Divesh Aggarwal

Yanlin Chen

Rajendra Kumar

Yixin Shen

Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

Keywords: 2012 ACM Subject Classification Theory of computation → Keywords and phrases Lattices, Shortest Vector Problem, Discrete Gaussian Sampling, Time-Space Tradeoff, Quantum computation, Bounded distance decoding Digital Object Identifier 10.4230/LIPIcs.STACS.2021

The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results.

1.

A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer 4 ≤ q ≤ √ n, our algorithm takes q 13n+o(n) time and requires poly(n) • q 16n/q 2 memory. This tradeoff which ranges from enumeration (q = √ n) to sieving (q constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter.

2.

A quantum algorithm that runs in time 2 0.9533n+o(n) and requires 2 0.5n+o(n) classical memory and poly(n) qubits. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [2] that has a time and space complexity 2 n+o(n) .

3.

A classical algorithm for SVP that runs in time 2 1.741n+o(n) time and 2 0.5n+o(n) space. This improves over an algorithm of [15] that has the same space complexity.

The time complexity of our classical and quantum algorithms are expressed using a quantity related to the kissing number of a lattice. A known upper bound of this quantity is 2 0.402n , but in practice for most lattices, it can be much smaller and even 2 o (n) . In that case, our classical algorithm runs in time 2 1.292n and our quantum algorithm runs in time 2 0.750n .

The most important computational problem on lattices is the Shortest Vector Problem (SVP). Given a basis for a lattice L ⊆ R n , SVP asks us to compute a non-zero vector in L with the smallest Euclidean norm. Starting from the '80s, the use of approximate and exact solvers for SVP (and other lattice problems) gained prominence for their applications in algorithmic number theory [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], convex optimization [START_REF] Lenstra | Integer programming with a fixed number of variables[END_REF][START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF][START_REF] Frank | An application of simultaneous diophantine approximation in combinatorial optimization[END_REF], coding theory [START_REF] De | Some optimal codes have structure[END_REF], and cryptanalysis tool [START_REF] Shamir | A polynomial-time algorithm for breaking the basic merkle-hellman cryptosystem[END_REF][START_REF] Brickell | Breaking iterated knapsacks[END_REF][START_REF] Lagarias | Solving low-density subset sum problems[END_REF]. The security of many cryptographic primitives is based on the worst-case hardness of (a decision variant of) approximate SVP to within polynomial factors [START_REF] Ajtai | Generating hard instances of lattice problems[END_REF][START_REF] Micciancio | Worst-case to average-case reductions based on gaussian measures[END_REF][START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF][START_REF] Regev | Lattice-based cryptography[END_REF][START_REF] Micciancio | Lattice-based cryptography[END_REF][START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF][START_REF] Brakerski | Lattice-based FHE as secure as PKE[END_REF] in the sense that any cryptanalytic attack on these cryptosystems that runs in time polynomial in the security parameter implies a polynomial time algorithm to solve approximate SVP to within polynomial factors. Such cryptosystems have attracted a lot of research interest due to their conjectured resistance to quantum attacks.

The SVP is a well studied computational problem in both its exact and approximate (decision) versions. By a randomized reduction, it is known to be NP-hard to approximate within any constant factor, and hard to approximate within a factor n c/ log log n for some c > 0 under reasonable complexity-theoretic assumptions [START_REF] Micciancio | The shortest vector in a lattice is hard to approximate to within some constant[END_REF][START_REF] Khot | Hardness of approximating the shortest vector problem in lattices[END_REF][START_REF] Haviv | Tensor-based hardness of the shortest vector problem to within almost polynomial factors[END_REF]. For an approximation factor 2 O(n) , one can solve SVP in time polynomial in n using the celebrated LLL lattice basis reduction algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. In general, the fastest known algorithm(s) for approximating SVP within factors polynomial in n rely on (a variant of) the BKZ lattice basis reduction algorithm [START_REF] Peter | A hierarchy of polynomial time lattice basis reduction algorithms[END_REF][START_REF] Schnorr | Lattice basis reduction: Improved practical algorithms and solving subset sum problems[END_REF][START_REF] Ajtai | A sieve algorithm for the shortest lattice vector problem[END_REF][START_REF] Gama | Finding short lattice vectors within mordell's inequality[END_REF][START_REF] Hanrot | Analyzing blockwise lattice algorithms using dynamical systems[END_REF][START_REF] Aggarwal | Slide reduction, revisited -filling the gaps in SVP approximation[END_REF], which can be seen as a generalization of the LLL algorithm and gives an r n/r approximation in 2 O(r) poly(n) time. All these algorithms internally use an algorithm for solving (near) exact SVP in lower-dimensional lattices. Therefore, finding faster algorithms to solve SVP is critical to choosing security parameters of cryptographic primitives.

As one would expect from the hardness results above, all known algorithms for solving exact SVP, including the ones we present here, require at least exponential time. In fact, the fastest known algorithms also require exponential space. There has been some recent evidence [START_REF] Aggarwal | gap/s) eth hardness of svp[END_REF] showing that one cannot hope to get a 2 o(n) time algorithm for SVP if one believes in complexity theoretic conjectures such as the (Gap) Exponential Time Hypothesis. Most of the known algorithms for SVP can be broadly classified into two classes: (i) the algorithms that require memory polynomial in n but run in time n O(n) and (ii) the algorithms that require memory 2 O(n) and run in time 2 O(n) .

The first class, initiated by Kannan [START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF][START_REF] Helfrich | Algorithms to construct minkowski reduced and hermite reduced lattice bases[END_REF][START_REF] Hanrot | Improved analysis of kannan's shortest lattice vector algorithm[END_REF][START_REF] Gama | Lattice enumeration using extreme pruning[END_REF][START_REF] Micciancio | Fast lattice point enumeration with minimal overhead[END_REF], combines basis reduction with exhaustive enumeration inside Euclidean balls. While enumerating vectors requires 2 O(n log n) time, it is much more space-efficient than other kinds of algorithms for exact SVP.

Another class of algorithms, and currently the fastest, is based on sieving. First developed by Ajtai, Kumar, and Sivakumar [START_REF] Ajtai | A sieve algorithm for the shortest lattice vector problem[END_REF], they generate many lattices vectors and then divideand-sieve to create shorter and shorter vectors iteratively. A sequence of improvements [START_REF] Regev | Lattices in computer science[END_REF][START_REF] Phong | Sieve algorithms for the shortest vector problem are practical[END_REF][START_REF] Micciancio | Faster exponential time algorithms for the shortest vector problem[END_REF][START_REF] Pujol | Solving the shortest lattice vector problem in time 2 2[END_REF][START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF][START_REF] Aggarwal | Just take the average! an embarrassingly simple 2ˆn-time algorithm for SVP (and CVP)[END_REF], has led to a 2 n+o(n) time and space algorithm by sieving the lattice vectors and carefully controlling the distribution of output, thereby outputting a set of lattice vectors that contains the shortest vector with overwhelming probability.

An alternative approach using the Voronoi cell of the lattice was proposed by Micciancio and Voulgaris [START_REF] Micciancio | A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations[END_REF] and gives a deterministic 2 2n+o(n) -time and 2 n+o(n) -space algorithm for SVP (and many other lattice problems).

There are variants [START_REF] Phong | Sieve algorithms for the shortest vector problem are practical[END_REF][START_REF] Micciancio | Faster exponential time algorithms for the shortest vector problem[END_REF][START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF][START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] of the above mentioned sieving algorithms that, under some heuristic assumptions, have an asymptotically smaller (but still 2 Θ(n)) time and space complexity than their provable counterparts.

Algorithms giving a time/space tradeoff

Even though sieving algorithms are asymptotically the fastest known algorithms for SVP, the memory requirement, in high dimension, has historically been a limiting factor to run these algorithms. Some recent works [START_REF] Ducas | Shortest vector from lattice sieving: A few dimensions for free[END_REF][START_REF] Martin R Albrecht | The general sieve kernel and new records in lattice reduction[END_REF] have shown how to use new tricks to make it possible to use sieving on high-dimensional lattices in practice and benefit from their efficient running time [START_REF]SVP Challenges[END_REF].

Nevertheless, it would be ideal and has been a long standing open question to obtain an algorithm that achieves the "best of both worlds", i.e. an algorithm that runs in time 2 O(n) and requires memory polynomial in n. In the absence of such an algorithm, it is desirable to have a smooth tradeoff between time and memory requirement that interpolates between the current best sieving algorithms and the current best enumeration algorithms.

To this end, Bai, Laarhoven, and Stehlé [START_REF] Shi Bai | Tuple lattice sieving[END_REF] proposed the tuple sieving algorithm, providing such a tradeoff based on heuristic assumptions similar in nature to prior sieving algorithms. They conjectured a running time k n+o(n) and space complexity k n/k+o (n) . One can vary the parameter k to obtain a smooth time/space tradeoff. Nevertherless, it is still desirable to obtain a provable variant of this algorithm that does not rely on any heuristics. The complexity of this algorithm was later proven, under the same heuristic assumptions [START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF], but only for constant k, therefore leaving the subexponential memory regime open. Kirchner and Fouque [36] attempted to do this. They claim an algorithm for solving SVP in time q Θ(n) and in space q Θ(n/q) for any positive integer q > 1. Unfortunately, their analysis falls short of supporting their claimed result, and the correctness of the algorithm is not clear. We refer the reader to the full version of the paper for more details.

In addition to the above, Chen, Chung, and Lai [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] propose a variant of the algorithm based on Discrete Gaussian sampling in [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF]. Their algorithm runs in time 2 2.05n+o(n) and the memory requirement is 2 0.5n+o (n) . The quantum variant of their algorithm runs in time 2 1.2553n+o(n) time and has the same space complexity. Their algorithm has the best space complexity among known provably correct algorithms that run in time 2 O(n) .

A number of works have also investigated the potential quantum speedups for lattice algorithms, and SVP in particular. A similar landscape to the classical one exists, although the quantum memory model has its importance. While quantum enumeration algorithms only require qubits [START_REF] Aono | Quantum lattice enumeration and tweaking discrete pruning[END_REF], sieving algorithms require more powerful QRAMs [START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF][START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF].

Our results

We first present a new algorithm for SVP that provides a smooth tradeoff between the time complexity and memory requirement of SVP without any heuristic assumptions. This algorithm is obtained by giving a new algorithm for sampling lattice vectors from the Discrete Gaussian distribution that runs in time q O(n) and requires q O(n/q 2) space.

▶ Theorem 1 (Time-space tradeoff for smooth discrete Gaussian, informal). There is an algorithm that takes as input a lattice L ⊂ R n , a positive integer q, and a parameter s above the smoothing parameter of L, and outputs q 16n/q 2 samples from D L,s using q 13n+o(n) time and poly(q) • q 16n/q 2 space.

Using the standard reduction from Bounded Distance Decoding (BDD) with preprocessing (where an algorithm solving the problem is allowed unlimited preprocessing time on the lattice before the algorithm receives the target vector) to Discrete Gaussian Sampling (DGS) from [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] and a reduction from SVP to BDD given in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], we obtain the following.

▶ Theorem 2 (Time-space tradeoff for SVP). Let n ∈ N, q ∈ [4,

√ n] be a positive integer. Let L be the lattice of rank n. There is a randomized algorithm that solves SVP in time q 13n+o(n) and in space poly(n)

• q 16n q 2 .
If we take k = q 2 , then the time complexity of the previous SVP algorithm becomes k 6.5n+o(n) and the space complexity poly(n) • k (8n/k) . Our tradeoff is thus the same (up to a constant in the exponents) as what was claimed by Kirchner and Fouque [36] and proven in [START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF] under heuristic assumptions.

Our second result is a quantum algorithm for SVP that improves over the current fastest quantum algorithm for SVP [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] (Notice that the algorithm in [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] is still the fastest classical algorithm for SVP).

▶ Theorem 3 (Quantum Algorithm for SVP). There is a quantum algorithm that solves SVP in 2 0.9533n+o(n) time and classical 2 0.5n+o(n) space with an additional number of qubits polynomial in n.

Our third result is a classical algorithm for SVP that improves over the algorithm from [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] and results in the fastest classical algorithm that has a space complexity 2 0.5n+o(n) .

▶ Theorem 4 (Algorithm for SVP with 2 0.5n+o(n) space). There is a classical algorithm that solves SVP in 2 1.740n+o(n) time and 2 0.5n+o(n) space.

The time complexity of our second and third results are obtained using a quantity related to the kissing number of a lattice. A known upper bound of this quantity is 2 0.402n , but in practice for most lattices, it can be much smaller and even 2 o(n) . In that case, our classical algorithm runs in time 2 1.292n and our quantum algorithm runs in time 2 0.750n . See Section 5 of the full version of the paper for more details [START_REF] Aggarwal | Improved (provable) algorithms for the shortest vector problem via bounded distance decoding (full version)[END_REF].

We summarize known provable Classical and Quantum algorithms in Table 1. Note that all the classical algorithms are also quantum algorithms but they don't use any quantum power.

Table 1 Comparison of algorithms for the Shortest vector problem. [START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF] uses the quantum RAM model. [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] and our quantum algorithm need only polynomial qubits and 2 0.5n+o(n) classical space.

Classical Algorithms Time

Space Reference

n n+o(n) poly(n) [34] 2 n+o(n) 2 n+o(n) [2] 2 2.05n+o(n) 2 0.5n+o(n) [15] 2 1.741n+o(n) 2 0.5n+o(n)
This paper

Quantum Algorithms

Time Space Reference 2 1.799n+o(n) 2 1.286n+o(n) , QRAM [39] 2 1.2553n+o(n) 2 0.5n+o(n) [15] 2 0.9533n+o(n) 2 0.5n+o(n)
This paper ▶ Remark 5 (Magic constants). Most of the constants that appear in this paper were calculated by optimising the complexity with respect to a quantity related to the kissing number and then instantiating with b = 0.402, the best known upper-bound on this quantity. The details of these calculations are available in the full version, section 5.

Roadmap

In the following, we give a high-level overview of our proofs in Section 1.2. Section 2 contain some preliminaries on lattices. The proofs of the time-space tradeoff for Discrete Gaussian sampling above the smoothing parameter and the time-space tradeoff for SVP are given in Section 3. Our classical and quantum algorithms for solving SVP with space complexity 2 0.5n+o(n) are presented in Section 4. We also shows how the time complexity of our algorithms varies with a quantity related to the kissing number in Section 5 of the full version of the paper [START_REF] Aggarwal | Improved (provable) algorithms for the shortest vector problem via bounded distance decoding (full version)[END_REF].

Proof overview

We now include a high-level description of our proofs. Before describing our proof ideas, we emphasize that it was shown in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF][START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] that given an algorithm for DGS a constant factor c above the smoothing parameter, we can solve the problem of BDD where the target vector is within distance αλ 1 (L) of the lattice, where the constant α < 0.5 depends on the constant c. Additionally, using [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], one can enumerate all lattice points within distance pδ to a target t by querying p n times a BDD oracle with decoding distance δ (or p n/2 times if we are given a quantum BDD oracle). Thus, by choosing p = ⌈λ 1 (L)/δ⌉ and t = 0, an algorithm for BDD immediately gives us an algorithm for SVP. Therefore, it suffices to give an algorithm for DGS above the smoothing parameter.

Time-space tradeoff for DGS above smoothing

Recall that efficient algorithms are known for sampling from a discrete Gaussian with a large enough parameter (width) [START_REF] Klein | Finding the closest lattice vector when it's unusually close[END_REF][START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF][START_REF] Brakerski | Classical hardness of learning with errors[END_REF]. In [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], the authors begin by sampling N = 2 n+o(n) vectors from the Discrete Gaussian distribution with (large) parameter s and then look for pairs of vectors whose sum is in 2 L, or equivalently pairs of vectors that lie in the same coset c ∈ L /2 L. Since there are 2 n cosets, if we take Ω(2 n) samples from D L,s , almost all of the resulting vectors (except at most 2 n vectors) will be paired and are statistically close to independent samples from the distribution D L,s/ √ 2 , provided that the parameter s is sufficiently above the smoothing parameter.

To reduce the space complexity, we modify the algorithm by generating random samples and checking if the sum of d of those samples is in q L for some integer q. Intuitively, if we start with two lists of vectors (L 1 and L 2) of size q O(n/d) from D L,s , where s is sufficiently above the smoothing parameter, each of these vectors is contained in any coset q L +c for any c ∈ L /q L with probability roughly 1/q n . We therefore expect that the coset of a uniformly random d-combination of vectors from L 2 is uniformly distributed in L /q L. The proof of this statement follows from the Leftover Hash Lemma [START_REF] Impagliazzo | Pseudo-random generation from one-way functions[END_REF]. We therefore expect that for any vector v ∈ L 1 , with high probability, there is a set of d vectors x 1 , . . . , x d in L 2 that sum to a vector in q L +v, and hence Micciancio and Peikert ([43]) shows that this vector is statistically close to a sample from the distribution D L,s √ d+1/q . We can find such a combination by trying all subsets of d vectors. We would like to repeat this and find q O(n/d) (nearly) independent vectors in q L. It is not immediately clear how to continue since, in order to guarantee independence, one would not want to reuse the already used vectors x 1 , . . . , x d and conditioned on the choice of these vectors, the distribution of the cosets containing the remaining vectors is disturbed and is no longer nearly uniform. By using a simple combinatorial argument, we show that even after removing any 1/ poly(d) fraction of vectors from the list L 2 , the d-combination of vectors in L 2 has at least cq n different cosets. This is sufficient to output q O(n/d) independent vectors in q L with overwhelming probability.

1 q d i=1 x i -v ∈ L. A lemma by

A new algorithm for BDD with preprocessing leads to a faster quantum algorithm for SVP

This result improves the quantum algorithm from [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF]. As mentioned above, a BDD oracle from discrete Gaussian sampling can have a decoding distance αλ 1 (L) with α < 0.5, and, using [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], one needs to enumerate all lattice points within distance pαλ 1 (L) to a target t by querying p n times a BDD oracle with decoding distance αλ 1 (L) (or p n/2 times if we are given a quantum BDD oracle). Hence, we need to take p = 3 so that pαλ 1 (L) ⩾ λ 1 (L), and the search space is at least 3 n , or 3 n/2 quantum queries. Thus, towards optimizing the algorithm for SVP, one should aim to solve α-BDD for α slightly larger than 1/3 since a larger value of α will still lead to the same running time for SVP. Using known bounds, it can be shown that such an algorithm requires 2 0.1605n+o(n) independent (preprocessed) samples from D L,ηε(L)1 for ε = 2 -cn for some constant c.

In [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], the authors gave an algorithm that runs in time 2 n/2+o(n) and outputs 2 n/2+o(n) samples from D L,s for any s ≥ √ 2η 0.5 (L), i.e. a factor √ 2 above the smoothing parameter). In order to obtain samples at the smoothing parameter, we construct a dense lattice L ′ of smaller smoothing parameter than L. We then sample 2 0.5n+o(n) vectors from D L ′ ,s and reject those that are not in L. Using the reduction from BDD to DGS, and by repeating this algorithm, we obtain a 2 0.661n+o(n) time and 2 0.5n+o(n) -space algorithm to solve 1/3-BDD with preprocessing, where each call to BDD requires 2 0.161n+o(n) time. Thus, the total time complexity of the classical algorithm is 3 n • 2 0.161n+o(n) , and that of the corresponding quantum algorithm is 3 n/2 • 2 0.161n+o(n) .

Covering surface of a ball by spherical caps

As we mentioned above, one can enumerate all lattice points within a pδ distance to a target t by querying p n times a BDD oracle with decoding distance δ. Our algorithm for BDD is obtained by preparing samples from the discrete Gaussian distribution. However, note that the decoding distance of BDD oracle built by discrete Gaussian samples as shown in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] is successful if the target vector is within a radius αλ 1 (L) for α < 1/2 (there is a tradeoff between α and the number of DGS samples needed), and therefore, if we choose t to be 0, as we do in the other algorithms mentioned above, then p has to be at least 3 to ensure that the shortest vector is one of the vectors output by the enumeration algorithm. We observe here that if we choose a target t to be a random vector "close to" but not at the origin, then the shortest vector will be within a radius 2δ from the target t with some probability P , and thus we can find the shortest vector by making 2 n /P calls to the BDD oracle. An appropriate choice of the target t and the factor α gives an algorithm that runs in time 2 n • 2 0.74n+o(n) , which is faster than the algorithm (running in time 3 n 2 0.161n+o(n)) mentioned above.

We note that the corresponding quantum algorithm runs in time 2 n/2 • 2 0.74n+o(n) , which is significantly slower than the quantum algorithm mentioned above.

We also note that the running time of this algorithm crucially depends on a quantity related to the kissing number of a lattice. Since a tight bound on this quantity is not known, the actual running time of this algorithm might be smaller than that promised above. For a more elaborate discussion on this, see Section 5 of the full version [START_REF] Aggarwal | Improved (provable) algorithms for the shortest vector problem via bounded distance decoding (full version)[END_REF].

Preliminaries

Let N = {1, 2, . . . , }. We use bold letters x for vectors and denote a vector's coordinates with indices x i . We use log to represent the logarithm base 2 and ln to represent the natural logarithm. Throughout the paper, n will always be the dimension of the ambient space R n .

Lattices

A lattice L is a discrete subgroup of R n , i.e. the set

L(b 1 , . . . , b n) = { m i=1 x i b i : x i ∈ Z} of all integer combinations of m linearly independent vectors b 1 , . . . , b n ∈ R n . Such b i 's form a basis of L.
The lattice L is said to be full-rank if n = m. We denote by λ 1 (L) the first minimum of L, defined as the length of a shortest non-zero vector of L.

For a rank n lattice L ⊂ R n , the dual lattice, denoted L * , is defined as the set of all points in span(L) that have integer inner products with all lattice points,

L * = { ⃗ w ∈ span(L) : ∀⃗ y ∈ L, ⟨ ⃗ w, ⃗ y⟩ ∈ Z} . Similarly,

Probability distributions

Given two random variables X and Y on a set E, we denote by d SD the statistical distance between X and Y , which is defined by

d SD (X, Y) = 1 2 z∈E Pr X [X = z] -Pr Y [Y = z] = z∈E : Pr X [X=z]>Pr Y [Y =z] Pr X [X = z] -Pr Y [Y = z] .
We write X is ε-close to Y to denote that the statistical distance between X and Y is at most ε. Given a finite set E, we denote by U E a uniform random variable on E, i.e., for all

x ∈ E,

Pr U E [U E = x] = 1 |E| .

Discrete Gaussian Distribution

For any s > 0, define ρ s (x) = exp(-π∥x∥ 2 /s 2) for all x ∈ R n . We write ρ for ρ 1 . For a discrete set S, we extend ρ to sets by ρ s (S) = x∈S ρ s (x). Given a lattice L, the discrete Gaussian D L,s is the distribution over L such that the probability of a vector y ∈ L is proportional to ρ s (y): Pr X∼D L,s [X = y] = ρs(y) ρs(L) .

Lattice problems

The following problem plays a central role in this paper.

▶ Definition 6. For δ = δ(n) ≥ 0, σ a function that maps lattices to non-negative real numbers, and m = m(n) ∈ N, δ-DGS m σ (the Discrete Gaussian Sampling problem) is defined as follows: The input is a basis B for a lattice L ⊂ R n and a parameter s > σ(L). The goal is to output a sequence of m vectors whose joint distribution is δ-close to m independent samples from D L,s .

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ bounds the statistical distance between the joint distribution of the output vectors and m independent samples from D L,s . We consider the following lattice problems. The input is a basis B for a lattice L ⊂ R n . The goal is to output a vector y ∈ L with ∥⃗ y∥ = λ 1 (L).

▶ Definition 8. The search problem CVP (Closest Vector Problem) is defined as follows:

The input is a basis B for a lattice L ⊂ R n and a target vector ⃗ t ∈ R n . The goal is to output a vector ⃗ y ∈ L with ∥⃗ y -⃗ t∥ = dist(⃗ t, L).

▶ Definition 9. For α = α(n) < 1/2, the search problem α-BDD (Bounded Distance Decoding) is defined as follows: The input is a basis B for a lattice L ⊂ R n and a target vector

⃗ t ∈ R n with dist(t, L) ≤ α • λ 1 (L). The goal is to output a vector ⃗ y ∈ L with ∥⃗ y -⃗ t∥ = dist(⃗ t, L).
Note that while our other problems become more difficult as the approximation factor γ becomes smaller, α-BDD becomes more difficult as α gets larger.

For convenience, when we discuss the running time of algorithms solving the above problems, we ignore polynomial factors in the bit-length of the individual input basis vectors (i.e. we consider only the dependence on the ambient dimension n).

For a lattice L and ε > 0, the smoothing parameter η ε (L) is the smallest s such that

ρ 1/s (L *) = 1 + ε. Recall that if L is a lattice and v ∈ L then ρ s (L + v) = ρ s (L) for all s.
The smoothing parameter has the following well-known property.

▶ Lemma 10 ([53, Claim 3.8]). For any lattice

L ⊂ R n , c ∈ R n , ε > 0, and s ≥ η ε (L), 1 -ε 1 + ε ≤ ρ s (L +c) ρ s (L) ≤ 1 .
▶ Corollary 11 ([1, Corollary 10]). Let L ⊂ R n be a lattice, q be a positive integer, and let s ≥ η ε (q L). Let C be a random coset in L /q L sampled such that Pr[C = q L +c] = ρs(q L +c) ρs(L) . Also, let U be a coset in L /q L sampled uniformly at random. Then d SD (C, U) ≤ 2ε .

The following lemma gives a bound on the smoothing parameter.

▶ Lemma 12 ([2, Lemma 2.7]). For any lattice L ⊂ R n , ε ∈ (0, 1) and k > 1, we have

kη ε (L) > η ε k 2 (L)
Micciancio and Peikert [START_REF] Micciancio | Hardness of SIS and LWE with small parameters[END_REF] showed the following result about resulting distribution from the sum of many Gaussian samples.

▶ Theorem 13 [START_REF] Micciancio | Hardness of SIS and LWE with small parameters[END_REF]Theorem 3.3]). Let L be an n dimensional lattice, z ∈ Z m a nonzero integer vector,

s i ≥ √ 2∥z∥ ∞ • η ε (L)
, and L +c i arbitrary cosets of L for i = 1 • • • , m. Let y i be independent vectors with distributions D L +ci,si , respectively. Then the distribution of

y = i z i y i is mε close to D Y,s , where Y = gcd(z) L + i z i c i , and s = (z i s i) 2 .
We will need the following reduction from α-BDD to DGS that was shown in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF]. . Then, there exists a randomized reduction from CVP ϕ to 0.5-DGS m ηε , where m = O(n log(1/ε) √ ε) and CVP ϕ is the problem of solving CVP for target vectors that are guaranteed to be within a distance ϕ(L) of the lattice. The reduction preserves the dimension, makes a single call to the DGS oracle, and runs in time m • poly(n). Furthermore, the reduction always reduces an instance of CVP ϕ on a lattice L to an instance of DGS on the dual lattice L * .

We need the following relation between the first minimum of lattice and the smoothing parameter of dual lattice. We will use this to compute the decoding distance of BDD oracle.

▶ Lemma 15 ([2, Lemma 6.1]). For any lattice L ⊂ R n , ε ∈ (0, 1), we have

ln(1/ε) π < λ 1 (L)η ε (L *) < β 2 n 2πe • ε -1/n • (1 + o(1)), (1
)
and if ε ≤ (e/β 2 + o(1)) -n 2 , we have ln(1/ε) π < λ 1 (L)η ε (L *) < ln(1/ε) + n ln β + o(n) π . (2
)
where

β(L) = inf{γ : ∀r ≥ 1, N (L, rλ 1 (L)) ≤ (γr) n }. In particular β(L) ∈ [1, 2 0.402].
The following theorem proved in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], is required to solve SVP by exponential number of calls to α-BDD oracle.

▶ Theorem 16 [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF]Theorem 8]). Given a basis matrix B ⊂ R n×n for lattice L(B) ⊂ R n , a target vector t ∈ R n , an α-BDD oracle BDD α with α < 0.5, and an integer scalar p > 0. Let

f α p : Z n p → R n be f α p (s) = -p • BDD α (L, (B s -t)/p) + B s. If dist(L, t) ≤ αλ 1 (L), then the list m = {f α p (s) | s ∈ Z n p
} contains all lattice points within distance pαλ 1 (L) to t. We will need the following theorems to sample the DGS vectors with a large width.

▶ Theorem 17 ([2],Proposition 2.17). For any ε ≤ 0.99, there is an algorithm that takes as input a lattice L ∈ R n , M ∈ Z >0 (the desired number of output vectors), and s > 2 n log log n/ log n • η ε (L), and outputs M independent samples from D L,s in time M • poly(n).

▶ Theorem 18 ([2, Theorem 5.11]). For a lattice L ⊂ R n , let σ(L) = √ 2η 1/2 (L).
Then there exists an algorithm that solves exp(-Ω(κ))-DGS 2 n/2 σ in time 2 n/2+polylog(κ)+o(n) with space O(2 n/2) for any κ ≥ Ω(n). Moreover, if the input does not satisfy the promise, and the input parameter s < σ(L) = √ 2η 1/2 (L), then the algorithm may output M vectors for some M ≤ 2 n/2 that are exp(-Ω(κ))-close to M independent samples from D L,s .

▶ Lemma 19 ([2, Lemma 5.12]). There is a probabilistic polynomial-time algorithm that takes as input a lattice L ⊂ R n of rank n and an integer a with n/2 ≤ a < n and returns a super lattice L ′ ⊃ L of index 2 a with L ′ ⊆ L /2 such that for any ε ∈ (0, 1), we have

η ε ′ (L ′) ≤ η ε (L)/ √
2 with probability at least 1/2 where ε ′ := 2ε 2 + 2 (n/2)+1-a (1 + ε).

Probability

We need the following lemma on distribution of vector inner product which directly follows from the Leftover Hash Lemma [START_REF] Impagliazzo | Pseudo-random generation from one-way functions[END_REF].

▶ Lemma 20. Let G be a finite abelian group, and let f be a positive integer.

Let Y ⊆ {0, 1} f . Define the inner product ⟨•, •⟩ : G f × Y → G by ⟨x, y⟩ = i x i y i for all x ∈ G f , y ∈ Y.
Let X, Y be independent and uniformly random variables on G f , Y, respectively. Then

d SD ((⟨X, Y ⟩, X), (U G , X)) ≤ 1 2 • |G| | Y |
, where U G is uniform in G and independent of X. We will also need the Chernoff-Hoeffding bound [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF].

▶ Lemma 21. Let X 1 , . . . , X M be the independent and identically distributed random boolean variables of expectation p. Then for ε > 0, Pr

1 M M i=1 X i ≤ p(1 -δ) ≤ e -δ (1-δ) 1-δ pM .
For preliminaries on quantum computing, see [

Algorithms with a time-memory tradeoff for lattice problems

In this section, we present a new algorithm for Discrete Gaussian sampling above the smoothing parameter.

Algorithm for Discrete Gaussian Sampling

We now present the main result of this section.

▶ Theorem 22. Let n ∈ N, q ≥ 2, d ∈ [1,
n] be positive integers, and let ε > 0. Let C be any positive integer. Let L be a lattice of rank n, and let s ≥ 2

√ dη ε (q L) = 2 √ dqη ε (L).
There is an algorithm that, given

N = 160d 2 • C • q n/d independent samples from D L,s , outputs a list of vectors that is (10dε 2d N + 11Cq -5n/2)-close to Cq n/d independent vectors from D L, √ 8d+1 q s .
The algorithm runs in time C • (10e • d) 8d • q 8n+n/d+o(n) and requires memory poly(d) • q n/d excluding the input and output memory.

Proof. We prove the result for C = 1, and the general result follows by repeating the algorithm. Let {x 1 , . . . , x N } be the N input vectors and let {c 1 , . . . , c N } be the corresponding cosets in L /q L. The algorithm does the following:

1. Initialize two lists L 1 = {x 1 , . . . , x N 2 } and L 2 = {x N 2 +1
, . . . , x N } each with N 2 input vectors, and let Q = 0. 2. Let v be the first vector in L 1 .

Find 8d vectors (by trying all 8d-tuples

) x i1 , . . . , x i 8d from L 2 such that c i1 +• • •+c i 8d -v ∈ q L.
If no such vectors exist go to step(6).

Output the vector

xi 1 +•••+xi 8d -v q ∈ L, and let Q = Q + 1. If Q = q n/d , then END. 5. Remove vectors x i1 , • • • , x i 8d from L 2 6.
Remove vector ⃗ v from L 1 and repeat Steps (2) to [START_REF] Aggarwal | Just take the average! an embarrassingly simple 2ˆn-time algorithm for SVP (and CVP)[END_REF].

The time complexity of the algorithm is

N 2 • N/2 8d ≤ N 2 eN 16d 8d ≤ (10e • d) 8d • q 8n+n/d+o(n) ,
and memory requirement of the algorithm is immediate. We now show correctness. Let ε ′ = ε 2d so that s ≥ √ 2η ε ′ (q L) by Lemma 12. Without loss of generality, we can assume that the vectors x i for i ∈ [N] are sampled by first sampling c i ∈ L/q L such that Pr[c i = c] = Pr[D L,s ∈ q L +c] and then sampling the vector x i according to D q L +ci,s . Moreover, by Corollary 11, this distribution is 2ε ′ N -close to sampling c i for i ∈ [N], independently and uniformly from L /q L, and then sampling the vectors x i according to D q L +ci,s . We now assume that the input is sampled from this distribution.

Without loss of generality, we can assume that the algorithm initially gets only the corresponding cosets as input, and the vectors x ij ∈ q L +c ij for j ∈ [8d], and v ∈ q L +c are sampled from D q L +ci j ,s and D q L +c,s only before such a tuple is needed in Step 4 of the algorithm. Since any input vector is used only once in Step 4, these samples are independent of all prior steps. This implies, by Theorem 13, that the vector obtained in Step 4 of the algorithm is ε ′ (8d + 1)-close to being distributed as D L,s √ 8d+1 q . It remains to show that our algorithm finds q n/d vectors (with high probability). Let N ′ = N 2 be an integer, X be a random variable uniform over (L /q L) N ′ , and let Y be a random variable independent of X and uniform over vectors in {0, 1} N ′ with Hamming weight 8d. The number of such vectors is

N ′ 8d ≥ N ′ 8d 8d ≥ q 8n . (3
)
Let U be a uniformly random coset of L /q L. By Lemma 20 and (3), we have

d SD ((⟨X, Y ⟩, X), (U, X)) ≤ 1 2 • q n q 8n < q -7n/2 ,
for a large enough value of n. By Markov inequality, with probability greater than 1 -(10 • q -5n/2) over the choice of x ← X, we have that the statistical distance between ⟨x, Y ⟩ and U is less than q -n 10 , which implies for any v ∈ L /q L,

q -n + q -n 10 > Pr[⟨x, Y ⟩ = v mod q L] > q -n - q -n 10 . (4
)
We assume that the input vectors in list L 2 satisfy (4), introducing a statistical distance of at most 10 • q -5n/2 . Notice that after the algorithm found i vectors for any i < q n/d , it has removed 8id vectors from L 2 . We will show that for each vector from L 1 (which is uniformly sampled from L /q L) with constant probability we will find 8d-vectors in Step (3). After i < q n/d output vectors have been found, there are M = N ′ -8id vectors remaining in the list L 2 . There are M 8d different 8d-combinations possible with vectors remaining in L 2 .

N ′ 8d / M 8d = N ′ • • • (N ′ -8d + 1) M • • • (M -8d + 1) < N ′ N ′ -8d(i + 1) 8d ⩽ 1 + 8dq n/d N ′ -8dq n/d 8d = 1 + 1 10d -1 8d < 5 2 since N ′ = 80d 2 q n/d for C = 1 (5)
At the beginning of the algorithm, there are N ′ 8d combinations, and hence by (4), each of the q n cosets appears at least 0.9q -n N ′ 8d times. After i < q n/d output vectors have been found, there are only M 8d combinations left, and N ′ 8d -M 8d possible combinations have been removed. We say that a coset c disappears if there is no set of 8d vectors in L 2 that add to c. In order for a coset to disappear, all of the at least 0.9q -n N ′ 8d combinations from the initial list must be removed. Hence, the number of cosets that disappear is at most

(N ′ 8d)-(M 8d) 0.9q -n (N ′ 8d)
< 3/5 0.9 q n = 2 3 q n distinct cosets by [START_REF] Aggarwal | Just take the average! an embarrassingly simple 2ˆn-time algorithm for SVP (and CVP)[END_REF]. Hence with probability at least 1/3, we find 8d vectors x i1 , . . . , x i 8d from L 2 such that x i1 + • • • + x i 8d -v ∈ q L. By Chernoff-Hoeffding bound with probability greater than 1 -e -d 2 q n/d , the algorithm finds at least q n/d vectors. In total, the statistical distance from the desired distribution is

(8d + 1)ε ′ • N + 2ε ′ q n/d + 10 • q -5n/2 + e -d 2 q n/d ≤ 10dε ′ • N + 11 • q -5n/2 . ◀ ▶ Corollary 23. Let n ∈ N, q ∈ [4,
√ n] be an integer, and let ε = q -32n/q 2 . Let L be a lattice of rank n, and let s ≥ η ε (L). There is an algorithm that outputs a list of vectors that is q -Ω(n) -close to q 16n/q 2 independent vectors from D L,s . The algorithm runs in time q 13n+o(n) and requires memory poly(n) • q 16n/q 2 . Proof. Choose d so that 16d -16 < q 2 ⩽ 16d, which is possible when q ⩾ 4, and let α = q/ √ 8d + 1 -this is the ratio by which we decrease the Gaussian width in Theorem 22and note that α ≥ 1.2.

Let p = ⌈2 √ dq⌉ < q 2 and k be the smallest integer such that α k • p ≥ 2 n log log n/ log n . Thus k = O(n log log n/ log n). Let g = α k ps ≥ 2 n log log n/ log n • η ε (L). By Theorem 17, in time N 0 • poly(n), we get N 0 = (160d 2) k q n/d samples from D L,g .

We now iterate k times the algorithm from Theorem 22. Initially we have N 0 vectors. At the beginning of the i-th iteration for i ≤ k -1, we have N i := N 0 • (160d 2) -i vectors that are ∆ i -close to being independently distributed from D L,α -i g , where α -i g ⩾ αp • η ε (L). Hence, we can apply Theorem 22 and get N i+1 = N i /160d 2 vectors that are ∆ i+1 -close to being S TA C S 2 0 2 1

4:12

Improved (Provable) Algorithms for the Shortest Vector Problem independently distributed from D L,α -(i+1) g , where ∆ i+1 ⩽ ∆ i + 4ε 2d N i + 11(160d 2) k-i q -5n/2 . At each iteration we had N i ≥ 160d 2 q n/d vectors, a necessary condition to apply Theorem 22. Therefore after k iterations, we have at least N k = N 0 /(160d 2) k = q n/d samples that are ∆ k -close to being independently distributed from D L,α -k g , where

∆ k ⩽ 11q -5n/2 k i=1 (160d 2) k-i + k-1 i=0 10dε 2d N i ≤ 11(160d 2) k q -5n/2 + 10dq -4n q n/d k-1 i=0 (160d 2) k-i since 16d ⩾ q 2 ≤ 11q -5n/2 + 10dq -4n+n/d (160d 2) k+1 = q -5n/2+o(n) since (160d 2) k+1 = q o(n) .
Any vector distributed as D L,ps is in p L with probability at least p -n . We repeat the algorithm 2p n = O(q 2n) times to obtain p n • 2 • q n/d vectors that are 2p n q -5n/2+o(n) = q -n/2+o(n) close to 2p n • q n/d independent samples from D L,ps . Of these samples obtained, we only keep vectors that fall in p L and divide them by p. Let M = p n • 2 • q n/d . By Chernoff-Hoeffding (Lemma 21) with P = p -n , and δ = 1 2 , the probability to obtain less than (1 -δ)P M = q n/d samples is at most

e -δ (1-δ) 1-δ P M ⩽ e -1 10 q n/d
. Furthermore, d ⩽ q 2 +16 16 and q → ln q 16+q 2 is decreasing for q ⩾ 4, hence for q ⩽ √ n,

q n/d ⩾ e 16n ln q 16+q 2 ⩾ e 16n ln √ n 16+n ⩾ e 16 ln
√ n-o (1) = Ω(n 8).

Hence with probability greater than 1 -e -1 10 q n/d = 1 -q -Ω(n 8) , we get q n/d vectors from the distribution D L,s . The statistical distance from the desired distribution is q -Ω(n 8) + q -n/2+o(n) ≤ q -n/2+o(n) . We repeat this for q 16n/q 2 q n/d times, to get q 16n/q 2 vectors. The total statistical distance from the desired distribution is q 16n/q 2 q n/d • q -n/2+o(n) ≤ q -Ω(n) . The total running time is bounded by q 2n q 16n/q 2 q n/d poly(n)

• N 0 + k-1 i=0 (10ed) 8d • (160d 2) k-i q 8n+n/d+o(n) ⩽ q 13n+o(n) .
The memory usage is slightly more involved: we can think of the k iterations as a pipeline with k intermediate lists and we observe that as soon as a list (at any level) has more than 160d 2 q 16n/q 2 elements, we can apply Theorem 22 to produce q 16n/q 2 vectors at the next level. Hence, we can ensure that at any time, each level contains at most 160d 2 q 16n/q 2 vectors, so in total we only need to store at most k • 160d 2 q 16n/q 2 = poly(n)q 16n/q 2 vectors, to which we add the memory usage of the algorithm of Theorem 22 which is bounded by poly(n) • q n/d ⩽ poly(n) • q 16n/q 2 . Finally, we run the filter (p L) on the fly at the end of the k iterations to avoid storing useless samples. ◀ This tradeoff works for any q ≥ 4, and the running time can be bounded by c n+o(n) 1

• q c2n for some constants c 1 and c 2 that we have not tried to optimize.

Algorithms for BDD and SVP

▶ Theorem 24. Let n ∈ N, q ∈ [4,

√ n] be a positive integer. Let L be a lattice of rank n, there exists an algorithm that creates a 0.1/q-BDD oracle in time q 13n+o(n) and space poly(n) • q 16n/q 2 . Every call to this oracle takes time poly(n)q 16n/q 2 time.

Proof. Let ε = q -32n q 2
and s = η ε (L *). From corollary 23, there exists an algorithm that outputs q 16n/q 2 vectors whose distribution is statistically close to time D L * ,s in q 13n+o(n) and space poly(n) • q 16n/q 2 . By Theorem 14, there is a reduction from α-BDD to

1 2 -DGS m ηε with m = O(n log(1/ε) √ ε) = O(n 2 q 2 q 16n/q 2), where the decoding coefficient is α = √ log(1/ε)/π-o(1)
2ηε(L *)λ1(L) . By repeating poly(n) times the algorithm from Corollary 23, we get m vectors from D L * ,ηε(L *) . By Lemma 15, we get

α(L) = log(1/ε)/π -o(1) 2η ε (L *)λ 1 (L) ≥ log(1/ε) 2n(β 2 /e)ε -1/n • (1 -o(1)) ≥ 1 q 32 • e • log q 2β 2 q 32/q 2 ≥ (10q) -1 .
Note that here we are using the fact that the reduction in Theorem 14 always reduces an instance on a lattice L to an instance on the dual lattice L * : this is why we generate samples from D L * ,ηε(L *) in the preprocessing phase, even before any call to the oracle is made. Finally, by Theorem 14, each call to the oracle takes time m • poly(n) = O(q 16n/q 2 poly(n)). ◀ ▶ Theorem 25. Let n ∈ N, q ∈ [4, √ n] be a positive integer. Let L be a lattice of rank n. There is a randomized algorithm that solves SVP in time q 13n+o(n) and in space poly(n) • q 16n q 2 . Proof. By Theorem 24, we can construct a 0.1 q -BDD oracle in time q 13n+o(n) and in space poly(n) • q 16n q 2 . Each execution of the BBD oracle now takes O(poly(n)q 16n/q 2) time. By Theorem 16, with (10q) n queries to 0.1 q -BDD oracle, we can find the shortest vector. The total time complexity is q 13n+o(n) + poly(n)q 16n/q 2 • (10q) n = q 13n+o(n) . ◀ ▶ Remark 26. If we take q = √ n, Theorem 25 gives a SVP algorithm that takes n O(n) time and poly(n) space. The constant in the exponent of time complexity is worse than the best enumeration algorithms. When q is a large enough constant, for any constant ε > 0, there exists a constant C = C(ε) > 2, such that there is a 2 Cn time and 2 εn space algorithm for DGS, and SVP. In particular, the time complexity of the algorithm in this regime is worse than the best sieving algorithms.

4

New space efficient algorithms for SVP

In this section, we present relatively space-efficient classical and quantum algorithms to find a shortest nonzero lattice vector. Our quantum algorithm is the first provable algorithm for exact-SVP that takes less than O(2 n) time. Recall that there exists an algorithm [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] that, given a lattice L and a target vector t, outputs all lattice vectors within distance pαλ 1 (L) to t, by making p n calls to an α-BDD oracle. We present a quantum algorithm for SVP that takes 2 0.9532n+o(n) time and 2 0.5n+o(n) space with poly(n) qubits. We also present a classical algorithm for SVP that takes 2 1.741n+o(n) time and 2 0.5n+o(n) space. The strategy followed by [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] is to choose p = ⌈1/α⌉, the target vector t to be the origin, and sequentially compute the candidate vectors for SVP. There are two ways to reduce the time complexity: one can improve the BDD oracle or reduce the number of queries. We will show how to improve both aspects.

Quantum algorithm for SVP

In order to solve SVP by the method in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], it is sufficient to use a BDD oracle with decoding coefficient α slightly greater than 1/3. In [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], the authors use a reduction from BDD to DGS by [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] and use the Gaussian sampler of [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] to obtain many samples with standard deviation equal to √ 2η 1/2 . This allows them to construct a 0.391-BDD but each call to the BDD oracle uses many DGS samples. This is wasteful since we really only need a 1/3-BDD. The reason why it is so expensive is that in the analysis they need to find ε such that η ε > √ 2η 1/2 to apply the reduction, and it requires them to take ε much smaller than would be strictly necessary to construct a 1/3-BDD oracle; this smaller ε explains the bigger decoding radius.

We obtain a BDD oracle with decoding distance 1/3 by using the same reduction but making each call cheaper. This is achieved by building a sampler that directly samples at the smoothing parameter, hence avoiding the √ 2 factor, allowing us to take a bigger ε. In [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], it was shown how to construct a dense lattice L ′ whose smoothing parameter η(L ′) is √ 2 times smaller than the original lattice, and that all lattice points of the original lattice. Suppose that we first use such a dense lattice to construct a corresponding discrete Gaussian sampler with standard deviation equal to s = √ 2η(L ′). We then do the rejection sampling on condition that the output is in the original lattice L. We thus have constructed a discrete Gaussian sampler of L whose standard deviation is √ 2η(L ′) = η(L). Nevertheless, | L ′ / L | will be at least 2 0.5n , which implies that this procedure needs at least 2 0.5n input vectors to produce an output vector. We use this idea to obtain the following lemma.

▶ Lemma 27. There is an probabilistic algorithm that, given a lattice L ⊂ R n , m ∈ Z + and s ≥ η 1/3 (L) as input, outputs m samples from a distribution (m • 2 -Ω(n 2))-close to D L,s in expected time m • 2 (n/2)+o(n) and (m + 2 n/2) • 2 o(n) space.

Proof. Let a = n 2 + 4. We repeat the following until we output m vectors. We use the algorithm in Lemma 19 to obtain a lattice L ′ ⊃ L of index 2 a . We then run the algorithm from Theorem 18 with input (L ′ , s) to obtain a list of vectors from L ′ . We output the vectors in this list that belong to L.

By Theorem 18, we obtain, in time and space 2 (n/2)+o(n) , M = 2 n/2 vectors that are 2 -Ω(n 2) -close to M vectors independently sampled from D L ′ ,s . Also, by Lemma 19, with probability at least 1/2, we have s ≥ η 1/3 (L) ≥ √ 2η 1/2 (L ′). From these M vectors, we will reject the vectors which are not in lattice L. It is easy to see that the probability that a vector sampled from the distribution D L ′ ,s is in L is at least ρ s (L)/ρ s (L ′) ≥ 1 2 a using Lemma 10. Thus, the probability that we obtain at least one vector from L (which is distributed as D L,s) is at least

1 2 1 -(1 -1/2 a) 2 n/2 ≥ 1 2 • 1 -e -2 n/2 /2 n/2+4 = 1 2
(1 -e -1/16).

It implies that after rejection of vectors, with constant probability we will get at least one vector from D L,s . Thus, the expected number of times we need to repeat the algorithm is O(m) until we obtain vectors y 1 , . . . , y m whose distribution is statistically close to being independently distributed from D L,s . The time and space complexity is clear from the algorithm. ◀ ▶ Theorem 28. For any sufficiently large integer n, any integer m > 0, and a lattice L ⊂ R n , there exists an algorithm that creates a 1/3-BDD oracle in 2 0.6608n+o(n) time and 2 0.5n+o(n) space. Every call to this oracle takes 2 0.1608n+o(n) time and space.

Proof. See full version [START_REF] Aggarwal | Improved (provable) algorithms for the shortest vector problem via bounded distance decoding (full version)[END_REF]Theorem 30]; it is similar to Theorem 24 but using Lemma 27. ◀

From [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], we can enumerate all vectors of length p• 1 3 λ 1 (L) by making p n calls to 1/3-BDD oracle. Although naively searching for the minimum in the set of vectors of length less than or equal to p • 1 3 λ 1 (L), will find the origin with high probability, one can work around this issue by shifting the zero vector. Choosing an arbitrary nonzero lattice vector as the shift, we are guaranteed to obtain a vector of length at least λ 1 for p ≥ 3. Hence by combining the 1/3-BDD oracle from Theorem 28 and the quantum minimum finding algorithm from [19,

1 IntroductionA

 1 lattice L = L(b 1 , . . . , b n) := { n i=1 z i b i : z i ∈ Z} is the set of all integer combinations of linearly independent vectors b 1 , . . . , b n ∈ R n . We call n the rank of the lattice and (b 1 , . . . , b n) a basis of the lattice.

 for a lattice basis B = (⃗ b 1 , . . . , ⃗ b n), we define the dual basis B * = (⃗ b * 1 , . . . , ⃗ b * n) to be the unique set of vectors in span(L) satisfying ⟨ ⃗ b * i , ⃗ b j ⟩ = 1 if i = j, and 0, otherwise. It is easy to show that L * is itself a rank n lattice and B * is a basis of L * . Given a lattice B = (⃗ b 1 , . . . , ⃗ b n), we denote ∥ B ∥ 2 = max i ∥b i ∥.

▶ Definition 7 .

 7 The search problem SVP (Shortest Vector Problem) is defined as follows:

▶ Theorem 14 ([16 ,

 1416 Theorem 3.1], [2, Theorem 7.3]). For any ε ∈ (0, 1/200), let ϕ(L) ≡ √ ln(1/ε)/π-o(1)2ηε(L *)

2 0 2 1 4:10 Improved (Provable) Algorithms for the Shortest Vector Problem 3

1, Section 2.2] S TA C S

S TA C S 2 0 2 1

The number of samples depends on a quantity related to the kissing number of a lattice, we used the best known upper bound on this quantity due to[START_REF] Grigorii | evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings on a sphere and in space[END_REF].

Acknowledgements

We would like to thank Pierre-Alain Fouque, Paul Kirchner, Amaury Pouly and Noah Stephens-Davidowitz for useful comments and suggestions.

Funding Divesh Aggarwal: This work was partially supported by the Singapore Ministry of Education under grant MOE2019-T2-1-145, National Research Foundation under grant R-710-000-012-135. Rajendra Kumar: Supported in part by National Research Foundation Singapore under its AI Singapore Programme [Award Number: AISG-RP-2018-005].

https://arxiv.org/abs/2002.07955

4:15

Theorem 1], we can find the shortest vector. Note that, we can directly use the quantum speedup construction from [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF]. The following theorem is a simplified construction for the quantum algorithm.

▶ Theorem 29. For any n ≥ 5, there is a quantum algorithm that solves SVP in time 2 0.9533n+o(n) and classical-space 2 0.5n+o (n) with polynomial number of qubits.

Proof. Let B be a basis of the lattice, BDD 1/3 be a 1/3-BDD oracle and let f : Z n 3 → L be f (s) = -3 • BDD 1/3 (L, (Bs)/3) + Bs. The algorithm works on three quantum registers and our goal is to build a superposition of states of the form |s⟩|f (s)⟩|x⟩ where x = ∥f (s)∥ most the time (see the definition of U below). The algorithm goes like this, we first use Theorem 28 to construct a quantum oracle O BDD on the first two registers that satisfies

We then construct another quantum circuit U satisfying

and apply it on the second and third registers. Here e 1 ∈ Z n is a vector whose first coordinate is one and rest are zero. After that, we apply the quantum minimum finding algorithm on the first and third registers get an index s ′ . The output of the algorithm will be f

3 (s ′). By Theorem 28, in 2 0.661n+o(n) -time and 2 0.5n+o(n) space, we can generate 2 0.161n+o(n) vectors to construct a 1/3-BDD oracle. Thus O BDD can be built using 2 0.1608n+o(n) Toffoli gates and poly(n) qubits. To see that we only need poly(n) qubits, we only keep the vectors of size smaller than exp(n) in the constuction of O BDD , they thus can all be stored within poly(n) qubits. Since the vectors are sampled from a Gaussian with width at most exp(n), the error induced by throwing away the tail of the distribution is negligible. Furthermore all functions acting on these vectors can be implemented with poly(n) qubits.

We can also construct U efficiently. Hence, the algorithm needs O(2 0.1608n+o(n)) Toffoli gates and poly(n) qubits for three registers. As a result by applying the quantum minimum finding algorithm from [19, Theorem 1], the quantum algorithm takes 3 0.5n • 2 0.1608n+o(n) = 2 0.9533n+o(n) time and 2 0.5n+o(n) classical space with a polynomial number of qubits.

Lastly, we show that the quantum algorithm will output a shortest non-zero vector with constant probability. Since ∥Be 1 ∥ + 1 > λ 1 (L), with at least 1/2 probability one will find the index i such that f (i) is a shortest nonzero vector by using the quantum minimum finding algorithm from [19, Theorem 1]. Therefore it suffices to show that there is an index i ∈ Z n 3 such that ∥f (i)∥ = λ 1 (L). By Theorem 16, the list {f (s)|s ∈ Z n 3 } contains all lattice points within radius 3 • 1 3 λ 1 (L) = λ 1 (L) from 0, including the lattice vector with length λ 1 (L). Hence with at least 1/2 probability, the algorithm outputs a non-zero shortest lattice vector. ◀

Solving SVP by spherical caps on the sphere

We now explain how to reduce the number of queries to the α-BDD oracle. Consider a uniformly random target vector t such that α(1

, it satisfies the condition of Theorem 16, i.e. dist(L, t) ≤ αλ 1 (L). We enumerate all lattice vectors within distance 2αλ 1 (L) to t and keep only the shortest nonzero one. We show that for α = 0.4097, we will get the shortest nonzero vector of the lattice with probability at least 2 -0.3298n+o (n) . By repeating this O(2 0.3298n+o(n)) times, the algorithm will succeed with constant probability. We rely on the following construction of a 0.4097-BDD oracle. ▶ Theorem 30. For any dimension n ≥ 4, any integer m > 0, and a lattice L ⊂ R n , there exists an algorithm that constructs a 0.4097-BDD oracle in 2 0.9108n+o(n) time and 2 0.5n+o(n) space. Each call to the oracle takes 2 0.4108n+o(n) time and space. S TA C S 2 0 2 1

4:16

Improved (Provable) Algorithms for the Shortest Vector Problem

Proof. See full version [START_REF] Aggarwal | Improved (provable) algorithms for the shortest vector problem via bounded distance decoding (full version)[END_REF]Theorem 32]; it is similar to Theorem 24 but using Lemma 27. ◀ ▶ Theorem 31. There is a randomized algorithm that solves SVP in time 2 1.741n+o(n) and in space 2 0.5n+o(n) with constant probability.

Proof. On input lattice L(B), use the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] to get a number d (the norm of the first vector of the basis) that satisfies λ 1 (L) ≤ d ≤ 2 n/2 λ 1 (L). For i = 1, . . . , n 2 , let

, and let α = 0.4097. There exists a j such that λ 1 (L) ≤ d j ≤ (1 + 1)λ 1 (L). We repeat the following procedure for all i = 1, . . . , n 2 :

For j = 1 to 2 0.3298n+o(n) , pick a uniformly random vector v ij on the surface of the ball of radius α(1 -1 n)d i . By Theorem 16, we can enumerate 2 n lattice points using the function

. At each step we only store the shortest nonzero vector. At the end, we output the shortest among them.

The running time of the algorithm is straightforward. We make 2 n queries to a α-BDD oracle that takes 2 0.4108n+o(n) time and space by Theorem 30. We further repeat this n 2 2 0.3298n+o(n) times. Therefore the algorithm takes 2 1.741n+o(n) time and 2 0.5n+o(n) space.

To prove the correctness of the algorithm, it suffices to show that there exists an i ∈ [n 2] for which the algorithm finds the shortest vector with high probability. Recall that there exists an i such that λ 1 (L) ≤ d i ≤ (1 + 1 n)λ 1 (L) and let that index be k. We will show that for a uniformly random vector v of length α(1

), then with probability 2 -0.3298n-o(n) there exists x ∈ Z n 2 such that f (x) is the shortest nonzero lattice vector. We show that we can cover the sphere of radius λ 1 by 2 0.3298n+o(n) balls of radius 2αλ 1 = 0.4097 * 2λ 1 whose centers are at distance α(1 -1 n)d k ≤ 0.4097λ 1 from the origin (see figure 1). We have two concentric circles of radius α(1 -1 n)d k and λ 1 , and let P be a uniformly random point on the surface of the ball of radius α(1 -1 n)d k . A ball of radius 2αλ 1 at center P will cover the spherical cap with angle ϕ of the ball of radius λ 1 . By the law of the cosines, we can compute ϕ ≈ cos -1 (1-3α 2 2α) and hence, by [4, Lemma 5.6], if we randomly choose v, the corresponding spherical caps will cover the shortest vector with probability at least ϕ 0 sin n-2 θdθ ≥ 2 -0.3298n-o(n) . Besides, by Theorem 16, the list {f (x) | x ∈ Z n 2 } will contain all lattice points within radius 2αd k from v. Hence, the list will contain a shortest vector with probability 2 -0.3298n+o (n) . By repeating this process 2 0.3298n+o(n) times, we can find the shortest vector with constant probability.

Figure 1 One can cover the sphere of radius λ1 by balls of radius 2αλ1, where 1 3 ⩽ α < 1 2 , whose centers (here P) are at distance αλ1 from the origin O. Each such ball covers a spherical cap of half-angle ϕ.