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Abstract—The surging traffic volumes and dynamic user mobility patterns pose great challenges for cellular network operators to

reduce operational costs and ensure service quality. Cloud-radio access network (C-RAN) aims to address these issues by handling

traffic and mobility in a centralized manner, separating baseband units (BBUs) from base stations (RRHs) and sharing BBUs in a pool.

The key problem in C-RAN optimization is to dynamically allocate BBUs and map them to RRHs under cost and quality constraints,

since real-world traffic and mobility are difficult to predict, and there are enormous numbers of candidate RRH-BBU mapping schemes.

In this work, we propose a data-driven framework for C-RAN optimization. First, we propose a deep-learning-based Multivariate long

short term memory (MuLSTM) model to capture the spatiotemporal patterns of traffic and mobility for accurate prediction. Second, we

formulate RRH-BBU mapping with cost and quality objectives as a set partitioning problem, and propose a resource-constrained label-

propagation (RCLP) algorithm to solve it. We show that the greedy RCLP algorithm is monotone suboptimal with worst-case

approximation guarantee to optimal. Evaluations with real-world datasets from Ivory Coast and Senegal show that our framework

achieves a BBU utilization above 85.2 percent, with over 82.3 percent of mobility events handled with high quality, outperforming the

traditional and the state-of-the-art baselines.

Index Terms—Cellular network, C-RAN optimization, deep learning, big data analytics

Ç

1 INTRODUCTION

IN recent decades, the number of mobile subscriptions is
growing rapidly at 6 percent year-on-year, reaching

7.9 billion at the end of 2018 [1]. Correspondingly, the net-
work traffic volume has grown 18-fold over the past five
years [2] as smartphones and Internet-of-Things (IoT) devi-
ces become increasingly popular. To copewith the fast grow-
ing mobile subscribers and the surging traffic demand,
network operators are deploying more and more base sta-
tions to expand their network coverage [1], and addingmore
powerful processing units to increase their network capacity
[3]. However, as network scale and capacity grow, the capital
expenditure (CAPEX) and operating expenditure (OPEX)
are becoming increasingly high [4]. Meanwhile, the service
quality of the network, such as handover and roaming delay,
has become increasingly difficult to ensure as various sizes
of base stations (e.g., pico-cells, micro-cells, and macro-cells)
and different generations of technologies (e.g., LTE, UMTS,

and GSM) co-exist in the network [5]. Therefore, designing
cost-effective and quality-aware network architectures is now a
great necessity for network operation and research [4].

Cloud Radio Access Network (C-RAN) [6] is a promising solu-
tion to address the above-mentioned challenges. To reduce
maintenance cost and enable cooperation between base sta-
tions, in C-RAN, a traditional base station is split into two
components: theRemote Radio Head (RRH) for radio communi-
cation with mobile devices, and the Baseband Unit (BBU) for
signal and data processing [5]. The BBUs are then detached
from the RRHs and hosted in centralized BBU pools [7]. The
RRHs and BBU pools are usually connected via high speed
optical fiber [8]. For example, Fig. 1 illustrates a C-RAN struc-
ture consisting of six RRHs and one BBUpool.

By adopting the C-RAN architecture, cost-effectiveness
and service quality can be improved compared with the tra-
ditional radio access network architectures [5]. We exploit
the example in Fig. 1 to elaborate the benefit of C-RAN. On
the one hand, since multiple RRHs can be connected to one
BBU and share the processing capacity (RRH #1 and #2
share BBU #1), the utilization rate of the BBUs is increased,
thus improving the cost-effectiveness of the network. On
the other hand, when two RRHs are connected to the same
BBU (RRH #1 and #2), the handover events between them
can be handled directly inside the BBU (BBU #1), which
greatly reduces the handover delay and improve the quality
of service. Such a seamless handover experience is of key
importance in 5G networks to support direct video stream-
ing and real-time IoT applications [9]. With the above-
mentioned benefits, C-RAN is foreseen as a promising green
and soft technologies in 5G networks [10].
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In order to fully unlock the power of the C-RAN architec-
ture, one of the key problem is to design proper mapping
schemes between RRHs and BBUs, so as to maximize the uti-
lization rate (i.e., reduce cost) and minimize the handover
delay (i.e., improve quality) for the entire network [8], [11].
To this end, a cost-effective and quality-aware RRH-BBU
mapping scheme should partition the set of RRHs in the
network into several clusters and allocates BBUs from the
pool to the clusters, so that (1) the aggregated traffic volume
generated in each cluster is close to the capacity of the BBU
allocated to the cluster, and (2) the handover events are
handled within the clusters and processed internally by the
corresponding BBUs to the maximal extent. However,
designing such RRH-BBU mapping schemes is not trivial,
since the traffic demands and handover events among the
RRHs are highly dynamic, and the number of possible map-
ping schemes is enormous. Specifically, the following chal-
lenges need to be addressed:

1) How to accurately model RRH traffic volume and hand-
over count? In order to dynamically design RRH-BBU
mapping schemes for a future period of time, we
need to foresee the traffic volume and handover
count in the network beforehand. However, due to
the dynamic nature of user activity and mobility, the
traffic volume and handover count among the RRHs
can vary significantly, depending on the temporal
contexts (e.g., weekdays or weekends) and spatial
functions (e.g., residential areas or business dis-
tricts). For example, during weekday working hours,
the RRHs located in business districts and transit
hubs usually observe higher traffic volume and
more handover count than in other cases. Existing
work on network optimization usually employ prob-
ability models with ideal assumptions (e.g., Poisson
process) to simulate traffic patterns and handover
events [7], [8], [11], which may not be able to capture

the complicated traffic and handover dynamics in
real-world. Therefore, we need an effective approach
to accurately predict traffic and handover dynamics.

2) How to effectively design RRH-BBU mapping schemes?
Given the predicted RRH traffic volume and hand-
over count for a future period of time, there are
potentially enormous numbers of schemes to cluster
these RRHs and to allocate BBUs to these clusters.
Since the traffic volume and handover count may
vary significantly under different contexts, the map-
ping schemes need to be updated dynamically.
Moreover, the global resource constraints of the BBU
pools, such as the pool capacity and the BBU size
(e.g., CPU and memory specifications), should be
taken into consideration during the search of
the mapping schemes. Existing work with exhaus-
tive search quickly becomes intractable as network
scale grows [8], while competitive optimization
methods such as borrow-and-lend [12] and swarm
optimization [13] approaches suffer from switching
overhead and nonlinear time complexity [14]. There-
fore, we need an effective algorithm to design RRH-
BBU mapping schemes with cost and quality objec-
tives under resource constraints.

Fortunately, with the emergence of ubiquitous sensing,
communication and computing diagrams [15], a massive
number of cellular network big data, such as call detail records
(CDRs), have been generated, providing researchers with
new opportunities to understand the mobile user dynamics
[16]. The knowledge discovered from these big data can be
used to guide the optimization of cellular networks [17]. In
this work, aiming at achieving the cost and quality objec-
tives, we propose a data-driven C-RAN optimization frame-
work to address the above-mentioned research challenges.
Particularly, we first propose a deep learning model to accu-
rately predict network traffic volume and handover count,
and then propose an greedy optimization algorithm to
design RRH-BBU mapping schemes with cost and quality
objectives. The main contributions of this work are:

� We propose a novel data-driven approach to dynam-
ically optimize operation cost and service quality for
the C-RAN architecture. By analyzing the traffic and
mobility patterns from real-world network big data,
we are able to dynamically optimize RRH-BBU map-
ping schemes for demand-responsive C-RAN.

� We design a two-phase framework to design
dynamic RRH-BBU mapping schemes based on the
accurate prediction of traffic volume and handover
count. In the first phase, we extract traffic volume
and handover count from large-scale call detail
records, and capture their spatiotemporal dynamics
leveraging tensor models. We then propose a deep-
learning-basedMultivariate Long Short TermMemory
(MuLSTM) model to accurately model and predict
the traffic volume and handover count. In the second
phase, we model the entire cellular network as a
weighted graph, taking into consideration the traffic
and handover as graph nodes and link weights,
respectively. We then formulate the RRH-BBU map-
ping problem with cost and quality objectives as a

Fig. 1. An illustrative example of a C-RAN architecture consisting of six
RRHs and one BBU pool. RRH traffic volume is represented in semicir-
cle, and the mobile device between two RRHs denotes user handover
between them. We note that RRH #1 and #2 are connected to BBU #1
to share its processing capacity and thus increasing its utilization rate.
Moreover, the handover events between RRH #1 and #2 can be handled
directly inside BBU #1 to reduces handover delay.
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set partition problem, and propose a Resource-Con-
strained Label-Propagation (RCLP) algorithm to find
the robust approximation to the optimal mapping
schemes under pool resource constraints.

� We evaluate the performance of our framework on
two large-scale, real-world call detail record datasets
collected by Orange S.A. in Ivory Coast and Senegal.
Results show that our framework effectively achieves
a BBU utilization rate above 85.2 percent and an
cluster handover rate above 82.3 percent, which con-
sistently outperforms the traditional RAN architec-
tures and other state-of-the-art baselines.

The rest of this article is organized as follows. We begin
by reviewing the related works in Section 2. After introduc-
ing the preliminaries about C-RAN, we present an overview
of the proposed framework in Section 3. We then detail the
two phases of the framework, i.e., RRH traffic and handover
prediction in Section 4, and dynamic RRH-BBU mapping in
Section 5. Extensive evaluation results are presented in
Section 6 to verify the performance of the proposed frame-
work. Finally, we conclude this work and chart the future
directions in Section 7.

2 RELATED WORK

In this section, we first present an overview of the cloud
radio access networks, and then review the existing works
on C-RAN optimization and network big data analytics.

2.1 Cloud Radio Access Network Optimization

Cellular network operators and researchers are continuously
seeking for optimal solutions to provide stable telecommuni-
cation, high speed data rate, and high services quality to their
users [6]. C-RAN is targeted by worldwide cellular network
operators as a promising solution to address these challenges
[5]. In 2010, IBM proposed wireless network cloud (WNC)
[18], which exploits emerging cloud-computing technology
and various wireless infrastructure technologies, such as
remote radio head and software radio, to enable RAN
resource processing operating in a cloud mode [18]. In 2011,
China Mobile Research Institute envisioned a cloud-based
RAN architecture to provide broadband Internet access to
wireless customers with low bit-cost, high spectral and
energy efficiency [6]. For a comprehensive technology sur-
vey on C-RAN, the reader is referred to [5]. In the literature,
various topics about C-RAN optimization have been stud-
ied. In resource allocation optimization, Ha et al. [19]
proposed a network slicing framework for OFDMA-based
C-RAN shared by multiple operators. To improve spectral
efficiency, Sun et al. [20] proposed a distributed optimization
approach for uplink device-to-device-enabled C-RAN. In
sum-rate maximization, Pan et al. [21] studied efficient
approaches for ultra-dense TDD C-RANwith imperfect CSI.
In this work, we focus on the optimization of costs and qual-
ity in C-RAN.

2.1.1 Network Traffic Responsiveness

One of the key vision in C-RAN is to provide flexible and
configurable data processing capacity according to the traf-
fic demands [6], [9]. In [17], such a vision is coined as a cog-
nitive networking diagram. To this end, cooperations among

RRHs are necessary to cope with the vibrations in traffic
demands [5]. For example, Bhaumik et al. [22] proposed
CloudIQ, a framework for partitioning a set of RRHs into
groups and process the signals in a shared data center,
which was able to save up to 19 percent of the computing
resources for a probability of failure of one in 100 million.
Namba et al. [23] proposed an C-RAN architecture that can
dynamically change the cooperation schemes of RRHs in
response to traffic demand, which proves to reduce the
number of BBUs by 47 percent compared with the static
assignment. However, these existing works are usually
based on predefined models with ideal traffic assumptions.
For example, Poisson processes are usually employed to
model the patterns of phone calls [8], [24]. These models
usually require specific parameters for each RRH, which
may not be able to accurate characterize the patterns in real-
world networks. Furno et al. took a first step in the direction
of RRH traffic profiling leveraging a data-driven approach
[16], [17]. By exploiting traffic analytics algorithms for large-
scale real-world cellular network datasets, they were able to
characterize the network demand patterns in different areas
in an automated manner. This work inspires us to propose a
data-driven approach to capture network traffic dynamics.

2.1.2 User Mobility Awareness

Another key issue in the design and implementation of C-
RAN lies in user mobility [25], [26]. One of the important
objectives in 5G is to improve the quality of cellular service,
with handover events nearly invisible to the mobile users.
To this end, the RRHs in a network need to be able to coop-
erate with each other to seamlessly transfer user contexts,
forward network resources, and assign cellular channels
[27]. This raises an important problem of foreseeing the
mobile user mobility dynamics in next few hours. Tradition-
ally, user mobility is usually ideally modeled with specific
assumptions, e.g., random walk variables with specific
moving speed and diameters [27]. These assumptions
ignore the spatiotemporal variations and dynamics of user
mobility, which might be inaccurate to foresee the user
movement in a future period of time. Recently, researchers
have sought to data-driven user mobility modeling and pre-
diction for C-RAN optimization. In [28], the authors pro-
posed a machine learning framework with echo state
networks (ESNs) to predict each mobile user’s mobility pat-
tern for effective content caching in the cloud. [26] proposed
an online algorithm to optimize the mapping between BBUs
and RRHs in C-RAN based on a time-varying graph. Our
work differs from the literatures in the following two
aspects, (1) we simultaneously optimize handover cost and
BBU utilization in the proposed RRH-BBU mapping algo-
rithm, while [26] only focused on reducing handover costs,
and (2) we propose a deep learning-based approach to accu-
rately predict traffic and mobility dynamics, while [26]
adopted an online strategy with simple prediction.

2.2 Network Big Data Analytics

Amassive number of cellular datasets have been available for
academic research and industrial analytics [3]. They can be
collected either from operators’ infrastructures [29], [30], [31],
or by leveraging mobile crowdsensing paradigms [32], [33]
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with user participation. For example, Telecom Italia [31] has
released a large-scale call detail records dataset containing
two-months of calls, SMSs and network traffic data from the
city of Milan and the province of Trentino, Italy. Orange S.A.
[29] has also granted access to researchers participating in
their Data for Development (D4D) challenges the access to a
large-scale anonymized call detail records dataset, which con-
sists of phone calls and SMS exchanges between five million
of Orange’s customers in Ivory Coast in half a year. These net-
work big data have been analyzed in the literature to retrieve
interesting and informative knowledge [3], [34]. The following
two categories of data analytics methodologies are most rele-
vant to thiswork.

2.2.1 Spatiotemporal Prediction

Autoregressive Integrated Moving Average (ARIMA) models
have been widely used to fit a time series data and to pre-
dict its future variation [35]. However, ARIMA models are
usually used to model single variables (e.g., one RRH).
When dealing with spatiotemporal data in C-RAN, multiple
time series denoting a set of correlated RRHs need to be
modeled simultaneously, which poses great challenge for
vanilla ARIMA models. Ntalampiras et al. [36] proposed a
improved method to select time series from stongly corre-
lated regions, and feed them together to ARIMA models to
improve prediction accuracy.

Artificial Neural Networks (ANNs) are emerging for
modeling spatiotemporal data [37], [37]. A typical imple-
mentation is by leveraging a sliding-window-based tech-
nique, which can be named windowed-ANN, or WANN [38].
Specifically, WANN slices a time series into several equal-
length windows, and feeds these windows into an ANN
model as features. The output of the model is the prediction
of the future value of the series. WANN models have been
applied to analyze temporal patterns in various domains
[37]. However, WANN models are incapable of capturing
the temporal dependence between different time step in the
input time series window. In fact, the elements in a window
is treated equally as input features and thus the sequential
order of the elements is ignored. Hence, the WANN model
can make fluctuating and inconsistent forecasts.

Recently, spatiotemporal deep-learning framework has
been used in IP and transportation network traffic predic-
tion [39] and human motion and behavior recognition [40].
For a survey about deep-learning-based prediction model
for spatiotemporal data, the reader is referred to [41]. One
of the relevant existing works is by Zhang et al. [42]. The
authors proposed a double Convolutional Long Short-Term
Memory Network (ConvLSTM) architecture to make accu-
rate long-term prediction. We note that training such a com-
plicated model is time-consuming and requires high-end
GPU acceleration. Wang et al. [43] also propose a spatiotem-
poral deep-learning approach for cellular network traffic
prediction. They incorporated an autoencoder model for
spatial modeling and an LSTM model for temporal model-
ing. In [28], the authors build two ESNs to model network
content distribution and user mobility patterns. Compared
to the proposed MuLSTM approach, ESNs has the following
limitations. (1) ESN simplifies the network training process
by directly connecting the input signal to a random and

non-trainable RNN (the reservoir) [44]. However, we argue
that such a simplified model is not capable of capturing the
highly dynamic traffic demands and mobility patterns in
the hidden layers. (2) ESN is sensitive to parameters, the
selection of parameters in ESNs require experience and
insight to achieve a good performance in many tasks [44].
(3) The proposed MuLSTM model train the traffic and
mobility layers simultaneously to incorporate the correla-
tions and dependencies, which is very difficult to imple-
ment for ESNs due to inconsistent variable dimensions.

2.2.2 Clustering and Mapping

In network data analytics, clustering is a very important and
useful technique for discovering patterns from a wide range
of spatial regions [17], and for reducing fluctuations in indi-
vidual spatial areas [45]. In [46], Naboulsi et al. proposed a
framework to identify a set of clusters of call profiles, and
classify the network usages accordingly. Similarly, Cici et al.
[47] proposed a spectral method to cluster area units with
similar activity patterns and validated the results with
external municipal and social data sources. Furno et al. [17]
proposed to cluster the traffic demand in the temporal
dimension, by adopting a hierarchical clustering method on
the city-wide traffic snapshots.

In C-RAN, mapping RRH clusters to BBU pools is not
trivial, since the clusters also need to meet some explicit
and implicit constraints, including the geographic distance
of the cluster, the global constraints on the resource blocks
available, etc [5]. Such a problem has been identified as set
partitioning problem [48], [49], and its complexity is proven
to be NP-hard [50]. Therefore, exhaustively searching for
every possible mapping scheme is computationally intracta-
ble as the network scale increases [8].

Instead of exhaustive search, Chen et al. [12] proposed a
borrow-and-lend approach to dynamic switch RRHs from
busy BBUs to neighboring candidates. However, such an ad-
hoc switching mechanism introduces extra control overhead
andmay lead to redundant switching [12]. In [51], RRH-BBU
mapping is formulated as a bin packing problem and solved
with integer linear programming algorithms. However,
this formulation assumes unified BBU capacities (fixed-size
bins), while in practice we need to deal with BBUs with vari-
ous capacity levels (as defined in Equation (3)). In [52] and
[13], a particle swarm optimization-based algorithm is
adopted to find optimal RRH-BBU mapping schemes, but
the stochastic optimization process has nonlinear time com-
plexity and may result in sub-optimal solutions as network
scales grows [52]. Some other work adopt distributed meth-
ods such as coalitional games, where the players (RRHs)
decide to form or leave the coalitions (BBUs) based on the
transfer order [53]. However, it is not trivial to define a
proper transfer order to guarantee a strict utility improve-
ment under the geographic and resource constraints in the
centralized BBU pool [14].

3 PRELIMINARIES AND FRAMEWORK

3.1 Preliminaries

Definition 1 (Remote Radio Head). an RRH is the radio
transceiver placed in a base station site to facilitate wireless
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communication between user devices and the network [54]. We
define an RRH r as a 3-tuples

r ¼< label; lat; lng > ; (1)

where label is the label used to identify the RRH, and lat and
lng are the corresponding latitude and longitude coordinates of
the RRH.

Definition 2 (RRH Traffic Volume). in this work, we refer to
the term traffic volume as the quantity of radio resource units
[8] consumed in the RRH for communication during a period
of time, which can be the total duration of calls, the overall vol-
ume of Internet data, etc. Particularly, we denote the traffic vol-
ume of RRH ri during time span t as fðri; tÞ.

Definition 3 (RRH Handover Count). in this work, we refer
to the term handover count as the quantity of users moving
between a pair of two RRHs during a period of time. Particu-
larly, we denote the handover count between RRH ri and RRH
rj during time span t as hðri; rj; tÞ.

Definition 4 Baseband Unit. a BBU is a device providing
baseband processing functionalities for RRHs, such as such as
time multiplexing, encapsulation, and compression [5], [54].
Specifically, we define a BBU as a 3-tuple

b ¼< label; pool; cluster > ; (2)

where label is the label to identify a BBU instance, pool is the
BBU pool where the BBU is allocated, and cluster is the RRH
cluster where the BBU is assigned to.

Definition 5 (BBU Capacity). in the C-RAN architecture,
BBUs are usually implemented as virtual machine instances
with specific sizes of computing resources, including CPU,
memory, and storage [5]. Consequently, the BBU capacity can
be classified into a set of discrete levels, e.g., LARGE,
MEDIAN, and SMALL. Specifically, we define the set of BBU
capacity level as

L ¼ fl1; . . .; lNl
g; (3)

where Nl is the number of capacity levels. Correspondingly, we
denote the capacity level of BBU bk as lðbkÞ 2 L.

Definition 6 (BBU Pool). in the C-RAN architecture, a BBU
pool is a cloud-based data center with low-cost and high-speed
interconnect network, a real-time virtualization platform with
dynamic shared resource allocation and management, and a gen-
eral-purpose baseband processing platform with multiple BBUs
[5], [6]. For a city-scale network, one or more BBU pools can be
implemented and connected to RRHs via high-speed optical fiber.
Specifically, we denote a BBU pool as a set of BBUs

B ¼ fb1; b2; . . .; bkg: (4)

In this work, we consider a C-RAN architecture with one
centralized BBU pool for a city-wide cellular network. The
the fronthaul transmission latency between each RRH and
the BBU pool is considered as constant and not impacted by
the RRH-BBU mapping scheme. The benefits of adopting
such a centralized pool are three-fold. First, the deployment
cost and energy consumption can be greatly reduced by
employing data center virtualization technologies [5].

Second, the handover handing and contents offloading
among RRHs can be processed internally in the pool, which
significantly reduces delays and increases throughput [5].
Third, the network upgrades and hardware maintenance
are easy to conduct just in one place, without the need of
labor-consuming on-site work.

3.2 Framework Overview

As presented in Fig. 2, we propose a two-phase framework to
accurately predict RRH traffic volume and handover count
based on historical data, and then dynamically design RRH-
BBU mapping schemes under constraints for C-RAN optimi-
zation. In the traffic and handover prediction phase, we first
model the traffic and handover dynamics among RRHs with
spatial and temporal dimensions, and then propose a deep-
learning-based approach to predict the traffic volume and
handover count simultaneously for a future period of time. In
the dynamic RRH-BBU mapping phase, we first model the net-
work with predicted RRH traffic volume and handover count
as a weighted graph, and identify the resource constraints
from the BBU pools. We then propose a resource-constrained
RRH-BBU mapping algorithm to find the robust approxima-
tion to the optimal solution under pool resource constraints.

4 RRH TRAFFIC AND HANDOVER PREDICTION

In this phase, our objective is to accurately predict the RRH
traffic volume and handover count in a future period of time,
hences we can design the RRH-BBU mapping scheme in the
next phase. However, this is not trivial due to the highly
dynamic nature of social activity and human mobility. On the
one hand, the RRH traffic and user mobility behaviors may
vary significantly under different temporal contexts. On the
other hand, the spatial function of an area may have strong
impacts on the traffic and mobility patterns of the RRHs
located in that area. Fig. 3 shows an example of the traffic and
mobility dynamics in Abidjan, Ivory Coast during one week.
In the business district (Plateau), we can observe different traf-
fic (Fig. 3b) and mobility (Fig. 3e) patterns between weekdays
andweekends. Meanwhile, the traffic andmobility patterns in
the residential area (Marcory) exhibit quite different patterns.

Fig. 2. Framework overview.
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In a word, the real-world traffic and mobility patterns
demonstrate temporal dependency and spatial correlation. How-
ever, traditional prediction methods usually model each
RRH traffic as single time series, and model the user mobil-
ity as static graphs [55], which fails to integrate the spatial
and temporal dynamics in a unified model, and hinders the
accurate prediction of RRH traffic and handover. Therefore,
we propose a deep-learning based approach to model the
spatial and temporal dynamics as a multivariate Long Short
Term Memory neural network for accurate prediction.

4.1 Call Detail Records Dataset

In cellular networks, call detail records (CDR) are data that
document the details of phone calls, text exchanges, or other
telecommunication transaction that pass through the network
infrastructures [34]. CDR data contain rich information about
social activity and humanmobility, providing opportunities to
optimize network infrastructures, such as reducing operation
cost and improving service quality. In this paper, we exploit
two real-world large-scale anonymized CDR datasets released
by Orange S.A. via the Data for Development (D4D) Chal-
lenge.1 The datasets are collected fromOrange customers from
Ivory Coast for half-a-year, and Senegal in one year, respec-
tively. The datasets consists of the following information:

� RRH Attributes: the RRH labels and geographic
coordinates.

� RRH Communication: the number and durations of
phone calls and SMS exchanges between RRHs in
the network on an hourly basis.

� User Attributes: the anonymized user labels which
are shuffled every two weeks for privacy concerns.

� User Mobility: the user mobility trajectories among
RRHs in the network with precise time and RRH
information.

Based on the datasets, we aggregate the communication
and mobility events by RRH, and perform data cleansing
process to extract the RRH traffic volume and RRH hand-
over count on hourly basis, respectively. More details about
the datasets are presented in the evaluation section.

4.2 Spatiotemporal Traffic-Handover Modeling

To capture the spatiotemporal dynamics of the RRH traf-
fic and handover, we construct two tensors [56] to model

the traffic volume generated in each RRH and the hand-
over counts observed among each RRH pair, respec-
tively. Specifically, given a network with Nr RRHs and
the corresponding CDR data observed in Nt time spans,
the RRH traffic tensor and RRH handover tensor are
defined as follows.

RRH Traffic Tensor: we build a tensor F 2 RNr�Nt with
two dimensions to model the RRH traffic volume, where
Fðri; tÞ corresponds to the total incoming and outgoing
communication traffic volume of RRH ri during time span t
(i ¼ 1; . . .; Nr; t ¼ 1; . . .; Nt). We note that based on different
scenarios, the definition of traffic may vary, such as the total
duration of calls, the number of messages, and the overall
volume of Internet data. For example, Figs. 3b and 3c visual-
ize two typical traffic patterns extracted from two specific
RRHs in F .

RRH Handover Tensor: we build a tensor H 2 RNr�Nr�Nt

with three dimensions to model the RRH handover counts,
where Hðri; rj; tÞ corresponds to the total count to handover
events between RRH ri and RRH rj during time span t. We
consider the case of symmetric modeling where
Hðri; rj; tÞ ¼ Hðrj; ri; tÞ. As an example, Figs. 3e and 3f visu-
alize two typical handover patterns extracted from two spe-
cific pairs of RRHs inH.

4.3 Deep-Learning-Based Traffic-Handover
Prediction

Deep learning approaches have been widely applied to
capture the spatial and temporal dynamics of urban traffic
and human mobility [24], [24]. Particularly, Recurrent Neu-
ral Networks (RNNs) are proposed for time series model-
ing and prediction [37]. Built upon the traditional neural
network architecture, an RNN features recurrent connections
among internal nodes that add a state to the network archi-
tecture, and thus allowing it to learn and harness the tem-
poral dependency in the time series [57]. Unfortunately,
training an RNN effectively is technically challenging due
to the vanishing or exploding gradient problem [58], i.e., the
weights in the training procedure quickly became so small
as to have no effect (vanishing gradients) or so large as to
result in very large changes (exploding gradients). To over-
come this problem, researchers proposed the Long Short-
Term Memory Network (LSTM) model [59], which intro-
duces the concepts of memory cells and forget gates to
generate consistent data flow between the layers of the net-
work and keep the weights stable.

Fig. 3. The RRH traffic and user mobility dynamics in Abidjan, Ivory Coast during a sample week (01/09/2012–01/15/2012). In map (a), each green
dot corresponds to an RRH. In map (c), each blue link denotes user mobility between RRHs pairs. Wider link corresponds to higher handover count.

1. http://www.d4d.orange.com/
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The MuLSTMModel: in this work, we use LSTM networks
to effectively learn the temporal dependency of RRH traffic
patterns and handover patterns from historical data. To fur-
ther model the spatial correlation among RRHs in the net-
work, we propose a multivariate Long Short Term Memory
Network architecture to simultaneously integrate all the
RRHs in a unified model. Specifically, each RRH traffic is
regarded as an input variable to a shared LSTM model,
while each RRH handover pair is regarded as an input vari-
able to another shared LSTM model. The two LSTM models
accept the multivariate inputs and are trained jointly. Fig. 4
shows the overview of the proposed MuLSTM model. We
elaborate on the technical details as follows.

Snapshots: we generate two sets of consecutive traffic and
handover snapshots based on the traffic tensor F and the hand-
over tensorH, respectively. A snapshot is a slice of the tensor
along the time axis, which corresponds to the traffic or hand-
over observations among all RRHs during one hour, and can
be denoted as Ft ¼ Fð:; tÞ orHt ¼ Hð:; :; tÞ, respectively. Con-
sequently, a set of consecutive traffic snapshots can then be
represented as fFt; Ft�1; . . .; Ft�Nsg, and a set of consecutive
RRH handover snapshots as fHt;Ht�1; . . .;Ht�Nsg, where Ns

is the number of snapshots in the set.
Inputs: we extract the appropriate inputs for the LSTM

layers based on the snapshots. For traffic, we simply stack
Nr RRH traffic observations in each snapshot to form an
input vector, and select Ns snapshots as the look-back time
steps [57]. For handover, since there are Nr �Nr handover
pairs, directly constructing an input vector with such high
dimension will be computational impossible for the LSTMs.
In fact, many of the RRH pairs do not observe meaningful
handover counts since they are geographically distant from
each other. Therefore, we adopt a hypothesis-based method
to select RRH pairs with statistical significant handover counts.
Based on our observation from the dataset, a significant
handover count series exhibits large variations (i.e., over-
dispersion) [60], thus we make a hypothesis that the hand-
over count of an RRH pair follows the negative binomial
distribution [60]. We test each RRH pair again this hypothe-
sis and remove failure pairs. In this way, we obtain Nh pairs
of RRHs with significant handover counts. We stack the
pairs in each snapshot to form an input vector, and use Ns

look-back time steps for the LSTM layers.
LSTM Layers: we build two LSTM neural networks for

the traffic and handover inputs, respectively. The traffic
LSTM accepts an input of Nr traffic variables with Ns time
steps, while the handover LSTM accepts an input of Nh

handover pairs with Ns time steps, respectively. As illus-
trated in Fig. 4, for each time step, the hidden unit st in the
network computes its current activation ot as a nonlinear
function of both the current input weights U and the
weights from the previous state W . In this way, the net-
works are able to keep a memory of the previous perception
and use the knowledge for current decision making.

Predictions: the LSTM layers output the RRH traffic vol-
ume and handover count for the next time step as predic-
tions. In order to exploit the correlation between RRH traffic
and handover, we aggregate the outputs via an addition
neural unit, and train the the two LSTMs jointly using the
Backpropagation Through Time (BPTT) algorithm [57] for
multiple iterations. We run our prediction algorithm in an
online manner, i.e., at the end of each time step t, we make a
new prediction for the traffic and handover of tþ 1. We con-
struct a tensor F̂ 2 RNr�Nt to store the traffic prediction, and
a tensor Ĥ 2 RNr�Nr�Nt to store the handover prediction,
respectively. The prediction results are then used in the
next phase for RRH-BBU mapping.

5 DYNAMIC RRH-BBU MAPPING

In this phase, given the RRH traffic and handover predic-
tions as well as the BBU pool constraints, our objective is to
design an optimal RRH-BBU mapping scheme that maxi-
mizes BBU utilization rate and minimizes RRH handover
overhead. Such a problem has been identified as set parti-
tioning problem [48], [49], and its complexity is proven to be
NP-hard [50]. Therefore, exhaustively searching for every
possible mapping scheme is computationally intractable as
the network scale increases [8]. In order to address these
challenges, we propose a resource-constrained RRH-BBU
mapping approach based on weighted-graph model and
label propagation algorithm. We first introduce the system
model the problem formulation, and then propose an algo-
rithm to find robust approximations to the optimal RRH-
BBU mapping schemes under resource-constraints.

5.1 System Model

Based on the above-mentioned definitions, we model a cel-
lular network as an undirected, weighted graph G ¼ ðV;EÞ,
where V ¼ fv1; . . .; vNrg is the set of graph nodes denoting
the Nr RRHs, and E is the set of graph links corresponding
to the significant handover pairs (as defined in the previous
section) among RRHs. We consider our dynamic RRH-BBU
mapping problem in an online manner, i.e., at the end of
time span t, we make decision of the RRH-BBU mapping
scheme for the next time span tþ 1. To this end, we need to
update the graph dynamically in each time span.

Graph Weights: we initialize the above-mentioned graph at
tþ 1 as Gðtþ 1Þ with the traffic and handover predictions.
Specifically, we define the weight of node jvij ¼ F̂ði; tþ 1Þ,
which corresponds to the traffic volume of the RRH i in time
span tþ 1. Similarly, we define the weight of link jei;jj ¼
Ĥði; j; tþ 1Þ, which is the handover count between RRH i and
j in time span tþ 1.We note that if there is no predicted hand-
over count between RRH i and j, then the link weight is set to
0, andwe remove the corresponding link inGðtþ 1Þ. We con-
sider the case of symmetric link weights (jei;jj ¼ jej;ij) with no
loops (jei;ij ¼ 0).

Fig. 4. The MuLSTMmodel for RRH traffic and handover prediction.
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Constraints: we model the resource constraints in the BBU
pool according to the available BBU capacity. Since BBUs in
the pools are implemented as virtual machine instances
with specific sizes of computing resources, their capacities
can be classified into a set of discrete levels. For example,
we can denote a set of BBU capacity level as F ¼
fPICO; SMALL;MEDIAN;LARGE; . . .g, each correspond-
ing to a specific computing resource configuration. The
capacity of an allocated BBU bk shall be in one of the capac-
ity levels, i.e., fðbkÞ 2 F. Note that we do not explicitly con-
strain the number of available BBU with specific capacity
level, since large-capacity BBUs (virtual machines) can be
allocated by merging two or more small-capacity BBUs, and
vice versa. Instead, we constrain the overall capacity limit of
a BBU pool to be O, since the capacity of a BBU pool is usu-
ally fixed once it is deployed. We study the impacts of dif-
ferent capacity level and capacity limit combinations in the
evaluation section.

BBU Utilization Rate: once a BBU bk is allocated to an RRH
or a cluster of RRHs ck in the time span tþ 1, its utilization
rate can be calculated as

UðckÞ ¼
P

vi2ck jvij
fðbkÞ 2 ½0; 1�; (5)

where fvig is the set of graph nodes corresponding to the
cluster of RRHs mapped to the BBU, and jvij is the traffic
volume of the RRH i in time span tþ 1. BBU utilization rate
is one of the key objectives in optimizing our RRH-BBU
mapping scheme. Since the BBU capacity fðbkÞ is discrete
and the traffic generated in a cluster is continuous, it is
important to ensure that the aggregated traffic volume in
the cluster is close to the corresponding BBU capacity. Note
that in order to avoid BBU processing latency due to traffic
congestion [8], we do not allocate BBU for clusters whose
aggregated traffic volume is larger than the maximum avail-
able BBU capacity in the pool. Thus, we constrain
UðckÞ 2 ½0; 1� to avoid cluster traffic overflow.

Cluster Handover Rate: the other key objective in RRH-
BBU mapping optimization is to maximize the extent to
which the handover events are processed within a BBU (i.e.,
the corresponding RRHs are in a cluster). Inspired by the
influence maximization model in social networks [61], we
derive the cluster handover rate of cluster ck as

WðckÞ ¼
P

vi2ck
P

vj2V jei;jj
2jEj 2 ½0; 1�; (6)

where fei;jg is the handover count between an RRH in the
cluster and any other RRH in the graph reachable by it. jEj
corresponds to the handover count between all RRH pairs.

5.2 Problem Formulation

With the above-mentioned system model, we now present
the problem formulation for the BBU-RRH mapping prob-
lem with the objectives of maximizing BBU pool utilization
and minimizing handover costs. We argue that these two
objectives do not conflict with each other in our problem.
Based on data observation, user mobility patterns exhibit
strong locality, i.e., user handover events are frequently
observed among neighboring RRHs in a period of time.

Meanwhile, user traffic demands in these neighboring
RRHs (forming a community) tend to be complementary. For
example, during rush hours, when users move from resi-
dential area A to neighboring transit hub B, the traffic vol-
umes of A and B are complementary to each other as the
aggregated volume keeps stable.

Specifically, given the graph representation Gðtþ 1Þ of a
set of RRHs with the corresponding traffic and handover
prediction, as well as the BBU pool resource constraints, our
objective is to partition the graph into a set of Nk disjoint
clusters C ¼ fc1; . . .; cNk

g, and map each cluster ck to a BBU
bk in the BBU pool B ¼ fb1; b2; . . .; bkg, with the following
objective function and constraints:

ðP1Þ : maximize
C

UðCÞ þW ðCÞ (7)

¼maximize
C

1

Nk
ðPNk

k¼1 UðckÞ þ
PNk

k¼1 WðckÞÞ (8)

¼maximize
C

1

Nk
ðPNk

k¼1

P
vi2ck jvij
fðbkÞ

þPNk
k¼1

P
vi2ck

P
vj2V jei;jj

2jEj Þ:
(9)

Subject to

ðC1Þ : [8ck2C ¼ V and \8Ck2P ¼ ; (10)

ðC2Þ : UðckÞ 2 ½0; 1� (11)

ðC3Þ : fðbkÞ 2 F (12)

ðC4Þ : P
fðbkÞ � O: (13)

In this problem formulation, constraint C1 ensures that
the clusters form a complete disjoint partition of the graph.
Constraints C2 is posed to avoid large clusters with aggre-
gated traffic volume higher than the maximum available
BBU capacity. Constraints C3–C4 make sure that the allo-
cated BBU capacity can only be discrete values specified by
the pool configuration, and their overall capacity can not
exceed the resource limit O.

5.3 Proposed Algorithm

The problem P1 is indeed a graph partitioning problem
(GPP) [62], which has been proved to be an NP-hard prob-
lem [49], [62]. To tackle this difficult problem, we resort to a
fast heuristics approximation algorithm named label propa-
gation (LP) [63]. The basic idea of label propagation is to ini-
tialize each node in the graph as a cluster, and iteratively
assign a node to its neighboring cluster based on a gain func-
tion [63]. However, directly applying an label propagation
algorithm to our problem may not be adequate, since we
also need to impose the resource constraints from the BBU
pool, including available BBU capacity levels and pool
capacity limit. Therefore, we propose a Resource-Con-
strained Label Propagation algorithm to solve this problem.
We elaborate on the details as follows.
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Algorithm: as shown in Algorithm 1, the RCLP algorithm is
initialized by assigning each node in the graph to a unique
cluster label. In each iteration, we randomly populate a list of
node labels L and traverse the list to update the cluster label
of each node. The label update process is as follows. First, we
remove the node from its current cluster, and find the set of
adjacent clusters to the current node. Then, we compute the
gain for adding the current node to the adjacent clusters, and
assign it with the label of the cluster with the highest gain.2

Wemark the the node asmoved among clusters if its new clus-
ter label is different from the old one.

After finishing iterations over the node list, we evaluate
whether the allocated resources of the resultant cluster partition
arewithin the capacity limit of the BBU pool. If not, we reset the
cluster labels and restart the optimization procedure. As the
convergence speed of such a greedy algorithm is difficult to esti-
mate, we set a maximum iteration numbermax iter to stop the
algorithm. At the end of each iteration, we decide whether to
perform another iteration or finish the algorithm based on the
following stop criteria: (1) the user specifiedmaximum iteration
numbermax iter is reached, or (2) none of the nodes aremoved
among clusters.

Algorithm 1. The RCLP Algorithm

Input: Graph Gðtþ 1Þ ¼ ðV;EÞ, pool capacity limit O, maxi-
mum iteration numbermax iter

Output: Cluster labels L for nodes in the graph
" cluster label assignment

1 Initialize: L 1; . . .; N
2 while ðiter < max iterÞ ^ ðmove > 0Þ do

" random permutation of nodes

3 rand permðV Þ;
4 move 0;
5 for i 1 toNr do

" remove current node from its cluster

6 old label LðviÞ;
7 LðviÞ  null;

" select adjacent clusters

8 Cvi ¼ get adjacent clustersðvi; G; LÞ;
9 max gain 0;
10 for c 2 Cvi do

" find cluster with highest gain

11 gain compute gainðvi; cÞ;
12 if gain � max gain then
13 new label LðcÞ;
14 max gain gain;
15 end
16 end

" update current node label

17 LðviÞ  new label
18 if old label 6¼ new label then
19 move 1;
20 end
21 end

" reset labels if capacity limit exceeded

22 if allocated capacityðLÞ > O then
23 L 1; . . .; N
24 end
25 end

Gain Function: the gain function is used to determine
whether a node should be added to an adjacent cluster,
and it shall take into consideration the improvement in
both BBU utilization and handover performance. To this
end, we first design the utilization gain of adding node vi to
cluster ck as

gain uðvi; ckÞ ¼ max Gðjfvig [ ckj; lÞ; l 2 L; (14)

where Gðjfvig [ ckj; lÞ ¼
jfvig[ckj

l ; ifjfvig [ ckj � l ð15Þ
�logðjfvig[ckjl Þ; ifjfvig [ ckj > l ð16Þ

(
:

The rationale is like this: suppose we add vi to ck to form a
candidate cluster fvig [ ck, we try to allocate BBUs with dif-
ferent capacity levels l 2 L to the cluster. If the aggregated
traffic of the candidate cluster does not exceed the BBU
capacity, we calculate its utilization rate as Equation 15.
Otherwise, we punish the candidate cluster with a log func-
tion (Equation 16) to avoid forming a cluster that no BBU
can handle. Finally, we assign the maximum possible utili-
zation rate to the candidate cluster with Equation (14).

Then, we define the handover gain of adding node vi to
cluster ck as

gain hðvi; ckÞ ¼
2
P

vk2ck jei;kj þ
P

vki2ck
P

vkj2ck jeki;kj j
2jEj ;

(17)

which is a measurement of how strong the nodes in the new
cluster fvig [ ck are connected to each other. Finally, we
define the gain function as the combination of both the utili-
zation gain and the handover gain

gainðvi; ckÞ ¼ �gain uðvi; ckÞ þ ð1� �Þgain hðvi; ckÞ;
(18)

where � 2 ð0; 1Þ controls the weight of the utilization and
handover gains. In practice, the operators can adjust � to
obtain different RRH-BBU mapping scheme with different
BBU utilization and RRH handover optimization objectives.

Convergence: the RCLP algorithm is said to have con-
verged if any further execution of the algorithm yields the
same state [64]. Despite the simplicity of label propagation
algorithms, there has been very little formal analysis of its
convergence, since the variations of graph structures may
lead to complicated behaviors of such a greedy algorithm
[64]. In our problem, the graph structure can be identified
as a clustered Erd€os-R�enyi graph, and [64] have proved that
a label propagation algorithm can correctly and quickly
identifies its community structure.

Time Complexity: for each iteration of the RCLP algorithm,
it first takes OðjV jÞ steps for node permutation, and then
processes all the links to compute the gain function, taking
OðjEjÞ steps in the worst case. In total, the time complexity
of our algorithm is OðjEjÞ. As the handover pairs are quite
sparse (OðjEjÞ � OðjV jÞ), the complexity can be nearly
OðjV jÞ.

Optimality: RCLP is a greedy algorithm and may not nec-
essarily obtain the optimal solutions [64]. Fortunately, the
objective function of problem P1 is a monotone and2. If two clusters yield the same gain, we randomly choose one.
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submodular set function.3 According to the theory of sub-
modular function maximization [65], such a greedy algo-
rithm can achieve a worst-case approximation bound of
ð1� e�1Þ to the optimal. To further improve the robustness
of approximation, we exploit a Monte Carlo method [66] to
approach the optimal RRH-BBU mapping scheme. Specifi-
cally, for each RRH-BBU mapping task, we simultaneously
ran the RCLP algorithms on Nw distributed workers of a
computation cluster, and repeated each task for Gw times.
Finally, we collected the formed clustering schemes and
select the one with the highest frequency.

6 EVALUATION

6.1 Dataset Description

We exploit two large-scale anonymized datasets released
by Orange S.A. in the D4D challenges [29], [30]. Specifi-
cally, we extract two city-scale datasets for Abidjan and
Dakar, the two largest cities in Ivory Coast and Senegal,
respectively. We perform data cleansing to remove missing
and incomplete data. Particularly, we exclude base stations
with no traffic or handover records, and compile two data-
sets containing the base station positions, call durations,
and handover counts. The details of these two datasets are
listed in Table 1.

We assume the C-RAN architecture is deployed in the
two cities during the data collection. Specifically, the RRHs
are placed in the base station sites, and the centralized BBU
pools are deployed and connected to the RRHs via high
speed optical fiber. We quantify the RRH traffic based on
the aggregated radio resource units [8] allocated to the
phone calls, which is proportional to the total call durations
in each hour.4 Due to privacy concerns, the mobility data is
randomly sampled from a portion of Orange customers (1
percent for Ivory Coast and 3.33 percent for Senegal, respec-
tively)[29], [30], therefore we estimate the actual handover
count by multiplying the sample rate.

6.2 Evaluation on Prediction Accuracy

Evaluation Plan: we use 70 percent of the datasets for the
model training, and the remaining 30 percent for testing.

For each part, we use the first Ns time steps (hours) as input
and predict for the next one time step (hour). We then use
the training set to train the MuLSTMmodel. Since the traffic
and handover patterns are quite different during weekdays
and weekends, we separately train a weekday and a week-
end model using the corresponding datasets, respectively.
We implement the LSTM layers using an encoder-decoder
architecture. Specifically, the encoder layer L1 contains
Nencoder memory units, which accepts as input an array of
traffic or handover vectors of Ns time steps, and outputs an
encoded sequence for the decoder. The decoder contains
Ndecoder memory units, which accepts as input the encoded
sequence and outputs the traffic or handover forecast.

Model Training: we use the popular Tensorflow5 library
for constructing our deep-learning model. We train the
MuLSTM model for Niter iterations to ensure that the net-
work learns the potential temporal and spatial structures of
the traffic and handover patterns. Based on a series of
empirical experiments, we choose the optimal Ns ¼ 12
hours, Nencoder ¼ Ndecoder ¼ 32, and Niter ¼ 10; 000. The
model is trained on a 64-bit server with an NIVIDA GeForce
GTX 1080 graphic card and 16 GB of RAM. Each training
iteration takes about 1:5 seconds and the whole process
takes 4:2 hours.

Evaluation Metrics: for the model testing phase, we use the
trained MuLSTM model to predict the city-wide traffic vol-
ume and handover count at the beginning of each hour, and
compare the results with the ground truth data. For RRH traf-
fic prediction, we compare the predicted traffic snapshot
F̂ ð:; tÞ with the ground truth data Fð:; tÞ in the test set of size
Ntest, and calculate theMAPE for each snapshot

MAPEf ¼ 1

Ntest

PNtest
t¼1 j Fð:;tÞ�F̂ ð:;tÞFð:;tÞ j � 100%: (19)

Similarly, for RRH handover prediction, we compare the
predicted handover snapshot Ĥð:; :; tÞwith the ground truth
data Hð:; :; tÞ in the test set of size Ntest, and calculate the
Mean Absolute Error (MAE) for each snapshot

MAPEh ¼ 1

Ntest

PNtest
t¼1 j Hð:;:;tÞ�Ĥð:;:;tÞHð:;:;tÞ j � 100%: (20)

Baseline Methods: we design the following baselines for
comparison. The training and validation settings are the
same as the proposed method.

� ARIMA: this baseline models the traffic of each RRH
as a time series, and uses the traditional ARIMA
model [35] for traffic prediction. Similarly, it models
each significant handover sequence as a time series,
and builds individual ARIMA models for handover
prediction, respectively.

� WANN: this baseline models the RRHs in the net-
work as a whole, and adopts the same architecture
as the proposed MuLSTM model except that the pre-
dictors are implemented using Windowed-ANN
structure [38]. The WANN layers do not have an
internal temporal state and thus are not able to

TABLE 1
Datasets Description

City Abidjan Dakar

Area 422 km2 83 km2

Population 4,707,404 1,146,053
Base stations 270 257

20 weeks 50 weeks
Dataset Period 12/05/2011 01/07/2013

-04/22/2012 -12/22/2013
Average call duration 5.18 minutes 6.82 minutes
Handover per hour 78,662 113,082

3. For the proof of submodularity, please refer to Appendix I, avail-
able as the online supplemental material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2020.2971470.

4. We note that if fine-grained network traffic data, such as video
stream, are available, our solution can easily adapt to the optimization
task with regard to each specific traffic type. 5. https://www.tensorflow.org
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model the temporal dependencies among different
time steps.

� ESN: this baseline models the traffic and mobility
dynamics with two echo state networks [44], respec-
tively. Based on similar techniques as [28], we build
an ESN with Net ¼ 3; 000 hidden units (i.e., the reser-
voir size) for traffic prediction, and Nem ¼ 2; 500 hid-
den units for mobility prediction.

Evaluation Results: Fig. 5 shows the results of traffic and
handover prediction using the baseline and proposed meth-
ods, respectively. Each method is evaluated on weekdays,
weekends, and all days. In RRH traffic prediction, the pro-
posed MuLSTM method achieves an MAPE of 6.08 percent
for all days, which is much lower than the MAPE of ARIMA
(13.23 percent) andWANN(9.08 percent)methods. The possi-
ble reason is that the ARIMA method models the temporal
dependency of RRH traffic, but it fails to capture the correla-
tions among RRHs. Meanwhile, the WANN method models
the RRH correlations in the ANN layers, but it is not able to
capture the temporal dynamics of RRH traffic. In contrast, the
proposed MuLSTM method models the temporal dynamics
and spatial correlations simultaneously to achieve lower pre-
diction errors. We also note that the ESN baseline achieves a
worse MAPE (7.78 percent) than the proposed method, vali-
dating the limitations of the reservoir-based hidden layers in
ESN and the benefit of joint training ofMuLSTM.

Furthermore, by separately training different predictive
models for weekdays and weekends, the prediction errors
can be reduced for the ARIMA, ESN, and MuLSTM meth-
ods, since the temporal patterns can be modeled in a fine-

grained manner for these methods. Similar conclusions can
be made for handover prediction with these methods.

We show two illustrative examples of RRH traffic and
handover predictions using the proposed MuLSTM models
(without weekday and weekend separation) in Figs. 5b and
5d, respectively. The example RRH is located in Plateau, the
downtown area of Abidjan, Ivory Coast. We can see that the
proposed methods successfully learn the dynamic weekday
and weekend patterns in both traffic and handover dynam-
ics, and make accurate predictions based on the temporal
and spatial factors.

6.3 Evaluation on RRH-BBU Mapping

Because it is difficult to deploy real-world C-RAN networks
in the two cities, in this work, we evaluate the effectiveness
of the proposed RRH-BBU mapping algorithm via several
key metrics. Particularly, we run the mapping algorithms
for each hour in the test set and calculate the statistical mul-
tiplex gains for comparison.

Parameter Selection: the most important parameter in the
RRH-BBU mapping phase is the BBU size in the BBU pool.
Since BBUs are implemented as virtual machines, their sizes
are usually discrete values corresponding to predefined VM
configurations (e.g., PICO; SMALL;MEDIUM;LARGE).
However, the radio resource units occupied by RRHs are
continuous. For example, Fig. 6 shows the histogram of the
radio resource units of all the RRHs in the training set of
Abidjan, which ranges from 1� 105 to 4� 105 radio
resource units. The desired BBU size needs to accommodate
the demands of radio resource units occupied by both single
RRH and RRH clusters. Based on previous studies [8], [14]
and empirical experiments, we design the BBU size cate-
gory as a discrete set as follows:

F ¼ f1RU; 2RU; 4RU; 8RU; . . .g; (21)

where 1RU ¼ 105 radio resource units in this example. In
this way, an RRH that occupies 1:5� 105 radio resource
units can allocate a BBU of size 2RU , while a cluster of
RRHs with an aggregated radio resource units of 10:5� 105

can allocate a BBU of size 16RU , respectively.
We run the RRH-BBU mapping algorithms on a distrib-

uted cluster system via Matlab Parallel Computing Tool-
box.6 We allocate Nw ¼ 16 distributed workers and

Fig. 5. Evaluation results of RRH traffic and handover prediction. (a) and (c) show the traffic and handover prediction errors of the baselines and the
proposed MuLSTM method, respectively. (b) and (d) demonstrate illustrative examples of the traffic patterns and prediction results from a downtown
RRH in Abidjan in one week (from 01/09/2012 to 01/15/2012).

Fig. 6. The histogram of RRH traffic in the training set of Abidjan,
measured in radio resource units. 6. https://www.mathworks.com/products/parallel-computing
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repeated each task for Gw ¼ 103 times. Each RCLP task takes
about 0:1 seconds, and finding an RRH-BBU mapping
scheme takes 100 seconds.

Evaluation Metrics: for an RRH-BBU mapping scheme
that partition the RRHs into a set of Nk disjoint clusters
C ¼ fc1; . . .; cNk

g and map each cluster ck to a BBU bk in the
BBU pool B ¼ fb1; b2; . . .; bkg, we evaluate its statistical mul-
tiplex gains from the following two aspects.

To evaluate the improvement of BBU utilization, we
define the average utilization rate of the BBU pool based on
Equation (5) as

UðCÞ ¼ 1

Nk

PNk
k¼1 UðckÞ: (22)

Similarly, to evaluate the improvement of handover quality,
we define the cluster handover rate of the RRH clusters based
on Equation (6) as

WðCÞ ¼ 1

Nk

PNk
k¼1 W ðckÞ: (23)

Baseline Methods: we design the following baselines to
compare with the proposed method.

� DIRECT-MAP: this baseline directly maps each RRH
to a BBU with maximal utilization rate based on the
pool constraints. We note that this method is widely
adopted in the traditional RAN architecture [5].

� STATIC-MAP: this baseline first clusters RRHs based
on the complementarity of their daily traffic profiles,
and then statically map clusters to BBUs using the
algorithm in Chen_2017b. The cluster handover rate
is not optimized, and the daily traffic profile is gener-
ated based on the average over a long term of obser-
vation for each RRH. This baseline is similar to the
method proposed in [22].

� UTIL-RCLP: this baseline finds mapping schemes
that maximize the BBU utilization rate without con-
sidering the cluster handover rate. This baseline is
similar to the method proposed in [23].

� HAND-RCLP: similarly, this baseline finds mapping
schemes that maximize the cluster handover rate
without considering the BBU utilization rate.

� COALITION: this baseline adopts the similar coalitio-
nal game approach of [53]. Specifically, we regard each
BBU as a coalition and each RRHas a playerwho trans-
fers among these coalitions. We define the transfer
order as follows: for any user (RRH) vi in a coalition
(BBU) cj, fvig [ cj is preferred over another coalition

fvig [ ck (i.e., cjick) if gainðvi; cjÞ > gainðvi; ckÞ.
Finally, a local optimal solutionwith Nash-stable parti-
tion are solved [53].

Correspondingly, we name the proposed method as
DUAL-RCLP, which simultaneously optimizes the BBU uti-
lization rate and the cluster handover rate.

Evaluation Results: Table 2 shows the results of BBU utili-
zation rate and cluster handover rate on the test set using
the baseline and proposed methods, respectively. The
DIRECT-MAP baseline achieves the lowest performance,
since each RRH is allocated a BBU without resource sharing
and handover optimization. The STATIC-MAP shows mod-
erate performance improvements via static clustering, and
the COALIATION baseline further improves the mapping
performance. Note that the UTIL-RCLP method achieves
relatively high BBU utilization rate (above 99.2 percent), but
fails to arrange RRHs with frequent handover events into
clusters. In contrast, the HAND-RCLP method finds clusters
with high cluster handover rate (above 83.5 percent), but
these clusters do not utilize the allocated BBUs efficiently
(with a utilization rate below 62.1 percent). The proposed
DUAL-RCLP method achieves a BBU utilization rate above
85.2 percent and an cluster handover rate above 82.3 percent
in both cities, validating the effectiveness of our method in
finding cost-effective and quality-aware mapping schemes.

6.4 Case Studies

In order to further evaluate the effectiveness of our frame-
work, we conduct a series of case studies in Abidjan and
Dakar, respectively. In each case study, we showcase the
traffic and handover snapshot in a specific scenario, and
present the RRH-BBU mapping results on the map.

Abidjan Rush Hour: we select a typical weekday morning
rush hour (9:00–10:00, 04/10/2012) in Abidjan from the test
set for a case study. Fig. 7a shows the RRH traffic and hand-
over patterns during the rush hour, where larger dots
denote RRHs with higher traffic volume, and thicker lines
correspond to more handover events observed between the
two corresponding RRHs. We also visualize the RRH-BBU
mapping scheme using a Voronoi diagram [67] in Fig. 7a,
where each polygon corresponds to a RRH cluster. We can
see that during the morning rush hour, the network traffic
of the city are mainly generated from the residential areas,
the business districts, and the transportation hubs. Corre-
spondingly, the handover events are frequently observed in
these areas. Our framework successfully find an RRH-BBU
scheme with an average BBU utilization rate of 91.3 percent
and an RRH internal handover rate of 86.1 percent.

TABLE 2
Evaluation Results of the RRH-BBU Mapping Methods

Methods Abidjan Dakar

BBU Utilization Rate Inner-BBU Handover Rate BBU Utilization Rate Inner-BBU Handover Rate

DIRECT-MAP 58.7% 0% 49.8% 0%
STATIC-MAP 77.9% 35.4% 73.4% 33.2%
UTIL-RCLP 99.3% 1.64% 99.2% 0.77%
HAND-RCLP 60.5% 85.8% 62.1% 83.5%
COALITION 81.8% 80.2% 81.3% 77.9%

DUAL-RCLP (Proposed) 86.5% 85.1% 85.2% 82.3%
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Fig. 7b shows the traffic and handover patterns of a clus-
ter in Adjam�e, a transportation hub of Abidjan. Adjam�e has
several important bus stations from where buses serve the
greater Abidjan area as well as all of Ivory Coast. In the
morning rush hour, large crowds of commuters and long
distance travelers arrive at and depart from this area, gener-
ating significant handover events among the RRHs in this
area, as well as large traffic volume. Our method success-
fully identifies this RRH cluster and assigns a medium-size
BBU (8RU) to it, achieving a high BBU utilization rate of
98.8 percent, as shown in Fig. 7b.

Fig. 7c shows a hybrid cluster formed by RRHs in Plateau
and Treichville. Plateau is the central business district of
Abidjan, and Treichville is one of the most populated subur-
ban residential areas in Abidjan. In the morning rush hour,
significant traffic volumes are observed in the RRHs of Pla-
teau and Treichville, respectively, most probably generated
by the residents, commuters, and workers in these areas. By

sharing a medium-size BBU with 8RU , the cluster of RRHs
in these areas achieves a high BBU utilization rate of
94.9 percent. More importantly, the large volume of hand-
over events between Plateau and Treichville during the
rush hour can be processed within the BBU, which signifi-
cant improves handover quality.

Dakar Independence Day: in Dakar, we investigate the RRH-
BBU mapping scheme during the morning hours of the 2013
Senegal Independence Day (04/04/2013 10:00–11:00), and
compare it with the scheme during the morning hours of a
typical weekday (04/11/2013 10:00–11:00, one week later).
Fig. 8 shows the RRH traffic and handover patterns on the
two days and the RRH-BBUmapping scheme.

In Senegal, the Independence Day is celebrated as a pub-
lic holiday. In Fig. 8a, we can see that during the morning
hours of that day, most traffic and handover events are gen-
erated in the central and northern parts of Dakar, which cor-
respond to the city’s residential neighborhoods, restaurants,

Fig. 7. A case study of the RRH-BBU mapping results during a typical morning rush hour in Abidjan.

Fig. 8. A case study of the RRH-BBU mapping results during the morning hours in Dakar on two typical days.
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and parks, etc. Consequently, our framework identifies
these communities and allocates high-capacity BBUs for the
corresponding RRH clusters. For example, Fig. 8a shows
two RRH clusters in Parcelles Assainies and Grand Yoff, two
of the largest residential neighborhoods in Dakar, as well as
the allocated BBU capacity, respectively. In contrast, the
southern parts of the city, including Hann Bel-Air and
Dakar-Plateau, are the central industrial, business and
administrative districts of Dakar. On the Independence
Day, these areas observe relatively fewer user activities due
to public holidays. Consequently, our framework tends to
form large clusters consisting of many RRHs to reduce
handover cost, while allocating BBUs with relatively small
capacities since the aggregated traffic volumes are insignifi-
cant. For example, Fig. 8a illustrates two clusters in Hann
Bel-Air (the port and industrial zone) and Dakar-Plateau (the
business and administrative center) and the allocated BBUs,
respectively. These two clusters occupy large geographic
areas with many RRHs, however the small and micro size
BBUs are already adequate to process the traffic. In this
way, our framework achieves an average BBU utilization
rate of 81.4 percent and an internal handover rate of
78.4 percent, respectively.

We also present the RRH-BBU mapping scheme in the
morning hours of a typical weekday (one week later) for com-
parison. From Fig. 8b, we can see that during the weekday
morning, a large number of RRHs in the southern parts of the
city observe significant traffic volume and handover events.
Correspondingly, our framework identifies clusters with
densely connected RRHs in Hann Bel-Air and Dakar-Plateau,
and allocate BBUs with high capacities for them. In contrast,
the clusters formed in the residential areas (e.g., Parcelles
Assainies andGrand Yoff) donot observe significant user activi-
ties, and thus the BBUs allocated to them are of lower capaci-
ties. Similarly, our framework effectively increase the average
BBU utilization rate to 81.8 percent and achieves an internal
handover rate of 72.4 percent, respectively.

In summary, by adaptively forming different sizes of
clusters and allocating BBUs with adequate capacities, our
framework effectively improves the BBU utilization rate
and handover performance in the C-RAN architecture.

7 CONCLUSION

In this work, we propose a data-driven approach for C-RAN
optimization, considering both the traffic and mobility
dynamics for RRH-BBU mapping. We extract traffic volume
and handover count from large-scale CDR datasets, and
propose a deep-learning-based model to accurately predict
the traffic and handover patterns. We formulate the RRH-
BBU mapping with cost and quality objectives as a set parti-
tion problem, and propose a heuristic greedy algorithm to
effectively find the robust approximation to the optimal
schemes under resource constraints. Evaluations on large-
scale CDR datasets validate the effectiveness of our frame-
work, which outperforms the traditional RAN architectures
and state-of-the-art baselines.

In the future, we plan to evaluate our framework on
datasets with richer traffic and mobility information. We
also plan to incorporate contextual factors (e.g., social
events) to further improve prediction accuracy, and explore

mapping algorithms in multi-pool architectures (e.g., Fog-
RAN and Mobile Edge Cloud).
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