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Compact Scheduling for Task Graph Oriented
Mobile Crowdsourcing

Liang Wang, Zhiwen Yu, Senior Member, IEEE, Qi Han, Dingqi Yang, Shirui Pan,
Yuan Yao, and Daqing Zhang, Fellow, IEEE,

Abstract—With the proliferation of increasingly powerful mobile devices and wireless networks, mobile crowdsourcing has emerged as
a novel service paradigm. It enables crowd workers to take over outsourced location-dependent tasks, and has attracted much
attention from both research communities and industries. In this paper, we consider a mobile crowdsourcing scenario, where a mobile
crowdsourcing task is too complex (e.g., post-earthquake recovery, citywide package delivery) but can be divided into a number of
easier subtasks, which have interdependency between them. Under this scenario, we investigate an important problem, namely task
graph scheduling in mobile crowdsourcing (TGS-MC), which seeks to optimize a compact scheduling, such that the task completion
time (i.e., makespan) and overall idle time are simultaneously minimized with the consideration of worker reliability. We analyze the
complexity and NP-complete of the TGS-MC problem, and propose two heuristic approaches, including BFS-based dynamic priority
scheduling BFSPriD algorithm, and an evolutionary multitasking-based EMTTSch algorithm, to solve our problem from local and global
optimization perspective, respectively. We conduct extensive evaluation using two real-world data sets, and demonstrate superiority of
our proposed approaches.

Index Terms—Mobile Crowdsourcing, Task Schedule, Directed Acyclic Graph(DAG), Makespan.

F

1 INTRODUCTION

W ITH the increasing popularity of smart mobile devices
and wireless communication network, Mobile Crowd-

sourcing (MC) has emerged that utilizes the power of people
crowds to complete traditionally time-consuming or costly
tasks [1], [2]. Specifically, a typical mobile crowdsourcing
platform schedules spatial tasks released by crowdsourcers
to a group of participant workers, and workers are required
to physically move to some specified spatial locations and
conduct these tasks. Recently, mobile crowdsourcing has
spurred a wide interest from both academia and industry
[3], [4]. Many MC applications and systems have also been
developed, e.g., Gigwalk, TaskRabbit, etc.

Nowadays, more and more complex MC tasks have
been published and conducted on mobile crowdsourcing
platforms, e.g., searching for a lost child, post-disaster re-
covery, citywide package delivery [5], [6], [7], [8]. Different
from simple MC tasks such as taking a photo or check-
ing street signs, it is impossible for just one worker to
independently accomplish a complex task. In practice, one
common practice is to decompose a complex task into a
set of easier subtasks [9], [10], [11], and recommend these
divided subtasks to a group of workers, by the coordination
between the subtasks’ requirements and the workers’ skil-
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Fig. 1. Toy Example of A Task Graph in MC.

l/resource conditions. Subsequently, a complex MC task can
be completed upon the completion of all these subtasks.

Interestingly, in many cases, the divided subtasks are
not independent, but highly interdependent [12], [13]. For
instance, in post-earthquake recovery [5], [6], temporary
shelters should be built after safety and environment assess-
ment; rescue facilities must be in place before the search-
and-rescue activities. In crowdsourcing citywide delivery
[7], [8], one package may be relayed to its destination by
more than one worker, where the successive relays can be
regarded as dependent subtasks. Fig. 1 illustrates a toy
example, the delivery vehicle at t4 will not drive away
until both the packages from t1 and t2 have been collected.
Inspired by the above examples, in this paper, we consider
a complex MC task with precedence-constrained subtasks,
where one subtask can not be started until one or more
relevant subtasks have been completed.

It is obvious that dependencies among subtasks make
MC task scheduling significantly different from related prior
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work [14], [15], [19]. Specifically, in addition to meeting
the specific requirements of individual subtasks (spatial
location, skill requirements, etc.), it is indispensable to
consider the explicit precedence relationships among them
[20]. Actually, precedence-constrained tasks are common in
multi-core computing and distributed computing [21], [22],
[23]. The interdependent subtasks are usually characterized
with the tool of task graph, i.e., Directed Acyclic Graphs
(DAGs), where nodes represent the involved computing
subtasks, and edges represent dependency constraints. And
many DAG task scheduling techniques have also been de-
veloped, including list-based, duplication-based scheduling
approaches. However, these techniques cannot be directly
adopted to our MC scheduling problem, as they fail to
consider the spatial constraints in mobile crowdsourcing.
More precisely, during the process of task execution, for each
candidate worker, its relevant task implementation cost is
not fixed, due to the fact that worker’s spatial position may
vary from location to location.

Until recently, many MC task scheduling techniques
have been proposed for different scenarios, but few specif-
ically address the precedence constraints as mentioned
above. To this end, in the work, we investigate a schedul-
ing problem for task graph oriented mobile crowdsourcing
(TGS-MC), which assigns the interdependent subtasks to
available workers, with the goal of simultaneously mini-
mizing task completion time, i.e., makespan, and idle time.
In other words, our goal is to find optimal subtask-worker
assignments to achieve ”compact scheduling performance”,
which has not only minimum task completion but also high
throughput of MC systems with efficient worker resource
utilization. What is more, to guarantee high quality results,
the reliability of candidate workers is considered.

However, solving our TGS-MC problem faces following
challenges. First, as a NP-complete problem, it is computa-
tionally intractable to obtain an optimal scheduling solution
in polynomial time. Thus, we need to design a computa-
tionally efficient approaches to explore near-optimal result-
s. Second, due to the precedence and spatial constraints,
we need to systematically consider all involved subtasks
and available workers, and more importantly, capture and
track workers’ varying locations during scheduling process.
Third, in TGS-MC problem, we seek a compact task sched-
ule with not only minimum makespan but also minimum
idle time. As a result, it is necessary to explore a trade-off
between these two objectives.

To tackle it, we formalize TGS-MC problem with a dual-
objective optimization problem. By analyzing its complex-
ity, we draw inspiration from the domain of DAG task
scheduling, to find quasi-optimal assignments among all
the involved subtasks and available workers. Two heuris-
tic algorithms, including a breadth-first search based BF-
SPriD algorithm, and an evolutionary multitasking-based
EMTTSch algorithm, are proposed to solve our TGS-MC
problem from local and global optimization perspective, re-
spectively. To be specific, driven by an integrated optimiza-
tion objective, BFSPriD algorithm sequentially and locally
construct scheduling solution layer by layer, by following a
breadth-first-search pattern. By utilizing knowledge transfer
between makespan and idle time objective, two indepen-
dent evolutionary solvers are built in EMTTSch algorithm

TABLE 1
Definitions of Notations

Symbol Explanation
W = {wj} Mobile Workers
T = {ti} MC Complex Task
G = (T , E) T ’s Task Graph
S T ’s Required Skills/Resources Set
Ly(t) Subtask t’s Layer in G
ε(t, w) Matching Degree between t and w
Pr(t) Subtask t’s Process Ready Time
Ps(t, w) Subtask t’s Startup Time for w
Pf (t, w) Subtask t’s Completion Time for w
IT (t, w) Subtask t’s Idle Time for w
MS(T ) T ’s Makespan

to discover promising solutions throughout their respective
problem spaces globally. In other words, BFSPriD makes
a trade off during optimization process; while EMTTSch
individually optimizes these two objectives in optimization
process, and makes trade off at the end. Specifically, we
make the following contributions.

• To the best of our knowledge, this work is the first to
propose and formalize an important problem in MC
systems, namely task graph scheduling in MC, i.e.,
TGS-MC problem.

• From the perspective of local and global optimiza-
tion, we propose two effective heuristic approaches,
respectively, namely BFSPriD and EMTTSch algorith-
m, to solve our TGS-MC problem.

• We extensively evaluate our proposed approaches
using two real-world datasets, and show the efficien-
cy and effectiveness of our proposed approaches.

The rest of this paper is organized as follows. Section 2
presents the preliminary, formulates TGS-MC problem and
analyze its complexity. Two problem-solving approaches
are proposed in Section 3, including BFSPriD algorithm
and EMTTSch algorithm. Section 4 provides the extensive
simulation results based on two real-world datasets. Related
work is summarized in Section 5. Finally, we conclude this
paper in Section 6.

2 PRELIMINARY AND PROBLEM FORMULATION

To clearly illustrate the research problem, in this section,
we first introduce several important concepts of task graph
in MC systems, and then formally define our TGS-MC
problem and discuss its complexity. A list of notations and
their definitions used in the paper is summarized in Table 1.

2.1 Preliminary

Definition 1 (Complex Task). Generally, a complex task T
in MC systems can not be accomplished by just one worker
on his own, but needs a group of workers to collaborate
together. In practice, T is divided into a number of easier
subtasks which usually require less workload (cognition,
resource and so on), i.e., T = {ti|1 6 i 6 n}. Task T
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is regarded as successfully completed if and only if all
subtasks are accomplished. �

Definition 2 (Subtask). Subtask t ∈ T is an easier work
that can be handled autonomously by workers with less
workload. Formally, t is represented as t = (loct, St), where
loct ∈ L denotes its specified location, and St ∈ S is the
set of required skills/resources to accomplish it. In practice,
the requirements of each subtask are diverse and heteroge-
neous, for instance, painting, photography, gyroscope, etc.
�

In this work, the subtasks we considered are interde-
pendent with each other. Concretely, there exist precedence
constraints among these subtasks. For instance, subtask tj
can not be started until its predecessor subtask ti has been
finished. Here, we adopt task graph tool, i.e., Directed A-
cyclic Graph (DAG), to capture such precedence constraints.

Definition 3 (Task Graph). Given a complex task T =
{ti|1 6 i 6 n}, one task graph G = (T , E) is used to
characterize the precedence among its subtasks, where T
represents the node set, and each edge in E represents prece-
dence constraint associated with the two involved nodes,
i.e., subtasks. For example, one edge ti → tj indicates that
ti is the immediate predecessor of tj , i.e., tj is ti’s successor
subtask. �

Hereafter, we will use the terms ”subtask” and ”node”
interchangeably. Fig. 2 gives an example of a task graph
which contains 10 subtasks and 10 precedence links. For a
task graph G = (T , E), the nodes without any predecessors
is named as Entry Node TEntry, whereas a node without
any successor nodes is called an Exit Node TExit. Logically,
task T can be claimed to be completed only when all its
exit nodes have been accomplished. For one node ti in G,
its Predecessor and Successor nodes can be formalized as
blow:

Tpre(ti) = {tj |tj ∈ T ∧ (tj → ti) ∈ E}
Tsuc(ti) = {tj |tj ∈ T ∧ (ti → tj) ∈ E}, (1)

where Tpre(ti) and Tsuc(ti) denote subtask ti’s predecessor
and successor subtasks, respectively. For example, in Fig.
2, subtask t2’s predecessor and successor node sets are
Tpre(t2) = {t1} and Tsuc(t2) = {t5, t6}.

Fig. 2. A Toy Example of Task Graph.

Definition 4 (Layer in Task Graph). Due to precedence
constraints in task graph G, subtask scheduling and exe-
cution should not be random. Instead, it should have an
ordered sequence. By traversing task graph G, we analyze
each node’s predecessor nodes, and represent this sequential
relationship with the layer of each subtask. Formally, the

layer is given as below:

Ly(ti) =

{
1, if Tpre(ti) = ∅,

Max
tj∈Tpre(ti)

{Ly(tj)}+ 1, Otherwise. (2)

Clearly, the smaller the layer value, the earlier it can be
executed, as it has fewer associated precedence constraints.
Fig. 2 lists the layer value of each subtask.

Definition 5 (Workers). There is a set of available worker-
s W = {w1, w2, ..., wm} registered on MC platform to receive
and perform tasks/subtasks. Each worker is denoted as wi

= (locwi , vi, Swi), where (1) spatial location locwi ∈ L is wi’s
current position; (2) vi denotes wi’s moving speed; (3) Swi

is the skills/resources possessed by the worker. �
Considering a complete set of skills/resources, such

as S = {s1, s2, ..., sq}, one worker w’s skill/resource pro-
file could be denoted as Swi = {s1wi

, s2wi
, ..., sqwi

}, where
skwi

, 1 6 k 6 q, denotes the skill/resource level, and
skwi

∈ [0, 1]. For instance, when skwi
equals to 0, it means that

wi does not have skill sk; when it equals to 1, the worker is
very good at sk. In practice, such level information could
be subscribed by the worker himself, or learned from his
participant history. Identifying such information might be
an interesting challenge, but it is out of the scope of this
paper, and we will leave it for our future work.

By harnessing MC platform, each node contained in T
can be dispatched to available workers. However, given
required skills/resources in subtask t, not all the available
workers are qualified to complete it. In other words, only
the workers whose skills/resources can completely cover
t’s requirements are supposed to be valid candidates Wt.
Hence, we need firstly to identify the candidate workers
Wt, via a matching between t’s resource/skill requirements
and workers’ profile. Similar to the representation of work-
er’s skill/resource profile, the required skills/resources in
subtask t are also represented as St = {s1t , s2t , ..., s

q
t}, where

skt ∈ [0, 1], 1 6 k 6 q, indicating skill/resource sk is
necessary for completing t, and the minimum requirement
level is skt . Formally, the valid candidate workers for node t
could be formalized as below:

Wt = {w | ∀skt > 0, ∃skw > skt , 1 6 k 6 q}, (3)

where skw ∈ Sw denotes worker w’s skill/resource level,
and skt ∈ St denotes subtask t’s skill/resource requirement,
1 6 k 6 q.

Nevertheless, due to the diverse requirements in sub-
tasks, the candidate workers derived from Eq. 3 are usually
sparse, especially for large skill/resource dimensions. In
that case, the candidate workers might be not enough for
effective task scheduling. Given this, by applying a lower
bound threshold εthre, we loose the matching condition
above. Mathematically, for subtask t = {loct, St} and candi-
date worker w = {locw, v, Sw}, the matching degree ε(t, w)
can be determined as follows:

ε(t, w) =
1

∥St∥0

∑
skt ∈St∧skt >0

Θ(skt , s
k
w) (4)

where

Θ(skt , s
k
w) =

{
1, skt 6 skw ∧ skt > 0
skw, skt > skw ∧ skt > 0,

(5)
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and L0 regularization ∥St∥0 denotes the number of required
skill/resources in St, i.e., skt > 0, 1 6 k 6 q. Intuitively, if
skt 6 skw, it means t’s skill/resource requirement skt could be
completely satisfied, 1 6 k 6 q; otherwise, it could be partly
satisfied. As a result, valid candidate workers for node t
would be rewritten as below:

Wt = {wj |ε(t, wj) > εthre, ∀wj ∈ W}. (6)

In other words, given one subtask t, only the workers whose
average skill/resource levels are no less than the specified
threshold εthre will be regarded as candidate workers. And
the threshold can be determined by the MC application’s
specific requirements and skill/resource profile distribution
over available workers. To distinguish this matching from
the one in Eq. 3, we name it as weak matching, while the one
in Eq. 3 as strong matching.

Here, for one specific subtask t, the identified candidate
workers Wt are qualified to execute it. However, in the
condition of “weak matching”, each candidate w’s qualifi-
cation, i.e., matching degree ε(t, w), is different. In general,
it seems clear that the greater the value of ε(t, w), the higher
the expected reliability of subtask t’s result [14], [15]. Fol-
lowing this common practice, we also evaluate t’s expected
result reliability, using the matching degree between t’s
requirements and worker w’s profile, i.e., ε(t, w). And the
above threshold εthre is regarded as reliability constraint
accordingly.

2.2 Problem Formulation

For each subtask t, after obtaining its candidate worker set
Wt, we should optimally select suitable workers to schedule
all these involved subtasks in T . In this work, we formal-
ize a compact task scheduling problem in MC systems,
in which Task Makespan and Idle Time are optimized
simultaneously. In the following, we formally define these
two optimization objectives.

To fulfill each assigned subtask t, the selected worker
wj ∈ Wt needs to physically move to the specified lo-
cation loct, and utilizes human cognition, device resource
to conduct it. As a result, both the traveling time and
execution time should be considered in t’s completion
time. Here, for simplicity, we adopt Euclidean distance
to calculate the implicit traveling cost from wj ’s current
location locwj to loct, i.e., dist(locwj , loct). Note that, our
proposed approaches could be easily extend to other dis-
tance metrics, such as Manhattan distance, road network
distance and so on. Assuming worker wj adopts moving
speed vj , then the traveling time can be derived as follows:
θ
t,wj
m = dist(locwj , loct)/vj .

After arriving at specified location, wj needs to utilize
his resource/skill to accomplish subtask t. Intuitively, the
execution time is directly related to the worker’s qualifi-
cation with respect to t. As stated in [16], an experienced
worker, who has a high skill level, needs less time to
accomplish a skill requirement than a worker with a lower
skill level. That is to say, the better wj can cover subtask t’s
requirements, the shorter the execution time is. Following
the previous research [16], [17], [18], in this paper, we adopt

an exponential function to model the execution time as
below:

θt,wj
e = α ∗

∑
16k6q

e−β∗Θ(skt ,s
k
w), (7)

where α and β denote constant coefficients. Clearly, the role
of β, i.e., decay ratio, is to control the decay of exponential
function. As shown in Fig. 3, we present a set of decay
curves with different values of parameter β. Intuitively, β
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Fig. 3. Different Values of Parameter β.

should be determined appropriately which can distinguish
different skill level well. On the other hand, we argue that
there must exist a low bound to reflect the necessary execu-
tion cost. By considering these two factors simultaneously,
we suggest a suitable range from 0.75 to 1.25 for parameter
β. And in the experiments, we set the value of β = 1. While
for parameter α, it can be regarded as an amplification
factor. In practice, its value can be adjusted according to
different application requirements. For simplification, we set
it as 1 in experiments. Note that, the choices of these two
parameters are orthogonal to our method proposed later.

Except for the cost of traveling time and execution time,
the underlying dependency relationship, i.e., graph topol-
ogy constraints, between subtasks should also be seriously
considered. To be specific, one subtask’s completion time
can not be just determined by its performer’s arrival time
and the associated execution time, but need to coordinate
all its predecessor subtasks’ completion times. In practice,
during the coordination process, it might incur the idle
time in two cases: 1) when selected worker wj has arrived
at designated subtask ti’s location, he could not start the
subtask, but has to wait for the accomplishment of ti’s all
predecessor nodes; 2) when ti’s predecessor nodes all have
been completed, i.e., subtask ti is ready to be processed, but
the selected worker wj has not arrived in time. Evidently,
both these cases would make against the implementation
of task T , and lower throughput and worker resource
utilization. Thus, the idle time should be considered as one
optimization goal in our work.

With respect to one subtask ti ∈ T , from the perspective
of task graph topology, its Process Ready Time Pr(ti) is
equal to the maximum completion time of all its predecessor
nodes’,

Pr(ti) = Max{Pf (tx)|tx ∈ Tpre(ti)}, (8)
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where Pf (tx) represents the time instant at which one pre-
decessor node tx has just been completed. If the designated
worker wj can not arrive at ti’s location before its process
ready time Pr(ti), ti is unable to be carried out. Therefore,
ti’s start time Ps(ti, wj) is determined solely based on its
process ready time Pr(ti) and the designated worker wj ’s
arrival time Pv(ti, wj). If Pr(ti) < Pv(ti, wj), subtask ti
needs to wait until worker’s arrival; otherwise, the selected
worker will have to wait for the completion of ti’s all
predecessor nodes, i.e., Pr(ti). Therefore, ti’s real start time
can be calculated as follows:

Ps(ti, wj) =

{
Pv(ti, wj) if Pr(ti) 6 Pv(ti, wj),
Pr(ti), Otherwise.

(9)

Similarly, ti’s completion time can be derived by adding its
corresponding execution time,

Pf (ti, wj) =

{
Pv(ti, wj) + θ

ti,wj
e if Pr(ti) 6 Pv(ti, wj),

Pr(ti) + θ
ti,wj
e , Otherwise.

(10)
Thus, we define Idle Time IT (ti, wj) as the difference
between ti’s process ready time Pr(ti) and its designated
worker wj ’s arrival time Pv(ti, wj). Formally, it can be
calculated as below:

IT (ti, wj) = |Pr(ti)− Pv(ti, wj)| . (11)

Fig. 4 illustrates a toy example of idle time for sub-
task t4 with three predecessor subtasks: t1, t2 and t3, i.e.,
Tpre(t4) = {t1, t2, t3}. Assume there are two candidate
workers, w∗ and w#, the startup time and idle time of these
two candidates are listed correspondingly, in which these
two workers’ arrival times Pv(t4, w∗) and Pv(t4, w#) are
different.

Time Line 1t
2t

3t

4( )rP t

1( )fP t

2( )fP t

3( )fP t

4 1 2 3( ) { ( ) ( ) ( )}r f f fP t max P t ,P t ,P t=

4t 4( , )v *P t w 4( , )v #P t w

4( , )s #P t w

4( , )s *P t w

4( , )#IT t w4( , )*IT t w{ {

Fig. 4. Idle Time for One Subtask with Predecessors.

In order to avoid violating the precedence constraints
in T , it is most natural to schedule subtasks layer by
layer. Obviously, as predecessor nodes are empty, subtasks
located at entry nodes, i.e., TEntry, are not restricted by any
precedence constraints, such that they can be performed at
any time without waiting any other subtasks’ accomplish-
ment. Without loss of generality, we assume entry nodes
in G start execution at time 0. To ensure task fulfillment,
we assume that once a worker starts participating into a MC
campaign, he will not leave halfway through the execution process
of task T , unless all his designated subtasks have been completed.
Provided that task completion time would not be increased,

workers can decide by himself at which time he will initiate
his execution schedule. As a result, to obtain the overall
makespan of task T , it is a must to jointly simulate and
act the whole scheduling scheme step by step. Concretely,
starting from the “Entry Node” in T , we need to iteratively
simulate the execution process of all the involved subtasks,
and continuously track all the involved workers’ mobility
process. And only if all the “Exit Nodes”, i.e., subtasks in
the maximum layer, have been accomplished, the overall
makespan of T can be obtained. Formally, the Makespan
MS of T can be formalized as below:

MS(T ) = Max{Pf (tk1), Pf (tk2), ..., Pf (tkp)}, (12)

where tki ∈ TExit, 1 6 i 6 p, Pf (tki) denotes the completion
time of subtask tki , and TExit denotes the set of exit nodes
in G. As needs to traverse and simulate all the involved
subtasks, the calculation of MS(T ) is computationally ex-
pensive.

For the ease of presentation, we adopt a matrix structure
X to represent task schedule solution, i.e., a set of subtask-
worker pairs. Specifically, one entry Xi,j , 1 6 i 6 n, 1 6 j 6
m, denote whether subtask ti has been assigned to worker
wj . If so, the value of Xi,j would be set as 1; otherwise, Xi,j

equals 0.
According to the definitions of task graph and the related

concepts, we define the TGS-MC problem as follows.
Definition 6 (Task Graph Scheduling in Mobile Crowd-

sourcing, TGS-MC). Consider a complex MC task T =
{ti|1 6 i 6 n}, where each subtask ti is specified with
spatial location loct and skill/resource requirement St, i.e.,
t = (loct, St). And dependency constraints are attached
with these subtasks, which is represented as a task graph
G = (T , E), where E denotes the associated dependency
constraints between subtasks. For one set of available work-
ers W = {w1, w2, ..., wm}, where wj = (locwj , vj , Swj ), we
aim to coordinate all the involved subtasks and available
workers, and build an optimal scheduling solution with
the form of subtask-worker pairs Xi,j , such that task T ’s
makespan and the overall idle time are simultaneously
minimized, subject to the worker reliability constraints. For-
mally, our TGS-MC problem is to optimize both objectives
simultaneously as below:{

Min : Max{Pf (tk1), Pf (tk2), ..., Pf (tkp)},
Min :

∑
ti∈T |Pr(ti)− Pv(ti, wj)| ,

(13)

Subject to : ∀Xi,j ∈ X ,Xi,j = 1 ∨ ε(ti, wj) > εthre, (14)

where ti ∈ T , wj ∈ W , tkx ∈ TExit, 1 6 x 6 p, and Xi,j

denotes subtask-worker pair (ti, wj). �

2.3 Problem Complexity Analysis
First of all, as having been shown in [21], [22], [24], DAG
task scheduling is a NP-complete problem, in which there
exists no technique that can achieve an optimal scheduling
solution in polynomial time. Thus, our TGS-MC problem
is also NP-complete. And it is computationally intractable
to examine all the possible solutions, due to its enormous
search space. For example, given task T = {ti|1 6 i 6 n},
assuming that the valid candidate workers for subtask ti are
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Wti , the whole solution space is large as
∏n

i=1 |Wti |, where
|Wti | denotes the size of Wti . In worst case, it could be
expanded to |W|n. So, it calls for low-complexity efficient
near-optimal algorithms.

Furthermore, different from the traditional DAG task
scheduling problem, as the recruited workers need to physi-
cally move to the specified locations of outsourced subtasks,
assignment in DAG oriented MC systems needs to addition-
ally take into consideration of the geographical distances
between tasks and workers, which have a great impact on
factors of concern, including workers’ traveling distance,
tasks’ makespan and the overall idle time. And since the
workers’ positions would dynamically change from time
to time, the designed DAG-oriented task scheduling algo-
rithms must track and update the workers’ current positions
timely. Therefore, considering the spatial distance restric-
tion, the problem becomes more difficult and intractable.

Last but not least, our TGS-MC problem seeks to achieve
a compact scheduling solution, i.e., minimizing not only
task completion time (makespan), but also the idle time.
However, these two goals are neither coincident nor conflict-
ing. On the one hand, makespan focuses on the overall
task execution efficiency, while idle time emphasizes the
efficient utilization of worker resource. While on the other
hand, improving one goal does not necessarily result in
deterioration of the other goal. For example, if sufficient
worker resources are available, it might result in less idle
time, but it is not necessarily so for makespan. Thus, we
need to carefully balance between these two objectives.

3 PROPOSED APPROACHES

In this section, based on a thorough and comprehensive
analysis of our TGS-MC problem, we propose two problem-
solving approaches from local and global optimization per-
spective, respectively. In the following, we will elaborate
them in detail.

3.1 Local Optimization: Layered Dynamic Priority
Scheduling

As the fact that subtasks in upper layer are preceded by the
ones in lower layer, it is naturally to utilize a divide-and-
conquer technique to sequentially construct task scheduling
solution. Basically, we adopt a layered mode, i.e., from
the lowest layer (entry nodes) in G to the highest layer
(exit nodes), to tackle involved subtasks. In each layer, the
contained subtasks are scheduled to appropriate worker-
s with the goal of minimizing makespan and idle time
simultaneously, according to workers’ current conditions.
Essentially, it strives to achieve optimality within each layer
locally during the sequential scheduling process. Here, we
name this qusi-Breadth-First-Search (BFS) based scheduling
method as BFSPriD algorithm. Next, we will explain its
workflow detailedly.

Firstly, all the subtasks contained in incumbent lay-
er need to be traversed and extracted, such as T# =
{ti1 , ti2 , ..., tip}. Since we follow a direction of increasing
layer, subtasks in T# are all process ready tasks, and in-
dependent of each other with respect to precedence con-
straints. That is to say, there exist no predecessor nodes of

subtasks in T# (Entry nodes TEntry), or all the predecessor
nodes of subtasks in T# have already been finished. Indeed,
the divided task scheduling sub-problem in current layer
is also NP-complete, due to worker resource competition
among these involved subtasks. As shown in Fig. 5(a), t1
can be assigned to candidate workers w1, w2 and w3. Once
w1 has been determined to implement t1, w2 and w3 would
be immediately excluded for t1, and w1 might lose chance to
undertake the possible subtask t3 if t1 and t3 are far away
from each other. In Fig. 5(b), we maintain a list to record
each worker’s current position. When w1 has finished t1, his
position should be updated as loc1. Therefore, w1’s traveling
cost to t3 should be recalculated and updated accordingly.

Fig. 5. Worker Resource competition Among Subtasks.

To avoid exhaustive search, we turn to sequential heuris-
tics to construct sub-solution for T#, by handling them
one by one. Inspired by list heuristic methods in DAG
scheduling [21], [22], we consider to prioritize subtasks in
T# and schedule them accordingly. However, it is infeasible
to assign priority to each subtask directly in terms of in-
volved optimal objectives, i.e., makespan and idle time. The
reason lies in: 1) subtasks usually compete with each other
for available worker resources as above, thus the scheduling
for each subtask needs to be coordinated properly; 2) each
subtask’s associated makespan and idle time are determined
based on available workers’ current conditions, i.e., con-
stantly changing positions. As a result, a dynamical priority
and scheduling mechanism is devised. Specifically, subtasks
in T# are assigned with dynamic priorities based on all
available workers’ updated locations. And then, according
to their priorities, the highest priority subtask will be firstly
tackled, and removed from T# after being scheduled. This
procedure continues until all the subtasks have been sched-
uled.

To dynamically prioritize subtasks in T#, we employ a
Max-Min travelling time cost metric as follows:

Arg : Max
tik∈T#

Min
wj∈Wtik

{dist(locwj , loctik )/vj}

= Arg : Max
tik∈T#

Min
wj∈Wtik

{θtik ,wj

m }.
(15)

The basic idea is that if one subtask’s nearest candidate
worker is the farthest among all these subtasks in T#, it
should be scheduled preferentially. For one subtask tik to
be scheduled, we handle it as follows. Above all, its process
ready time Pr(tik) is calculated according to all its predeces-
sor nodes’ completion time Pf (tj), tj ∈ Tpre(ttik ). Its valid
candidate worker set Wtik

then needs to be identified. Note
that, the reliability constraints have been used as a threshold
to filter valid candidates. Thus, all the final selected workers
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satisfy the reliability constraints: ε(tik , wj) > εthre. By
computing each candidate worker wj ∈ Wtik

’s traveling
cost and execution cost, we can directly derive the expected
completion time Pf (tik , wj) and idle time IT (tik , wj) for
wj . Based on these two obtained metrics, one suitable work-
er could be recognized and selected to undertake subtask
tik . However, as analyzed previously, these two metrics are
not coincident. So, it is indispensable to seeking a balance
between makespan and idle time goals, e.g., constructing an
integrated utility function. Here, we adopt the commonly
used linear weighted sum method to construct an integrated
utility function [15], [25]. To be specific, each candidate
worker wj ’s utility with respect to subtask tik can be com-
puted as follows:

∂(tik , wj) = φ ∗ Pf (tik , wj) + (1− φ) ∗ IT (tik , wj), (16)

where the factor φ equals to 0.5 for balancing these two
objectives. Clearly, the one that has maximum utility should
be regarded as the most competitive candidate, and de-
termined as the desired task performer. The workflow of
BFSPriD will terminate when all the involved subtasks in
T have been processed. The overall process of BFSPriD is
outlined in Algorithm 1.

Next, we analyze the time complexity of BFSPriD Algo-
rithm. For simplicity, the size of valid candidate workers for
each subtask t, i.e., Wt, is represented as a fixed average
value |Wt|av . And the average number of subtasks over
each layer is represented as |T | /Ly. Within each layer of
task graph G, the computational overhead of the subtask
scheduling is dominated by dynamic prioritization, which
is O((|T | /Ly) ∗ |Wt|av ∗ log2 |Wt|av). Summarizing the
above analysis, the computational complexity of BFSPriD
algorithm is O(|T |2 ∗Ly−1 ∗ |Wt|av ∗ log2 |Wt|av). In nature,
as a local optimization algorithm, BFSPriD achieves high
efficiency, but sacrifices quality to some extent.

ALGORITHM 1: BFSPriD Algorithm

Input: Task graph: G = {V,E}, Reliability threshold:
εthre, Workers: W ;

Output: Task schedule solution: X ;
1 for each layer Ly in G do
2 Pick out all the nodes T# contained in Ly;
3 while T# ̸= ∅ do
4 Prioritize remainder subtasks in T# by Eq. 15;
5 Pick out subtask t with the highest priority;
6 Calculate Pr(t) from its predecessors Tpre(t);
7 Search candidate worker set Wt;
8 for each candidate w in Wt do
9 Derive benefit by Eq. 16;

10 end
11 Determine worker w∗ with maximum benefit;
12 X = X

∪
(t, w∗) and T# = T# − {t};

13 end
14 end

3.2 Global Optimization: Evolutionary multi-tasking Al-
gorithm
In this subsection, we devise a global optimization approach
to solve our TGS-MC problem by harnessing population-

based meta-heuristic evolutionary algorithm. Towards both
optimization objectives simultaneously, we utilize a novel
evolutionary search paradigm, namely Evolutionary Mul-
tiTasking (EMT) [26], [27], to address TGS-MC problem.
Different from traditional evolutionary algorithms, evolu-
tionary multitasking conducts evolutionary search concur-
rently on multiply search spaces corresponding to different
optimization problems. By transferring implicit knowledge
between the correlative optimization problems, the per-
formances including solution quality and search efficiency
can be enhanced markedly. In other words, the common
knowledge shared by involved optimization tasks can be
explored to collaboratively optimize the problems. Based on
EMT, we propose a global optimization approach named
EMTTSch algorithm, which will be elaborated subsequently.

3.2.1 Framework
The framework of our proposed EMTTSch algorithm is
present in Fig. 6. For each optimized objective, i.e.,
makespan and idle time, we build two separate evolu-
tionary solvers, namely makespan evolutionary solver SV1

and idle time evolutionary solver SV2, respectively. And
then, these two solvers individually and iteratively tackle
their respective optimization problems with independent
populations. Here, we employ the basic workflow of gen-
eralized differential evolution method [28] to construct their
evolutionary process. The reason is that differential evolu-
tion is capable of searching very large spaces of candidate
solutions. Firstly, the initial population is initialized for
each solver SV1 and SV2, respectively. And then, during
the evolutionary process, the operations of reproduction
and selection are conducted to generate offspring solution-
s, and achieving improvement on respective optimization
objectives. Importantly, the knowledge contained in fittest
solutions is transferred across these two solvers through
learned mapping relationship. Besides, an external archive
is introduced to dynamically record the found better so-
lutions in each generation. The procedure continues until
the termination criterion is met. Finally, we conduct a post-
processing operation, i.e., elite solution selection, to deter-
mine the desired solution which can balance well on these
two objectives. The overall process of EMTTSch is outlined
in Algorithm 2. And the subcomponents are explained in
details in the following.

3.2.2 Solution Representation and Initialization
According to the structure of task graph G, we adopt a dual-
chromosome scheme to represent scheduling solution of
TGS-MC problem, i.e., task and worker chromosomes. The
task chromosome T⃗ is a permutation of n subtasks in T to
be scheduled, according to the order of layers in G, and the
worker chromosome X⃗ which is in numerical vector form
is used to indicate the task scheduling result. To be specific,
if i-th subtask in task chromosome T⃗ is assigned to worker
wj , the corresponding entry in worker chromosome X⃗ , i.e.,
i-th element X⃗ (i), is filled with wj . During evolutionary
process, T⃗ is fixed and act as a reference, while X⃗ evolves
via modifying its contained entries. Actually, compared with
the previously defined solution form X , X⃗ can be directly
obtained from the indexes of non-zero elements in X .
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Fig. 6. Framework of EMTTSch Algorithm.

For population initialization, it might seem unneces-
sary to generate initial solutions from scratch. Particularly,
problem-specific heuristics could be exploited to facilitate
its convergence speed and solution quality significantly.
To generate initial solutions of high quality, we devise a
hybrid initialization mechanism, where the initial solutions
are partially constructed using BFSPriD algorithm due to
its high efficiency, and others are randomly generated from
search space. To be specific, for the former mode, we change
the value of balancing factor φ in Eq. 16 from 0 to 1, to
generate candidate solutions with different preferences over
these two optimization goals. For example, when φ equals
to 0.4, it means that the weight of makespan goal is 0.4,
while idle time goal is 0.6. In the latter one, initial solutions
are randomly created from recognized candidate workers,
e.g., selecting one candidate worker from Wt for subtask t
at random. Clearly, the role of random initialization is to
enhance the diversification of population. At the end, we
achieve two sets of solution populations of size PS, i.e.,

ALGORITHM 2: EMTTSch Algorithm

Input: Task graph: G = {V,E}, Workers: W ,
Population size: PS, Paramters: εthre, cp, DW ;

Output: Task schedule solution: X⃗ ∗;
1 Initialize population sets P1 and P2;
2 Calculate mapping relationship M1,2 and M2,1;
3 while termination criterion not satisfied do
4 for each candidate solution X⃗ in P1/P2 do
5 Generate offspring X⃗# by mutation operation;
6 Update X⃗# using recombination operation;
7 Greedily select one to survive from X⃗# and X⃗ ;
8 end
9 Evaluate the fitness of population P1/P2;

10 Bidirectional knowledge transfer by multiplication
with M1,2/M2,1;

11 Update archive with newly generated solutions;
12 Refine population P1/P2 with tournament;
13 end
14 Elite solution selection to balance both objectives;

P1 and P2, for solver SV1 and SV2, respectively, where
|P1| = |P2| = PS.

3.2.3 Population Reproduction and Selection
During the evolutionary process, for each candidate solution
X⃗ in P1 or P2, we choose three solutions X⃗a, X⃗b, and X⃗c

at random, and they must be different from each other as
well as from incumbent solution X⃗ . Based on these selected
solutions, it conducts mutation operation to generate new
offspring X⃗#. Mathematically, the new offspring X⃗# can be
generated as below:

X⃗#(i) = X⃗a(i) +DW ∗ (X⃗b(i)− X⃗c(i)), (17)

where X⃗#(i) denotes the i-th entry of X⃗#, and the parame-
ter DW is differential weight which is ranging from 0 to 2
practically.

Next, the recombination operation is implemented over
the incumbent solution X⃗ and the newly generated off-
spring X⃗#. Concretely, given a recombination probability
cp, we update each entry in X⃗# one by one. If one random
number ranged from 0 to 1 is not more than probability cp,
the entry X⃗#(i) remains unchanged; otherwise, it will be
replaced by the corresponding entry in X⃗ (i). Formally, it
can be represented as follows:

X⃗#(i) =

{
X⃗#(i), if rand 6 cp

X⃗ (i), if rand > cp,
(18)

where rand is a random number, i.e., rand ∼ U [0, 1].
Afterwards, for incumbent solution and the offspring

one, we greedily select one to survive to the next generation.
To be specific, the new offspring X⃗# is need to compare
with the incumbent X⃗ , in terms of their corresponding
optimized objective. If the objective evaluation (makespan
or idle time) of X⃗# is not more than X⃗ , X⃗# will be survived
to the next generation; otherwise, X⃗ will survived. In other
words, if the objective of new offspring is an improvement,
it is accepted and entered into optimization population,
otherwise it is directly discarded.

3.2.4 Solution Knowledge Transfer and Refinement
We adopt denoising autoencoder-based explicit genetic
transfer [27], to exploit the underlying synergistic effect
between these two correlated optimization solvers. First of
all, the mapping relationship between these two optimiza-
tion problems should be built. Concretely, two subsets of
solutions are sampled uniformly and independently from
the these two optimization problems’ search spaces, respec-
tively. Formally, we use the symbols X and Y to denote
them, where X =

{
X⃗1, X⃗2, ..., X⃗N

}
, Y =

{
Y⃗1, Y⃗2, ..., Y⃗N

}
,

X ⊆ P1 and Y ⊆ P2. Note that, the sampled solutions in
X (or Y) need to be sorted with respect to their respective
optimization objectives, i.e., makespan and idle time. Under
the denoising autoencoder model, the mapping M1,2 of size
|T |× |T | from makespan solver SV1 to idle time solver SV2

can be derived by using X as input and Y as output. And
the squared reconstruction loss can be calculated as follows:

Lsq =
1

2N

N∑
i=1

∥∥∥X⃗i − M1,2 ∗ Y⃗i

∥∥∥ . (19)
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Generally, the mapping relationship M1,2 can be computed
in close form as below:

M1,2 = (Y ∗ XT )(X ∗ XT )−1. (20)

Similarly, the mapping from SV2 to SV1, i.e., M2,1, could
also be derived accordingly. Along the evolutionary process-
es of these two solvers, better solutions discovered by any
solvers will be transferred and injected into the population
of the counterpart solver, via the operation of matrix mul-
tiplication with M1,2 from SV1 to SV2 (or with M2,1 from
SV2 to SV1). Note that, for efficiency, knowledge transfer
is conducted across these two optimization problems, with
a fixed generation interval along the evolutionary process,
e.g., every ten generations.

After knowledge transferring, we need to evaluate all
the candidate solutions, including pre-existing and injected
ones. And the fittest solutions will be recorded into the ex-
ternal archive of size K. If there is candidate solution whose
fitness is better than the ones in archive, external archive will
be updated by adding this newly discovered solution. After-
wards, it is necessary to implement refinement operation to
maintain the size of each solver’s population to a constant
scale. Here, the tournament selection strategy is utilized to
select the fittest individuals from the current generation. Via
tournament selection, the determined individual solutions
are passed on to the next generation.

3.2.5 Elite Selection Strategy

When the terminal criterion has been met, both evolutionary
solvers stop, and provide the final solutions with respect
to their corresponding optimization objectives. As our goal
is to concurrently optimize these two objectives, we adopt
an elite selection strategy to pick out the desired solution
which could better balance these involved objectives, i.e.,
Pf and IT . Suppose the solutions recorded in solver SV1

and SV2’s external archives are represented as Xbs and Ybs.
For each solution in Xbs or Ybs, we evaluate its fitness in
terms of makespan and idle time, respectively. And then,
the domination relationship is borrowed from the domain of
multi-criteria decision making [29]. By pairwise comparison,
a subset of non-dominated solutions is obtained which is
denotes as X∗. Finally, we pick out one solution X⃗ ∗ which
located at the median of the objective space, as it can better
balance the makespan and idle time objectives.

3.2.6 Time Complexity Analysis

In EMTTSch, evaluating a candidate solution is to simulate
the complete process of subtask implementation in turn.
The complexity of the fitness evaluation is thus O(|T |). The
random population initialization strategy costs O(|T |) to
create initial candidate solution. The computational over-
head of the mapping relationship construction is dominated
by matrix inversion, which is O(N3), where N denotes
the number of sampled candidate solutions in each solver.
In the following, we discuss the time complexity of each
major component of EMTTSch algorithm in every gener-
ation. The operations of reproduction and selection, i.e.,
differential evolution, cost O(2 ∗ PS ∗ |T |) to generate
new offspring, and achieve improvement in the specific
optimization goal (makespan/idle time). The knowledge

transfer consumes O(M ∗ |T |2), where M denotes the scale
of better solutions which will be injected into counterpart
solver. It takes O(PS ∗ (K+ 1) ∗ log2(K+ 1)) to update the
external archive. And the population refinement averagely
cost O(PS) because of tournament operation. Finally, the
elite selection operation takes O(K∗(2K+1)) to achieve the
pair-wise comparison amongst solutions recorded in these
two external archives, where K is the archive size.

4 EVALUATION AND DISCUSSION

In this section, we systematically evaluate the performance
of our proposed techniques using two real-world datasets.
Our experiments and latency observations are conducted
on a standard server (Windows), with Intel(R) Core(TM) i7-
6700HQ CPU, 2.60 GHz and 32 GB main memory.

4.1 Experimental Settings

Data Set: In our experiments, we choose two real-world
data sets. The first small-scale data set is StudentLife 1 pub-
lished by researchers at Dartmouth College. The StudentLife
data set was collected from mobile phones of a class of 49
Dartmouth students over 10 weeks, including the readings
of GPS, WiFi and so on. We use the WiFi readings as
workers’ initial positions, and 101 Point-of-Interests (POIs),
i.e., location with semantic tags, across Dartmouth College
are utilized to generate subtasks. The second large-scale
data set we used is a GPS trajectory data set collected
from about 1200 taxicabs in Chengdu city, China. The GPS
data points are employed to simulate participant workers’
initial positions. And 3000 POIs in Chengdu city are ran-
domly extracted to generated subtasks. Using these two
real-world data sets, the initial positions of workers, and
their associated moving speeds are directly sampled from
the existing historical trajectories. Concretely, the original
locations of recorded trajectories in the data sets are uti-
lized as the initial positions of the recruited MC workers.
In addition, to generate the outsourced MC subtasks, the
involved specified locations and required skills/resources
are simulated based on the contained POIs’ spatial locations
and associated semantics, e.g., gymnasium, art museum, etc.
For example, one subtask might require taking a photograph
at art museum.

Baseline Algorithms: To the best of our knowledge, our
work is the first to investigate task scheduling for mobile
crowdsourcing that considers task dependency constraints.
Existing mobile crowdsourcing task scheduling approaches
cannot be tailored to address our TGS-MC problem. Con-
sequently, we select three most related methods from DAG
task scheduling for comparison, which are listed as follows:

1) HEFTM Algorithm: the method is developed by mod-
ifying one of the most frequently cited and used DAG task
scheduling algorithm, i.e., HEFT [21], [30]. It consists of two
phases, i.e., task prioritizing and scheduling. Specifically,
all subtasks are firstly prioritized based on their average

1. http://studentlife.cs.dartmouth.edu/
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execution time and traveling time, with an upward style as
below.

rank(t) =
1

|Wt|
∑

wj∈Wt

θt,wj
e + Max

tj∈Tsuc(t)
(ctt,tj + rank(tj)),

(21)
where ctt,tj denotes the average traveling cost from loct
to loctj , that ctt,tj = 1

|Wt|
∑

wj∈Wt
dist(lowwj , loct)/vj ,

and locwj = loctj . Obviously, different from our BFSPriD
approach, HEFTM employ a static manner to prioritize
subtasks. Afterwards, the scheduling procedure will handle
subtasks in the already determined priority order.

2) ClustS Algorithm: this method adopts the clustering
heuristics approaches in DAG scheduling. Each subtask’s
spatial location and skill/resource requirements are concate-
nated into an unified representation. By calculating pairwise
similarity between subtasks in the representation space, all
the subtasks are clustered into different groups. And the
subtasks contained in one cluster are exclusively scheduled
to the same worker, in order to reduce the traveling cost and
meet reliability constraints.

3) GloGa Algorithm: this method adopts Genetic Algo-
rithm to search optimal scheduling solutions. Based on the
population-based evolutionary process, it globally search a
desired solution throughout the whole problem space.

Task Construction and Parameter Setting: To construct
task graph T , first of all, we need to specify its involved
subtasks, including spatial locations and required skill-
s/resources. As explained previously, subtasks’ locations
can be directly casted from the POIs’ spatial distribution.
Furthermore, one set S sampled from the semantic tags
associated with POIs is built to simulate subtasks’ skil-
l/resource requirements. In our experiments, S contains 10
different device resources and operation skills. Concretely,
each subtask’s required skill/resource is no more than 5.
Especially for the task dependent relationship, we harness
the mobility transition probabilities learned from the tra-
jectories, i.e., the conditional probability of traveling to a
successor subtask’s location, given that a crowd of people
has already arrived at a predecessor subtask’s location.
Afterwards, two parameters, i.e., maximum layer and maxi-
mum successor subtasks, are used to generate the task graph
T . Clearly, the role of the prior parameter is to control the
“flatness” of task graph T . While the latter one is utilized
to specify the relevant precedence-constraints, i.e., edges in
T . To be specific, for one subtask, say t, a subset of nodes,
such that no more than the maximum successor subtasks,
are randomly selected as its successor ones. In the following
experiments, we will investigate the impact of these two
parameters on the average performance of our approaches.

The involved parameters are set as follow: both the pa-
rameter α and β are set to 1. The reliability parameter εthre
is set to 0.85. In EMTTSch algorithm, differential weight
DW is set to 1, and the recombination probability cp is
set to 0.45. The size of population PS is 150, the scale of
sampled solutions is 40, and the external archive contains
K = 20 fittest solutions. And the termination criterion is set
as maximum generations: MxGen = 120. During popula-
tion initialization, the size of solution generated based on
heuristics equals to 10, i.e., φ varies from 0 to 1 with 0.1
increments. And the remainders are randomly initialized.

4.2 Experimental Results and Analysis

Scheduling Performance: In this part, we conduct extensive
simulation experiments on small and large scale problem
settings, respectively, to evaluate the performance of our
proposed approaches. Firstly, we implement two small-scale
experiments using the first StudentLife data set. In the prior
one, we fix the number of subtasks with 50, and vary the
scale of student workers from 33 to 49 with 4 increments.
For the latter one, the scale of workers is set to 49, while the
number of subtasks varies from 40 to 80 with 10 increments.
In generated task graph, the maximum layer and maximum
successor subtasks are set as 10 and 4, respectively. The
corresponding results are reported in Fig. 7 (a)∼(d). In order
to fix the performance of all involved scheduling algorithms,
we report the average results over 10 repeated trails.

From the experiment results, it is obvious that the
scheduling performance of EMTTSch is the best, followed
by BFSPriD, HEFTM, GloGA and ClustS algorithms. Based
on solution knowledge transfer and several enhancement
strategies, EMTTSch obtains the best scheduling solution.
What is more, compared with evolutionary GloGA algo-
rithm, its convergence speed is improved prominently by
incorporating heuristic initialization from BFSPriD algorith-
m. Because BFSPriD algorithm adopts a dynamic priori-
tization scheme, its performance outperforms the HEFTM
algorithm steadily. This also verifies the difference between
our problem and traditional DAG task scheduling problem.
Finally, ClustS algorithm’s performance is the worst among
all these techniques, as it implement task scheduling on
the group level. Furthermore, we also observe that the
performance metrics, including makespan and idle time,
will be improved with the growth of candidate workers. It is
common sense that task implementation naturally benefits
from more available worker resources.

Next, we simulate two large-scale experiments using the
second Chengdu data set. In the prior one, we fix the num-
ber of the subtasks with 1,000, and vary the size of driver
workers from 800 to 1,200 with 100 increments. For the latter
one, the scale of workers is set to 1,000, and the number of
subtasks varies from 800 to 1,200 with 100 increments. Here,
the maximum layer and maximum successor subtasks are
set as 150 and 3, respectively, in generated task graph. The
relevant experimental results are present in Fig. 7 (e)∼(h).
Obviously, the result is consistent with the findings from the
experimental results above. What is more, compared with
the results of small-scale experiments, the performance of
GloGA has degenerated clearly. One possible reason is that it
is difficult for GloGA to find promising solution region, with
the increase of problem dimensionality. Note that, in large-
scale experiments, the relevant metrics increase significantly
as they are conducted in a citywide environment, thus the
associated traveling time would grow sharply.

Runtime Efficiency: In this part, the runtime results of
the above experiment are given in Fig. 8. We observe that
the efficiency of non-evolutionary algorithms, i.e., BFSPriD,
HEFTM and ClustS algorithms, is superior to evolutionary
algorithms, such as GloGA and our proposed EMTTSch.
Clearly, GloGA and EMTTSch require more evolution it-
erations which are time-consuming. What is more, our
proposed EMTTSch algorithm costs more time than GloGA,
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Fig. 7. Experimental Results of Scheduling Algorithms.

Fig. 8. Running Time of Different Approaches.

due to the operations of solution knowledge transfer, elite
selection, etc. As our BFSPriD approach needs to repeatedly
prioritize all the involved subtasks, it is more time consum-
ing compared with the baseline HEFTM algorithm. With
respect to ClustS algorithm, its computational overhead is
dominated by calculating the similarity between each pair of
subtasks. Thus, in large-scale problem settings, its running
time increases markedly.

Next, we conduct the cost-effectiveness analysis of all
these involved testing methods. In the small scale simula-
tion experiments, although it requires extra running time of
average about 83.0 sec than HEFTM and ClustS algorithms,
the performance of our EMTTSch algorithm has been im-
proved significantly. For instance, its makespan has been
reduced by about 100 min and 21 min, and the idle time

has been decreased by average about 165 min and 62 min,
compared with ClustS and HEFTM algorithm, respectively.
While for our BFSPriD algorithm, its metric of cost effec-
tiveness is better than EMTTSch, as it just need less running
time to return a scheduling solution. Among these testing
methods, the GloGA algorithm’s cost-effectiveness metric is
worst, as it needs almost equal running time as EMTTSch
algorithm, but achieves worse performance than HEFTM
algorithm. And in the large scale experiments, we observe
the similar trend as well, by comparison of performance
measure, i.e., makespan and idle time, and search efficiency.

Parameter Sensitivity In addition, we also investigate
other factors which may potentially affect the scheduling
performance, such as reliability threshold parameter εthre,
the maximum layer, and maximum successor subtasks. Us-
ing the large-scale data set, we simulate experiments with
1,000 subtasks and 1,000 candidate workers. And the other
experimental settings remain unchanged as in the above
experiments.

Firstly, we investigate the effect of parameter εthre by
varying it from 75% to 95% with increments of 5%. The
experimental results are reported in Fig. 9. Since the valid
candidate worker set Wt for each subtask t is first identified
before the task scheduling, and all scheduling solutions are
generated among candidate workers Wt, it thus ensures the
reliability constraints. Furthermore, as shown in Fig. 9, both
the metrics of makespan and idle time evidently grow as
the increase of εthre. The reason lies in that, with the growth
of εthre, the number of available workers would shrink
accordingly, and task schedule would become tight.

Afterwards, we examine the effect of maximum layer in
task graph, by varying it from 130 to 170 with increments
of 10. The experimental results reported in Fig. 10 show
that with the increase of task graph layers, the makespan
and idle time grow accordingly. Intuitively, this parameter
has greater impact on the metric of makespan than idle
time. Generally, as more layers imply more dependency
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Fig. 9. Experimental Results of Different εthre.

constraints in task graph, it will lead to large awaiting time
in task execution. Thus, the idle time will also increase.

Fig. 10. Experiment Result of Different Maximum Layer.

Next, we also investigate the impact of maximum suc-
cessor subtasks in task graph, by varying it from 2 to 6
with increments of 1. The experimental results are present
in Fig. 11. Obviously, we observe that both the metrics of
makespan and idle time increase, with the increase of maxi-
mum successor subtasks. One possible reason for this result
is that, the larger value of maximum successor subtasks
directly import more precedence constraints in task graph,
so these two metrics would increase concurrently. What is
more, compared with the parameter of maximum layer, the
final scheduling performance is more affected by parameter
maximum successor subtasks.

Fig. 11. Experiment Result of Different Maximum Successor Subtasks.

With respect to EMTTSch algorithm, in Fig. 12 we present
its evolution process with the number of generation increas-
es. To be specific, the involved subtasks are 1,200, and the
candidate workers are 1,000. And all the relevant param-
eters remain unchanged as in Fig. 7 (g)∼(h). Clearly, both
the metrics converge within their respective evolutionary
solvers, respectively.

Fig. 12. The Evolution Process of EMTTSch Algorithm.

5 RELATED WORK

Online Crowdsourcing. To facilitate crowdsourcing task solv-
ing, complex tasks are usually decomposed into many easier
subtasks that can be accomplished either sequentially or in
parallel by workers [9], [10], [11]. Kittur et al. presented a
general purpose framework for complex and interdepen-
dent crowdsourcing tasks via micro-task markets [12]. Tran-
Thanh et al. considered a task allocation problem in crowd-
sourcing systems with multiple complex workflows, where
each of workflows consists of a group of inter-dependent
micro-tasks [13]. By case studies of article writing, decision
making, and science journalism, it demonstrates the benefits
over a web-based prototype. Kim et al. studied fiction writ-
ing tasks on crowdsourcing by breaking a task down into in-
terdependent subtasks, i.e., short fiction writing, on Amazon
Mechanical Turk platform [31]. Chatterjee et al. develop a
centralized and computationally-efficient scheme to allocate
tasks to time-varying crowd agent resources, in a skill-based
crowdsourcing platform [32]. Considering precedence and
flexibility constraints, a greedy-based allocation algorithm
is proposed to match vector-valued service requirements
and agents’ skills. Because online crowdsourcing does not
consider spatial location constraints, thus the proposed ap-
proaches are not applicable to MC task scheduling.

Mobile Crowdsourcing Task Scheduling. In recent years,
some location-based crowdsourcing tasks have emerged,
and brought forth a new paradigm, namely mobile crowd-
sourcing. The spatial nature of mobile crowdsourcing dif-
fers from online crowdsourcing and raises many new and
fundamental research questions. Under a limited budget,
Miao et al. proposed a budget-aware task scheduling ap-
proach for mobile crowdsourcing to optimally schedule
tasks to suitable workers, with a special consideration of
workers’ reputation and proximity to task locations [14].
Cheng et al. investigated a reliable diversity-based spatial
crowdsourcing problem, in which spatial tasks are time-
constrained, and crowd workers are moving dynamically
within different directions [33]. Three approximation meth-
ods are proposed to identify worker-task pairs, such that
the completion reliability and spatiotemporal diversities are
maximized. A unified mobile crowdsourcing task schedul-
ing framework, namely UniTask, is proposed to optimize
the overall system performance, including coverage, laten-
cy and accuracy metrics [34]. Li et al. developed a com-
plete mobile crowdsourcing task scheduling mechanism, in
which it first clusters published tasks to form task groups,
and then schedules workers to task groups via an optimal
selection mechanism [35]. As dependency constraints be-
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tween subtasks have not been considered in mobile crowd-
sourcing, the above-mentioned scheduling techniques can
not be directly applied to our problem setting.

DAG Task Scheduling. For distributed heterogeneous
computing systems, DAG task scheduling is in charge of
assigning application tasks to processors. Because of its
key importance and complexity, DAG scheduling has been
studied extensively in the literature. Typically, DAG task
scheduling techniques are classified into static and dynam-
ic scheduling. In static scheduling, all the information of
DAG task graph and processors are known in advance,
and the scheduling decision is determined in an offline
mode. While in dynamic scheduling, it schedules tasks
on-line as tasks and workers arrive. Generally, static task
scheduling algorithms mainly include: 1) List scheduling
algorithm [21], [36]. Its basic workflow is to prioritize the
scheduling tasks, and then to choose a suitable processor
for each task from the ranked list. 2) Duplication based
algorithms [23], [39]. This kind of techniques duplicate some
of the scheduling tasks in different processors, in order
to reduce the communication overhead in a data-intensive
scenario. 3) Cluster based scheduling algorithms [22], [37],
which groups DAG tasks to a number of clusters, and tasks
contained in one cluster are assigned to the same processor.
Considering task dependency and communication delay,
a heuristic algorithm is proposed to offload task to edge
hosts, mobile terminals and cloud serve, etc., with the goal
of minimizing completion time [38]. In [40], an incentive
management scheme is formalized to implement business
tasks with dependencies in a cost-optimal manner. Like
task allocation problems in theoretical computer science,
in above works, each agent’s implementation cost is fixed.
Therefore, it calls for sophisticated solutions able to guar-
antee dynamic mobility of users. As a matter of fact, the
most relevant problem scenario we are aware of is that of M
Khaledi et al [41], in which an incentive mechanism formed
as optimal auction is devised to offload computation jobs
to nearby mobile nodes. Although the mobility of agents is
seriously considered, this work focuses on the availability of
agent resources to determine auction intervals dynamically.

6 CONCLUSION

In this paper, we propose the problem of the task graph
scheduling in mobile crowdsourcing (TGS-MC), which assigns
location-dependent subtasks contained in one complex M-
C task to dynamic mobile workers, such that the whole
task completion time, i.e., makespan, and execution idle
time are simultaneously minimized, and worker reliability
constraints can be met. As the TGS-MC problem is NP-
Complete, we propose two heuristic algorithms, including
BFS-based priority scheduling algorithm BFSPriD, and evo-
lutionary multitasking-based EMTTSch algorithm. Experi-
mental results have shown the effectiveness of the proposed
approaches compared against baseline algorithms.
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