calculated as number of breaths
recording time in Beats Per Minute

(BPM). We also develop a GUI to visualize multi-target respiration in real time, as shown in Figure 19.

Fig. 19. Web-based user interface for LoRa sensing.

5.2 Overall Performance

5.2.1 Multi-target Sensing. Five subjects (3 males and 2 females) in the range of 20-60 years old were recruited to
evaluate the performance of the proposed system. In this set of experiments, multiple subjects sit side-by-side
in front of the LoRa transceivers at a distance of 10 meters with no obstructions and breathe naturally. The
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Fig. 20. Accuracy with different number of subjects.
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Fig. 21. Three different experimental environments for respiration sensing.

number of subjects varies from 1 to 5, and each experiment is repeated 5 times. In all experiments, the number
of subjects is identified correctly 100% of the time. We further present the accuracy of respiration rate sensing.

The accuracy is calculated as: 1 − | Estimated respiration rate−ground truth
ground truth |. As shown in Figure 20, when there is only a

single subject, the average accuracy (among five participants) is 99.75%. As the number of subjects increases, the
average accuracy drops slightly. However, even for 5 subjects, the achieved average accuracy is still as high as
98.12%. The accuracy for any single subject is always higher than 96%.

5.2.2 Long Range Sensing. To evaluate the long-range sensing capability, we vary the distance between subjects
and the transceivers from 8 m to 24 m at a step size of 4 m. In this set of experiments, two human subjects are
involved. As shown in Figure 21, we conduct experiments in three different environments: corridor, home and
meeting room. Figure 22 shows that the average accuracy of respiration rate estimation of the two subjects as the
distance varies. We can see that the accuracy only drops slightly from 99.62% at 8 m to 96.46% at 24 m. These
results demonstrate that our system can work at a long distance.
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Fig. 22. Accuracy at various distances
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Fig. 23. Accuracy at various numbers of walls

5.2.3 Through-wall Sensing. Next, we study the sensing performance when there exist walls between the sensing
device and the subjects. In this set of experiments, 3 subjects are involved and the distance between the device
and subjects is 16 m. Three subjects sit in a sofa and we evaluate the sensing accuracy when there is no wall, one
wall and two walls, respectively. The wall is made of bricks with a thickness of 10 cm. The results are shown
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in Figure 23. We can see that with walls in between, the accuracy slightly drops. This is expected because the
signal gets further attenuated when there are walls. However, even with two walls in between, the accuracy is
still higher than 96% at a distance of 16 m. These results demonstrate the strong penetration capability of LoRa
signals for sensing.

5.3 Comparison with Other Sensing Technologies

We implement three state-of-the-art sensing systems based on Wi-Fi [51], mmWave radar [53] and IR-UWB
radar [7]. We compare them with the proposed LoRa-based sensing system in three aspects: 1) sensing range, 2)
through-wall sensing capability, and 3) accuracy.
We implement the WiFi-based system proposed in [51] using Gigabyte mini-PC equipped with an Intel 5300

Wi-Fi card (Figure 24a). Signals are transmitted at the 5.24 GHz frequency band. Packet transmission rates are
20 packets per second. For the mmWave-based system in [53], we employ the TI FMCW mmWave IWR1443
radar operating at 77-81 GHz (Figure 24b). The radar is equipped with three transmission (TX) antennas and
four reception (RX) antennas. We implement the IR-UWB radar-based sensing system proposed in [7] using
XETHRU [54] radar module X4M05 (Figure 24c). The radar has a bandwidth of 1.4 GHz centered at the carrier
frequency of 7.3 GHz. The sampling frequency is 23.3 GHz. The frame rate is set as 400 Hz and one radar board is
connected to a Raspberry Pi via Serial Peripheral Interface (SPI).

(a) WiFi device.

IWR 1443 

DCA1000EVM

(b) FMCW mmWave Radar.

Raspberry Pi 4B

X4M05

(c) IR-UWB radar.

Fig. 24. Experiment devices

MiniPC with Intel 
5300 cards 

Tx Rx

(a) WiFi deployment.

MmWave radar 
IWR 1443

(b) FMCW Radar deployment.

UWB radar 
X4M05

(c) IR-UWB radar deployment.

Fig. 25. All experiments are conducted in indoor environments with two targets setting in front of the different devices.
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Table 1. Comparison results of state-of-art methods

Sensing

range

Through

wall

Target

number
Accuracy

WiFi [51] 5.5 m × 2-4 0.5 BPM

TI Mmwave

radar AWR1443 [53]
4.3 m × 2 0.5 BPM

XETHRU radar

X4M05 [7]
5 m × 2-4 0.3-0.6 BPM

Our system 24 m
√

2-5 0.2-0.5 BPM

The three systems are deployed in indoor environments as shown in Figure 25. We first conduct experiments to
evaluate the sensing range, i.e., the maximumworking distance between the target and the sensing device for each
technology. Two subjects sit in front of the sensing devices and breathe naturally. The sensing ranges measured
for WiFi, mmWave radar and IR-UWB are 5.5 m, 4.3 m and 5 m, respectively. In contrast, our LoRa-based sensing
system can achieve a much larger sensing range of 24 m for two targets.

To evaluate the through-wall capability, a target and a sensing device are placed in adjacent rooms separated
by one wall. Surprisingly, we find that none of the systems can sense targets in a different room. This result
matches the findings in [51] for WiFi-based system. For mmWave radar, the intrinsic higher carried frequency
leads to a much larger attenuation, making it difficult to penetrate through walls.

Table 1 summarizes the performance of the four sensing systems. We can see that the achieved accuracy of the
proposed system is comparable to the other three systems while the sensing range and penetration capability are
the unique advantages.

5.4 Robustness of the Proposed System

In practical deployments, a number of factors may impact the performance of the proposed system, e.g., posture,
body movements and similar respiration rates among subjects. We now investigate the effect of these factors on
the sensing performance.

5.4.1 Impact of Different Human Postures. We consider lying and sitting, each in multiple different postures
in this experiment. For lying, three postures are evaluated, i.e., on the back, on one side and face down. When
sitting in a chair, subjects can have three orientations, i.e., facing the sensing device, side facing the device and
back facing the device. The respiration sensing performance when the subjects are in the sitting state is shown in
Figure 26. The average accuracies under the three postures are 99.62%, 97.56% and 96.88%, respectively. The best
performance is achieved when the subjects face the sensing device. This is because body displacements during
respiration at the front side of the body (i.e., 4.2–5.4 mm) is greater than that along the medial-lateral side (i.e.,
0.6–1.1 mm) and at the back side (i.e., 2.5–2.6 mm) [22].

The achieved respiration sensing accuracies are high for all three postures in the lying down state as shown in
Figure 27. Comparing Figure 26 and Figure 27, we note that the achieved respiration sensing accuracy is higher
for lying state than that for sitting state. We believe this is because human bodies are more stable during the
lying state.

5.4.2 Impact of Abnormal Respiration. We consider two types of common abnormal breathing patterns: apnea
and respiration rate changes. Apnea [27] refers to a disorder during which breathing repeatedly stops and starts,
typically during sleep. Respiration rate changes, e.g., tachypnea may arise from medical conditions such as
pneumonia [28].
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Fig. 27. Lying scenario.

In the first set of experiments, we ask one subject to mimic the apnea event by holding her/his breath for a
while. Figure 28 shows the respiration pattern obtained for subject1 with breath holding (top figure) and for
subject2 without breath holding (bottom figure). We can clearly see that the first subject experiences two episodes
of apnea, each lasting around 20 seconds, while the breathing pattern of the second subject remains normal.
To study the effect of respiration rate variations, we mimic tachypnea by asking one subject to slow down

the respiration rate for a short period, and then rapidly increase to a high rate. Figure 29 shows the extracted
signal variations (blue and red lines) and the estimated respiration rates (green lines) for two subjects (one
subject with tachypnea and one healthy subject). It can be seen that the respiration rate of the first subject
changes from 28.17 BPM to 11.47 BPM and then increases to 20 BPM. In contrast, the healthy subject has a steady
rate (15.3 BPM). From these results, we can see the proposed system is able to detect abnormalities in respiration,
which is useful in applications such as sleep apnea detection.

Fig. 28. Impact of partial apnea while lying. Fig. 29. Impact of respiration rate change.

5.4.3 Impact of Similar Respiration Rates. Recall in Section 4.2 we utilize curvatures to differentiate two subjects
with similar respiration rates. To validate this idea, we ask two subjects to breathe at a rate of 14 BPM following
a metronome. Figure 30 shows the obtained respiration waveforms for both subjects. Even two subjects have the
same breathing rate, we can still use the peak point locations to differentiate the two subjects.
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Fig. 30. Subjects with similar respiration rates. Fig. 31. Impact of body movements.

5.4.4 Impact of Body Movements. In the last set of experiments, we investigate the impact of body movements
in multi-target respiration sensing. Two subjects are asked to sit next to each other in front of the sensing device.
One subject breathes steadily without body movements. The other subject performs two series of activities in
sequence: i) stands up from a chair and then sits down, and ii) picks up a smartphone from a table and then puts
it back. Figure 31 shows the obtained respiration waveforms of the two subjects. It can be seen that when the first
subject undergoes body motions, the respiration-induced pattern disappears by employing the bandpass filtering.
The respiration pattern resumes as soon as the subject becomes stationary again. Interestingly, despite the close
proximity of the two subjects, body movements of the first subject has negligible impact on the respiration
sensing of the second subject – slight distortion in the waveform can be observed but respiration rate estimation
is still accurate. This result once again demonstrates the effectiveness of LoRa beamforming in separating signals
from different subjects.

6 RELATED WORK

6.1 LoRa-based Communication and Sensing.

Most existing research on LoRa focuses on long-distance communication and IoT data transmissions. Semtech’s
white paper [34] shows that LoRa networks could provide efficient IoT data transmissions for smart cities.
LoRa technologies can find applications in many scenarios such as environment monitoring [36] [37], facility
management [38], intelligent building control [39], vehicle tracking [40], and smart lighting [35]. For example, Ke
et al. deploy LoRa nodes in building corridors to form amesh network and transfer collected sensor data for campus
monitoring. Mathur et al. [40] utilize LoRaWAN to enable crowdsourced traffic sensing. They propose an adaptive
data aggregation and re-transmission scheme for relaying traffic data from sensors. Ali et al. [41] propose to utilize
a sensing platform with LoRa radios to monitor climate changes. All these works only employ LoRa transceivers
to transfer collected sensor data. Recently, LoRa-based localization has gained some interests. Gu et al. [42]
study the feasibility of LoRa-based localization, which shows a phase-based localization approach outperforms
RSSI-based and TDOA-based approaches. Chen et al. [43] utilize LoRa signals for contactless localization with
the help of drone mobility to carry the LoRa transceivers and move around the target area to perform wireless
sensing. Rajalakshmi et al. [44] develop a multi-band LoRa backscatter system for localization, reaching a range
up to 60 m. The recent work by Islam et al. [45] compares LoRa with two other popular wireless technologies (BLE
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and WiFi) for indoor localization. Considering coverage, stability, accuracy, power consumption, and cost, they
conclude that LoRa is a suitable solution for indoor localization, especially in large indoor space like warehouses
and multi-storied buildings.

6.2 Multi-target Respiration Sensing Using Wireless Signals.

Manywireless technologies have been employed formulti-target respiration sensing include commodityWiFi [49][30],
RFID [43] and dedicated FMCW radars [50][53], 60GHz radars [31], and UWB radars [33]. Chen et al. [49] utilize
a frequency analysis method on WiFi CSI signal to infer the respiration rates of multiple persons. Wang et al. [30]
leverage the canonical polyadic (CP) decomposition technique to handle the CSI phase difference and obtain
multi-target breathing signals. However, the computational complexity of such method is high, hindering its
application in real-time monitoring. Special-purpose device such as FMCW radars, 60 GHz radars and UWB
radars have also been explored in multi-target respiration monitoring. Ahmad et al. [53] utilize range-azimuth
resolution point cloud to distinguish multiple targets using TI FMCW radars. However, the working range of this
radar is still small (only 4.3 m), and the hardware cost. Santra et al. [31] present a compact short-range 60 GHz
radar system by adopting Infineon’s 60 GHz radar chipset. The chirp can sweep a large bandwidth (up to 7 GHz).
The maximum detectable range is still limited to 4 m. Duo to the large signal attenuation, these works are limited
to to work only in direct line-of-sight scenarios. The proposed system in contrast can work at a long distance
as well as through walls. Our previous work [46] develops a LoRa-based system that is capable of sensing both
coarse-grained and fine-grained human activities at a distance through walls. However, the approach is limited
to single target scenario. In [48], the authors propose the virtual fence concept to enable multi-target sensing.
Though promising, the virtual fence method requires to know the target’s direction information which may not
be available in real-world environment. FarSense [47] is a WiFi-based respiration sensing system which employs
two antennas to eliminate the common noise to achieve a larger sensing range. Although the respiration sensing
range is increased to 8 meters, it is still much smaller than our proposed LoRa system. The sensing range is 3×
larger than that achieved in FarSense.

7 DISCUSSION

In this section, we briefly discuss the limitations and potential future work.

7.1 Further Increasing the Number of Targets Being Sensed.

With a four-antenna array in our current implementation, we successfully demonstrated that the proposed
system can simultaneously sense five targets spatially located as shown in Fig. 20. We believe 5-target is not
the limit of the proposed system with four antennas. As the proposed system utilizes not just the space domain
(angle) information but also the frequency domain (respiration rate) and time domain (phase) information to
distinguish targets, even the targets are located at similar directions, there are still chances we can distinguish
them in the frequency domain and time domain. From our experiments, the most important parameter affecting
the number of targets capable of being sensed is the size of the antenna array. With more antennas, the spatial
angle resolution can be further increased to simultaneously sense even more targets.

7.2 Practical Usage Scenarios.

We believe the proposed LoRa sensing techniques can be applied to a large variety of real-life scenarios. Besides
the traditional smart home scenario which is feasible with WiFi sensing, we envision the proposed system can
enable new application scenarios which are not possible with short-range WiFi or radar sensing. We briefly
describe two example usage scenarios below: 1) In hospital scenario, the patients with infectious virus such as
COVID-19 can be contactlessly monitored through walls. This will help provide increased protection for health
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care workers; 2) In disaster relief efforts after earthquakes, survivors may be deeply buried under debris. The
strong penetration capability of LoRa sensing can help to detect survivors in this challenging scenario.

8 CONCLUSION

In this paper, we develop novel techniques to enable long-range multi-target LoRa sensing. To sense multiple
targets simultaneously, we propose a receiver-side LoRa beamforming approach. We efficiently utilize not just the
angle information but also the frequency and timing information to help differentiate targets. We demonstrate
the capability of simultaneously sensing five targets at a high accuracy and believe this number can be further
increased. We believe the long range and strong penetration capabilities of LoRa sensing moves wireless sensing
one step closer to real-life adoption. We envision more exciting applications can be enabled on top of the proposed
LoRa sensing platform.
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