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Abstract 

Schall & Heinrichs question our interpretation that the climatic debt in understory plant 

communities is locally modulated by canopy buffering. However, our results clearly show that 

the discrepancy between microclimate warming rates and thermophilisation rates is highest in 

forests where canopy cover was reduced, suggesting that the pressures on communities to 5 

respond to warming is highest in those forests. 

Main text 

Biological communities accumulate a climatic (thermal) debt when their response to warming 

does not keep up with the warming rate itself. Forest understory plant communities appear to 

respond particularly slowly to warming, and thus climatic debts are commonly observed in forest 10 

understory plant communities (1, 2). In line with conventional approaches used in the literature 

(e.g. (1, 2)), we define the climatic debt as the difference between the thermophilisation rate and 

the rate of climate warming, which are two independently calculated variables. 

Schall & Heinrichs (3) question the validity of our climatic debt analysis because there is 

no 1:1 relationship between the floristic temperatures at one point in time used to quantify the 15 

thermophilisation rates, and the macro- and microclimate change rates. In this discussion, it is 

very important to keep in mind that the commonly applied approach to infer temperature 

conditions from plant species composition data (i.e., floristic temperatures) (4, 5) does not 

provide a metric that is designed to accurately reflect the actual temperatures at a particular time 

step across space, because these data are based on broad distribution ranges of individual species 20 

co-occurring in the community and are subject to considerable uncertainty, as outlined in detail 

by Rodríguez-Sánchez, P. De Frenne & A. Hampe (6). Thus, caution is needed when using such 

floristic temperatures to study spatial variation of community temperature preferences along a 

climatic gradient, as done by Schall & Heinrichs, especially when the studied macroclimatic 

gradient is relatively short, as it is the case in our study (the interquartile range of spatial 25 

macroclimate temperatures in the baseline and resurveys were only 2.4 and 2.2 °C, respectively). 

However, in our paper we study temporal, not spatial, changes in floristic temperatures per unit 

time, and for this purpose floristic temperatures have been shown to be very robust, providing a 

solid database for our thermophilisation and climatic debt analyses, exactly because they avoid 

the above mentioned uncertainties (6). Furthermore, our floristic temperatures per species are 30 

based on long-term macroclimate data during the vegetation period, whereas the macro- and 

microclimate change data were calculated independently based on summer maximum 

temperatures prevailing in the five preceding years of the respective field surveys. Schall & 

Heinrichs’ finding that the floristic temperatures at one time step more closely follow the 

macroclimate than the microclimate temperatures is also very plausible and expected, exactly 35 

since the floristic temperatures were calculated from macroclimate data, not microclimate data, 

which are not yet available at such scales. The patterns shown in Schall & Heinrichs’ Figs. 1B & 

C can thus be explained very well and provide no reason whatsoever to question the validity of 

our climate debt assessment. We would also like to point out that the mean thermophilisation 

rates we find in our study compare very well to the rates found in other lowland forests in Europe 40 

(1), as well as in forests in the Andes (2), and that the variation of our floristic temperatures for a 

given unit of spatial macroclimate change is similar to the respective variation found in these two 
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studies. Schall & Heinrichs’ claim that the climatic debt seems to be a construct not supported by 

the floristic data does not hold. 

Schall & Heinrichs further question our interpretation of the effect of canopy buffering 

on the climatic debt. As outlined in the introductory paragraph above, and in agreement with 

Schall & Heinrichs’ concerns, it is obvious that microclimate warming and microclimatic debt 5 

are not independent from each other. In fact, given the frequently observed slow response of 

forest plant communities(1, 2), it can be expected that microclimate debts are more pronounced 

in areas with high rates of warming. We show that changes in temperature buffering due to 

dynamics in canopy cover are an important and integral component of forest microclimate 

warming. Indeed, canopy opening (e.g. due to clearcutting or tree mortality) is an important 10 

regulator of the forest-floor temperature which can act independent from macroclimate warming 

(7). It is thus reasonable to expect that changes in canopy-modulated temperature buffering are 

related to the microclimate debt, but not to macroclimate debt, which is independent from local 

canopy dynamics. What we show in Figure 3A in our report (7) is the contribution of the change 

in temperature buffering on the microclimatic debt. We argue that this is an interesting 15 

contribution because (i) it can be substantial but has been largely ignored in the literature, and 

(ii) it shows how the pressure on communities to respond to warming is locally modulated by 

canopy cover dynamics. We agree with Schall & Heinrichs’ claim that the relationship between 

microclimate debt and canopy buffering does not provide evidence of a response of the 

understory community to climate change. Evidence of such a response is provided in Fig. 2 in 20 

our report (7). However, the said relationship provides insights into how the pressures for 

communities to respond to warming is locally modulated by canopy cover and associated 

changes in temperature buffering, and that is despite the non-independence between 

microclimate debt and microclimate warming. An ecologically realistic assessment of how much 

communities lag behind warming requires local temperature and microclimate warming data. In 25 

contrast to Schall & Heinrichs’ critique and given our finding that thermophilisation is more 

related to microclimate warming than to macroclimate warming (Figure 2 in Zellweger et al. 

(7)), we indeed argued that microclimate warming, and not macroclimate warming, ultimately 

drives organismal responses to warming. These results also fully support our conclusion that a 

reduction in canopy cover and associated reduction in temperature buffering leads to higher rates 30 

of warming, thus seriously increasing the pressure for plant communities to respond to warming. 

 

We agree with Schall & Heinrichs’ conclusion that understory plant communities have 

responded only weakly to warming temperatures. That is actually the crucial point, because at 

the same time the temperatures themselves have warmed markedly, causing a climatic debt. It 35 

may indeed be that the microclimate temperature variation observed within our studied forests 

were within the thermal tolerances of most species, but given the slow response of these species, 

the currently observed climate warming rates continue to erode their thermal safety margins, 

especially at their equatorward range boundaries. This has serious implications for future forest 

diversity and function (8) and will likely be felt first and strongest in forests subject to relatively 40 

high local warming rates due to a reduction in canopy buffering. We argue that this is an 

important finding, which should be taken into consideration in the discussion about the future 

and management of forest biodiversity in a warming world. 
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Finally, we fully and evidently agree that deep shade is not beneficial for many species, 

and we have never claimed otherwise. Instead, we make the point that it is important to consider 

the effects of different forest management practices on local microclimates in any endeavor to 

safeguard forest biodiversity in a warming world. Forest ecologists are very much aware that 

many species benefit from canopy openings, and many of us have extensively worked on this 5 

topic (9–11). We also fully agree that, at a landscape scale, biodiversity is enhanced by forest 

patches with deep shade and more open patches or edge habitat, as shown by many studies, 

including our own work (12, 13). Environmental change affects forest understory plant 

communities in many ways, and we agree with the general remarks in Schall & Heinrichs 

concluding paragraphs. However, in terms of recent warming effects on forest biodiversity, we 10 

argue that microclimate warming and its local drivers deserve increased attention. 
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