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A Force-directed Approach to Seeking Route
Recommendation in Ride-on-demand Service

Using Multi-source Urban Data
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Zhiwen Yu, Senior Member, IEEE, and Daqing Zhang, Fellow, IEEE,

Abstract—The rapidly-growing business of ride-on-demand (RoD) service such as Uber, Lyft and Didi proves the effectiveness of their
new service model – using mobile apps and dynamic pricing to coordinate between drivers, passengers and the service provider, to
manipulate the supply and demand, and to improve service responsiveness as well as quality. Despite its success, dynamic pricing
creates a new problem for drivers: how to seek for passengers to maximize revenue under dynamic prices. Seeking route
recommendation has already been studied extensively in traditional taxi service, but most studies do not consider the effects of taxis
and passengers on the seeking taxi simultaneously. Further, in RoD service it is necessary to consider more factors such as dynamic
prices, the status of other transportation services, etc. In this paper, we employ a force-directed approach to model, by analogy, the
relationship between vacant cars and passengers as that between positive and negative charges in electrostatic field. We extract
features from multi-source urban data to describe dynamic prices, the status of RoD, taxi and public transportation services, and
incorporate them into our model. The model is then used in route recommendation in every intersection so that a driver in a vacant
RoD car knows which road segment to take next. We conduct extensive experiments based on our multi-source urban data, including
RoD service operational data, taxi GPS trajectory data and public transportation distribution data, and results not only show that our
approach outperforms existing baselines, but also justify the need to incorporate multi-source urban data and dynamic prices.

Index Terms—Ride-on-demand, dynamic pricing, seeking route, driver revenue.

F

1 INTRODUCTION

THE birth and success of ride-on-demand (RoD) service
such as Uber, Lyft and Didi mark a change in city

transportation. Compared to the traditional taxi service,
RoD service offers a convenient, affordable and flexible
experience for passengers; for drivers, it allows them to
arrange working hours flexibly, and to enter the service
without the hassle of applying for licenses or medallions.
An increasing amount of passengers are now using RoD
services as an everyday choice.

RoD service uses a new service model that distinguishes
itself from taxi service, with two key features – mobile-app-
based and dynamic pricing.
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Mobile-app-based. In a RoD service, both passengers
and drivers rely on the specially designed mobile apps on
their smart phones. For passengers, they use the passenger
app to request for rides, to search for nearby drivers, to
find out the distribution of dynamic prices nearby, and to
pay for rides. For drivers, they use the driver app to view,
accept or decline nearby passenger requests, to find out
the distribution of dynamic prices across the city, and to
manage and review recent rides. In fact, mobile apps serve
as a bridge that connects drivers, passengers and the service
provider – in such a way that the three parties can share
information through mobile apps, to and from each other.
It is true that in recent years the taxi services in some cities
also resort to mobile apps to manage trips, but the number
of trips created in this way is still relatively small, and in
RoD service all trips are created through mobile apps.

In addition to information sharing, the mobile-app-based
feature also enables drivers and passengers to match in
advance. In taxi service, most non-reserved trips are created
through street-hailing, in which the driver and the passen-
ger have to be within sight of each other. Comparatively, in
RoD service, the driver and the passenger can be matched
when they are close enough (e.g., 1 or 2 km), and the service
provider will then attempt to match the closest driver to the
passenger. Matching-in-advance is possible in RoD service
because the service provider has full knowledge of the lo-
cation and status of both drivers and passengers. Matching-
in-advance helps to increase matching probability, as it is
no longer necessary for a driver to be in exactly the same
location with a potential passenger to pick him up.

Authorized licensed use limited to: Telecom SudParis ( Frmly Telecom et management SudParis INT). Downloaded on October 03,2021 at 19:27:03 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3033274, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXXX 2020 2

Dynamic pricing. In most RoD services, dynamic pric-
ing mechanism is used to manipulate the supply (i.e., the
number of cars on the road) and demand (i.e., the number
of passenger requests). Basically, when demand exceeds
supply, a higher price is used to attract more drivers to
come and to defer requests from passengers not in a hurry;
when supply exceeds demand, a lower price does just the
opposite. In most cases, dynamic pricing is represented by
a dynamic price multiplier, and the total trip fare is the
product of a dynamic multiplier (based on the supply and
demand condition) and a fixed normal price (based on trip
time and distance).

The introduction of dynamic pricing indeed makes the
service and prices more flexible, and improves the service’s
responsiveness to changes in supply or demand. However,
it also creates a new problem for drivers: how to seek for
passengers to make more revenue under dynamic pricing? Studies
on this problem can be roughly divided into two directions
– seeking strategies analysis and seeking route recommendation.
Seeking strategies analysis has already been studied in [1] –
it is on the macro-level, and focuses on mining general, prof-
itable strategies that drivers should keep in mind in seeking
for passengers. Seeking route recommendation is on the
micro-level, and tries to guide a driver, at every intersection,
to the right road segment that may lead to a higher profit.
Here, we concentrate on seeking route recommendation.

Seeking route recommendation receives little attention in
RoD service. In taxi service, it has been studied thorough-
ly using a number of heuristics and algorithms including
recommending a driver to local or global hotspots [2], mod-
elling a driver’s behavior using a Markov decision process
model [3], [4], simulating a driver’s behavior using a force-
directed approach [5], and etc. In RoD service, however,
even the macro-level studies (i.e., seeking strategies analysis
[1]) are rare, and are always in non-rigorous forms such as
blogs or news stories. There are literally no, to the best of
our knowledge, studies on seeking route recommendation
that consider new features in RoD service such as mobile-
app-based and dynamic pricing.

Because of RoD service’s new features, seeking route
recommendation in RoD service requires the consideration
of three more factors than in taxi service:

• Matching-in-advance: As mentioned, matching-in-
advance allows a driver and a passenger to match
before they come to see each other, and it increases
matching probability. We need to take into account
this feature in driver behavior simulation.

• Dynamic pricing: As one of the key features, dy-
namic pricing should be considered in modelling a
location’s or region’s attractiveness to a driver. In
taxi service, a region with a higher demand is already
good enough. But in RoD service, among two regions
with the same level of demand, the region with
a higher dynamic price multiplier maybe a better
suggestion for a driver.

• Status of other transportation services: Though with
some new features, RoD service is similar to taxi
service, and hence there is a complex relationship
between them. Also, profitable seeking locations in
RoD service are related to other public transportation

services such as bus or metro. [1], [6] conclude from
real data that RoD and these services are complemen-
tary instead of competitive to each other.

In this paper, we employ a force-directed approach to
tackle the seeking route recommendation problem in RoD
service. The force-directed approach borrows the concept
of physical interaction in a electrostatic field – opposites
attract and likes repel. By analogy, if we regard vacant
cars as positive point charges and potential passengers as
negative point charges, then the relationship between vacant
car and passenger is similar to charge interactions: poten-
tial passenger attracts vacant car, while vacant car repels
each other. For a vacant car at a particular intersection,
the aggregated force, including the repulsive and attractive
forces from vacant cars and potential passengers nearby,
is calculated and the road segment closest to its direction
should be recommended to the driver. This approach has
two advantages: (a) the effects of vacant cars and potential
passengers on a seeking vacant car could be considered
simultaneously; and (b) drivers at different locations have
different aggregated forces, and hence they generally receive
different road segment recommendations. This prevents the
common problem of recommending the same route to many
drivers in other approaches. In modelling such forces, we
introduce multi-source urban datasets, from which features
are extracted to describe not only the status of RoD service,
but also dynamic prices and status of other transportation
services (i.e., taxi, bus and metro). The matching between a
vacant car and a potential passenger is achieved when the
car arrives at an intersection and when there is at least one
potential passenger close enough.

Our contributions are three-fold:

• Our study is one of the very few on seeking route
recommendation in RoD service. Previous relevant
studies either are confined to taxi service, or fail to
consider new features such as dynamic pricing. In-
stead, we take into account three more factors in RoD
service – matching-in-advance, dynamic pricing, and
status of other transportation services. This helps us
to describe the status of RoD service more accurately,
and to improve the effectiveness of recommendation.

• We are the first, as we know, to introduce multi-
source urban data into seeking route recommenda-
tion. This allows us to extract features to describe the
status of RoD service, dynamic prices, and status of
other transportation services, and these features are
used in modelling the attractive and repulsive forces.

• We adopt and extend the force-directed approach
in our study. It helps us to model drivers’ seeking
behavior, with the two advantages mentioned above.
We extend this approach by introducing multi-source
urban data and considering matching-in-advance,
dynamic pricing as well as status of other transporta-
tion services. This approach is evaluated by extensive
experiments based on real data.

The remainder of the paper is organized as follows.
Section 2 reviews related work and Section 3 explains our
multi-source urban data. In Section 4 we present some
patterns in RoD service, including utilization rate, passenger
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density, driving pattern and revenue efficiency. The force-
directed approach is discussed with details in Section 5. E-
valuations of our approach based on real data are conducted
and presented in Section 6. Some discussions are shown in
Section 7, and Section 8 concludes the paper.

2 RELATED WORK

Seeking route recommendation has already been studied
extensively in taxi service, but only receives very limited
attention in emerging RoD services. We first review related
work in RoD service, then discuss previous studies on
seeking route recommendation. As to the methodology we
use, we also review related work in force-directed approach.

RoD Service. RoD service, also known as on-demand
ride hailing, is a relatively new transportation service com-
pared to taxi service. There are thus much fewer studies on
RoD service. Based on the similarities between RoD and taxi
service, a number of studies compare the differences of the
price, waiting time, incentives and service quality between
them from a data statistical perspective. For examples, [7]
claims that Uber can reduce the waiting time significantly
but may not always give the lowest price; [8], [9], [10] study
and discuss the change of market share of taxi and public
transportation services before and after Uber’s entrance;
[11] performs a spatio-temporal head-to-head comparison
between these two services; [12], [13] focus on the market
effects of Uber’s entrance, such as the relationship with
public transit, the changes to drivers’ behavior, etc.

As mentioned, dynamic pricing is one of the key features
of RoD service, and is also studied from different perspec-
tives. For examples, [14], [15], [16] concentrate on dynamic
pricing’s effects in balancing and redistributing the sup-
ply and demand, increasing driver revenue and reducing
passenger waiting time; [17] is one of the early work that
tries to mine data based on simulated users and evaluate
Uber’s surge pricing mechanism treating it as a black-box;
[6], [18], [19], instead, study and analyze the demand, the
effect of dynamic pricing, passengers’ reaction to prices,
and dynamic price prediction, based on real data from
typical RoD services. Besides studying RoD service based on
data and computation methodologies, some studies analyze
dynamic pricing [14] and its effects on supply elasticity [20]
and consumer surplus [21] from economics perspective.

Seeking route recommendation. Seeking strategies anal-
ysis and route recommendation are two steps in enabling
drivers to earn more, and both of them have been studied
extensively in taxi service. Seeking strategies analysis can
be regarded as macro-level studies. In taxi service, for
examples, seeking strategies are studied by mining GPS
trajectories [22], [23], to identify the most profitable strate-
gies under different circumstances. In RoD service, studies
are rare and few of them consider dynamic pricing. As
an example, [1] studies seeking strategies by mining from
multi-source urban data including ROD data, taxi data,
public transportation service data and POI data.

For seeking route recommendation, considerable efforts
have been done in taxi service. For instances, [24] recom-
mends routes to drivers to minimize the distance between
the taxi and an anticipated customer request; [3], [4] build
a Markov Decision Process model to help drivers to earn

more; [25] uses reinforcement learning to solve the same
problem; [26] also uses Markov Decision Process model,
but to recommend routes for electric taxis, by incorporating
the charging process and battery constraint; [5] applies
the force-directed approach and recommends routes to taxi
drivers; etc. There are also studies aiming to improve driver-
passenger matching probability from other perspectives –
e.g., [27] introduces the concept of dynamic waiting to en-
able one driver to be matched to more than one passengers.

In RoD service, however, seeking route recommendation
has not received extensive attention. For example, [28] at-
tempts to optimize earning in on-demand ride-hailing based
on theoretical modelling of drivers, cities and the service
itself. Most existing studies do not take into account new
features in RoD service such as dynamic pricing.

Force-directed approach. It models a problem as a sys-
tem of particles with forces acting between them, and the
system would then go into an equilibrium or behave in some
particular way with the interaction forces. This approach
has been widely used in design automation [29], graph
visualization [30], map-matching [31], urban computing [5],
and etc. Among them, [5] tackles a problem similar to ours
– seeking route recommendation in taxi service.

Different from the above works, our study on seeking
route recommendation emphasizes the differences between
RoD and taxi service. We summarize that “mobile-app-based”
and “dynamic pricing” are two key features in RoD service,
and claim that we should take into account matching-in-
advance, dynamic pricing, and status of other transportation
services when recommending routes to drivers. The joint
effort of any one or more of these three factors on seek-
ing route recommendation in RoD service has never been
studied before. While adopting and extending the force-
directed approach, we also show new patterns in RoD
service, study the way of incorporating features from multi-
source urban data that describe dynamic prices and status
of other transportation services, evaluate the effectiveness of
such incorporation, and etc. Besides, our study is based on
city-scale real multi-source urban data, making our results
more tenable.

3 MULTI-SOURCE URBAN DATA

We extract features from multi-source urban data to describe
the status of RoD service, dynamic pricing, and status of
taxi, bus and metro service. In this section, we explain the
RoD service data (including the order data, GPS trajectories
data, and the event-log data), taxi GPS trajectories data and
bus & metro distribution data. Tab. 1 shows examples of
data entries in these datasets, for illustration purpose only.

3.1 RoD Service Data
RoD service data is certainly the fundamental data we use
in this study. Studies on taxi services mostly rely on GPS
trajectories data that can describe how taxis move during
a certain period. In RoD service, however, more dataset-
s are available due to the mobile-app-based feature. All
communication messages between passengers, drivers and
the service provider are carried out through mobile apps.
Hence, besides GPS trajectories data of RoD cars, there are
also order data and event-log data available.
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TABLE 1
Examples of data entries in multi-source urban data.

Dataset Example data entry
RoD order data boarding time: “2015-12-21 13:55”, boarding loc: “116.478202, 39.910898”, arriving time:

“2015-12-21 14:13”, arriving loc: “116.460157, 39.926769”, user ID: “2145622446”, driver ID:
“21881”, car ID: “4569”, type: “business”.

RoD trajectories data upload time: “2015-11-01 05:19:13”, loc: “116.442497, 39.852982”, car ID: “4731”, speed: “0”,
direction: “180”.

RoD event-log data event time: “2015-11-01 11:53:07”, event loc: “116.449501, 39.931717”, estimated trip fare:
“49.6”, price mul: “1.6”, user ID: “2145622446”.

Taxi trajectories data similar to the example entry in RoD trajectories data.
Bus & Metro loc:“116.298, 39.878”, bus station count: “5”, metro station count: “1”, bus line count: “26”,
distribution data metro line count: “4”.

Our data is from Shenzhou UCar (http-
s://bit.ly/2MG47xz), a major RoD service provider in
China. As mentioned, in RoD service trips are created
on mobile apps. Fig. 1 shows the user interface of its
passenger app. Basically, after the user has filled in addresses
and chosen “when to ride” or coupons, the app sends
the information to the service provider and obtains (a)
the estimated trip fare and (b) the current dynamic price
multiplier. The user then chooses to accept the price (i.e.,
“Ride a Car!”) or to give up the current request if s/he
considers the price multiplier too high.

Fig. 1. The user interface of a typical RoD service.

We obtain the following three datasets:
The Order Data. This dataset describe each order’s

boarding/arriving time and location, the unique ID of the
user/driver/car/order, the type of order, etc. Our data is
from Beijing, as it is one of the most representative metropo-
lis as well as the biggest market of the service provider.
All user and driver IDs are anonymized so that one cannot
relate an ID to a real person or car. The dataset is from
Nov. 2015 to Mar. 2016, and contains about 2.7 million
orders. This time range of almost 5 months is a relatively
long period, making the datasets representative enough.
Moreover, there is only one major holiday during this time
range - the Spring Festival (on Feb. 2016) - and this reduces
the impacts on traffic and trip patterns from holiday seasons
(the Christmas Day is not a holiday in China, and on the
New Year Day people only get one day off).

GPS Trajectories. This dataset is similar to the common-
ly used GPS trajectories dataset in taxi service, containing
the GPS records of every single car. Fields include the

location of the car (i.e., longitude and latitude), data upload
time, the unique ID of the car, etc. For each car, the time
interval between two consecutive records is two minutes.
The time range of the dataset is the same to the order data,
and on each day there are roughly 3,500 cars on the road
working for the service provider.

The Event-log Data. The event-log data is new in RoD
service. By saying an “event”, we mean the EstimateFee
event generated when the passenger app sends back the
information to the service provider. This dataset contains
the record of EstimateFee event in the same time range,
describing the event time, event location, estimated trip fare,
price multiplier, the unique user ID, etc. In total there are
14,832,418 entries.

In our study, the last dataset is related to the “dynamic
pricing” feature. Firstly, our order data does not give infor-
mation such as the trip fare or the price multiplier of each
order, possibly due to privacy concerns. Secondly, it covers
more information than orders, as those fare estimations that
do not lead to order creations are also recorded. Later in Sec-
tion 5, we will give more details about how to quantitatively
describe dynamic pricing based on all these datasets.

3.2 Taxi Service GPS Trajectories Data
Though our study is based on RoD service, we also use taxi
GPS trajectories data for two reasons. Firstly, [1] points out
that as RoD service is similar to taxi service on many aspects,
they have influences on each other. [1] concludes that these
two services are complementary rather than competitive to
each other, e.g., a region with more taxis is also profitable
for RoD drivers to seek for passengers. In other words, the
status of taxi service is an indication of a region’s popularity.
Secondly, the taxi service data helps to characterize the
general traffic condition of different regions or locations,
e.g., the number of taxis, the average speed of taxis, etc.

Similar to the GPS trajectories in Section 3.1, this dataset
covers about 30,000 taxis in Beijing from Nov. 2015 to Mar.
2016, but the upload time interval is 30 seconds. For each
day, the volume of dataset ranges from 45 to 50 million
entries.

3.3 Bus & Metro Distribution Data
Compared to taxi service, public transportation services
such as bus and metro are less similar to RoD service,
but they are also influential. [1] reaches a conclusion from
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real data that bus and metro are also complementary to
RoD service. Besides indicating a region’s popularity, the
presence of bus and metro stations also makes it possible
for RoD drivers to provide connecting services – picking
up a passenger who just alighted from a bus or train, or
delivering a passenger to a bus or metro station.

Different from the RoD or taxi service data that provides
exact information of each driver, passenger or trip, our bus
& metro distribution data only counts the number of bus
and metro stations and lines within a 500-meter radius of a
given location. This choice is not as accurate as the number
of buses or metro trains around, but as bus and metro have
relatively fixed time tables, most people decide whether to
take public transportation only based on the availability of
bus & metro lines or stations nearby. The dataset is crawled
from AMap service [32] (one of the largest digital map
service providers in China), and for the whole city, there
are more than 7,700 bus stations and 380 metro stations.

4 PATTERNS IN ROD SERVICE

In this section, we show, based on real service data, some
patterns and observations related to drivers in RoD service.
The motivations of studying these patterns in RoD service
are three-fold:

• Improving the understanding about RoD service.
RoD service is a new transportation service: its pat-
terns are either different from that of taxi, or unavail-
able in taxi service. These statistics and patterns help
to understand the motivation and methodologies.

• Inspiring the modelling in our approach. The ideas
or assumptions in our approach and its modelling
(see Section 5) are not out of imagination; they are
based on the observations of patterns from real data.

• Providing baselines for our evaluation. These pat-
terns also provide metrics, as baselines, for our
model evaluation (see Section 5 and 6), so that we
could compare the performance of our seeking route
recommendation with that of ground truth.

Patterns presented here belong to four categories: utiliza-
tion rate, passenger density, driving pattern and revenue efficien-
cy. They are about drivers’ revenue-making capability.

4.1 Utilization Rate
We calculate the distance and time utilization rate of each
driver. The utilization rates are calculated based on a single
driver’s driving history during one single day. To calculate
these utilization rates, four quantities are defined: T as the
total driving time during the day, t as the total driving time
with a passenger on board, D as the total driving distance
during the day, and d as the total driving distance with a
passenger on board. Then the time utilization rate τt and
distance utilization rate τd are defined as:

τt =
t

T
, τd =

d

D
. (1)

For each driver, the time and distance utilization rate
characterize the driver’s efficiency in finding passengers.
Following (1), we can calculate the utilization rates for every

driver on every day across our RoD dataset. Specifically,
the driving time and distance can both be calculated based
on the GPS trajectory dataset of RoD service. To get an
intuitive understanding of utilization rates, we first choose
three timeslots – [7am, 9am] as the morning rush hours,
[5pm, 7pm] as the evening rush hours, and [10am, 1pm] as
typical non-rush hours around noon. These three timeslots
are typical rush and non-rush hours during a day, and
the representativeness of these timeslots has already been
verified in [6], [19]. We then plot the distribution of distance
and time utilization rate on weekdays and weekends in
Fig. 2 to Fig. 5. In each figure, we plot the distribution across
the whole day and during the three timeslots.

We have the following observations:

• For the distance utilization rate on weekdays, it
is clear that the rates are higher during morning
and evening rush hours: during these time period-
s, drivers take shorter trips to seek for passengers
due to more passenger requests. By comparison, the
distance utilization rates are lower during non-rush
hours, for the possible reason that the number of
passenger requests is reduced.

• Comparing the distance utilization rates on week-
days and weekends, we first notice that across the
whole day, the rates are a little bit lower on week-
ends (e.g., the most frequently seen utilization rate is
about 15% smaller on weekends than on weekdays).
Also, the distance utilization rates during the three
typical rush and non-rush hours are fairly close,
indicating that there is few or no fluctuation of
passengers’ requests during the day on weekends,
which has been verified in [1], [18].

• For the time utilization rate, we also have similar
observations. Besides, Fig. 4 and Fig. 5 also show
that for the time utilization rates on both weekdays
and weekends, the differences between three typical
rush and non-rush hours are much more obvious,
compared to the differences for the distance utiliza-
tion rates. This is due to the impact of driving speed.
[1] observe that the average driving speed is faster
in non-rush hours than in rush hours, so the bigger
differences in time utilization rates are compensated
by the difference of driving speed, leading to smaller
differences in distance utilization rates.

4.2 Passenger Density
Passenger density is one of the most important features to
take into account in recommending seeking routes. For ex-
ample, a taxi driver chooses a region to seek for passengers
based on personal experience that there are many potential
passenger requests in this region during a particular time-
of-day. Studies on seeking route recommendation in taxi
service are also intended to recommend “hot spots” (i.e.,
locations with a high demand), either locally or globally, to
drivers, or to rank a number of locations according to their
popularity before choosing one or more candidates based
on some certain criteria.

It is thus necessary to inspect the patterns of passenger
density in RoD service. By “passenger”, in this paper we
only count the met demand – i.e., passenger requests that
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Fig. 2. The distribution of distance
utilization rate on weekdays.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance Utilization Rate on Weekends

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
whole day
[7am, 9am]
[10am, 1pm]
[5pm, 7pm]

Page 1 of 1

2019/11/13file:///E:/new_study_understand_driver_behavior/all_data_combined/compare_match...

Fig. 3. The distribution of distance
utilization rate on weekends.
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Fig. 4. The distribution of time uti-
lization rate on weekdays.
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Fig. 5. The distribution of time uti-
lization rate on weekends.

are later fulfilled, and one fulfilled order means one pas-
senger. We first divide the map of Beijing into rectangular
cells. The map of Beijing chosen in our paper is a rectangle,
ranging from 116.1 to 116.8 (east) in longitude, and from
39.7 to 40.2 (north) in latitude, as regions outside this area
see much fewer trips. Each cell is 0.02 longitude by 0.02
latitude, and in total there are 875 cells across our area. For
a given timeslot (e.g., the morning rush hours [7am, 9am])
on a particular day-of-week (e.g., on Mondays), we define:

• passenger density: the total number of passengers
starting their orders in one cell, during the given
timeslot, on the particular day-of-week;

• average passenger density: the average of passenger
density across all cells, during the given timeslot, on
the particular day-of-week;

• relative passenger density: the passenger density of this
cell divided by the average passenger density, for
those cells with non-zero passenger density.

Hence, passenger density and relative passenger density are
defined on each cell, whereas average passenger density is
defined across the city. As an example, Fig. 6 shows the
histogram of relative passenger density of cells with non-
zero passenger density, on morning rush hours on Mondays.
To make it clear for relative passenger density greater than
1, we also zoom in part of Fig. 6 inside it.
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Fig. 6. The relative passenger density on morning rush hours on Mon-
days.

It is obvious in Fig. 6 that the distribution of relative
passenger density has a long tail:

• Most cells have a relative passenger density smaller
than 0.1 – numerically, during morning rush hours

on Mondays the exact percentage is about 48%. One
should note that we already exclude cells with zero
passenger density, e.g., those cells with parks, rivers,
mountains or other forms of inaccessible terrain.

• In the meantime, there are still a non-negligible num-
ber of cells with higher relative density. In Fig. 6,
about 23% cells have a relative passenger density
greater than 1, and some of them even have a relative
density greater than 5.

In other words, the passenger density has an unbal-
anced distribution. This requires drivers to carefully choose
seeking locations to avoid cells without enough potential
passengers. Similarly, it is also necessary for seeking route
recommendation to consider passenger density.

4.3 Driving Pattern
Our discussions on driving pattern contain two parts. The
first part is on the number of drivers’ visits to different cells,
and the second is on driving traces characterization.

The number of drivers’ visits to city cells reflects not only
the distribution of the supply of RoD cars, but also drivers’
preferences to choose different seeking locations or regions.
Similar to 4.2, we divide the city map into cells, and count
the number of visits to each cell. Fig. 7 shows the number
of visits to city cells in Beijing, and the darker the cell, the
more visits there are.

Fig. 7. The number of drivers’
visits to city cells in Beijing.
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Fig. 8. The distribution of driver en-
tropies.

It is intuitive to see from Fig. 7 that the supply of
cars, or drivers’ preferences to seek in different locations, is
also highly unbalanced. Previous studies on seeking route
recommendation in taxi service reveal the fact that only a
small fraction of drivers can effectively plan their driving
routes in order to earn more, and that’s where seeking route
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recommendation can help. Actually, compared to the city
map and city planning, we observe that drivers tend to
seek in crowded regions or major functional areas such as
business (e.g., CBD), residential (e.g., some big living com-
munities) or transportation areas (e.g., airports and railway
stations). This observation may not be clearly emphasized
in Fig. 7 due to the limited space.

The inspiration from Fig. 7 is that drivers do not take d-
ifferent locations or regions as equals. It is thus necessary to
weigh them differently. In our study, we do not go into city-
specific details such as the distribution and characteristics
of city functional areas, planned or spontaneous events, the
distribution of traffic in rush or non-rush hours, etc; instead,
we try to characterize a location based on features relevant
to RoD service, taxi service and public transportation ser-
vices. For example, the supply of RoD cars or taxis is an
indication of a location’s popularity. Feature extraction and
explanation will be covered later in Section 5.

The second part of our discussions on driving pattern
is on driving traces characterization. Drivers’ driving traces
may be influenced by their various driving habits – some
like to focus on smaller regions they are familiar with, while
some tend to wander around a much larger region looking
for passengers in a more random fashion. Another source
of influences is temporal features. For example, during
weekdays, the large number of orders brings drivers to more
locations, increasing their driving traces’ diversity.

To characterize a driver’s driving traces during one day,
we adopt the definition of a 2-dimensional entropy of the
driver’s GPS trajectories from [33]. For the city cell with
horizontal index i and vertical index j, we use pij to denote
the empirical probability of the driver passing this cell
during the day. Based on pij , some entropy measures can
be defined:

H(E) = −Σi=1(Σj=1pij)ln(Σj=1pij), (2)

H(P/E) = −Σi=1[Σj=1pij ln(pij/pi)]. (3)

In (3), pi is the sum of pij over all js, andH(P/E) represents
the weighted average of entropy of GPS traces for rows. In
(2), H(E) represents the entropy of the sums of columns.
Then, the 2-dimensional entropy H(E · P ) is defined as:

H(E · P ) = H(E) +H(P/E). (4)

Hence, the 2-dimensional entropy H(E · P ) describes the
degree of disorder of a driver’s GPS trajectories over one
day, and thus characterizes his/her driving pattern.

We calculate the 2-dimensional entropy for each driver
on each day across our RoD GPS trajectories dataset, and in
Fig. 8 we show the distribution of drivers’ entropy on week-
days and weekends. We have the following observations:

• Different drivers have various driving patterns. The
drivers’ entropies are widely distributed from 0 to
more than 5 either on weekdays or weekends, in-
dicating that drivers always have their own percep-
tions of “how to seek to earn more”. Some of these
perceptions may not be good enough, and that is
where seeking route recommendation works.

• Driving patterns are also influenced by temporal
features. Fig. 8 justifies that drivers’ entropies are

higher on weekdays, and this agrees to our earlier
conjecture in this section. In fact, drivers’ entropies
are different in smaller timeslots such as rush or non-
rush hours, and these are now shown here due to the
limited space.

4.4 Revenue Efficiency

We calculate the revenue efficiency in RoD service, includ-
ing the efficiency in distance and in time. For each driver on
a working day, the revenue efficiency in distance is the total
revenue of the day divided by the total driving distance of
that day (including seeking for and delivering passengers),
and similarly, the revenue efficiency in time is the total
revenue of the day divided by the total driving time.
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Fig. 9. The distribution of revenue
efficiency in distance.
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Fig. 10. The distribution of revenue
efficiency in time.

Fig. 9 and Fig. 10 show the distribution of revenue
efficiency in distance and in time, respectively. One thing
to note is that as our data date back to early 2016, when
RoD services have just come into business practices and the
number of users was still climbing, the demand is not as
high as we regularly see now, and so is the driver revenue.
It is thus reasonable to see driver revenue efficiency not as
high as was shown in previous taxi studies. The evaluation
of our approach is based on the current data, and we will
update results when we obtain newer datasets.

We observe from Fig. 9 and 10 that the mean revenue
efficiency in distance is 2.179 and 1.796 RMB (Yuan) per
km, and the mean revenue efficiency in time is 0.338 and
0.259 RMB (Yuan) per minute. Moreover, it is also clear that
revenue efficiency, either in time or in distance, on weekdays
is significantly higher than on weekends. Lastly, revenue
efficiency varies greatly between drivers, indicating plenty
of opportunities in seeking route recommendation.

5 THE FORCE-DIRECTED APPROACH

We discuss the force-directed approach in this section, in-
cluding problem formulation, the basic idea of the approach,
determination of traffic charge, and route recommenda-
tion. Besides the approach itself, the emphasis is put on
the above-mentioned three new factors that need to be
addressed in RoD service – namely, matching-in-advance,
dynamic pricing, and status of other transportation services.

5.1 Problem Formulation

As was typically done in previous taxi studies, in our study
the road network is extracted from OpenStreetMap, and
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consists of two different elements – intersections and direct-
ed road segments. We thus use G = (N,E) to denote the
road network, whereN = {N1, N2, · · · , Nr} is a finite set of
r intersections (or “nodes”) and E = {E1, E2, · · · , Em} is a
finite set of m directed road segments (or directed “edges”).
Each road segment has a starting and ending intersection.

Seeking route recommendation then tries to recommend
a road segment to a vacant RoD car driver as soon as s/he
arrives at an intersection, such that the driver may earn a
higher profit.

Similar to previous studies in taxi’s seeking route recom-
mendation, our study is based on the assumption that “in
modelling and evaluating the approach, a relatively small number
of drivers are assumed to adopt the recommended seeking routes,
and their behaviours do not have a visible impact on the whole ser-
vice.” This assumption is for the convenience of evaluation,
and should not be relevant to research significance. In order
words, we extract features, calculate parameters and design
the approach based on the whole datasets, and recommend
seeking routes for a subset of drivers, and we assume that
the behaviour of these drivers would not, in turn, influence
the dynamic prices, the status of other transportation ser-
vices, features extracted from multi-source urban datasets,
etc. Hence it is not necessary to consider problems such
as “whether we should re-predict the change of dynamic
prices due to drivers’ adoption of our recommendation?”.
If, without such assumption, then we may need to consider
drivers’ response, adoption rate of our recommendation, the
prediction of dynamic prices at the city scale, etc., and these
are left for future work.

Based on the discussions above, we have the following
definition of seeking route recommendation problem:

Definition 5.1 (Seeking Route Recommendation). Given the
road network G = (N,E) with intersections and road
segments, the multi-source urban datasets, and a subset
of RoD cars X , try to find the optimal seeking route for
each car in X to increase earnings. Specifically, as soon as
a vacant car driver reaches an intersection, recommend the
next road segment for him/her to follow, until s/he picks
up a passenger.

5.2 Basic Idea of the Force-directed Approach
The force-directed approach is built on the analogy between
our topic to study and a certain scenario in physics. Specif-
ically, the problem is modelled as a system of particles
with forces acting between them, and that’s also why such
approach is called as “force-directed”. The force-directed ap-
proach has been used in graph visualization, GPS trajectory
map-matching, seeking route recommendation, etc.

In our study, the force-directed approach models the
relationship between vacant cars and passengers as the
relationship between positive and negative charges. In elec-
trostatic field, Coulomb’s law explains the electrostatic force
between two point charges at certain distance in free space.
Coulomb’s law states that the magnitude of the electrostatic
force between two charges is proportional to the amount
of electrostatic charge on each of them, and is inversely
proportional to the square of their distance:

−→
F12 =

k ·Q1 ·Q2 · (−→r2 −−→r1)

|−→r2 −−→r1 |3
(5)

In (5),
−→
F12 is the electrostatic force acting on the charge Q2

due to the charge Q1, −→r2 − −→r1 is the vector pointing from
Q1 to Q2, k is a constant, and Q1 and Q2 are the amount
of charge (both can be positive or negative). (5) also reveals
another characteristic of electrostatic force – likes repel and
opposites attract – considering Q1 and Q2 being positive and
(or) negative charges.

These characteristics are very similar to the characteris-
tics of the relationship between vacant cars and passengers:

• Vacant cars and passengers can both be regarded as
points in free space.

• Potential passengers attract vacant cars, while vacant
cars repel each other.

• For a vacant car, the influence from nearby vacant
cars or passengers is attenuated quickly if they move
further.

Such similarities inspire us to view vacant cars as posi-
tive point charges, and passengers as negative point charges.
For a particular vacant car at an intersection, based on
the distribution of vacant cars and passengers nearby, we
can calculate the aggregated force acting on this particular
vacant car due to the nearby cars and passengers. The ag-
gregated force will then “drag” the vacant cars towards the
right road segment. In other words, the right road segment
is the outbound road segment closest to the direction of the
aggregated force. For two objects q1 and q2, we define the
force between them as:

−−−→
Fq1q2 =

k′ · Cq1q2 · −−−→eq1,q2
|−→r2 −−→r1 |2

(6)

Similar to (5), in (6) −−−→eq1,q2 is the unit vector pointing from
q1 to q2, −→r2 − −→r1 is the vector pointing from q1 to q2, k′ is a
constant. Actually, the power to |−→r2−−→r1 | can be any positive
value, but previous work [5], [31] indicate that 2 is already a
good enough choice.Cq1q2 is the counterpart ofQ1·Q2 in (5),
and we can call it as traffic charge. Traffic charge represents
not only the existence of vacant cars or passengers, but
also dynamic prices and the status of other transportation
services. We will discuss traffic charge in more details in
Section 5.3 and 5.4.

Considering the case of calculating the right road seg-
ment for a particular vacant car, we can thus always regard
this vacant car in question as object q1, and hence it is
enough to only consider q2 in (6). q2 can be vacant cars or
passengers very close to q1, or a little bit further but still in
the vicinity of q1, or much further away. Similar to previous
sections, we divide the city map into rectangular cells of
0.01 longitude by 0.01 latitude. In (6) the force decreases
quickly when the distance increases, so it is safe to ignore
those objects that are much further away from q1. We then
adopt the concept of extended region from [5], as shown
in Fig. 11. In Fig. 11, the vacant car in question (i.e., q1)
is in cell R0, and we call the 8 cells around R0, denoted
as R1, R2, · · · , R8, as the extended region. Then, we only
consider the forces from all vacant cars and passengers in
R0 and the extended region – objects outside this area is
omitted, as the corresponding forces become small enough.

The size of the extended region – with 3*3 cells as men-
tioned above – is chosen for the following reasons. Firstly,
the interaction force is inversely proportional to the square
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Fig. 11. The concept of extended region.

of distance between two objects, and hence the magnitude
of the force decreases quickly when the distance increases.
Even though objects in one cell far away from R0 may
change the magnitude and direction of the aggregated force,
the road segment closest to the direction of aggregated force
may remain unchanged. Choosing this size of the extended
region is also supported by our daily experience – 2 to 3 km
is already a large enough distance when one considers va-
cant cars and potential passenger demand nearby. Secondly,
the amount of computation is reduced when the extended
region is small: for example, if the extended region contain
4*4 cells, the amount of computation is almost doubled.

The aggregated force
−→
Fq1 is the vector sum of the forces

from all vacant cars and passengers in R0 and the extended
region, on the vacant car q1:

−→
Fq1 = ΣR8

r=R1

k′Cr
−−→er,R0

d2r,R0

+ Σq∈R0

k′CR0

−−→eq,q1
d2q,q1

(7)

Note that the definition of traffic charge is on a cell instead of
on a single car or passenger. In (7), the first term represents
the aggregated force from the extended region. For each cell
r in the extended region, Cr is the traffic charge of this cell,
−−→er,R0 is the unit vector pointing from the center of r to that of
R0, and dr,R0 is distance between r andR0. The second term
is the aggregated force from objects (denoted by q) within
R0 –−−→eq,q1 and dq,q1 are the unit vector and distance from any
object q to q1. The distance between two cells (e.g., dr,R0 )
is chosen, as verified by [5], as the shortest road distance
between the two center intersections of these cells.

5.3 Regular and Recent Traffic Charge

It is common to consider both the regular traffic pattern and
burst events together in seeking route recommendation. In
our study, we calculate both the regular traffic charge and
recent traffic charge of a cell. Before discussing them, we
emphasize that the traffic charge is defined on each cell, and
in each hour, based on the features extracted from multi-
source urban data. For a particular cell, we calculate the
traffic charge every hour. The choice of features and the
relationship between the traffic charge and features will be
discussed in Section 5.4.

The traffic charge is only related to the cell and the
time, but when we want to calculate the aggregated force
(as shown in (7)), we need to consider regular and recent
traffic charge. “Regular” and “recent” are relative to the
time referred to by the aggregated force. In the following
discussion, we assume that our target is the aggregated force
on a vacant car during hour [t, t+ 1], on one day of day-of-
week Y . We then define:

• Regular traffic charge is the characterization of regu-
lar traffic pattern in a cell. Specifically, regular traffic
charge of a cell r, denoted by Cr,regular, refers to the
average of traffic charges of r during hour [t, t + 1]
on all days of day-of-week Y .

• Recent traffic charge is the characterization of burst
events in a cell. Specifically, recent traffic charge of a
cell r, Cr,recent, refers to the traffic charge Cr during
hour [t− 1, t] on the very day of day-of-week Y .

For the first term of (7) (i.e., the forces from extended
region, including cells R1 to R8), we calculate both the
regular and recent traffic charge, and use a weighted sum
as the final traffic charge Cr for cell r:

Cr = (1− ω)Cr,regular + ωCr,recent (8)

In (8), ω is the weight between regular and recent traffic
charge. For the second term of (7) (i.e., the forces from
objects within R0), we include only the recent traffic charge:

CR0 = CR0,recent (9)

This is under the consideration that for the second term,
we involve the locations of individual cars or passengers
instead of the whole cell’s collective properties. Hence re-
cent traffic charge is much more important than the regular
traffic charge.

5.4 Determination of Traffic Charge

In this section we discuss, in details, the calculation of traffic
charge of a cell r, during hour [t, t + 1], on one particular
day of day-of-week Y .

As mentioned previously, RoD service is a special ser-
vice, but is still similar to traditional taxi service. Hence,
to perform seeking route recommendation in RoD service,
we should consider not only the data and features of RoD
service, but also the status of other transportation services
such as taxi, bus and metro. In addition, dynamic pricing, as
one of the core features of RoD service, should also be pre-
sented in calculating the recommendation results. All these
requirements are fulfilled in the design and determination
of traffic charge.

5.4.1 Features from RoD Service Data
We extract the following features from our RoD service
datasets, including the order data, GPS trajectories, and the
event-log data. All these features can be calculated offline.

Density of passengers PAt,r: the total number of pas-
sengers appearing in cell r during hour [t, t+ 1] on this day.

Average density of passengers PAt: among those cells
across the city that have passengers appearing during hour
[t, t + 1] on this day, PAt is the average number of passen-
gers.

Density of vacant cars V Ct,r: the total number of vacant
cars appearing in cell r during hour [t, t+ 1] on this day.

Density of all cars ACt,r : the total number of cars
appearing in this cell r during hour [t, t+ 1] on this day.

Average dynamic price multiplier DPt,r : based on the
event-log data, we can calculate the average dynamic price
multiplier from all EstimateFee events taking place in this
cell r during hour [t, t+ 1] on this day.
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Maximum average dynamic price multiplier DPt: a-
mong those cells with non-zero average dynamic price
multiplier, DPt is the maximum of DPt,r among all cells.

Average order revenue ORt,r: based on all orders start-
ing from cell r during hour [t, t + 1], the average order
revenue is ORt,r . Different from DPt,r , ORt,r reflects not
only the dynamic price multiplier, but also orders’ distance
and time.

Maximum average order revenue ORt: among those
cells with non-zero average order revenue, ORt is the
maximum of ORt,r among all cells.

Average order speed OSt,r: similar to ORt,r , but OSt,r
represents the average of order speed among all orders.

Maximum average order speed OSt: among those cells
with non-zero average order speed, OSt is the maximum of
OSt,r among all cells.

Among these features, densities of passengers or cars are
descriptions of supply and demand in RoD service; features
of dynamic price multiplier are the direct representations of
dynamic prices; features of order revenues reflect dynamic
prices and order distances; and features of order speed
describe, from another perspective, the ability of revenue-
making in cell r, as previous work [1] suggests the relation
between order speed and revenue efficiency.

5.4.2 Features from Taxi Service Data
We extract the following features from our taxi service
GPS trajectories data. Similarly, all these features can be
calculated offline. The goal of including these features is to
describe the cell’s popularity as well as traffic condition.

Taxi up count UCt,r : the total number of taxi trips
starting from cell r during hour [t, t+ 1] on this day.

Maximum taxi up count UCt: among those cells across
the city that have non-zero taxi up counts, UCt is the
maximum of UCt,r among all cells.

Taxi down count DCt,r: the total number of taxi trips
ending in cell r during hour [t, t+ 1] on this day.

Maximum taxi down count DCt: among those cells
across the city with non-zero taxi down counts, DCt is the
maximum of DCt,r among all cells.

Average speed of full taxi FSt,r: the average speed of
taxis with passengers on board that pass by cell r during
hour [t, t+ 1] on this day.

Maximum average speed of full taxi FSt: among those
cells with non-zero FSt,r, FSt is the maximum of FSt,r
among all cells.

Density of vacant taxis V Tt,r: the total number of vacant
taxis appearing in cell r during hour [t, t+ 1] on this day.

Density of all taxis ATt,r: the total number of taxis
appearing in this cell r during hour [t, t+ 1] on this day.

We choose the above features because:

• Some features describe a cell’s popularity. For ex-
ample, taxi up count and taxi down count reflect the
number of people taking trips away and coming to
the cell, respectively. Also, as verified in [1], the pop-
ularity of taxis in a cell does not mean competition to
RoD service; instead, they are complementary to each
other – the more popular a cell is to taxis, the more
profitable it is for RoD drivers to seek in. Hence, we
also include density of vacant/all taxis.

• Some features characterize a cell’s traffic condition.
For example, average speed of full taxi is a represen-
tation of general cars’ speed in the cell, and it is a
more accurate representation, as the number of taxis
is larger than the number of RoD cars.

5.4.3 Features from Bus & Metro Data
We extract the following features to describe the status pub-
lic transportation services in a cell. Note that these features
are not time-dependent – they are only relevant to the cell r.
These features are more about the existence of bus or metro
stations and lines, than about the real-time operation status
of such services.

Number of bus stations BSr : the total number of bus
stations in cell r.

Maximum number of bus stations BS0: among those
cells with non-zero BSr , BS0 is the maximum.

Number of bus lines BLr: the total number of bus lines
stopping by any bus station in cell r.

Maximum number of bus lines BL0: among those cells
with non-zero BLr , BL0 is the maximum.

Number of metro stations MSr : the total number of
metro stations in cell r.

Maximum number of metro stationsMS0: among those
cells with non-zero MSr, MS0 is the maximum.

Number of metro lines MLr : the total number of metro
lines stopping by any metro station in cell r.

Maximum number of metro lines ML0: among those
cells with non-zero MLr , ML0 is the maximum.

As mentioned in Section 3.3 and verified in [1], these
features extracted from public transportation services not
only describe the popularity of a cell, but also characterize
the possibilities of RoD cars to provide connecting services
to passengers – this should attract drivers to seek in corre-
sponding cells.

5.4.4 Integrating Features into Traffic Charge
Based on features extracted from multi-source urban
datasets, we can combine them into traffic charge, and
define the traffic charge, Ct,r of cell r during hour [t, t + 1]
on one day of day-of-week Y .

We denote the terms related to RoD service data, taxi
service data, and bus & metro data by CRoD, Ctaxi and
Cpublic, respectively. The traffic charge is then defined in
a multiplicative form:

Ct,r = C1−2α
RoD · C

α
taxi · Cαpublic, (10)

In (10), we let the weights of these three terms add up
to 1, and the taxi term and bus & metro term have equal
weights. Additionally, as the traffic charge is calculated for
RoD service, the RoD term should at least have a larger
weight than other terms together, i.e., 1−2α ≥ 2α or, rather,
α ≤ 1/4. The idea that the RoD service data have much
larger impacts on drivers’ seeking for passenger has been
verified in [1].

For the RoD term, we also define it in a multiplicative
form,

CRoD =
PAt,r
PAt

· (2− V Ct,r
ACt,r

) · (1 +
DPt,r
DPt

)

· (1 +
ORt,r
ORt

) · (1 +
OSt,r
OSt

)

(11)
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In (11), we have the following concerns:

• The impact of passenger density on the traffic charge
should be the strongest. Hence, we use the ratio be-
tween the passenger density of cell r and the average
passenger density across the city to represent such
impact. The ratio PAt,r

PAt
can be in the range [0,+∞).

• The ratio of vacant cars in a cell has a negative impact
on attracting drivers to come. For such negative
impact, we use the “2-minus” to quantify, and it is
in the range [1, 2].

• For other three multiplicative items, we first use the
ratio between the value of cell r and the maximum
value across the city to represent the relative value,
and then use the “1-plus” form to quantify the pos-
itive impact on attracting drivers to come. The “1-
plus” form also has a range [1, 2].

• It is intuitive that the dynamic price multiplier, order
revenue and order speed all have a positive impact
on attracting drivers to seek in a cell. This is also
verified in previous observations [1].

For the taxi term, similarly we have,

Ctaxi =(1 +
UCt,r
UCt

) · (1 +
DCt,r
DCt

)

· (1 +
FSt,r
FSt

) · (2− V Tt,r
ATt,r

)
(12)

And for the bus & metro term,

Cpublic =(1 +
BSr
BS0

) · (1 +
BLr
BL0

)

· (1 +
MSr
MS0

) · (1 +
MLr
ML0

)

(13)

The concerns are similar to those for (11), and the following
concerns help us determine whether one feature has a posi-
tive or negative impact on a cell’s attractiveness to drivers:

• As mentioned previously, RoD and taxi service are
more like complementary than competitive to each
other. Hence, the more attractive a cell to taxis, the
more it is to RoD cars either.

• Similarly, the availability of public transportation
services (bus & metro) makes it possible for drivers
to provide connecting services to people.

Finally, combining (10) to (13), we can calculate the traffic
charge Ct,r .

5.5 Miscellaneous Calculations
Besides the determination of traffic charge, as discussed
in details in Section 5.4, some miscellaneous calculations
should also be done before we are able to recommend the
right road segments to drivers. We list them below.

The locations of vacant cars and passengers. In the
second term of (7), to calculate the forces from objects within
cell R0, it is necessary to have the distance dq,q1 between the
vacant car in question and any other vacant car or passenger
within cell R0. To do this,

• Step 1: for each hour [t, t + 1] on one day of day-
of-week Y , we first further divide this hour into six
10-minute timeslots.

• Step 2: then, for each 10-minute timeslot, we use the
average longitude and latitude as the location of a
vacant car in a timeslot. For a passenger’s location,
as passengers are assumed to be not moving during
a request, it is not necessary to take any average.

The above two steps are about listing the locations of
vacant cars and passengers, and can be done offline in ad-
vance. The calculation of the aggregated force, on the other
hand, can only be performed online, with the movement of
the target vacant taxi.

The average speed on each road segment. In simulating
a driver’s movement in seeking, it is necessary to estimate
the time it takes from one intersection to the next intersec-
tion. To do that, we need an estimate of the speed on the
corresponding road segment, during hour [t, t + 1] on one
day of day-of-week Y . We gather all the GPS trajectories
that pass by this road segment during hour [t, t + 1] on
all days of day-of-week Y , and use the average speed of
these trajectories as the estimate. The reason of gathering
trajectories on all days of day-of-week Y is to have enough
data to avoid any possible inaccuracies.

If, for some target road segment, no trajectories pass it by,
we then calculate the average speeds of all road segments
that lie in the same cell with the target road segment,
and use the average among these average speeds as the
estimate. This is very rare in our data – about 0.02% cases
(road segments during different time periods) need to be
processed in this way.

The key information of RoD orders. Based on the
order dataset, we obtain the following key information of
RoD orders: the starting and ending intersections and time,
the order’s total distance, and the estimated order’s fare.
As soon as a seeking driver picks up a passenger, s/he
jumps from the starting intersection to the order’s ending
intersection, with a driving distance and making a revenue
equal to the order’s fare. The timeline also jumps from the
order’s starting time to the ending time.

The average speed on each road segment, as well as the
order information, can all be processed offline.

5.6 Seeking Route Recommendation

This section wraps up all the previous sections, and pro-
vides a detailed step-by-step explanation for seeking route
recommendation. We divide our seeking route recommen-
dation into two parts – offline data preparation and online
recommendation.

5.6.1 Offline Data Preparation
Step 1: List the locations of vacant cars and passengers:
for every day across our RoD datasets, list the locations
of vacant cars and passengers in every timeslot (i.e., in 10-
minute long), as explained in Section 5.5.

Step 2: Calculate the average speed on each road seg-
ment: for days of each day-of-week, calculate the average
speed on each road segment in every hour, as in Section 5.5.

Step 3: Extract key information of RoD orders: for every
order in RoD order dataset, obtain the starting and ending
intersections and time, the order’s total distance, and the
estimated order’s fare, as in Section 5.5.
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Step 4: Extract features from multi-source urban
datasets: extract features from RoD service data, taxi service
GPS trajectories data, and bus & metro distribution data, as
in Section 5.4.1, 5.4.2 and 5.4.3, respectively.

Step 5: Integrating the above features into traffic
charge: first, calculate the corresponding traffic charge term
CRoD, Ctaxi and Cpublic based on (11), (12) and (13), respec-
tively. Then, the traffic charge Ct,r is calculated based on
(10). Note that we calculate the traffic charge for every city
cell, on every hour, and on every day.

Step 6: Calculating the distances between any two cells:
according to (7), the distance between two cells will be used
to determine the forces from objects within the same cell
of the vacant car in question. As mentioned in Section 5.2,
we use the shortest road distance between the two center
intersections of these cells.

5.6.2 Online Recommendation
The online recommendation involves, for each driver of
the subset of RoD cars X , recommending the next road
segment the driver should take when his/her car is vacant
and s/he arrives at an intersection. This recommendation is
performed until the driver picks up one passenger.

As pointed out in Section 5.1, our recommendation is for
a subset X of RoD cars, and in the meantime we assume
other RoD cars and passengers will be the exactly same as
they are in our dataset. In other words, other RoD cars keep
the same trajectories as shown in RoD GPS trajectories data;
all passengers request for rides from and to the exactly same
locations, and at the exactly same time, as in RoD order data.
Also, because the number of cars in X is relatively small,
we can safely assume that the changes of trajectories and
orders of these cars would not influence other RoD cars,
passengers, taxi service, public transportation services, etc.

Matching-in-advance, as stated earlier in this paper, is
another key difference between seeking route recommen-
dation for RoD service and that for taxi service. When a
vacant car and a passenger are not close enough to be
within each other’s sight, the service provider will attempt
to match them if the passenger is the closest to the vacant
car and the distance between them is less than a threshold
(called as matching distance). This can increase the possibility
of matching – even though the seeking RoD car does not
pass directly along a passenger, they can be matched. In our
study, we set the matching distance to be 1 km. On one side, 1
km is a setting corresponding to our daily experience using
the service; on the other side, related works (e.g., [4]) try
to identify a value between 0.5 to 1.5 km as the matching
distance.

In fact, the matching distance may not be a fixed value.
It may be a value dependent on some spatio-temporal fea-
tures, set by the service provider. For example, in a distant
region, when there are few vacant cars, it is beneficial to
set a larger matching distance, so that a vacant car driver
can be matched to a passenger earlier; similarly, in busy
business region, the matching distance could be smaller.
Matching distance could also be in a probabilistic form –
instead of being set by the service provider, the matching
distance could be mined from real data to answer “by what
empirical probability a vacant car and a passenger could be
matched when they are a particular distance apart”. Such

cases, however, are difficult to identify at this stage, as we
don’t have enough data to find out the exact location where
a vacant car actually accepts an order. Hence, we use a
fixed matching distance (e.g., 1 km) in our study, and more
flexible settings are left for future work.

Start

Any passenger in 
matching distance?

B1. Calculate the 
aggregated force

B2. Choose the next 
road segment based on 

the direction of the 
force.

B3. Move along the road 
segment, estimate the 

time needed.

B4. Arrive at the next 
intersection, update 

time and intersection.

A1. Pick up the closest passenger, 
and take the corresponding order

A2. Jump to the order’s 
destination, update time and 

intersection, add up to the 

driver’s revenue

A3. Drop off the passenger, start 
seeking again 

Stop working?

End

No Yes

No

Yes

Fig. 12. The flowchart of online recommendation.

Fig. 12 illustrates the flowchart of our online recommen-
dation, in the following we explain each of these steps with
more details. The following explanations are based on a
single driver (and the car) in the subset X .

Start. At the very beginning of the recommendation, the
driver starts working at an initial intersection e0 and time
t0. At this stage, there is not any passenger on board, so the
driver also starts seeking.

“Any passenger in matching distance?” At every inter-
section, when the car is vacant, there are two possible cases
the driver is faced with: a) if there is at least one passenger
within the matching distance, then the closest passenger is
matched with the driver; and b) otherwise, the driver needs
a road segment recommendation so that s/he could go to
the next intersection. For case a), then we go to step A1 to
A3; otherwise, we go to step B1 to B4.

Step A1. If there is more than one passengers with-
in matching-distance, then the closest passenger will be
matched to the driver. The corresponding order is taken
from our RoD order dataset, and obtain the order informa-
tion.

Step A2. In this study, we care only the seeking process,
and do not pay attention to the passenger delivery process.
Hence, we directly jump to the drop-off location of the
order:

• The driver is then at the ending intersection, with the
status changed from “delivering” to “seeking”.
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• The timeline is moved to the ending time of the order.
• The driver’s revenue is updated, adding up this

order’s fare.

Step A3. At this stage, the driver starts seeking again.
Step B1. We assume that the seeking driver is currently

at intersection ei at time ti, and so the cell ei is in is R0, with
the neighboring cells (the extended region) as R1 to R8. At
this step, the aggregated force on the driver is calculated
following (7).

Step B2. The absolute magnitude of the aggregated force
on the driver is not important, but the direction is. We
choose the next road segment for the driver as the outbound
road segment closest to the direction of the aggregated force.
If the aggregated force is zero, then we choose one random
outbound road segment as the next road segment.

Step B3. The driver then move along the selected road
segment. The time to move along the road segment, ∆t,
is estimated as the length of the segment divided by the
average speed on the segment (calculated in Step 2 in
Section 5.6.1).

Step B4. The driver arrives at the next intersection ei+1

through the selected road segment. The timeline moves from
ti to ti+1 = ti + ∆t.

“Stop working?” Either after step A3 or B4, the driver
has already arrived at a new intersection with no passenger
on board, and hence s/he is in the seeking process. This
judgement tries to identify if it is time to stop working. For
each driver on a particular day, we can obtain, from RoD
GPS trajectories data, the time the driver stops working
(maybe another driver takes over the shift, or maybe it is
already late night, etc.), denoted by tstop. If the current time
is later then tstop, then the driver should stop working, and
the online recommendation for this driver stops; otherwise,
the flow goes back to “Any passenger in matching distance”
judgement.

6 EVALUATIONS

We simulate our force-directed approach based on our
multi-source urban datasets to verify its effectiveness. As
mentioned previously in Section 3, our RoD and taxi
datasets cover a time range from Nov. 2015 to March. 2016.
We choose a Monday in Nov. 2015 to simulate our approach,
and note that even though our simulation is based on the
one chosen Monday, some features are calculated based on
all Mondays (e.g., the average speeds on road segments),
and also some features are independent of the day-of-week
(e.g., the distribution of bus & metro services).

We choose 50 drivers who work on this Monday. Basi-
cally, the chosen drivers should be the most active ones:

• they work for longer time in the chosen Monday, and
their GPS trajectories have few errors;

• in the RoD order dataset, each driver has the number
of orders close to the average, and the orders are
effective (i.e., not with a close-to-zero trip time or
trip distance);

• they also work for most of other days.

The reason for choosing active drivers to simulate our
approach is to avoid any possible inaccuracies due to prob-
lematic GPS trajectories, driver behavior, or orders.

TABLE 2
The comparison of average revenue efficiency of different approaches.

Approach Rev. effi. in distance Rev. effi. in time
(Yuan per km) (Yuan per minute)

ground truth 2.188 0.343
force-directed 2.980 0.541
approach
random 1.932 0.307
local hotspot 2.243 0.372

We also choose ω = 0.2: in the calculation of the force
from any cell in extended region, the weights for regular
and recent traffic charge are 0.8 and 0.2, respectively. Note
that based on the explanation of (9), in the calculation of the
force within R0, we only consider recent traffic charge.

In the most of the following evaluation, we also choose
α = 0.2: α is the power to the taxi and public transportation
terms in (10). Hence, the powers to the RoD, taxi and public
transportation term are 0.6, 0.2, 0.2, respectively. We also
evaluate the effects of different αs below.

The simulation is performed in a step-by-step way using
simple Python codes. For each chosen driver, the initial
state is the first intersection and the corresponding time,
obtained from ground truth data, at which the driver starts
his one day’s business. For passengers, we assume that
every passenger appears in the intersection as in ground
truth, and goes to the same destination using the same
amount of time. Then, based on the flowchart of on-line
recommendation (i.e., Fig. 12), the driver jumps between
intersections, with driver revenue and timeline updated
accordingly, as presented in step A1 to A3 and step B1 to B4
in Section 5.6.2. We then simulate this step-by-step process
for each driver for 10 times.

6.1 Baselines

To evaluate the effectiveness of our approach, we would
compare the average revenue efficiency of the chosen driver-
s to that of ground truth and two other baselines:

• Random: for a vacant car at an intersection, let the
car randomly choose a connected road segment as
the next road segment. This corresponds to the case
that drivers have no recommendation or data sup-
port, and that they have no reliable experience.

• Local hotspot: for a vacant car at an intersection,
choose the “local hotspot” cell, and follow the short-
est route to the center intersection of the cell. The
“local hotspot” cell is one of the 8 cells around
the cell the car is currently in (i.e., the extended
region) that has the highest passenger density. This
corresponds to the case that drivers blindly chase for
passengers.

6.2 Basic Results

We first compare the average revenue efficiency of the force-
directed approach, the ground truth, and the two baselines,
among the 50 chosen drivers. Tab. 2 shows the results.

We have the following observations on these results:
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• The force-directed approach indeed has the best per-
formance. Both the revenue efficiency in distance and
in time are much higher than those of ground truth.
Actually, the revenue efficiency in distance and in
time are about the 89- and 90-percentile of revenue
efficiencies in ground truth, respectively.

• The “random” baseline has the worst performance –
even worse than the ground truth. This means that
even in the ground truth, seeking based on drivers’
personal experience is better than seeking randomly.
Hence, the “random” baseline can be a borderline.

• The “local hotspot” baseline has an average revenue
efficiency between ground truth and our approach.
Basically, it tries to identify cells with higher passen-
ger density as ideal seeking locations for drivers. Our
approach, on the other hand, also takes into account
many other factors such as dynamic prices, status of
other transportation services, etc, and this proves to
be helpful in improving drivers’ revenue efficiency.

Additionally, we also calculate the 2-dimensional GPS
trajectory entropy (see Section 4.3) of these drivers. It is
shown that the average entropy of these drivers is 17%
higher. This indicates, to some extent, that our approach
also tries to distribute drivers into more cells, which, in turn,
may help to increase service responsiveness and passengers’
quality of experience.

6.3 Effects of Multi-source Urban Data
We evaluate the effects of introducing multi-source urban
data into our seeking route recommendation in the follow-
ing directions:

• the effects of α – this is an indication of the weights
of different datasets;

• the effects of different datasets – we evaluate the
revenue efficiency when only some of our datasets
are involved;

• the effects of dynamic prices – we evaluate the rev-
enue efficiency with and without features related to
dynamic prices;

6.3.1 Effects of α
To evaluate the effects of α, we try three different αs in our
approach. α is the power to the taxi term and the public
transportation term in (10), and correspondingly, the power
to the RoD term is 1−2α. We have mentioned in Section 5.4.4
that the RoD term should have a weight at least larger than
other terms together, and that hence α ≤ 1/4. We choose
three different αs: 0.2, 1/4 and 0.3 – corresponding to the
cases that the RoD term have a weight larger, equal, and less
than other two terms together, respectively.

Tab. 3 shows the comparison of average revenue efficien-
cy with different αs. It is clear that α = 0.2 gives the highest
revenue efficiencies. Considering the revenue efficiency in
distance, α = 0.25 gives a 4.9% smaller revenue efficiency
compared to α = 0.2 does, and α = 0.3 gives a 9.4% smaller
revenue efficiency compared to α = 0.25 does. This verifies
our earlier claim that the RoD term should have a weight
at least larger than other terms together. Specifically, the
average revenue efficiency drops faster when α grows larger

TABLE 3
The comparison of average revenue efficiency with different αs.

α Rev. effi. in distance Rev. effi. in time
(Yuan per km) (Yuan per minute)

0.2 2.980 0.541
0.25 2.834 0.508
0.3 2.569 0.465

TABLE 4
The comparison of average revenue efficiency using different datasets.

Datasets Rev. effi. in distance Rev. effi. in time
(Yuan per km) (Yuan per minute)

all 2.980 0.541
RoD 2.636 0.481
RoD+taxi 2.732 0.495
RoD+public 2.658 0.486

than 1/4. Earlier observations in [1] prove that including
multi-source urban dataset indeed improves the accuracy in
predicting drivers’ revenue-making capability, but still the
RoD data itself has the highest impact. Our observations
regarding α agree to this.

It may be true that α = 0.2 is not the optimal choice
of α, but finding the exactly optimal α requires brute-force
enumeration, meaning a lot of computation and trial-and-
error. The above comparison already justifies the effects of
α, and we thus consider it enough.

6.3.2 Effects of Different Datasets
In this section we try to answer if is necessary to introduce
multi-source urban data into our approach. To do that, we
vary the traffic charge calculation from (10) to only using
RoD datasets,

Ct,r = CRoD, (14)

and, only using RoD and taxi datasets,

Ct,r = C0.6
RoD · C0.4

taxi, (15)

and, only using RoD and public transportation datasets,

Ct,r = C0.6
RoD · C0.4

public. (16)

In (15) and (16), the power to the RoD term is set to 0.6 so
that it is comparable to our basic results in which the power
to the RoD term is also 1− 2α = 0.6.

Tab. 4 shows the comparison of average revenue effi-
ciency using different datasets. In this table, “all”, “RoD”,
“Rod+taxi” and “RoD+public” refer to using (10), (14), (15)
and (16) to calculate traffic charge, respectively. We have the
following observations,

• Using multi-source datasets indeed improves the
average revenue efficiencies significantly. Comparing
between “all” and “RoD”, the improvement of the
revenue efficiency in distance (and in time) is 13%
(and 12.5%).

• The importance of taxi data is greater than that
of public transportation data, shown by the higher
revenue efficiencies of “RoD+taxi”. Taxi service, com-
pared to bus or metro, is more similar and related to
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RoD service, and thus taxi data provide more clues
for RoD drivers. This also corresponds to previous
observations in [1] that features extracted from taxi
data have larger weights than those extracted from
public transportation data in determining drivers’
revenue-making capabilities.

6.3.3 Effects of Dynamic Prices
Dynamic pricing, as mentioned previously, is one of the
core new features of RoD service. There are four features
extracted from RoD data (see Section 5.4.1) related to the
dynamic prices – DPt,r, DPt, ORt,r and ORt. Among
them, DPt,r and DPt are directly related to dynamic prices,
whereas ORt,r and ORt are indirectly related to dynamic
prices.

For ORt,r and ORt, the revenue of a single order is
calculated as:

f = p ∗ (15 + 2.8 ∗ d) (17)

In (17), the service provider sets the flag-fall to be 15 RMB
Yuan (≈ 2.18 USD), and each additional kilometre costs 2.8
Yuan (≈ 0.41 USD). d is the order distance, and p is the
corresponding dynamic price multiplier of this order.

To compare the revenue efficiencies with and without
dynamic prices, we remove the influence of dynamic prices
from the above four features. For DPt,r and DPt, we set
them to be 1, i.e., assuming every city cell has a price
multiplier of 1. For ORt,r and ORt, in calculating every
order’s revenue, we set p (i.e., the order’s dynamic price
multiplier) to 1.

Our simulation results show that without the influence
of dynamic prices, the revenue efficiency in distance (and in
time) is 2.675 (and 0.491). This indicates that:

• including features of dynamic prices in seeking route
recommendation is of significant importance. The
revenue efficiency in distance (and in time) is re-
duced by 10.2% (and 9.3%) without considering dy-
namic prices.

• combining results from Section 6.3.2 and 6.3.3, it is
shown that both dynamic prices and multi-source
urban data should be considered in recommending
seeking route to drivers in RoD service. This is rea-
sonable as they are the new features that make RoD
service distinct from taxi service.

6.4 Results on Different Days
In Section 6.1 through 6.3, we present evaluation results
on a chosen Monday in Nov. 2015 – actually it is the first
Monday in this month. To justify the representativeness of
our results, in this section we show the revenue efficiency in
distance on other Mondays. We still choose Mondays as the
representative day-of-week, and due to the limited space,
we do not show results on other days-of-week here. Also,
we only show the revenue efficiency in distance; the revenue
efficiency in time shows similar patterns, and is thus omitted
due to the limited space.

From Nov. 1, 2015 to Feb. 29, 2016, there are altogether
18 Mondays. During this time range, there is one major
holiday season – the Spring Festival – this holiday is the
most important holiday in China, and people get 7 days

off (from Feb. 7 to Feb. 13, 2016). Before, during and after
this holiday season, there are less people, less traffic and
different trip and traffic patterns. In Fig. 13 we show the
revenue efficiency in distance, from both the ground truth
and the force-directed approach, among these 18 Mondays.
The first Monday is Nov. 2, 2015, and the last is Feb. 29,
2016.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timeline (in Weeks)

2

2.2

2.4

2.6

2.8

3
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Force-directed Approach
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Fig. 13. The revenue efficiency in distance among different Mondays.

We have the following observations:

• The revenue efficiencies, from the ground truth and
our force-directed approach, are relatively stable
from the 1st to 13th Monday (Jan. 25, 2016). Firstly,
the ground truth shows that on normal Mondays,
drivers have stable driving habits and revenue effi-
ciencies. Secondly, our force-directed approach has a
stable performance throughout different days.

• The revenue efficiencies drop dramatically on the
15th and 16th Monday due to the holiday season.
It is also clear that the revenue efficiencies of our
approach drop more significantly than that of ground
truth. The performance drop of our approach may be
due to the fact that there is less passenger demand on
the road, so there is little room for improvement.

7 DISCUSSIONS

We present some discussions on relevant questions in this
section.

Recommending the same route to different drivers.
A typical question in route recommending studies is “is
the recommending scheme giving the same recommendation to
different drivers?”. For example, a “local or global hotspot”
scheme tries to recommend drivers to the cell with the
highest passenger density; but if all nearby drivers follow
such suggestion, this high-passenger-density cell would
soon have a supply greater, or even much greater, than
the passenger demand, making it impossible to satisfy
these drivers. There are a number of heuristics to avoid
recommending the same route to different drivers, e.g.,
generating several recommendations and giving a random
one of them to each driver, setting a timer to measure the
usability of a recommendation, distinguishing drivers by
finer-granularity features, etc.

Our force-directed approach avoid giving the same rec-
ommendation to drivers by calculating the aggregated force
from nearby vacant cars and drivers at finer-granularity. As
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in (7), the aggregated force consists of two parts – the forces
from extended region, and the forces from objects within the
same cell. Hence,

• For two vacant car drivers in different cells, they
receive different forces (both in magnitude and direc-
tion) from extended region, and thus the aggregated
forces on two drivers in different cells are different;

• For two vacant car drivers in the same cell, the forces
from objects (i.e., other vacant cars and passengers)
within the cell are different for these two drivers, as
the distances between them and these objects are not
the same. Hence the aggregated forces on two drivers
in the same cell are also different.

As a result, the directions of the aggregated forces on nearby
drivers are different, and they thus receive different road
segment recommendations.

Choosing a small number of drivers to simulate. This
is another predicament in similar studies. If a majority of
drivers follow the recommended road segment and change
their seeking patterns, this would in turn reshape the ser-
vice, change the distribution of supply and demand, vary
the distribution of dynamic prices, and even influence the
operation of taxi, bus or metro services. This effect may
weaken the applicability of the original recommendation.

As a result, if a study aims to fully take into account the
above impacts, it is necessary to:

• measure the adoption rate among drivers – how
many drivers follow the recommendation?

• study and predict the supply and demand when
these drivers adopt the recommendation;

• understand and predict the spatio-temporal changes
in dynamic prices;

• study the interaction between multiple transporta-
tion services.

On one hand, such studies require the collection and anal-
ysis of business or sensitive data, and some even require
certain forms of real experiment on passengers or drivers
(e.g., AB test), which are, at this stage, difficult to accom-
plish; on the other hand, each of these studies involves a
lot of effort and can be an independent research topic rather
than a sub-problem in our study.

Instead, choosing a small number of drivers to simulate,
as in our study, avoids all the above impacts on transporta-
tion services and enables us to focus on the core problem of
seeking route recommendation. We thus study how to apply
the force-directed approach into seeking route recommenda-
tion in RoD service, and how to incorporate the influence
of dynamic prices and other transportation services. The
evaluation of the approach under a large number of drivers
is left for future work when we have the necessary datasets.

Computational efficiency of the approach. As the cal-
culation for the next road segment happens at every in-
tersection for every driver, it is necessary to analyze the
computational efficiency of our force-directed approach.
Our calculations could be divided into off-line and on-line
calculations, and they are discussed separately.

We have pointed out in Section 5.6.1 that many prepa-
ration work could be done off-line, e.g., calculating the
average speed, extracting RoD order information, extracting

features from multi-source urban data, calculating traffic
charges of all city cells, calculating the distances between
any two cells, etc. Such off-line calculations could be per-
formed periodically (e.g., daily, hourly, etc.) or do not need
to be updated at all. We do not need to worry about the
computational efficiency of these off-line work.

On-line calculations are discussed in Section 5.6.2, about
the aggregated force. In calculating the aggregated force,
the required traffic charges, as well as distances, are already
available after off-line calculations. Only the following two
tasks need to be calculated on-line:

• Performing the division between the traffic charge
and the square of the distance, for the force from each
cell in the extended region, or objects within cell R0.

• Performing the summation among all forces.

Considering the fact that there are only eight neighboring
cells in the extended region, and that the cell itself is only
about 1 km2 and could not accommodate many cars and
passengers, the division and summation operations above
would not take a long time. In our simulation, it takes less
than 10 ms to calculate the aggregated force for each driver.
Furthermore, on-line calculations could be carried out in
a parallel fashion, and hence the computational efficiency
could be guaranteed when calculating the force for a large
number of drivers.

Directions for future work. Based on our datasets,
approach, and evaluation, we have a number of possible di-
rections for future work. They are not included in this study
due to the limited space, the lack of data, the overwhelming
computation, or because they are peripheral topics of less
importance. Some of them are listed below:

• Study drivers’ responses to the recommendation, and
the corresponding adoption rate;

• Use numerical method to characterize the relation-
ship between revenue efficiencies and the value of α,
and find out the optimal α that leads to the highest
revenue efficiencies;

• In the calculation of the RoD, taxi and bus & metro
term (i.e., (11), (12) and (13)), experiment with the
possibilities that each feature could have different
importance. For example, (11) could be generalized
to:

CRoD =(
PAt,r
PAt

)γ1 · (2− V Ct,r
ACt,r

)γ2 · (1 +
DPt,r
DPt

)γ3

· (1 +
ORt,r
ORt

)γ4 · (1 +
OSt,r
OSt

)γ5

(18)

• With the generalization of the RoD, taxi and bus &
metro term such as (18), it is also possible to study the
force-directed approach with different parameters in
various spatio-temporal settings, e.g., during morn-
ing rush hours, during non-rush hours, on week-
days, on weekends, around central business area,
etc. Finding out the relationship between parameters
and spatio-temporal settings may help to improve
the performance and applicability of the approach.
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8 CONCLUSION

In this paper, we study the seeking route recommendation
problem in RoD service: recommending the right road seg-
ments to RoD drivers at every intersection. RoD service is
distinct with taxi service by two key features – mobile-app-
based and dynamic pricing – and they require the considera-
tion of three more factors on the problem than in taxi service:
matching-in-advance, dynamic pricing, and status of other
transportation services.

We adopt the force-directed approach to tackle the prob-
lem. The force-directed approach models the relationship
between vacant cars and passengers as that between posi-
tive and negative charges, and hence the aggregated force
on a vacant car “drags” it into the right road segment in
seeking for passengers. The modelling of the relationship is
based on features extracted from multi-source urban data,
including the RoD data, taxi data and bus & metro data.

Our evaluation results show that the approach not only
outperforms two baselines on the revenue efficiency, but
also tries to distribute drivers to more random cells. We also
evaluate the effects of multi-source urban data and dynamic
prices, and it is found that both of them help improve the
recommendation significantly, and that it is necessary to
weight carefully between features from different datasets.
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