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ABSTRACT

Device-free hand gesture is one of the most natural ways to interact

with everyday objects. However, existing WiFi-based gesture recog-

nition solutions are typically restricted to indoor environments due

to limited outdoor coverage. Furthermore, to achieve high sampling

rates, they may interfere with normal data transmissions. In this pa-

per, we aim to develop a robust dynamic gesture interaction system

that can be ubiquitously deployed using Long-term Evolution (LTE)

mobile terminals. Through both empirical studies and in-depth

analysis using the Fresnel zone model, we reveal the key factors

that contribute to the repeatability and discernibility of gestures.

We show that the optimal location and orientation to perform ges-

tures indeed exist and can be identified without prior knowledge

of the position of LTE base stations (BSs) relative to a terminal.

Guided by the design principles derived from Fresnel zone char-

acteristics around a 4G terminal, we design highly repeatable and

discernible gestures with salient received signal profiles. A gesture

interaction system has been developed and implemented to achieve

robust recognition with this careful design. Extensive experiments

have been conducted in both indoor and outdoor environments, for

different relative placements of mobile terminal and BS, and with

different users. The proposed system can automatically identify the

direction of BSs with a median error of less than 15 degrees and

achieve gesture recognition accuracy as high as 98% in all scenarios

without the need to acquire any training data.

∗Corresponding author

CCS CONCEPTS

•Human-centered computing→Ubiquitous computing;Ac-

tivity centered design;Gestural input; Ubiquitous and mobile com-

puting systems and tools; • Information systems→Mobile infor-

mation processing systems.

KEYWORDS

LTE signal, Gesture recognition, CSI ratio, Device-free sensing,

Channel State Information

1 INTRODUCTION

Device-free hand gesture offers one of the most natural ways for

Human-Computer Interaction (HCI). It allows users to interact with

everyday objects and wearable devices of limited form factors in a

non-intrusive manner. Hand gestures can be conceptually divided

into static gestures and dynamic gestures. Dynamic hand gestures

usually provide richer information than static gestures because of

the incorporation of motion. Existing approaches to device-free

hand gesture recognition mainly fall into four categories: vision-

based [13, 23], acoustic-based [22, 28], Radio Frequency (RF) based

using specialized devices such as mmWave and Ultra-wideband

radars [17, 38] and WiFi-based solutions [2, 4, 15, 37, 40]. Among

them, WiFi-based solutions utilize Channel State Information (CSI)

extracted from WiFi signals received at a mobile terminal to recog-

nize various hand gestures. Such solutions are attractive due to their

low costs and no need for hardwaremodification. Despite successful

experimental demonstrations in several application scenarios, WiFi-

based solutions are typically restricted to indoor environments due

to limited outdoor coverage, and may interfere with normal data

transmissions to acquire continuous, uniform and high sampling

rates. Furthermore, there lacks a principled way to design RF-based
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(a) Indoor scene (b) Outdoor scene

Figure 1: Gesture interaction in indoor and outdoor scenes.

gesture interaction systems. Specifically, repeatability and discerni-

bility are two key requirements for such systems. Repeatability

means that features extracted from the same gesture performed

by different people at different time, should have similar signal

patterns. Discernibility, on the other hand, means that different

gestures are distinguishable in the presence of minor motion vari-

ations, user diversity, environmental changes, etc. It is important

to understand what factors contribute to the repeatability and dis-

cernibility of RF-based device-free gesture recognition, and how to

design robust dynamic hand gestures accordingly.

In this work, we aim to design a robust dynamic gesture inter-

action system that can be ubiquitously deployed using 4G mobile

terminals (Figure 1). For sensing modality, we choose Long-term

Evolution (LTE) signals due to their wide-area coverage and high

penetration rates of 4G LTE technologies in the past decade. Since

the LTE BSs are widely distributed, no extra deployment is needed

during gesture interaction. Only existing terminals (such as smart-

phones) need to be employed. LTE technologies have the additional

advantage that mobile terminals can extract CSI directly from exist-

ing broadcast signals continuously transmitted from 4G BSs. Thus,

no out-of-band transmissions are needed which may disrupt normal

usages of wireless interfaces as in WiFi-based approaches. We fur-

ther investigate the following questions: (1) Can we use LTE signals

for dynamic hand gesture interaction? (2) What types of gestures

are the most discernible for recognition? (3) Are LTE signal varia-

tion patterns location-dependent and orientation-dependent? If so,

how to identify the best location and orientation that give the high-

est repeatability? In addition to answering these questions through

empirical studies, we employ the Fresnel zone model [26, 29, 35], a

model in propagation theory to quantify reflections and diffraction

between a transmitter and a receiver, to unravel the relationship

between how and where gestures are performed and their repeata-

bility and discernibility.

Guided by the theoretical insights, we propose guidelines for

gesture interactions that are not only applicable to LTE signals but

can also be applied to other wireless systems that utilize the orthog-

onal frequency-division multiplexing (OFDM) modulation such as

WiFi and 5G. We design several gestures for robust interactions

using a 4G terminal and an LTE BS. We find that the performance

of gesture recognition is highly dependent on the relative posi-

tion between the gestures and the transceivers. Since the locations

of LTE BSs are generally not known a priori for users, a simple

procedure is devised to determine good near-terminal locations

to perform the gestures with minimum human intervention. The

main contributions of this work can be summarized as follows:

• Empirical studies have been conducted to demonstrate the

feasibility of dynamic hand gesture interaction using LTE

terminals and reveal that the variations of received signals

are highly dependent on the locations and orientations of

gestures performed as well as the gestures around a 4G ter-

minal.

• By analyzing the Fresnel zones around a 4G terminal, we

develop practical guidelines on where and what types of ges-

tures should be performed to achieve the best repeatability

and discernibility.

• Since the signal source is usually unknown in 4G scenarios,

a novel mechanism is devised to infer the unknown direction

of 4G BSs.

• Extensive experiments show that our proposed LTE-based

gesture interaction system 1 can achieve recognition accu-

racy as high as 98% in various environments for different

users without any training.

The rest of the paper is organized as follows. In Section 2, we

provide background knowledge of LTE-based device-free sensing.

In Section 3, an empirical study is conducted to show the key factors

that contribute to the repeatability and discernibility of gestures

using LTE signals. In Section 4.3, the Fresnel zone model is intro-

duced and used to guide robust hand gesture design. We present the

proposed LTE-based hand gesture interaction system in Section 5

and evaluate it in Section 6. In Section 7, we survey the related

works followed by a conclusion in Section 8.

2 SENSING FUNDAMENTALS

In this section, we first give a brief introduction to LTE signal

formats and show how to extract CSI from LTE frames. Next, we

introduce CSI ratio as a robust measure to mitigate phase offsets

and noise in CSI for LTE-based device-free sensing.
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Figure 2: The basic structure of LTE signals.

2.1 LTE Primer

In LTE systems, BSs transmit radio frames with a fixed duration of

10ms to 4G terminals [1]. As shown in Figure 2a, every radio frame is

subdivided into 10 subframes of a duration of 1ms, each containing

two 0.5ms slots. Depending on the configuration of BSs, each slot

consists of six (in the case of extended Cyclic Prefix (CP)) or seven

OFDM symbols (in the case of normal CP). In the frequency domain,

an OFDM symbol occupies a series of subcarriers at a frequency

interval of Δ𝑓 = 15𝑘𝐻𝑧. Thus, the basic scheduling unit in LTE
is called Resource Block (RB), which contains 12 subcarriers in

frequency domain and lasts one slot (0.5ms) in the time domain, as

shown in Figure 2b. In each downlink RB (from a BS to a terminal),

a Cell-Specific Reference Signal (CRS) with predefined symbols

is transmitted by an LTE BS at four different locations with two

CRSs separated by six subcarriers. For example, 𝑅0, 𝑅1, 𝑅2 and 𝑅3 in
Figure 2b are four common location layouts of CRSs in LTE systems.

Therefore, a CRS forms a dense time-frequency grid at a fixed time

and frequency intervals. It can be used to estimate channel state to

improve the quality of communication.

2.2 Extracting CSI from LTE Signals

Channel state estimation is an effective means to improve system

performance in wireless communication. Suppose that a BS trans-

mits signal𝑋 (𝑓 , 𝑡) on a given subcarrier 𝑓 at time 𝑡 in the frequency
domain. The CSI𝐻 (𝑓 , 𝑡) from the BS to a terminal can be estimated
from the frequency-domain received signal 𝑌 (𝑓 , 𝑡) as follows:

𝐻 (𝑓 , 𝑡) =
𝑌 (𝑓 , 𝑡)

𝑋 (𝑓 , 𝑡)
, (1)

which is a complex-valued channel measurement. It represents

how the environment around the transmitter and receiver (e.g.,

multipath effect, moving objects) affects the amplitude and phase

of received LTE signals.

The LTE signal arriving at a receiving antenna along 𝑁 different
paths can be grouped into two components: those along static paths

and those along a dominant dynamic path [16, 26, 27], as shown in

Figure 3a. The total CSI is the linear superposition of signals on all

1A live demo video is shown at https://youtu.be/e_OiQVkDExk.
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Figure 3: 4G scenarios and the CSI in a complex plane. (a)

The LTE signal arrives at a receiving antenna alongmultiple

paths. (b) CSI changes in a complex plane.

paths, given by

𝐻 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡)

= 𝐻𝑠 (𝑓 , 𝑡) + �𝑎(𝑓 , 𝑡) · 𝑒−𝑗2𝜋
𝑑 (𝑡 )
𝜆 ,

(2)

where𝐻𝑠 (𝑓 , 𝑡) is the static path component including signals through
the Line-of-Sight (LoS) path and reflected paths from static objects,

�𝑎(𝑓 , 𝑡) is the complex-valued representation of attenuation and
initial phase offset of the dynamic path component 𝐻𝑑 (𝑓 , 𝑡). The
latter varies with 𝑑 (𝑡), the length of the reflected path induced by
a moving object. 𝜆 = 𝑐/𝑓 is the wavelength for the radio signal
with frequency 𝑓 , and 𝑐 is the speed of light. In the complex plane
(Figure 3b), both 𝐻𝑠 (𝑓 , 𝑡) and 𝐻𝑑 (𝑓 , 𝑡) can be represented as vec-
tors. 𝐻𝑠 (𝑓 , 𝑡) is a constant, while 𝐻𝑑 (𝑓 , 𝑡) varies with the dynamic

path length 𝑑 (𝑡). 𝑒−𝑗2𝜋𝑑 (𝑡 )/𝜆 is the phase shift on the dynamic
path. Whenever the movement of the object introduces one wave-

length change in the dynamic path length, the corresponding phase

changes 2𝜋 , and 𝐻𝑑 (𝑓 , 𝑡) rotates a cycle, generating a sinusoid-like
waveform.

However, since the clocks on the BS and the terminal are gener-

ally not synchronized, the received CSI can be further characterized

as:

𝐻 (𝑓 , 𝑡) = 𝛼𝑛𝑜𝑖𝑠𝑒 (𝑓 , 𝑡)𝑒
−𝑗 ·𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 (𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡)) , (3)

where 𝛼𝑛𝑜𝑖𝑠𝑒 denotes the noise in amplitude, 𝑒
−𝑗 ·𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 denotes the

random phase offset in each CSI sample due to Carrier Frequency

Offset (CFO), Sample Frequency Offset (SFO) [32], and so on. These

phase offsets result in the randomness of phase information in CSI

– a key challenge for sensing human activities using LTE signals.

2.3 CSI Ratio

To eliminate the randomness of phase offsets in CSI, we note that

modern mobile devices like smartphones support MIMO technol-

ogy [5]. Since the antennas in the same LTE adapter share the same

clock, they have the same CFO, SFO and so on. Thus, we introduce

the CSI ratio [15, 33] between two antennas as a new base signal

for LTE-based sensing to suppress the impulse noise in amplitude

and eliminate these phase random offsets in CSI of LTE signals.
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The CSI ratio is defined as follows:

𝐻𝑟𝑎𝑡𝑖𝑜 (𝑓 , 𝑡) =
𝐻𝑠1 (𝑓 , 𝑡) + �𝑎1 (𝑓 , 𝑡)𝑒

−𝑗2𝜋
𝑑1 (𝑡 )

𝜆

𝐻𝑠2 (𝑓 , 𝑡) + �𝑎2 (𝑓 , 𝑡)𝑒
−𝑗2𝜋

𝑑1 (𝑡 )
𝜆 · 𝑒−𝑗2𝜋

Δ𝑑
𝜆

, (4)

where 𝐻𝑠1 (𝑓 , 𝑡) and 𝐻𝑠2 (𝑓 , 𝑡) are the static path components of the
CSIs received by two different antennas in the same LTE adapter,

respectively. While �𝑎1 (𝑓 , 𝑡) and �𝑎2 (𝑓 , 𝑡) are the attenuations and
initial phase offsets of the antennas’ dynamic path components.

Δ𝑑 denotes the dynamic path length difference between the two
antennas due to their different physical locations, which can be

considered as a constant for a small-scale movement.

Figure 4 shows the raw CSI and CSI ratio of two antennas when

an iron bucket moves away from the receiver along a straight line

opposite to the transmitter. Comparing Figure 4a and Figure 4b,

we find that the time-varying phase noise has been eliminated

effectively and the high amplitude impulse and burst noise in raw

CSI amplitude can be suppressed. Therefore, the CSI ratio between

two antennas is a more robust base signal than the CSI of a single

antenna. More importantly, we can observe that CSI ratio circles

around approximately 7 times in the complex plane as the bucket

moves 50cm in Figure 4c. It has been proved in [15, 33] that the CSI

ratio induced by a single moving (reflective) target have following

properties:

• The CSI ratio mitigates both amplitude and phase noises of

CSI effectively, and varies in a circular pattern in the complex

plane.

• If the change in the reflection path length is exactly one

wavelength, the CSI ratio will rotate exactly 2𝜋 in the com-
plex plane.

• As the reflection path length increases, the CSI ratio rotates

clockwise, and counter-clockwise otherwise.

To estimate the change in the reflection path, we first calculate

the phase change of tangent vectors of CSI ratio between two con-

secutive sample points in each subcarrier. The cumulative phase dif-

ference Δ𝑝 of tangent vectors indicates the overall phase change of
dynamic component of CSI ratio induced by a target gesture move-

ment. For more robust results, we average the phase differences

Transmitter
AC

D

B Push

Receiver

Side push

(a) Experiments for the same ges-
ture.

Sweep
Push

C
Receiver

Semicircle

Transmitter
A

(b) Experiments for different ges-
tures.

Figure 5: Testbed setup.

over all subcarriers. The resulting change in the reflection path

length induced by the gesture can be thus calculated as 𝐷 = 𝜆Δ𝑝
2𝜋 .

3 EMPIRICAL STUDY ON CSI RATIOS
INDUCED BY DYNAMIC HAND GESTURES

In this section, we conduct empirical studies to investigate the re-

peatability and discernibility of LTE signal variations induced by

hand gestures at different locations and orientations relative to a

mobile terminal. Since CSI ratios are robust to noise and phase off-

sets, and can effectively capture channel variations due to a moving

target, we use them to represent motion-induced CSI variations in

subsequent discussion.

3.1 Testbed Setup

A small testbed is set up using an indoor femtocell as the transmitter

and a USRP B210 platform as the terminal in the experiments. The

transceivers are placed 5𝑚 apart at 1𝑚 height, and are equipped
with one and two commonly used vertically polarized antennas,

respectively. The transmitted signals cover 1.4 MHz bandwidth
centered on 2.165 GHz band. CSI is captured at the rate of 100
samples per second at the receiver.

3.2 Empirical Study

First, we explore the repeatability of the same gesture around the

terminal by performing the gesture at four locations (𝐴, 𝐵,𝐶 and 𝐷)
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Table 1: Mean values and variances of reflection path length

changes of push gesture at four locations (𝐴, 𝐵, 𝐶 and 𝐷).

Location 𝐴 𝐵 𝐶 𝐷

Mean value (𝑚) 0.2209 0.4738 0.8032 0.4671

Variance (𝑚2) 0.0149 0.0015 0.0012 0.0022

I

Q

(a) Push at𝐶

I

Q

(b) Semicircle at𝐶

I

Q

(c) Sweep at𝐶

Figure 7: Discernibility among the received signal variations

of different gestures at location 𝐶.

along a circle of radius 40 cm centered on the terminal (Figure 5a).

Figure 6a-6d illustrate the changes of CSI ratios in a complex plane

for the push gesture at four locations. In all figures, CSI ratios start

from blue points and end at the red points. We can observe that with

the exception of 𝐴, the CSI ratios mostly follow counterclockwise
circles. This is consistent with the property that CSI ratios rotate

counterclockwise when the reflection path length decreases as

introduced in Section 2.3. However, there are fewer circles at 𝐵 and
𝐷 than those at 𝐶 .
Next, we perform the same push gesture 30 times at each loca-

tion, and calculate the mean values and variances of reflection path

length changes induced by the movement. As shown in Table 1,

the mean values and the variances at 𝐴, 𝐵, 𝐶 and 𝐷 are quite dif-
ferent. We observed that the repeatability of signal variations

induced by the same gesture is location-dependent. Among

all four locations experimented, gestures at 𝐴 and 𝐶 have the least
and most repeatability, respectively.

To assess the impact of gesture orientations, we consider two

orthogonal directions of a single push gesture, namely, push (red

arrows) and side push (blue arrow) in Figure 5a. Figure 6c and 6e

shows the CSI ratios of push and side push at location 𝐶 with 90◦

of angle difference. Clearly, the CSI ratios exhibit very different

patterns for the same gesture with different orientations. We ob-

served that the received signal variations of the same gesture

are orientation-dependent.

Lastly, we investigate the discernability of different gestures

by comparing the CSI ratios of multiple gestures (Figure 5b) per-

formed at the same location. In addition to push, we also perform

two other gestures sweep and semicircle. Sweep is similar to side

push except that the user’s palm faces the receiver. A semicircle has

identical starting and ending locations as push but follows a half

circle instead of a straight line. All gestures are performed at𝐶 . Fig-
ure 7 shows that the CSI ratios of push and semicircle gestures have

quite similar patterns and the same number of circles. In contrast,

sweep generates a very different pattern.We thus observe thathand

gestures of different spatial motions do not always generate

distinctive signal variation patterns. Since some gestures are

easier to be differentiated than others, special considerations are

needed to design highly discernible gestures.

In summary, we observe empirically that i) the repeatability

of signal variations of the same gesture are location-dependent

and orientation-dependent, and ii) the signal variations induced by

different hand gestures may not be discernible. Consistent observa-

tions have been made from experiments in outdoor environments

using different types of commercial BSs (both microcell and macro-

cell).

4 USING FRESNEL ZONE MODEL TO GUIDE
ROBUST HAND GESTURE DESIGN

In this section, we first introduce the Fresnel zone model to un-

derstand the relationship between received signal variations and

hand movements. Then, based on the characteristics of Fresnel

zones around a 4G terminal, we derive gesture design principles

and present gesture design for robust hand gesture interaction.

4.1 Fresnel Zone Model and Its Characteristics
around A Receiver Terminal

When transmitter 𝑇𝑥 transmits RF signals with a wavelength of 𝜆
to receiver 𝑅𝑥 in free space, Fresnel zones refer to the concentric
ellipses with foci of the transmitter and the receiver as illustrated

in Figure 8 [26, 30, 34, 35]. The boundary of the 𝑛th Fresnel zone is
given by,

|𝑇𝑥𝑃𝑛 | + |𝑃𝑛𝑅𝑥 | − |𝑇𝑥𝑅𝑥 | = 𝑛𝜆/2, (5)

where 𝑃𝑛 is a point on the 𝑛-th ellipse and | · | represents the

Euclidean distance. The innermost ellipse (𝑛 = 1) is called the first
Fresnel zone. The 𝑛-th Fresnel zone corresponds to the elliptical
annuli between the (𝑛 − 1)-th and 𝑛-th ellipses. Clearly, the width
of the Fresnel zone keeps decreasing from the inside to the outside,

approaching 𝜆
2 .
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Figure 8: Geometry of the Fresnel zone and its distribution around a terminal.

Table 2: Design principles for robust gestures

Property of Fresnel Zones CSI Ratio Variation Pattern Design Principles

Diffraction effects in 1st Fresnel Zone (the

red area)

Poor repeatability of CSI ratio signal varia-

tions

(I) Avoiding gesturing in red region

Evenly spaced Fresnel zones in the blue area

due to reflection effects

Good repeatability of CSI ratio signal varia-

tions

(II) Gesturing in the blue area

Crossing two adjacent Fresnel zones corre-

sponds to a reflection path change of one

wavelength

The dynamic component of CSI ratio moves

one cycle in the complex plane

(III) Hand moving distance and patterns can

be easily profiled when the hand crosses mul-

tiple Fresnel zones perpendicularly

When a target is in the first Fresnel zone, diffraction is dom-

inant [35, 36]. The gain of the received signal is the sum of the

energy bypassing the target, which depends on the size and posi-

tion of the target. In contrast, reflection becomes dominant outside

the first Fresnel zone. Under the assumption that there is only one

dominant reflection path from a target, the received signal is the

aggregation of the two signals along the direct path and reflected

path. Since reflection introduces a phase shift of 𝜋 , when the target
is located in the boundaries of odd Fresnel zones (or even Fres-

nel zones), the two signals have the same phases (or destructive

phases) but different amplitudes, leading to superposed stronger

received signals (or weaker received signals). As illustrated in Fig-

ure 8, when a hand continuously crosses outwards (or inwards) the

boundaries of Fresnel zones, the amplitudes of the received signal

exhibit a sinusoid pattern, while its phase increases (or decreases)

with the reflection path length. Whenever the length of the reflec-

tion path changes by 𝜆, the phase of dynamic vector changes by 2𝜋 .
By the definition of CSI ratio in Section 2.3, 𝜆 reflection path length
change results in 2𝜋 phase change in the dynamic component, or
equivalently rotation of a complete circle. Furthermore, when the

reflection path increases, the dynamic component rotates clockwise,

and counter-clockwise vice versa. The exact pattern of the received

signal variations induced by a hand gesture depends on the number

and direction of the Fresnel zone crossed.

4.2 Implication on Gesture Design

As shown in Figure 8, the Fresnel zones around a terminal (𝑅𝑥 ) are
unevenly distributed. Such an uneven distribution has a number

of important implications on gesture design. First, in the red area

centered around the first Fresnel zone, where diffraction dominates

when a hand moves in that area, any slight deviation of a hand

moving trajectory leads to a significant difference in signal variation

patterns at the receiver. In contrast, as observed in Section 3.2, in the

high-density Fresnel zone area (the blue area in Figure 8), similar

hand moving trajectories crossing the Fresnel zones lead to similar

signal variation patterns at the receiver due to the even spacing of

Fresnel zones there. Second, in the dense Fresnel zones, given the

same hand moving distance, when the hand moves perpendicular

to the boundaries of Fresnel zones, more zones can be crossed.

Equivalently, there are more phase changes in CSI or CSI ratio.

Third, as observed in Section 3.2, when performing the same gesture

at the same location but different orientations, it is expected that the

moving trajectories cross different numbers of Fresnel zones. As a

result, they induce different signal variations. Lastly, to distinguish

different gestures, we would like to have repeatable signal variation

patterns for individual gestures, but very different signal variation

patterns among different gestures, e.g., crossing different numbers

of Fresnel zones or in different directions.

To this end, we summarize the key properties of the Fresnel zones

around a 4G terminal and the corresponding guiding principles for

robust gesture design in Table 2.

4.3 Robust Hand Gestures

From the design principles I and II, we know that for better repeata-

bility, gestures should be performed in the blue area (called the

optimal area). Principle III implies that gesture movements should

be perpendicular to the Fresnel zone boundaries (called the optimal

orientation) and cross the Fresnel zone continuously. What remains

to tackle is to design multiple discernible gestures. We propose the

template of gesture interaction which can be used in both indoor

and outdoor environments.
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Table 3: Template for gesture interaction.

Pattern Movement Example

+d Away from the receiver in straight line Forward

-d Towards the receiver in straight line Backward

+d-d Away from and towards the receiver in

straight line

Continue

-d+d Towards and away from the receiver in

straight line

Cancel

+d-d+d-d Away from and towards the receiver twice

in circle line

Switch on

-d+d-d+d Towards and away from the receiver twice

in circle line

Switch off

Receiver

LOS

Receiver

LOS

Transmitter

-d+d+d-d

Hand

+d-d+d-d -d+d-d+d

+d -d

Switch on Switch offCancelContinue

Forward Backward

Figure 9: Example gestures for interaction. Gestures start

from the ends (in red) and end at the heads (in blue) of ar-

rows with the hand palm facing to the terminal.

To eliminate the need for acquiring training data and to achieve

lightweight and robust gesture recognition, we only consider one

salient pattern in rotation directions of CSI ratios, namely, clockwise

and counter-clock rotations. As a hand crosses a series of Fresnel

zones, the reflection path length changes continuously. Denote the

increase of reflection path length by symbol +, and the decrease by

symbol −. When the reflection path increases by a distance 𝑑 (e.g.,
when the hand moves away from the receiver), the corresponding

signal variation pattern is denoted by +𝑑 . Similarly, one can define
other unique signal variation patterns such as (−𝑑), (+𝑑 − 𝑑), (+𝑑 −

𝑑 + 𝑑), etc. We show six basic signal variation patterns in Table 3.
Noted that more gestures can be designed by combining different

directions and distances.

By mapping well-defined signal variation patterns to different

gestures, we can achieve gesture recognition with high accuracy

without training. In Figure 9, six gestures are shown as examples for

remote device control such as TVs in indoor scenarios and digital

screens in outdoor scenarios. These gestures can be used to switch

on and switch off a device, continue and cancel an action, move

forward and backward, etc.

5 LTE-BASED HAND GESTURE
RECOGNITION

As shown in Figure 10, the proposed gesture interaction system

consists of five main modules: data acquisition, profile extraction,

transmitter’s direction estimation, gesture recognition, and device

control. We acquire the data from downlink LTE signals, which can

Real-Time Data Acquisition

Base Station

4G Device

Hand Gesture

LTE CSI Stream

Data Denoising
Profile Extraction

Identifying the direction 
of the LTE Base Station

Motion Segmentation
Doppler Speed

Gesture Recognition

Interaction

Phase Change Extraction

Reflection Path Length 
Change Extraction

Figure 10: Flow chart of LTE-based gesture interaction.

be used to extract the path length change profile. Our system esti-

mates the direction of the BS and recognizes gestures sequentially

with this extracted profile as input.

5.1 Data Acquisition

A 4G terminal with two antennas extracts CSI from downlink LTE

signals transmitted from a BS (either indoor or outdoor). Two CSI

streams from the receiver are collected and are used to derive the

CSI ratio for each subcarrier as defined in Equation (4). There are a

total of 12 subcarriers utilized out of a maximum 200 subcarriers

in LTE. The resulting CSI ratios are then further processed by

MATLAB to extract motion profiles.

5.2 Profile Extraction

5.2.1 Denoising. To eliminate the remaining noises, we apply a

Savitzky-Golay filter to the CSI ratios, which smooths digital sam-

ples without introducing excessive distortion by fitting successive

subset of data points with low degree polynomials. In our imple-

mentation, the polynomial order and the frame length are set as 2

and 11, respectively.

5.2.2 Motion segmentation. We identify data segments correspond-

ing to the designed hand movements by observing the Doppler

speed of the CSI ratio inputs. We apply the MUSIC algorithm [12]

to extract Doppler speed induced by a movement as shown in Fig-

ure 11a. The basic idea of MUSIC is to analyze the eigenvectors of

the𝑀 ×𝑀 correlation matrix 𝑅𝑥 of the received𝑀 CSI samples:

𝑅𝑥 = 𝐸
[
𝑍 (𝑓 )𝑍 (𝑓 )∗

]
, (6)

where ∗ refers to the hermitian (conjugate transpose) of the vector

and 𝑍 (𝑓 ) denotes the continuous 𝑀 CSI ratios samples obtained
from the subcarrier with frequency 𝑓 . MUSIC partitions the eigen-
vectors of 𝑅𝑥 into 2 subspaces: the signal subspace 𝐸𝑠 constructed
by 𝐿 eigenvectors and the noise space 𝐸𝑛 constructed by eigenvec-
tors corresponding to the smallest𝑀 − 𝐿 eigenvalues. These two
subspaces are orthogonal. Thus, the speed spectrum function can

be expressed as:

𝑃 (𝑣)𝑀𝑈𝑆𝐼𝐶 =
1

�𝑎(𝑣)∗𝐸𝑛𝐸𝑛∗ �𝑎(𝑣)
, (7)

where 𝑣 denotes the path length change speed, �𝑎(𝑣) equals to[
1, e−j2𝜋f

vΔt2
c , e−j2𝜋f

vΔt3
c , ..., e−j2𝜋f

vΔtM
c

]
and Δ𝑡𝑖 denotes the sam-

pling interval between these two samples. We use the sliding win-

dow method to process the data. For a good trade-off between

processing time and profile resolution, the window size is set to

50 samples with a step size of 10. If the profile power is above a
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(a) Motion segmentation
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(b) Tangent phase (c) Unwrapped tangent phases (6
subcarriers)

(d) Change of reflection path length

Figure 11: Process of profile extraction.
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Figure 12: Reflection path length change whenwalking around a terminal in two circles clockwise from four different starting

locations.

certain threshold, motion is detected. The threshold is pre-defined

but can be updated based on known periods of inaction.

5.2.3 Phase change Extraction. Recall that the phase changes of the

dynamic component of the CSI ratio have quantitative relationships

with dynamic path length changes induced by hand movements. As

mentioned in Section 2.3, once motion segments are identified, we

calculate the vector along the tangential direction by subtracting a

complex value of each sample point from its immediate successor.

The phase changes of the resulting sequence (Figure 11b) give the

rotation direction of the CSI ratio samples in the complex plane (i.e.,

the moving direction of the circular arcs) and the changes in the

reflection path length. After that, we unwrap the phase sequence in

each subcarrier by adding multiples of 2𝜋 when the phase changes
from −𝜋 to 𝜋 (Figure 11c).

5.2.4 Determining the Reflection Path Length Change. In Section 2.3,

we know that a change in the reflection path by one wavelength

induces a phase change of 2𝜋 in the complex plane. We first take
the average of the unwrapped phase changes among all subcar-

riers and calculate the path length changes by multiplying phase

changes with 𝜆
2𝜋 , where 𝜆 denotes the wavelength. We then apply a

Savitzky-Golay filter to smooth the result. As shown in Figure 11d,

the average reflection path changes over time constitute the pro-

file of a gesture, which is used in direction estimation and gesture

recognition.

5.3 Identifying the Direction of the BS

Determining the best location and orientation of dynamic hand

gestures require the knowledge of the direction of a 4G BS (trans-

mitter) relative to the terminal, which is generally not known a

priori for users.

The key idea is to leverage the uneven distribution of the Fresnel

zones around the receiver to estimate the direction of the LTE BS.

As shown in Figure 8, the Fresnel zones are sparse near the LoS

(the red colored area) and are dense at the opposite direction of the

BS (the blue colored area). Therefore, when a user walks around

the receiver in circles at a constant speed, we will observe different

reflection path profiles due to the changes in Fresnel zone density.

Figure 12 shows the reflection path change when walking along

two circles with different starting locations. We can see that all of

them undergo two valleys and two peaks, corresponding to two

walking circles. The peaks occur when the user is at the far end of

the receiver (at 180◦ in Figure 8), while the valleys occur when the

user is between the transmitter and the receiver (at 0◦).

Let Δ𝑇 be the time it takes from an arbitrary starting location to
the first appearance of a peak in dynamic path changes. The amount

of time to walk a single circle is given by𝑇 = (𝑡𝑒 − 𝑡𝑠 )/𝑛𝑢𝑚_𝑐𝑖𝑟𝑐𝑙𝑒𝑠 ,
where 𝑡𝑠 and 𝑡𝑒 are the start and finish times to complete all circles,
and 𝑛𝑢𝑚_𝑐𝑖𝑟𝑐𝑙𝑒𝑠 is the number of circles traversed by the user.
The ratio between Δ𝑇 and 𝑇 is proportional to the angle from the
starting point to the direction of 180◦ (i.e., the opposite direction of

the LTE BS). Specifically, the angle is calculated as: 𝜃 = Δ𝑇 /𝑇 ×360◦.

5.4 Gesture Recognition and Device Control

To distinguish different gestures, we slice each path length change

profile into monotone segments and assign each with a binary code.

We denote the decrease and increase in reflection path length by

binary codes ‘0’ and ‘1’, respectively. For instance, the profile in

Figure 11d is denoted as binary codes ‘01’. Since the pre-defined

gestures can also be represented as binary codes according to their

signal variation patterns, by matching the binary codes of profiles

and that of designed gestures, we can accurately recognize the per-

formed gestures. To reduce false alarms, we only consider gestures

that last less than 3 seconds with individual segments correspond-

ing to path length changes less than 0.8 meters. Such assumptions
are reasonable due to the limited range of motion of human limbs.

The durations of any two segments should be no more than 1.5
times of one another.

Once a gesture is recognized, the system will send the corre-

sponding control command to the device to be controlled.
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Figure 13: Direction estimation errors of BS direction find-

ing.

6 EVALUATION

In this section, we present the evaluation results of identifying the

direction of a BS and gesture recognition under various circum-

stances.

6.1 Identifying the Direction of the BS

To obtain the ground truth location of the transmitter for direction

estimation, we use an indoor femtocell as the transmitter. The

hardware setup is similar to that in Section 3. The height of the

receiver is 1 m. Experiments are conducted in three indoor areas: a

hall (of size 6 × 9𝑚2), a living room (of size 7 × 4𝑚2) with several
furniture, and a large meeting room (of size 7 × 6 𝑚2) equipped
with desks and chairs.

To verify the effectiveness and robustness of the proposed direction-

finding method, we vary the user who conducts the experiments,

the height of the BS, and the distance and the relative position be-

tween the transmitter and the receiver. In each experiment, we ask

volunteers to circle around the receiver twice from four different

starting locations in 0◦, 90◦, 180◦ and 270◦ (shown in Figure 8).

Each experiment is repeated twenty times.

6.1.1 Overall performance. Figure 13a shows the overall perfor-

mance in three test areas. The mean absolute errors (MAE) in three

areas are 13.36◦, 12.95◦ and 10.77◦, respectively. We observe that
the change of environments or starting location has little effect

on the accuracy of direction finding. Note that the errors in all

cases are under 15◦. This implies that if we perform gestures at

the optimal location 180◦, the actual location falls into the sector

ranging from 165◦ to 195◦, i.e., the dense blue area in Figure 8.

6.1.2 Impact of user diversity. We conduct experiments in the hall

with the help of 5 volunteers (1 female and 4 males). The height

of the transmitter is 2 m and the distance between the transmitter

and the receiver is 4 m. Figure 13b shows the estimated results for

all 5 users. Though variation exists, all volunteers can reliably find

the direction of the BS.

6.1.3 Impact of the relative position of the transmitter and the re-

ceiver. To explore the impact of relative positions of the transmitter

and receiver, we put the transmitter at the center of the hall at

height 2 m and place thereceiver at 6 locations around the transmit-

ter with a space of 60◦. The distance between the transmitter and

the receiver is 3 m. The results are shown in Figure 13b. It can be

observed that the proposed direction finding method is generally

robust to the relative positions. At position 6, the estimation error

is larger than those at other positions. This is because when the

receiver is close to a wall, the secondary reflection from the wall

may be comparable to the primary reflection from the human body,

causing deviation in the estimation result.

6.1.4 Impact of the distance between the transmitter and the receiver

and the height of the BS.. In the next set of experiments, we vary

the distance between the transmitter and the receiver (3m, 4 m,

5 m and 6 m), and the height of the transmitter (1.5 m, 2 m and
2.5 m). As shown in Figure 13b, the direction estimation error is
consistently small in all settings.

6.2 Gesture Recognition

To evaluate the performance of gesture recognition, we conduct

extensive experiments in three representative 4G scenarios, namely,

both transceivers are indoor (Scenario 1), the transmitter is outdoor

and the receiver is indoor (Scenario 2), and both transceivers are

outdoor (Scenario 3).

Figure 14 shows the experimental settings for gesture recogni-

tion. Both indoor and outdoor commercial microcell BS are used

as transmitters. A total of 16 receiver locations (9 indoor loca-

tions marked as red stars and 7 outdoor locations marked as blue

stars) are evaluated in the test area. 10 volunteers (4 females and

6 males between age 19 to 27 with different heights and weights)

have been recruited. We choose 6 gestures in Table 3 and denote

them by letter 𝑎 to letter 𝑓 (top to bottom). All gestures are per-
formed at the optimal location as inferred by the proposed direction

finding method. At each location, each gesture is performed 30

times by each volunteer. The recognition accuracy is calculated by:

(𝑇𝑜𝑡𝑎𝑙 − 𝐹𝑃 − 𝐹𝑁 )/𝑇𝑜𝑡𝑎𝑙 , where 𝑇𝑜𝑡𝑎𝑙 , 𝐹𝑃 and 𝐹𝑁 denotes total
number of trials, false positive and false negative of each gesture,

respectively.

6.2.1 Scenario1: Both transceivers are indoor. We consider 6 dif-

ferent receiver locations in 4 different environments as shown in

Figure 14a. Figure 15a shows the average accuracy of recognizing

different gestures. It can be observed that the average accuracy is

higher than 95% in all locations. Minor degradation can be observed

when gestures are performed in bedroom 2 (𝑅𝑥4). This can be pri-
marily attributed to the higher RF attenuation through two walls.

We can also find that, although in the same rooms, 𝑅𝑥1 and 𝑅𝑥5
have lower accuracy than those of 𝑅𝑥2 and 𝑅𝑥6. This is because
𝑅𝑥1 and 𝑅𝑥5 are near walls. The secondary reflection from the wall
interferes with the signal reflected by hand. As a general rule of

thumb, we recommend that gestures should be performed away

from objects in the environment.

6.2.2 Scenario 2: Transmitter is outdoor and receiver is indoor. We

place a receiver at 3 different indoor positions for testing, all of

which are roughly 100 meters away from an outdoor BS. As shown

in Figure 14b, 𝑅𝑥7 is in the corridor of the building and behind the
concrete wall of the meeting room where 𝑅𝑥8 and 𝑅𝑥9 are placed.
Figure 15b shows the average accuracy of recognizing 6 gestures

in 3 different indoor positions. We observed that 𝑅𝑥7 in the narrow
corridor has lower recognition accuracy than other positions. This

is due to the RF attenuation through the concrete wall, resulting in

weak signal reflected by hand movements.
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(a) Scenario 1. (b) Scenario 2 and 3(a). (c) Scenario 3(b).

Figure 14: Experimental settings for gesture recognition using commercially deployed indoor and outdoor microcell BSs.

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3(a). (d) Scenario 3(b).

Figure 15: Gesture recognition using an indoor and an outdoor microcell BS.

6.2.3 Scenario 3: Both transceivers are outdoor. To evaluate the per-

formance of gesture recognition when the 4G terminal in outdoor

environments, we conduct experiments in 7 locations of two typical

outdoor environments (shown in Figure 14b and Figure 15c). In

the first setting, 𝑅𝑥10 is on an open platform of the fifth floor of a
building. 𝑅𝑥11 and 𝑅𝑥12 are on the ground open space between the
building and a BS. In the second setting, 𝑅𝑥13, 𝑅𝑥14 and 𝑅𝑥15 are
in a garden of a residential area. 𝑅𝑥16 is on the walkway between
an outdoor BS and the garden. Figure 15c shows the recognition ac-

curacy of the 6 gestures. We observed that the average recognition

accuracy of 𝑅𝑥10 is higher than other locations in the environment
shown in Figure 14b. This is a clear direct light-of-sight path be-

tween the BS and 𝑅𝑥10. We also observe from Figure 15d that the
average recognition accuracy of locations in Figure 14c is generally

lower than that in Figure 14b. This can be attributed to complex

multi-path propagation from trees, utility poles or pedestrians. Dy-

namic disturbances (e.g., from walking pedestrians) near the 4G

terminal can introduce additional dynamic components beyond that

from the designed hand gestures, inducing unexpected received

signal variation patterns.

6.2.4 Impact of gesture locations. To further verify the impact of

gesture locations, we compare the performance of gesture recog-

nition in the optimal location and in the first Fresnel zone when

the receiver locates in 𝑅𝑥6 of Figure 14a. Each gesture is performed
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Figure 16: Effects of gesture locations and user diversity.

60 times at the optimal position and in the first Fresnel zone. As

shown in Figure 16a, the overall gesture recognition in the optimal

area achieves accuracy as high as 98% which is significantly better

than that in the first Fresnel zone. This confirms design principles I

and II in Section 4.2.

6.2.5 Impact of user diversity. We also evaluate the impact of

user diversity on gesture recognition in both indoor and outdoor

environments. We ask 10 volunteers to perform gestures at 𝑅𝑥6
in Figure 14a and 𝑅𝑥4 in Figure 14b. Each gesture is performed 30
times. Figure 16b shows that the performances of different users

are marginally different in both indoor and outdoor environments,

which indicates that the proposed system is robust to different

users. The overall accuracy in indoor and outdoor are 98.6% and
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98.0%, respectively. Since the indoor location is closer to the BS

and experiences less interference, the recognition accuracy at the

locations is slightly higher than that of the outdoor locations.

In addition to the above experiments, we also tested the proposed

system to control a TV remotely for one day in a smart home

with the indoor microcell BS (see https://youtu.be/e_OiQVkDExk).

Similar accuracy has been observed throughout the day.

6.3 Discussion

6.3.1 Limitations. Since the model assumes a single dynamic com-

ponent, the recognition accuracy of the system decreases when

there are multiple moving objects near the terminal. False negatives

and false positives indeed exist in practice. A false negative (or miss

reporting) happens when the execution of a gesture significantly

deviates from the specification. For instance, when the range of mo-

tion is much smaller than 𝑑 or the actual orientation of the gesture
is far from the optimal one, the resulting patterns may be dissimilar

to the known profiles. A false positive (or false alarm) may occur

in the presence of movements of the face, hand or other parts of

the human body, such as raising hands, moving the body forth

and back, or other moving objects in the surroundings. These null

movements may generate patterns similar to the designed patterns.

Such errors can be mitigated by considering the duration of the

gestures.

6.3.2 Applicability to other wireless systems. The proposed CSI

ratio calculation and gesture recognition solution are applicable to

other wireless systems as long as OFDM and MIMO are utilized in

the physical layer. Examples include WiFi 802.11g and above, 5G

cellular networks. The design principles derived from Fresnel zone

analysis are expected to provide insights to the design of other RF

sensing solutions.

7 RELATEDWORK

7.1 Non-RF based gesture recognition.

Non-RF based techniques have been widely used in gesture recog-

nition, including wearable devices [9, 31] , computer vision [13, 18]

and sound waves [14, 22, 28]. Wearable device based methods use

dedicated sensors worn by users’ hands for gesture recognition. For

example, FDSVM [31] uses a wearable 3-dimensional accelerometer

to recognize 12 gestures with high accuracy. Wearable ring-type [9]

or watch-type [25] sensors have been used for recognizing vari-

ous finger or hand gestures for text input or appliances control.

However, these methods all require users to wear physical sensors,

which is inconvenient. Computer vision based systems (such as Mi-

crosoft Kinectand Leapmotion [13]) use cameras or infrared sensors

to reconstruct the depth information from images. Although these

approaches do not require a user to wear any sensors, these still rely

on dedicated hardware and cannot work well in poor lighting con-

ditions. Acoustic based approaches use speakers and microphones

to gather echoes of the hand to recognize gestures [22]. LLAP [28]

uses phase change of the sound signal for motion sensing. Finge-

rIO [14] uses OFDM modulated sound signals for centimeter-level

finger tracking. While promising, the sonar based systems only

have limited sensing range and have risk of privacy leak due to the

fact that devices record sound waves while working.

7.2 RF-based gesture recognition.

Recently, RF-based gesture recognition has been actively explored.

For instance, SideSwipe [39] and AllSee [10] use TV and cellular

transmissions to recognize hand, arm, and leg gestures, respec-

tively. WiTrack [3] also uses custom radar transmissions to detect

pointing gestures. Gestures can also be sensed with the Channel

State Information (CSI) in an RF communication system like WiFi.

WiKey [4] andMudra [37] extract unique patterns in the time-series

of CSI values of WiFi signals to identify different finger gestures.

More recently, WiMu [24] applies the Short Time Fourier Trans-

form (STFT) on denoised CSI stream and generates virtual samples

to enable multi-user gesture recognition. Most of them are learning-

based approaches. They rely on distinguishable feature patterns and

use machine learning methods to classify different gestures. How-

ever, trained classifiers may not work properly when the system

setting changes. Besides, these works fail to consider that the varia-

tions of received CSI signals are highly dependent on the locations

and orientations of gestures. To overcome these problems, Widar

3.0 [40] derives and estimates the velocity profiles of gestures at

the signal level and attempts to construct a consistent signal profile

independent of location and orientation. However, it requires one

transmitter and multiple receivers placed orthogonally around the

users to record gestures from different views, which is usually not

possible in 4G/5G scenes.

7.3 4G/5G-based sensing.

Benefiting from the wide radio signal coverage of 4G and 5G signals,

it is attractive to leverage these ubiquitous signals for sensing [6].

With the CSI extracted from CRS of LTE signals, it is possible

to localize the device with an error of 43 m Root Mean Square

(RMS) for outdoor scenes [11] and with an error of 1 m by using

fingerprinting-based approaches for indoor scenarios [19, 20]. Sys-

tem in [7] investigates the possibility to use LTE signals for crowd

density estimation by extracting statistical features of Reference

Signal Received Power (RSRP) in LTE. Works in [21]show the capa-

bility of LTE signals for motion detection. Besides 4G-based sensing,

a few 5G prototype systems are proposed for preliminary human

sensing, such as crowd-size detection [8] and walking speed recog-

nition [8]. However, no gesture recognition systems using 4G/5G

signals are reported before. In fact, existing studies on 4G/5G-based

sensing mainly focus on coarse-grained activity, and there is no

work exploring small scale movements like hand gestures.

8 CONCLUSION

In this paper, we empirically found that the repeatability and dis-

cernibility of gestures in LTE-based gesture recognition systems

are location-dependent and orientation-dependent. By analyzing

the Fresnel zone characteristics around a 4G terminal, we provided

guiding principles for training-free robust gesture designs and de-

veloped a robust gesture interaction system. Extensive experiments

showed that the proposed system can achieve high accuracy in

estimating the direction of BSs and gesture recognition in various

environments and configurations for different users.
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