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Coherent seeding of the dynamics of a spinor Bose-Einstein condensate:
from quantum to classical behavior

Bertrand Evrard, An Qu, Jean Dalibard and Fabrice Gerbier
Laboratoire Kastler Brossel, Collège de France, CNRS,

ENS-PSL Research University, Sorbonne Université,
11 Place Marcelin Berthelot, 75005 Paris, France

(Dated: February 26, 2021)

We present experiments revealing the competing effect of quantum fluctuations and of a coherent
seed in the dynamics of a spin-1 Bose-Einstein condensate, and discuss the relevance of a mean-
field description of our system. We first explore a near-equilibrium situation, where the mean-field
equations can be linearized around a fixed point corresponding to all atoms in the same Zeeman
state m = 0. Preparing the system at this classical fixed point, we observe a reversible dynamics
triggered by quantum fluctuations, which cannot be understood within a classical framework. We
demonstrate that the classical description becomes accurate provided a coherent seed of a few
atoms only is present in the other Zeeman states m = ±1. In a second regime characterized by a
strong non-linearity of the mean-field equations, we observe a collapse dynamics driven by quantum
fluctuations. This behavior cannot be accounted for by a classical description and persists for a
large range of initial states. We show that all our experimental results can be explained with a
semi-classical description (truncated Wigner approximation), using stochastic classical variables to
model the quantum noise.

I. INTRODUCTION

The mean-field approximation is an essential tool of
many-body physics. In this approach, the interaction
of a single body with the rest of the system is treated
in an averaged way, neglecting fluctuations around the
mean and erasing any spatial correlations. The original
many-body problem is then reduced to a much simpler
one-body problem, a tremendous simplification enabling
a basic analysis of the problem at hand. The accuracy
of the averaging improves with the number of particles
in direct interaction. Consequently, the mean-field treat-
ment is well suited for highly connected systems, while
important deviations are common for systems with short
range interactions in reduced dimensions.

When applied to bosonic quantum systems, a mean-
field approach often entails another important approx-
imation where intrinsic quantum fluctuations (and the
correlations they induce) are neglected. Since quantum
fluctuations are reflected in the non-commutativity of ob-
servables, field operators in the second-quantization for-
malism are replaced by commuting c-numbers. A pos-
sible improvement consists in replacing the field opera-
tors by classical stochastic fields [1–5], with a statistics
properly chosen to be as close as possible to the original
quantum problem. Such a semi-classical approach al-
lows to account quantitatively for quantum fluctuations,
while keeping the inherent simplicity of the mean-field
equations.

In this Letter, we study the role of quantum fluctua-
tions and the emergence of mean-field behavior in a quan-
tum spinor Bose-Einstein condensate [6]. The atoms are
condensed in the same spatial mode and interact all-to-
all. The mean-field approach is thus well appropriate to
study the dynamics in the spin sector, and has indeed
been successfully used to describe several situations, ei-

ther at [7, 8] or out-of [9–14] equilibrium. More recently,
several experiments addressed the dynamics of a conden-
sate prepared in an unstable configuration, achieving a
high sensitivity to both classical and quantum fluctua-
tions [15–31].

Here, our goal is twofold. First, we reveal the effect of
quantum fluctuations in two different dynamical regimes,
corresponding to persistent oscillations or relaxation to
a stationary state [31]. Second, we address the relevance
of a classical field description by comparing our experi-
mental results systematically with three theoretical ap-
proaches. In the fully classical picture (C), we derive
mean-field equations of motion and solve them for well-
defined initial conditions, possibly including a coherent
seed. In the semi-classical picture (SC), we keep the same
mean-field equations of motion but for fluctuating initial
conditions, with a probability distribution designed to
model the quantum noise of the initial state. Finally,
we perform a fully quantum treatment (Q), consisting
in a numerical resolution of the many-body Schrödinger
equation.

II. SPINOR BOSE-EINSTEIN CONDENSATES

We work with Bose-Einstein condensates of N spin-1
sodium atoms in a tight optical trap. Due to the strong
confinement, all atoms share the same spatial wave func-
tion ψ(r) [32], such that the spin is the only relevant
degree of freedom. In this regime, the Hamiltonian de-
scribing the spin-spin interaction is (up to an additive
constant) [6, 32–34]

Ĥint =
Us
2N

N∑
i,j=1

ŝi · ŝj =
Us
2N

Ŝ
2
. (1)
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Here ŝi denotes the spin of atom i, Ŝ =
∑
i ŝi the to-

tal spin, and Us the spin-spin interaction energy. In the
single-mode limit, the spin-spin interaction is given by
Us = (4π~2asN/M)

∫
d3r |ψ(r)|4, where as is a spin-

dependent scattering length, M is the mass of a sodium
atom, and the spin-independent spatial mode ψ is the
lowest energy solution of the time-independent Gross-
Pitaevskii equation [35]. Note that technical fluctuations
of the atom number N translate into fluctuations of Us
(other factors, such as fluctuations of the trap geometry,
can also contribute to the latter). As will be discussed in
more detail in Section IV, these technical fluctuations add
to the intrinsic relaxation due to quantum fluctuations
and thereby play a significant role in the interpretation
of the experiments.

We use a magnetic field B aligned along the z axis
to shift the energies of the individual Zeeman states
|m〉, the eigenstates of ŝz with eigenvalues m = 0,±1.
Up to second order in B, the Zeeman Hamiltonian is

ĤZ =
∑N
i=1 pŝzi+qŝ2

zi , where p ∝ B and q ∝ B2 are the
linear and quadratic Zeeman shifts, respectively. Notic-
ing that [Ŝz, Ĥint] = 0 , the first term in ĤZ is a constant
of motion that can be removed by a unitary transforma-
tion. The total Hamiltonian thus reads [6]

Ĥ = Ĥint + ĤZ =
Us
2N

Ŝ
2

+ q
(
N̂+1 + N̂−1

)
, (2)

where N̂m is the number of atoms in |m〉.
Under a mean-field approximation, the annihilation

operators âm are replaced by the c-numbers
√
Nζm =√

Nm exp(iφm). By convention we set φ0 = 0, and we
focus on the situation Sz = 0. We define the mean num-
ber of (+1,−1) pairs Np = (N+1 +N−1)/2, and take its
normalized value np = Np/N and the conjugate phase
θ = φ+1 + φ−1 as dynamical variables. In terms of these
variables, the mean-field equations of motion are [9]

~ṅp = −2Usnp(1− 2np) sin θ , (3)

~θ̇ = −2q + 2Us(4np − 1)(1 + cos θ) . (4)

At t = 0, the BEC is prepared in a generalized coherent

spin state |ψini〉 = (
∑
m ζini,m|m〉)⊗N , with

ζini =


√
nseed ei

θini+ηini
2√

1− 2nseed√
nseed ei

θini−ηini
2

 , (5)

where nseed = Nseed/N and Nseed is the number of atoms
in the m = ±1 states. The Larmor phase η = φ+1 − φ−1

evolves as η(t) = ηini − 2pt/~ and does not play any
important role in the following. We focus on the behavior
of Np(t) as a function of time.

We notice that the state with all atoms in m = 0 (i.e.
Nseed = 0 and hence np = 0) is stationary according
to Eq. (3,4). However, this state is not an eigenstate

of Ĥint and thus not a stationary state of the quantum
equation of motion. In the absence of a seed, we iden-
tified in Ref. [31] two different regimes for the ensuing
non-classical dynamics:

• For Us/N � q, the dynamics is reversible: The
number of pairs Np(t) oscillates with a small am-
plitude.

• For q � Us/N , the dynamics is strongly damped
and Np(t) relaxes to a stationary value.

Here, we revisit these experiments to investigate the ef-
fect of a coherent seeding of the m = ±1 modes.

III. REVERSIBLE DYNAMICS

a. Theoretical predictions We focus first on the sit-
uation where Us/N � q � Us and nseed � 1. In this
case, the reduced number of pairs np remains small at
all times. Linearizing the mean-field Eqs. (3,4), we ob-
tain [36]

N (C)
p (t) ≈ 2Us

q
sin2(ωt) cos2

(
θini

2

)
Nseed , (6)

where ω ≈
√

2qUs. Note that the oscillation frequency ω
is independent on the initial conditions θini and Nseed. In
Sec. IV, we investigate a regime, where the frequency of
the classical solution increases with Nseed, with dramatic
consequences on the semi-classical dynamics.

To improve the prediction (6) and account for quan-
tum fluctuations, we use a semi-classical approach, the
truncated Wigner approximation [2–5, 30]. The proba-
bility amplitudes ζini,m are treated as complex random
variables which sample the initial Wigner distribution of
the initial state at t = 0. The amplitudes are then prop-
agated according to the mean-field equations of motion.
Averaging the mean-field predictions over the fluctua-
tions of ζini, we find [30, 36]

N (SC)
p (t) ≈ Us

2q
sin2(ωt)

[
4 cos2

(
θini

2

)
Nseed + 1

]
. (7)

In analogy with quantum optics, the term ∝ Nseed in
Eqs. (6,7) describes “stimulated emission” from the mode
m = 0 to the modes m = ±1, while the additional term in
Eq. (7) can be interpreted as “spontaneous emission”. We
have verified numerically that the SC results are in good
agreement with a fully quantum treatment. Moreover,
comparing equations (6) and (7), we notice that unless
the initial phase is chosen such that θini ≈ π, a large
seed Nseed � 1 makes the C and SC treatments almost
identical, irrespective of the precise value of N . In fact,
seeding with a few atoms Nseed ≈ 2 − 3 and with θ = 0
is sufficient to reach a 90 % agreement between the two
approaches.

b. Experimental sequence We prepare a BEC in the
state m = 0 using evaporative cooling in a crossed laser
trap with a large magnetic field B = 1 G (q � Us). After
evaporation, the BEC contains N ≈ 2000 atoms in the
state m = 0, with Np ≈ 100 residual thermal atoms
in m = ±1. We then turn on a strong magnetic field
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gradient to pull the m = ±1 atoms out of the trap. After
this purification step, we measure Np � 1 [27].

We add a coherent seed using a combination of mag-
netic field ramps and resonant radio frequency (rf) pulses.
In a first step, a rf pulse is used to prepare the atoms in
a coherent superposition with a probability nseed to be
in a given m = ±1 state. In a second step, the BEC
is held in a large magnetic field, such that q � Us and
θini can be tuned keeping np = nseed (see Supplementary
Material [36] for more details). In this way, we are able
to prepare any coherent spin state given by Eq. (5), up
to the phase ηini which is irrelevant for the experiments
described here. The main imperfection in the prepara-
tion originates from the fluctuations of the total atom
number δN ≈ 0.1N , which induce ≈ 10% relative fluc-
tuations on Nseed. The magnetic field is then quenched to
the desired value, and we let the system evolve for a time
t before measuring the population of each Zeeman state
using a combination of Stern-Gerlach separation and flu-
orescence imaging with a detection sensitivity around 1.6
atoms per spin component [27].

c. Experimental results In Fig. 1, we show the time
evolution of Np(t) for various initial states. In Fig. 1(a),
we do not seed the dynamics. We observe an oscilla-
tion of Np(t), not captured by the classical description
of Eq. (6), but in good agreement with the semi-classical
predictions (7) or with the numerical resolution of the
Schrödinger equation. In Fig. 1(b), we prepare a seed
with Nseed ≈ 0.25 ± 0.03 (inferred from a calibration of
the rf power) and θi ≈ 0. Compared to (a), the amplitude
of the oscillations is doubled, in good agreement with (7).
In Fig. 1(c), we set Nseed ≈ 1.8 ± 0.2 and θini ≈ 0. The
amplitude of the oscillations is further increased, and now
also well reproduced by the fully classical treatment (6).
In all cases (a,b,c), the condition Np(t) � N remains
fulfilled at all times. The validity of Eqs. (6,7) and the
independence of the oscillation frequency on Nseed (as
can be seen from Fig. 1) follow.

We investigate the role of the initial phase θini in
Fig. 2. In Fig. 2 (a), we plot the variation of Np(T/2),
with T = π/ω the period of oscillations, against Nseed

for three values of θini. For Nseed � 1, we observe a sat-
uration of Np(T/2) at a value independent of θini, con-
sistent with the SC prediction (7). For such small seeds,
the dynamics is triggered by quantum fluctuations. For
larger seeds, unless the anti-phase-matching condition
θini ≈ π is fulfilled (red curves), stimulated emission be-
comes dominant and the fully classical description is ac-
curate. We observe a linear increase of Np(T/2) until the
small-depletion approximation used to derive Eqs. (6,7)
becomes inconsistent. For our data, this occurs for the
point Nseed ≈ 100 , θini ≈ 0. In this case, an exact resolu-
tion of the mean-field equations (3,4) provides accurate
results. In Fig. 2 (b), we set Nseed ≈ 6.0 and scan the
phase θini. We measure oscillations of Np(T/2) in good
agreement with Eqs. (6,7).
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FIG. 1. Evolution of the number of (+1,−1) pairs Np (circles)
for q/h ≈ 0.22 ± 0.03 Hz, N ≈ 1880 ± 190 atoms and various
seed sizes: Nseed ≈ 0; 0.25; 1.8 from (a) to (c). The initial
phase is always set to θini ≈ 0. The solid lines are numeri-
cal solutions of the Schrödinger equation with the many-body
Hamiltonian in Eq.(2) using Us/h = 9.9 Hz. The red dashed
lines correspond to the classical prediction (6). Here and in
the following, error bars show the statistical error correspond-
ing to two standard errors.

IV. RELAXATION DYNAMICS

a. Theoretical prediction We now investigate the re-
laxation dynamics in a very small magnetic field, such
that q � Us/N . In this regime, the quadratic Zeeman
shift q is negligible and we set it to zero for the cal-
culation. However, the assumption np � 1 used to de-
rive Eq. (6) is not valid and the mean-field equations (3,4)
cannot be linearized. For q = 0, the mean-field equations
of motion can be solved directly. Taking for simplicity
θini = 0, we find [36]

n(C)
p (t) =

1

4
− 1− 4nseed

4
cos(Ωt) , (8)

with an oscillation frequency

Ω =
4Us
~
√

2nseed(1− 2nseed) . (9)

The non-linear dependence of Ω with nseed reflects the
non-linearity of the mean-field equations, and has dra-
matic consequences when one takes into account quan-
tum fluctuations. The seeds spontaneously created from
the vacuum of pairs induce random shifts of the oscil-
lation frequency around its mean-field value. Averaging
over many realizations therefore results in an intrinsic
dephasing of the oscillations predicted in Eq. (8). More
precisely, for the generalized coherent spin state prepared
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FIG. 2. (a) Number of pairs produced after half a pe-
riod of evolution versus Nseed for q/h ≈ 0.33 ± 0.03 Hz and
N ≈ 2920 ± 280. The blue diamonds, green circles and red
squares correspond to initial phases θini ≈ 0; 2.2; and 3.3 rad,
respectively. For the three smallest seeds, Nseed is inferred
from the calibration of the rf power. The solid lines are the
semi-classical predictions given by Eq. (7) with Us/h ≈ 12 Hz,
assuming Np � N . For large Nseed, this approximation
breaks down, but a numerical solution of the non-linear classi-
cal mean-field Eqs. (3,4) with fixed initial conditions, becomes
relevant. This fully classical treatment is shown as dashed
lines. (b) Scan of the initial phase θini after half a period of
evolution for Nseed ≈ 6.0 .

in our experiment, the initial number of atoms in the
m = ±1 modes N+1,ini +N−1,ini = Σ follows a binomial
distribution of mean 2Nseed (quantum partition noise).
We use the random variable Σ as an initial condition
to solve the mean-field equations (3,4), i.e. substituting
nseed in Eq. (8) with Σ/(2N). After averaging over the
partition noise, we obtain for Nseed � 1 [36]

n(SC)
p (t) ≈ 1

4
− 1− 4nseed

4
cos(Ωt)e−

1
2 (γct)

2

, (10)

with a collapse rate

γc =
2Us√
N~
|1− 4nseed| . (11)

The analytic formula (10) agrees very well with the nu-
merical solution of the many-body Schrödinger equation
for Nseed & 1. The case Nseed � 1 can be treated using
the truncated Wigner approximation [5] or an exact di-
agonalization of the interaction Hamiltonian (1) [31, 37].
The dynamics also displays a relaxation of np to 1/4, but
with a different asymptotic behavior, np − 1/4 ∝ 1/t.
In a related work [? ], it was shown that Poissonian
fluctuations of the atom number in each mode of a two-
component BEC caused a Gaussian decay of the two-time
correlation function. For the spin-1 and two-component
cases, a similar mechanism is at work. The combination
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FIG. 3. Evolution of the fraction of (+1,−1) pairs np =
Np/N in a negligible magnetic field, for N ≈ 124 ± 12 atoms
and various seedings: Nseed = 0; 0.54; 2.1; 4.9; 12.8; from (a)
to (e). The initial phase is always set to θini ≈ 0. The solid
lines are numerical solutions of the Schrödinger equation for
Us/h = 24.5 Hz. In (e), the red dashed line is the classical

prediction from Eqs.(̇3,4).

of non-linearities due to interactions and of quantum par-
tition noise leads to dephasing and relaxation.

In an actual experiment, the relaxation of Np is also
enhanced by purely classical noise sources of technical
origin. In our case, we identify shot-to-shot fluctuations
of Us (see Section II) as a significant additional mecha-
nism contributing to the blurring of the oscillations. To
account for this phenomenon, we average Eq. (10) over a
Gaussian distribution of Us with variance δU2

s . The re-
sulting np(t) has the same functional form as in Eq. (10)
with the replacement

γc → Γ =
√
γ2

c + γ2
t , (12)

with a technical blurring rate

γt =
4 δUs
~

√
2nseed(1− 2nseed) . (13)

For small enough seeds nseed � 1/4, the total dephasing
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FIG. 4. Frequency (a) and relaxation rate (b) of the spin-
mixing dynamics in a negligible magnetic field. The circles are
obtained from a fit to the data of Fig. 3, with the error bars
indicating the 95% confidence interval. In (a), the red dashed
line corresponds to the frequency ω predicted by the mean-
field treatment. In (b), the dash-dotted blue line corresponds
to the rate γc of the collapse driven by quantum fluctuations,
the red dashed line is the damping rate γt due to technical
fluctuations, and the solid purple line corresponds to the total
damping rate Γ = [γ2

c + γ2
t ]1/2. We use the value δUs/Us =

0.13 ± 0.04, obtained from a fit to the data.

rate can be written

Γ ≈ γc

√
1 + 2

(
2δUs
Us

)2

Nseed. (14)

This indicates a crossover from quantum to classical de-
phasing for seed sizes N∗ ≈ U2

s /(2δUs)
2.

b. Experimental considerations In order to achieve
the “zero field” regime Nq � Us experimentally, the best
option is to reduce the atom number. Indeed, the density
and therefore Us, cannot be arbitrarily increased due to
undesired inelastic processes. Reducing the applied mag-
netic field further is not feasible due to ambiant stray
fields and environment-induced fluctuations (at the sub-
mG level in our experiment). Therefore, we lower N
by more than one order of magnitude with respect to
the previous sections and prepare mesoscopic BECs of
N ≈ 124±12 atoms. We also slightly tighten the trap in
order to achieve Us/h ≈ 24.5 Hz. In this case, the cen-
tral spatial density remains low enough to avoid inelastic
collisions (more details in the Supplementary Material).

c. Experimental results We show in figure 3 the re-
laxation dynamics of np for various seed sizes nseed. We
observe an acceleration of the initial dynamics for in-
creasing nseed and the emergence of rapidly damped os-
cillations. Eventually, np relaxes to the stationary value
≈ 1/4 in all cases. Numerical simulations with Us taken
as a fit parameter are overall in good agreement with the
data, although they slightly underestimate the damping
rate for the largest seed Nseed = 12.8.

To compare these experiments with the theoretical pre-
dictions, we fit a function of the form (10) to the data

of Fig. 3, leaving Ω and Γ as free parameters. We re-
port in Fig. 4a,b the fitted frequency and relaxation rate.
The frequency is essentially insensitive to quantum or
classical fluctuations, and the measured values agree well
with the C or SC predictions. The relaxation rate varies
little with Nseed in the range we have explored experi-
mentally. This observation is explained by the SC the-
ory including technical fluctuations. Indeed, the slow
decrease of γc with Nseed is compensated by the increase
of γt. Using δUs/Us ≈ 0.13 as determined in Fig. (4),
we find a “quantum-classical crossover” for seed sizes
around N∗ ≈ 15, close to the largest value we explored
experimentally. For small seeds Nseed . 5, our measure-
ments are consistent with a collapse driven primarily by
quantum fluctuations. On the contrary, for the largest
Nseed ≈ 12.8, classical technical dephasing is the domi-
nant damping mechanism.

V. CONCLUSION

We investigated the dynamics of a spin-1 BEC pre-
pared with a majority of atoms in the Zeeman state
m = 0 and possibly small coherent seeds in the m = ±1
modes. For a small but non-negligible magnetic field, we
observe oscillations of the spin populations. This dynam-
ics is triggered by quantum fluctuations in the absence of
a seed, and cannot be captured in a completely classical
approach. Adding a coherent seed is phase-sensitive [30].
In general it corresponds to a dramatic increase of the os-
cillation amplitude, and the classical predictions become
accurate as soon as a few atoms (typically Nseed & 2) are
used to seed the dynamics.

We also studied the dynamics in a negligible magnetic
field. In this second regime, the combination of non-
linear mean-field equations and quantum noise leads to
the relaxation of the spin populations. When the size of
the seed increases, the intrinsic damping rate γc decreases
and the mean-field picture becomes more and more rel-
evant. However, it eventually fails for sufficiently long
times. Experimentally, technical noise sources provide
additional dephasing mechanisms of purely classical ori-
gin that can be completely described in the mean-field
approach. In our experiment, we identify the fluctua-
tions of the total atom number as the leading blurring
mechanism when the seed size exceeds a dozen atoms.

All the experiments presented in this Letter are well
captured by a semi-classical theory, where quantum fluc-
tuations are modeled using stochastic classical variables.
An interesting direction for future work would be to test
experimentally the validity of such a semi-classical de-
scription in other contexts, in particular in a chaotic
regime [31, 38, 39].
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Supplemental Material:
Coherent seeding of the dynamics of a spinor Bose-Einstein condensate:

from quantum to classical behavior

I. INITIAL STATE PREPARATION

A. Oscillating regime

We prepare the spinor BEC at t = 0 in a generalized

coherent spin state |ψini〉 = (
∑
m ζini,m|m〉)⊗N ,

ζini =


√
nseedei

θini+ηini
2√

1− 2nseed√
nseedei

θini−ηini
2

 . (S1)

We prepare this state starting from |m = 0〉 using a
combination of magnetic field ramps and resonant radio-
frequency (rf) pulses. In details, we first pulse a rf
field resonant with the Zeeman splitting to populate the
m = ±1 modes with a fraction nseed = sin2(Ωrft1)/2 of
the atoms. Here, Ωrf is the rf Rabi frequency and t1
the pulse duration. At this stage, we have prepared a
coherent spin state of the form (S1) with θini ≈ π.

To change θini, we let the system evolve in a field
B = 0.5 G (q/h ≈ 70 Hz) for a time t2 < h/(2q), be-
fore quenching the magnetic field down to 28 ± 2 mG
(q/h ≈ 0.22 Hz) in t3 = 4 ms to achieve the desired
regime Us/N � q � Us. Interactions are negligible
(Us/h ≈ 10 Hz hence Ust2,3/h � 1), and the system
simply acquires a phase shift ∆θ2 = −2qt2/~ while the
magnetic field is held constant, and ∆θ3 = −2

∫
q(t)dt/~

during the quench. This results in an initial phase
θini = π − 2qt2/~ + ∆θ3 that is fully tunable from 0 to
2π by varying t2.

B. Relaxing regime

We prepare mesoscopic BECs of N ≈ 124 atoms in
the same initial spin state as before. We lower the mag-
netic field down to B = 4.2 ± 1.5 mG (q/h ≈ 5 mHz)
in t3 = 20 ms. The ramp time corresponds to the time
needed for the damping of eddy currents in the vacuum
chamber. Because of the small atom number, the effects
of the spin dependent interactions are negligible over the
ramp (Us/h ≈ 4 Hz, such that Ust3/h� 1) and the evo-
lution of the state is essentially another phase shift of θ,
which can be compensated for by varying t2. For these
experiments, we always choose t2 such that θini ≈ 0.

Finally, we trigger the dynamics by recompressing the
trap in 6 ms (Us/h ≈ 4 → 24 Hz). By performing nu-
merical simulations of the sequence with the many-body
Schrödinger equation, we have checked that the ramp can
be considered instantaneous to a good approximation.

II. CLASSICAL AND SEMI-CLASSICAL
DYNAMICS

We detail here the calculations of the dynamics of
Np(t) given in the main text. We use a classical (C)
approach based on the mean-field approximation and a
semi-classical (SC) approach inspired by the truncated
Wigner approximation (TWA). In both frameworks, the
annihilation operators âm are replaced by c-numbers
αm =

√
Nζm, with N the number of condensed atoms

and ζ a spin-1 wavefunction (normalized to unity) pa-
rameterized as

ζ =


√
npei

θ+η
2√

1− 2np√
npei

θ−η
2

 . (S2)

Here np = (N+1 +N−1)/(2N) denotes the average num-
ber of m = ±1 pair normalized to the total atom number
(Np = Nnp), and we have restricted ourselves to the sit-
uation N+1 = N−1. We also have chosen ζ0 real without
loss of generality.

The mean field equations of motion for a spin-1 con-
densate in the single-mode regime take the form [1, 2]

~ṅp = −2Usnp(1− 2np) sin θ (S3)

~θ̇ = −2q + 2Us(4np − 1)(1 + cos θ) . (S4)

The mean-field energy per atom is given by

Es = 2Usnp(1− 2np)(1 + cos θ) + 2qnp . (S5)

The energy Es is a constant of motion, a fact that we will
used repeatedly in the following.

A. Dynamics in the oscillating regime

In this section we derive the evolution of Np(t) for
the oscillating regime q � Us/N . We assume Nseed �
N , i.e. the situation where quantum fluctuations may
play a significant role. For Nseed ∼ N , a fully classical
treatment is accurate.

a. Classical solution : Assuming np � 1, we lin-
earize Eqs. (S3) and (S5),

~ṅp ≈ −2Usnp sin θ (S6)

Es ≈
(

2Us(1 + cos θ) + 2q
)
np . (S7)

We use the second equation to express cos θ as a function
of np and of the constants q, Us, Es. Substituting in the
first equation, we obtain a differential equation on np

only, ṅ2
p = −4ω2 [np − α]

2
+A, where

~ω =
√
q(q + 2Us), α =

Es(q + Us)

2(~ω)2
, (S8)
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and where A is constant. Differentiating one more time,
we find that either np is constant or it obeys the harmonic
equation n̈p + 4ω2 (np − α) = 0. The evolution is thus a
harmonic motion at frequency 2ω,

np(t) ≈ nseed + 2(α− nseed) sin2(ωt) , (S9)

with the initial conditions np(0) = nseed and θ(0) = θini.
If we also assume (as in the experiments we performed)

that q � Us, we have Es ≈ 4Usnseed cos2(θini/2) � q,
and α ≈ Es/(4q)� 1. Eq. (S9) then reduces to

np(t) ≈ nseed +
2Usnseed

q
cos2(θini/2) sin2(ωt) ,

i.e. to Eq. (6) in the main text.
b. Semi-classical picture : We now consider the ef-

fect of quantum fluctuations within the TWA [3–7]. In
this method, the c-numbers αm used instead of the an-
nihilation operators âm in the mean-field approximation
are treated as complex random variables. At t = 0, these
variables sample the Wigner distribution of the initial
state |ψi〉. Their mean values are given by

ᾱini = N


√
nseed ei

θini+ηini
2√

1− 2nseed√
nseed ei

θini−ηini
2

 . (S10)

In the limit Nseed � N , the calculation can be simplified
by neglecting the depletion of the mode m = 0. For the
m = ±1 modes, this approximation amounts to replac-
ing coherent spin states by harmonic oscillator coherent
states, which are considerably easier to handle. The ini-
tial quantum state is thus taken to be

|ψini〉 ≈
1√
N !

∏
m=±1

eᾱm,iniâ
†
m−ᾱ∗m,iniâm â†N0 |vac〉 . (S11)

For t > 0, the equations of evolution (S3,S4) remain
valid in the TWA. The solution for initial conditions
α±1,ini is thus given by Eq. (S9) with the substitution
4Nseed cos2(θini/2)→ |α+1,ini + α∗−1,ini|2.

To average over the initial distribution of α±1,ini,
we recall that the Wigner distribution average
〈O(αm, α

∗
m)〉Wig of an operator O is equal to the expec-

tation value 〈Osym(âm, â
†
m)〉 of the corresponding sym-

metrically ordered operator Osym [3]. We obtain

〈α+1,iniα
∗
−1,ini〉Wig = 〈â+1â

†
−1〉 = ᾱ+1,iniᾱ

∗
−1,ini , (S12)

〈|αm,ini|2〉Wig =
1

2
〈â†mâm + âmâ

†
m〉 = |ᾱm,ini|2 +

1

2
.

(S13)

This leads to

〈Np(t)〉 ≈ Us
2q

sin2(ωt)
(
|ᾱ+1,ini + |ᾱ∗−1,ini|2 + 1

)
,

which gives Eq. (7) in the main text.
As a final remark, we note that the Bogoliubov method

is also well suited to study the regime that we investi-
gated here, and leads to the same result [8–10].

B. Relaxation dynamics

We now discuss the regime q � Us/N , in which we
observe a relaxation of the number of pairs Np to a sta-
tionary value. In this regime, the quantum fluctuations
play an important role even for Nseed � 1. We will thus
consider that Nseed � 1 and N − Nseed � 1. For sim-
plicity, we will focus on the situation θini = 0, for which
the effect of the seed is maximal. The case with no seed
has been treated using an exact diagonalization of the
Hamiltonian [10] or the TWA [6].

a. Classical solution In order to simplify the calcu-
lation, we neglect completely the quadratic Zeeman shift.
In this regime q � Us/N , the Zeeman term indeed plays
no significant role even for the fully quantum model. In-
troducing the auxiliary variable x = 4np − 1, the equa-
tions of motion and the energy become

~ẋ = −Us(1− x2) sin θ , (S14)

~θ̇ = 2Usx(1 + cos θ) , (S15)

Es =
Us
4

(1− x2)(1 + cos θ) = cst . (S16)

We combine the first and last equations to obtain

ẋ = −4Es
~

sin θ

1 + cos θ
. (S17)

Differentiating this equation, we eliminate the phase θ
and obtain a simple harmonic equation, ẍ = −Ω2x, with
an oscillation frequency ~Ω =

√
8UsEs. For the initial

conditions np(0) = nseed and θ(0) = 0, we have ~Ω =

2Us
√

1− x2
0 and x(t) = x0 cos(Ωt) with x0 = 4nseed − 1.

This corresponds to the results announce in Eqs. (8,9) of
the main text.

b. Quantum partition noise: The initial state

|ψini〉 =
1√
N !

[ ∑
m=0,±1

ζm â
†
m

]N
|vac〉 ,

is characterized by fluctuations of the number of ±1
atoms. We consider again the states with |ζ+1| =
|ζ−1| =

√
Nseed and θi = 0. We introduce the sum

Σ = N+1 + N−1, its relative value s = Σ/N and the
difference ∆ = N+1 − N−1. The components of ζ are
related to the average Σ̄ of Σ by

|ζ±1|2 =
Σ̄

2
, |ζ0|2 = N − Σ̄. (S18)

The joint distribution of Σ and ∆ in the initial coherent
spin state is

P(Σ,∆) =
N !(

Σ+∆
2

)
!
(

Σ−∆
2

)
!(N − Σ)!

( s̄
2

)Σ

(1− s̄)N−Σ.

(S19)

We deduce from Eq. (S19) the distribution of Σ,

P(Σ) =
N !

Σ!(N − Σ)!
s̄Σ(1− s̄)N−Σ. (S20)
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with Σ ∈ [0, N ]. The normalization follows from the
binomial formula.

For large N and Σ away from the extreme values 0, N ,
the binomial distribution is well approximated by a con-
tinuous Gaussian distribution

P(Σ) ≈ 1

N

1√
2πσ

e−
(s−s̄)2

2σ2 = p(s)ds. (S21)

with a step size ds = 1/N and a standard deviation

σ =

√
s̄(1− s̄)
N

=

√
2nseed(1− 2nseed)

N
. (S22)

One can check the normalization of both distributions,

N∑
Σ=0

P(Σ)→
∫ 1

0

f(s)ds ≈
∫ +∞

−∞

1√
2π

e−
u2

2 du = 1.

To extend the lower boundary to −∞, we require s̄/σ =√
N ×

√
s̄/(1− s̄)� 1, or Ns̄ = 2Nseed � 1.

c. Semi-classical picture of the dynamics: Similarly
to what we have done in Sec. II A, we average the mean
field solution (S3,S4) with 2nseed → s over the probability
distribution p(s) in Eq. (S21). This amounts to compute
the integral

I =
1

2

∫ 1

0

s cos[Ω(s)t] p(s) ds. (S23)

We use the fact that p(s) is sharply peaked around s̄,
with a width ∼ 1/N much narrower than the scale of
variation of the rest of the integrand s cos[Ω(s)t]. As
a result, we extend the integral boundaries to ±∞, set
s ≈ s̄ and expand the frequency Ω(s) to first order,

Ω(s) ≈ Ω̄ + Ω̄′(s− s̄) +O(ε2) , (S24)

where Ω̄ = Ω(s̄) and Ω̄′ = Ω′(s̄) = (2Us/~) × (1 −
2s̄)/

√
s̄(1− s̄).

With straightforward manipulations, we cast I in the
form of the Fourier transform of a Gaussian function,
which is readily calculated. We find

I =
1

2
s̄ cos[Ω̄t] e−

1
2 (γct)

2

, (S25)

with a damping rate

γc = |Ω̄′σ| = 2Us√
N~
|1− 2s̄|. (S26)

Using s̄ = 2nseed, this gives Eq. (11) in the main text.
d. Classical fluctuations of Ω: In addition to the in-

trinsic dephasing originating from quantum fluctuations,
any technical fluctuations of Ω will also contribute to
the observed relaxation. We consider here the dominant
source of classical blurring in our experiment, namely
fluctuations of the interaction strength Us mainly due to
shot-to-shot atom number fluctuations.

We model these fluctuations by considering a fluctu-
ating interaction strength U ′s = Us + δUsx, with Us the
average value, δUs the standard deviation of the noise,
and x a centered Gaussian random variable of variance
unity. This leads to a fluctuating oscillation frequency
Ω(x) = Ω̄(1 + x · δUs/Us). We neglect the fluctua-
tions of γc, which is legitimate for Nseed � 1 and hence
γc � Ω̄. Averaging over the Gaussian probability distri-
bution p(x), we find that

I2 =
〈

cos[Ω(x)t]e−
1
2 (γct)

2
〉
x

= cos[Ω̄t]e−
1
2 (γtt)

2− 1
2 (γct)

2

,

(S27)

with a classical (technical) damping rate given by

γt = Ω̄
δUs
Us

. (S28)

From Eqs. (S27,S28) we obtain Eqs. (12,13) given in the
main text.
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