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Abstract 98 

Questions: European woodlands harbor at least 386 alien plant species but the factors driving 99 

local invasions remain unknown. By using a large vegetation-plot database, we asked how 100 

local richness and abundance of alien species vary by regions, elevation, climate, soil 101 

properties, human disturbance, and habitat types. 102 

Location: Western, Central and Southern Europe. 103 

Methods: We linked consolidated data from the European Vegetation Archive (16,211 plots) 104 

to a habitat classification scheme, climate, soil properties and human disturbance variables. In 105 

addition, we used 250 km × 250 km regional grid cells to test whether local patterns differ 106 

among regions. We used generalized additive models (GAMs) and quantile GAMs to explore 107 

how relative alien species richness and the sum of alien species covers per plot relate to 108 

predictors. Random forest analyses (RFs) were employed to assess the importance of 109 

individual predictors that were not multicollinear. 110 

Results: Relative alien species richness and the sum of alien species covers varied across 111 

regions and habitat types, with effects being more pronounced at the maximum rather than 112 

average responses. Both response variables decreased with elevation and distance to the 113 

nearest road or railroad and increased with the amount of sealed soil. Maxima in fitted 114 

functions matched plots from regional invasion hotspots in north-western and central Europe. 115 

RFs  accounted for 39.6% and 20.9% of the total variation in relative alien species richness 116 

and the sum of alien species covers, respectively, with region and habitat as being the most 117 

important variables. 118 

Conclusions: The importance of maximum response quantiles and the prevalence of regional 119 

hotspots point to invasion debt in European woodlands. As alien plants expand further, their 120 

species richness and abundance in woodlands will be likely driven by the shared effects of the 121 

introduction and planting history, differences in the invaded habitat types, and dispersal 122 

corridors. 123 

124 



 

Introduction 125 

At least 386 alien plant species have been introduced to European woodlands deliberately or 126 

accidentally after the year 1500 (Wagner et al., 2017). While most alien species reach only 127 

low abundances and frequencies, some can become invasive by spreading fast. Some few 128 

species can even become transformative by changing plant species composition, suppressing 129 

native tree regeneration (Langmaier and Lapin, 2020), and altering ecosystem functioning 130 

(e.g., Aerts et al., 2017). For example, black locust (Robinia pseudoacacia) can homogenize 131 

woodland understory composition (Šibíková et al., 2019; Vítková et al., 2020) and trigger soil 132 

acidification and nitrification (Lazzaro et al., 2018). Similarly, black cherry (Prunus serotina) 133 

can change nitrogen, phosphorus, and carbon cycles to its advantage, potentially altering the 134 

photosynthetic capacity of the long-lived native broadleaved species (Aerts et al., 2017).  135 

 136 

To decrease possible detrimental effects, the European Union has outlined strategies for the 137 

prevention and management of invasive alien species (European Parliament, 2014). However, 138 

designing efficient strategies depends on understanding the drivers of local alien plant 139 

invasions across European regions. Such knowledge is particularly important for woodlands 140 

because they cover a third of the continent’s territory and provide essential ecosystem 141 

services, including carbon sequestration, water retention, timber production, and biodiversity 142 

conservation (Forest Europe, 2015). However, the factors that drive alien plant invasions in 143 

European woodlands are not well understood. A recent Europe-wide study has shown that in 144 

general, macroclimate is an important abiotic predictor of local plant species richness in 145 

woodlands, in congruence with a north-west to south-east continental gradient (Večeřa et al., 146 

2019). However, it is not clear whether the same patterns holds true specifically for local alien 147 

plant species richness. Macroclimate was not an essential predictor of local alien plant species 148 

richness in deciduous woodlands of Catalonia (Gassó et al., 2011) and was just one of several 149 

predictors of local alien plant species richness in woodlands of the Czech Republic (Divíšek 150 



 

and Chytrý, 2018). This indicates that other predictors could be more important. For instance, 151 

there is strong evidence that the level of invasion generally decreases with elevation, partly 152 

due to a drop in human activities and alien plant propagule pressure, which are usually 153 

confounded (Alexander et al., 2011; Pyšek et al., 2011). By comparison, the role of abiotic 154 

soil conditions in structuring alien plant invasions is less clear. Alien plant invasions are often 155 

favored at sites with increased soil nutrient availability (Davis et al., 2000; Gurevitch et al., 156 

2008), yet many alien species can grow in low-nutrient ecosystems, likely because of their 157 

higher resource use efficiency compared to native species (Funk and Vitousek, 2007). Soil pH 158 

explains some variation in local plant species richness in European woodlands (e.g. Večeřa et 159 

al., 2019) but its importance specifically for local alien plant richness is unknown. Human 160 

presence and disturbance at the landscape scale can accelerate alien plant invasions by 161 

enhancing propagule pressure and facilitating habitat edge effects (Vilà and Ibáñez, 2011; 162 

Conedera et al., 2018). Levels of invasion have been found to increase with landscape 163 

fragmentation (Ohlemüller et al., 2006), proportion of urban and industrial land (Chytrý et al., 164 

2008a; Liendo et al., 2016), proximity to roads (González-Moreno et al., 2013), and human 165 

population density (Pyšek et al., 2010b; Spear et al., 2013; but see Carboni et al., 2010). 166 

 167 

Many studies have revealed marked differences in the level of invasion across habitat types 168 

(e.g., Chytrý et al., 2005; 2008b; Campos et al., 2013; González-Moreno et al., 2014; Wagner 169 

et al., 2017; Giulio et al., 2020). Habitat types explained more variation (18%) in levels of 170 

invasion by neophytes (alien species that arrived in Europe after 1500 AD) than propagule 171 

pressure (3.1%) and climate (5.9%) in a study from the Czech Republic (Chytrý et al., 172 

2008a). Habitat type was also the strongest predictor of alien plant invasions in Iberian 173 

vegetation (González-Moreno et al., 2014). This signal could reflect the integrating role of 174 

habitat type as a surrogate capturing the effects of both abiotic and biotic filters but might also 175 



 

reflect a confounding effect of the environmental variables that underlie habitat typologies, 176 

like elevation, landscape configuration, soil properties, or biotic interactions. 177 

 178 

Identifying the main factors driving alien plant invasions is complex because invasions are 179 

dynamic processes and alien species pools not fully saturated due to dispersal limitation 180 

(Brown and Peet, 2003). This could lead to invasion debt, i.e. a time lag between the 181 

introduction and spread of alien species (Essl et al., 2011; 2012). At a large scale, this could 182 

translate into hotspots of invasion among regions where introduction and spread have been 183 

frequent, and invasion debt among regions that are lagging in this respect (Ronk et al., 2017). 184 

Hence, an analysis of alien species richness and abundance using quantiles closer to the 185 

maximum could provide better insights than the more conventional analysis of the mean 186 

response (Brown and Peet, 2003). 187 

 188 

Here, we are building on our previous work on alien plant invasions in European woodlands 189 

(Wagner et al., 2017) by analyzing a large dataset of woodland vegetation-plot data stored in 190 

the European Vegetation Archive (Chytrý et al., 2016). Whereas our previous study focused 191 

on characterizing the alien species pool, this study aims to understand the possible drivers of 192 

alien plant invasion in European woodlands. Specifically, we asked: (1) How do relative alien 193 

species richness and sum of alien species covers change across regions, habitat types, 194 

environmental conditions and human disturbance? (2) What is the importance of these 195 

predictors for explaining variation in alien plant invasions? 196 

 197 

Methods 198 

Vegetation data 199 

We extracted vegetation-plot data from the European Vegetation Archive (EVA, version 13 200 

January 2016, see Online Supplement and Wagner et al., 2017 for details on data 201 



 

preparation). This dataset contained plots from Western, Central and Southern Europe, as well 202 

as Lithuania (Fig. 1). For every vascular plant species in a plot, we assigned information on 203 

its status in the respective country (native, alien, or uncertain), with alien species defined as 204 

those that have been introduced after the year 1500 (i.e. neophytes sensu Thellung, 1915) and 205 

Raunkiær’s life-form (e.g., hemicryptophytes, phanerophytes, therophytes). The dataset 206 

encompassed data for plots surveyed in and after the year 1970 (53% collected after 2000) 207 

and was restricted to plots with an area ranging from 100 to 1000 m2 (or lacked plot size 208 

information, assuming that most of these plots were within this range; 77% of plots had a size 209 

of 100–500 m2). We assigned plots to European Nature Information System (EUNIS) 210 

woodland habitat types via a custom cross-walk (see Wagner et al., 2017 for details). The 211 

used version of the EUNIS habitat classification corresponds to that used in the European Red 212 

List of Habitats (Janssen et al., 2016). A crosswalk to the recently revised EUNIS version is 213 

provided by Chytrý et al. (2020). Only plots unambiguously assigned to a habitat type were 214 

included in the analysis. 215 

 216 

Our study focused on the spontaneously established alien vascular plants rather than outcomes 217 

of deliberate planting. Hence, we excluded plots with alien tree and shrub species mostly known 218 

from planted populations (e.g., Abies alba in Belgium, Pinus strobus in Slovenia). We also 219 

removed plots with alien tree species that are naturalized but widely planted if they covered 220 

more than 20% in the tree layer or an unidentified vegetation layer. In addition, we also filtered 221 

out plots in which taxa with an uncertain status (native vs. alien) had more than 20% cover (for 222 

details, see Wagner et al., 2017). 223 

 224 

Response variables 225 

For every vegetation plot, we calculated two measures of the level of invasion: (i) relative 226 

alien species richness, defined as the percentage of the number of alien vascular plant species 227 



 

among all vascular plant species in a plot, and (ii) absolute sum of alien species covers (in %) 228 

in a plot (see Appendix S3, Fig. S3.1 for the frequency distribution of response variables). We 229 

chose relative alien species richness instead of the total number of alien species per plot 230 

because our dataset included different plot sizes. If an alien species occurred in different 231 

layers, we included its absolute sum across layers (alien species occurred in different layers 232 

only in 16% of plots). We also considered the presence/absence of any alien species in a plot 233 

as a metric but dropped it since subsequent statistical models performed poorly, likely due to 234 

the overabundance of absences. In addition, we computed response metrics for five alien 235 

species groups: (i) all species; (ii) all species except Impatiens parviflora; (iii) phanerophytes; 236 

(iv) hemicryptophytes; and (v) therophytes (including I. parviflora). We removed Impatiens 237 

parviflora from one subset since it has a much higher frequency in European woodlands than 238 

any other alien species (Wagner et al., 2017) and could dominate the results. We focused on 239 

phanerophytes, hemicryptophytes, and therophytes because they represent the three most 240 

frequent life-forms among alien vascular plant species in European woodlands (Wagner et al., 241 

2017). 242 

 243 

Predictor variables 244 

We considered 75 predictor variables for our analysis: habitat type, region, elevation, six 245 

climate variables and two Principal Component (PC) axes based on a PC analysis (PCA) of 246 

climate variables, four soil variables and two PC axes based on a PCA of these soil variables, 247 

and 50 human disturbance variables (including variables extracted for different spatial 248 

buffers) and eight PC axes based on PCAs of these human disturbance variables (two axes for 249 

each buffer category of 200m, 500m, 1000m and 2000m) (Table 1). We hypothesized that 250 

patterns in our data could vary by region, possibly due to regional differences in alien plant 251 

introduction and planting history. To test this hypothesis, we assigned plots to a grid of 250 252 

km × 250 km, with grid cell ID as a predictor factor with 41 levels. We chose this specific 253 



 

resolution because it was a compromise between capturing regional effects and limiting the 254 

total number of levels in this variable. Information on elevation was derived from the original 255 

records or, if missing, extracted with the raster package (Hijmans, 2019) in R (R Core Team, 256 

2020) following Jarvis et al. (2008). We extracted climate variables that could potentially 257 

affect alien plant species distribution and abundance (BIO1: Mean annual temperature; BIO4: 258 

Temperature seasonality; BIO6: Minimum temperature of the coldest month; BIO10: Mean 259 

temperature of the warmest quarter; BIO12: Annual precipitation sum; BIO15: Precipitation 260 

seasonality) from the CHELSA dataset, which has a resolution of 30 arc seconds (~1 km × 1 261 

km at the equator; Karger et al., 2017). Topsoil properties (pH and fraction of sand, organic 262 

carbon, and gravel) were retrieved from the Harmonized World Soil Database, which offers 263 

data at a 0.05 resolution (~5.5 km × 3.9 km at the equator; Wieder et al., 2014). 264 

 265 

We extracted several measures to capture human disturbance. Imperviousness (the percentage 266 

of sealed soil, including roads, buildings, parking lots and industry areas) was prepared from a 267 

raster dataset of the Copernicus satellite program, which is based on an automatic derivation 268 

of calibrated Normalized Difference Vegetation Index (NDVI) in the year 2006 (European 269 

Environment Agency, 2013; 100 m × 100 m resolution). Estimates of human population 270 

density were retrieved from a dataset of the GEOSTAT initiative of the European Union 271 

(Eurostat, 2012), based on a 1 km × 1 km grid for the year 2011. We calculated the level of 272 

woodland fragmentation and woodland edge complexity based on Copernicus satellite 273 

products (European Environment Agency, 2016; original resolution: 20 m × 20 m). To 274 

quantify fragmentation, we used the area-weighted average patch size index (Sa; Turner et al., 275 

2001), computed as Sa = ∑(Sk
2) / ∑ (Sk), where Sk is the size of the k-th woodland patch 276 

within a spatial buffer. The larger the index, the larger the patch sizes within a buffer and the 277 

less fragmentation. The complexity of woodland edges was quantified using Patton’s 278 

diversity index (Patton, 1975), calculated as the perimeter of an individual woodland patch 279 



 

divided by the perimeter of a circle covering the same area as that of the focal patch. Values > 280 

1 indicate more complex patch edges and less interior woodland environment compared to the 281 

circular patch area. We estimated the proximity to the next propagule dispersal corridor by 282 

calculating the distance between plots and the closest road or railroad, respectively, in 283 

OpenStreetMap (OpenStreetMap Contributors, 2019). We considered all roads (motorways, 284 

trunks, primary, secondary, tertiary roads, residential streets) and all railroads (regular 285 

railroads, light rails, monorails, narrow gauges, racks, tram lines). Road density was extracted 286 

from global road density raster data (9 km × 9 km resolution; Meijer et al., 2018). We 287 

estimated the cover of human-altered landscapes based on CORINE land-cover types 288 

(Bossard et al., 2000), which we aggregated into four groups: (i) Intensive agricultural land 289 

cover, (ii) Artificial land-cover types I: Artificial land cover potentially related to the spread 290 

of alien species, (iii) Artificial land-cover types II: Theoretically the highest affinity to spread 291 

of alien species, and (iv) All human-dominated land-cover types combined (see Appendix S2, 292 

Table S2.1 for more details). We hypothesized that human disturbance has an effect at the 293 

landscape level by influencing the area surrounding a plot. Hence, we used spatial buffers of 294 

200 m, 500 m, 1000 m, and 2000 m when extracting mean values for human population 295 

density, imperviousness and road density (using QGIS; QGIS Development Team, 2019), and 296 

woodland fragmentation, woodland edge complexity, and the cover of human-dominated 297 

land-cover types (using ArgGIS; ESRI, 2011). For comparison purposes, we also extracted 298 

maximum values for imperviousness, human population density, and road density within the 299 

buffers in QGIS. 300 

In addition, we constructed simplified and uncorrelated variables for three predictor groups 301 

(climate, soil, human disturbance) by calculating two ordination axes using PCA in the vegan 302 

package (Oksanen et al., 2018) in R (R Core Team, 2020; see details in Appendix S1). These 303 

single predictor variables and the PC axes were subsequently used as predictor variables in 304 

our bivariate analyses.  305 



 

 306 

Data filtering 307 

After preparing our response and predictor variables, we took several data filtering steps. 308 

First, we included only plots with geographic coordinates and a location uncertainty of ≤ 1000 309 

m (44% of plots in the final dataset had an uncertainty of ≤ 500 m). However, plots that 310 

lacked information on location uncertainty but were surveyed after the year 2000 were 311 

included (33%), assuming that by that time, global positioning system (GPS) devices or 312 

accurate georeferencing were used to record plot locations. We reduced spatial clustering and 313 

sampling bias at the landscape and regional scales by randomly resampling up to 10 plots 314 

within a combination of 10 km × 10 km grid cell and habitat type. Next, to balance out 315 

regional unevenness, we randomly selected up to 200 plots for a combination of 250 km × 316 

250 km grid cell and habitat type. Regional grid cells with < 100 plots were excluded from 317 

the analysis. Fagus woodlands on non-acid soils were much more common than other habitat 318 

types. To balance out this overrepresentation, we randomly resampled up to 200 plots of this 319 

habitat type per country. We finally excluded rare habitat types with < 400 plots in the whole 320 

dataset after resampling and deleted outliers (see Appendix S1 in Supplementary 321 

Information). The final dataset included 16,211 plots (Fig. 1) and encompassed 15 EUNIS 322 

habitat types (see Appendix S2, Tables S2.2, S2.3 and S2.4 for an overview of databases, 323 

regions and habitats represented in the final dataset).  324 

 325 

Bivariate relationships 326 

We fitted standard generalized additive models (GAMs; Wood, 2011) and quantile GAMs 327 

(qGAMs; Fasiolo et al., 2017) to bivariate relationships between each of the two studied 328 

response variables on the one hand, and predictor variables on the other hand (both model 329 

types were run with a Gaussian error family). GAMs and qGAMs allowed us to explore 330 

trends using the original, untransformed variables. We used GAMs to inspect trends in 331 



 

average response rate and qGAMs to analyze values closer to the maximum response rates (𝜏 332 

= 0.90, and 0.99). We included the qGAMs approach because our data were zero-inflated 333 

(alien plants were present only in 17% of plots), and we hypothesized that signals could be 334 

fitted better at higher quantiles rather than as averages. We ran GAMs and qGAMs using the 335 

R packages mgcv (Wood, 2011) and qgam (Fasiolo et al., 2017), respectively. Smoothing 336 

parameters were constructed using cubic regression splines with k = 10 dimensions and 337 

estimated with restricted maximum likelihood estimation. 338 

 339 

Variable importance 340 

We used Random Forest (RF) analyses in the randomForest package (Liaw and Wiener, 341 

2002) in R to assess the importance of predictor variables for structuring relative alien species 342 

richness and the sum of alien species covers. RF analysis is a machine learning algorithm that 343 

averages predictions over several recursively partitioned decision trees based on bootstrapped 344 

data (“bagging”), creating a higher accuracy than decision trees. It uses a random subset of 345 

predictors for each tree to assess predictor importance in the presence of multicollinearity 346 

(Breiman, 2001). Nonetheless, collinearity was present when we included all predictor 347 

variables, as suggested by generalized variance inflation factors (GVIF, Appendix S2, Table 348 

S2.6), which could bias RF results (Dormann et al., 2013). Hence, we considered all predictor 349 

variables but only included those with a GVIF ≤ 2 in the RFs. 350 

 351 

Each RF was based on 10,000 grown trees, with four randomly chosen predictors considered 352 

at each split, minimum node sizes of 40 plots, and randomization of cases without 353 

replacement. Variable importance was assessed based on out of bag (OOB) data, as the 354 

average increase in squared OOB residuals when a variable in the OOB data is permuted 355 

(%IncMSE). The latter metric is unbiased compared to the increase in node purity, another 356 

metric reported by the package (Grömping, 2009 and references therein). To compare the 357 



 

importance of predictor variables for our two response variables, we normalized %IncMSE 358 

values across predictors to sum to 100% (Grömping, 2009). 359 

 360 

Results 361 

Bivariate relationships 362 

Both the relative alien species richness and the sum of alien species covers differed by habitat 363 

type (Fig. 2). Differences were apparent in GAM estimates but amplified when using qGAMs 364 

at the maximum response rates (𝜏 = 0.90 and 0.99). According to GAM estimates, relative 365 

alien species richness was highest in temperate and boreal mountain Betula and Populus 366 

tremula woodland on mineral soils (G1.9a), acidophilous Quercus woodland (G1.8), Fagus 367 

woodland on acid soils (G1.6b), and temperate and boreal softwood riparian woodland (G1.1) 368 

(Fig. 2a). In general, habitats with low relative alien species richness had also low sum of 369 

alien species covers. However, the ranking based on the sum cover was more nuanced for 370 

habitats with higher relative alien species richness, with Temperate and boreal softwood 371 

riparian woodland (G1.1 ) having the highest sum of alien species covers (Fig. 2b). In general, 372 

woodland habitat types at temperate latitudes, such as those listed above, had higher levels of 373 

invasion than Mediterranean or montane habitat types like Mediterranean evergreen Quercus 374 

woodland (G2.1) and Temperate and submediterranean montane Pinus sylvestris-Pinus nigra 375 

woodland (G3.4b). 376 

 377 

The relative alien species richness and the sum of alien species covers differed across regional 378 

grid cells (Fig. 3). In general, it was higher in northern than in southern regional grid cells and 379 

peaked in north-western and central Europe. These regional patterns were consistent for 380 

relative alien species richness and the sum of alien species covers and for responses at the 381 

mean and 𝜏 = 0.99 quantiles (Fig. 3). 382 

 383 



 

Relative alien species richness and the sum of alien species covers declined with increasing 384 

elevation, distance to the nearest road, and distance to the nearest railroad and increased with 385 

maximum imperviousness (percentage of sealed soil cover) in 2000m buffers (Fig. 4). 386 

However, these relationships were only pronounced when values closer to the maximum were 387 

analyzed (𝜏 = 0.99 and 0.90). None or only weak relationships were found in the analysis of 388 

average trends (𝜏 = 0.5; Fig. 4). With respect to elevation, relative alien species richness 389 

declined at elevations 0–750 m, whereas the sum of alien species covers showed a slight 390 

increase and then a decrease in this elevation range (Fig. 4). Neither the relative alien species 391 

richness nor the sum of alien species covers showed a clear trend with climate and soil 392 

variables but displayed only local maxima along these gradients (Appendix S3, Figs. S3.2 and 393 

S3.3).  394 

 395 

A closer inspection of bivariate relationships between relative alien species richness and the 396 

sum of alien species covers on the one hand and elevation, distance to the nearest road, 397 

distance to the nearest railroad, and the mean annual temperature on the other, revealed that 398 

peaks were driven by regional signals. For all of these predictor variables, most plots that 399 

matched the maxima in relative alien species richness at 𝜏 = 0.99 and 0.90 quantiles were 400 

from the Netherlands, Belgium, Poland and the Czech Republic (Table 2). Plots that were 401 

associated with maxima in the sum of alien species covers at these quantiles were from the 402 

Czech Republic, the Netherlands, and France (Table 3). 403 

 404 

Variable importance 405 

The variables that we considered in our RFs models explained together 39.6% of the total 406 

variation in relative alien species richness. By comparison, the total amount of variation 407 

explained for the sum of alien species covers was only 20.9% (Fig. 5a, b). Habitat type and 408 

regional grid cells were the most important predictors (> 10%) for both response variables. 409 



 

Variable importance and percentage of explained variation changed little when we removed 410 

Impatiens parviflora (n = 15,214 plots; Appendix S3, Fig. S3.4a,b) or inspected patterns only 411 

among alien phanerophytes (Fig. S3.4c,d). By contrast, when we analyzed only alien 412 

hemicryptophytes (Fig. S3.4e,f) or alien therophytes (Fig. S3.4 g,h), the percentage of 413 

explained variation decreased. 414 

 415 

Discussion 416 

Several key findings suggest that European woodlands display regional hotspots of local alien 417 

plant invasion and that woodlands in some regions might not be fully saturated with alien 418 

species but rather experience invasion debt (Brown and Peet, 2003; Essl et al., 2012). First, 419 

although macroclimate is an important predictor of local plant species richness in European 420 

woodlands (Večeřa et al., 2019), it did not emerge as a significant driver of local relative alien 421 

species richness across European woodlands. Second, local levels of alien plant invasions 422 

differed strongly by region, with regional hotspots in north-western and central Europe. Third, 423 

for continuous predictors that showed relationships with relative alien species richness and 424 

the sum of alien species covers (i.e. elevation, distance to the nearest road or nearest railroad, 425 

imperviousness), effects were only pronounced at higher quantiles and non-detectable at the 426 

average response of our response variables. When we looked closer at peaks in these 427 

relationships, the signal at the maximum quantiles was driven by vegetation plots located 428 

within regional invasion hotspots. 429 

 430 

Interestingly, the regional hotspots that we detected broadly match hotspots of regional alien 431 

species richness described by Ronk et al. (2017). In contrast to our work, this study assessed 432 

richness at a coarser spatial resolution, based on species lists for 50 km × 50 km grid cells in 433 

Europe. This may imply that the magnitude of alien plant invasions at the local scale in 434 

European woodlands is influenced by regional differences in alien species pool size. In 435 



 

theory, the high estimates for the Czech Republic and France could be due to more intense 436 

sampling in these regions (% of plots in the final dataset: 15.1%, 12.1%, respectively). Plots 437 

in the Netherlands and Belgium made up only 5.9% and 2.2% of the final dataset, 438 

respectively (Appendix S2, Table S2.3), albeit these countries are also smaller. Here, the high 439 

levels of invasion could also reflect the region’s legacy as an invasion hub, especially the long 440 

history of international trade at its seaports and high density of traffic corridors (Eurostat, 441 

2018). Another explanation is the lower richness in the native woodland flora in north-442 

western Europe (Večeřa et al., 2019). Since we used a relative measure of alien species 443 

richness (to account for different plot sizes), calculated as the number of alien species divided 444 

by all species in a plot, naturally species-poor forests could appear to be relatively more 445 

invaded. The lower magnitude of alien plant invasions in southern Europe is in line with 446 

patterns observed at the higher spatial scale by Ronk et al. (2017). The prevalence of summer 447 

drought in this region could make its woodlands more resistant to invasion. Alternatively, 448 

given the high rates of alien plant invasions in other regions with summer drought, like 449 

California (van Kleunen et al., 2015), our results could also imply that invasion debt is more 450 

prominent in southern European woodlands (Rouget et al., 2016). These hypotheses deserve 451 

more attention by researchers in the future. Furthermore, our study did not cover all of Europe 452 

and might have missed other regional patterns of local alien plant invasions in European 453 

woodlands. 454 

 455 

Our results also join an increasing number of studies that found habitat type to be an 456 

important predictor of the magnitude of invasions (Chytrý et al., 2008a; Pyšek et al., 2010a; 457 

Pyšek and Chytrý, 2014; Dyderski and Jagodziński, 2019). Our study encompassed a smaller 458 

set of habitat types than Wagner et al. (2017) due to stronger data filtering. However, the 459 

trends in mean relative alien species richness among habitat types were broadly similar. For 460 

instance, the three highest-ranked habitats according to the mean (G1.1, G1.8, G1.9a), as 461 



 

shown by GAMs, were among the five highest-ranked habitat types in Wagner et al. (2017). 462 

The high levels of invasion in temperate and boreal softwood riparian woodlands are well 463 

known (Schnitzler et al., 2007). They can be linked to several habitat characteristics, 464 

including a high propagule pressure at low elevations, their role as dispersal corridors and 465 

intersections by roads and railroads, and their exposure to nutrient pulses, frequent 466 

disturbance, and light gaps due to flooding. The high rankings for Acidophilous Quercus 467 

woodland and Temperate and boreal mountain Betula and Populus tremula woodland on 468 

mineral soils are more surprising. In theory, they could be explained by native species 469 

richness per plot, which tends to be low in these habitat types (Wagner et al., 2017, their 470 

Appendix S5). However, in general, we did not find a correlation between mean alien species 471 

richness and mean native species richness per habitat type (Pearson’s r = -0.41, d.f. = 13, p = 472 

0.126; calculated for the most frequent plot size of 100 m2). In addition, the high levels of 473 

invasion in these habitat types may be due to their relatively open canopy cover, occurrence 474 

in regional invasion hotspots, higher local disturbance through management, and the ability of 475 

frequent alien species to colonize acidic soils and forest gaps, as displayed for example by 476 

Prunus serotina (Godefroid et al., 2005) or Impatiens parviflora (Chmura et al., 2007). 477 

 478 

The magnitude of alien plant invasions in European woodlands decreased with increasing 479 

elevation. Similar signals at the local scale have been explained by declining propagule 480 

pressure or directional filtering. The latter process refers to an overrepresentation of taxa with 481 

a niche optimum at lower elevations, within the low elevation species pool (e.g., Alexander et 482 

al., 2011; Pyšek et al., 2011). However, in our study, the decline of the levels of alien plant 483 

invasions with elevation could also be partly due to the confounding effect of region, with 484 

maxima reported from regional hotspots at low elevations, like the Netherlands. 485 

 486 



 

Distances to the nearest road and railroad and cover of impervious surfaces were the only 487 

clear indicators of human-induced disturbance associated with the magnitude of alien plant 488 

invasions in European woodlands. In general, the decline of alien species richness and cover 489 

with increasing distances from these corridors supports the role of road and railroad traffic as 490 

a pathway for alien plant invasions (von der Lippe and Kowarik, 2008). Imperviousness 491 

showed a positive relationship with our response variable, but only when we extracted 492 

maximum imperviousness values in a 2000-m buffer around the plot. This could reflect the 493 

importance of urban areas as propagule sources and as dispersal corridors (Klotz and Kühn, 494 

2010) in the wider perimeter of woodlands. In our study, the effect of distances to the nearest 495 

road and railroad, and imperviousness, may also reflect a confounding effect with region. 496 

North-western Europe, where the magnitude of invasion was particularly high, has one of the 497 

highest road and imperviousness densities in Europe (Eurostat, 2018; European 498 

Environmental Agency, 2021). 499 

 500 

Surprisingly, our study did not detect a link between alien plant invasions and other human 501 

disturbance predictors, including population density, woodland fragmentation and edge 502 

complexity, and the cover of human-dominated land. We hypothesize that other factors, like 503 

introduction and planting history, could over-ride the importance of human disturbance at the 504 

landscape scale. For instance, given that trees and shrubs are over-represented in the 505 

European alien woodland flora compared to natives (Wagner et al., 2017), our finding could 506 

echo the large-scale planting of this group in the mid-18th to early 20th century (Bucharová 507 

and van Kleunen, 2009; Nyssen et al., 2016). Well-known examples are the planting of 508 

Prunus serotina (Schrader and Starfinger, 2009; Nyssen et al., 2016) and Robinia 509 

pseudoacacia (Vítková et al., 2017) in north-western and central Europe. This hypothesis is 510 

supported by Bucharová and van Kleunen (2009) and Pyšek et al. (2009), who found planting 511 

frequency to be the most important predictor of the success of alien trees in Europe. Planting 512 



 

could have removed landscape filters and facilitated the spread of alien phanerophytes into 513 

European woodlands. Furthermore, our proxies of human disturbance at the continental scale 514 

were available only at the turn of the 21st century, roughly when 50% of our vegetation plots 515 

have been sampled. However, invasions may be the result of much earlier human disturbance 516 

activities. Linking our data to historic disturbance and planting data could have explained 517 

more variation, but such data are more difficult to gather at the European extent. 518 

 519 

Soil properties explained only a small amount of variation in our data. It is possible that their 520 

spatial resolution (~ 5.5 × 3.9 km) was too coarse to detect any signal in the data. Linking our 521 

data to soil information at a finer spatial resolution might have improved models, but such 522 

data were not available and are generally underrepresented or recorded inconsistently in 523 

vegetation databases. Future studies that couple vegetation surveys with detailed analyses of 524 

soil abiotic and biotic properties could shed more light in this respect. 525 

 526 

RFs predicted 39.6% and 20.9% of the variation in relative alien species richness and the sum 527 

of alien species covers, respectively. The lower variance explained in the latter response 528 

variable is likely due a higher imprecision in cover estimates compared to species richness 529 

estimates, and to a stronger influence of effects not captured in our models, such as local 530 

disturbance (Chabrerie et al., 2008). In addition, we considered only single effects in driving 531 

alien plant invasions. However, invasion patterns are driven by interactions of multiple effects 532 

(Thuiller et al. 2006; Pyšek et al., 2015). An analysis of interactions between habitat type and 533 

human disturbance, in particular, could reveal whether some habitat types are more prone to 534 

invasions under increased human disturbance. 535 

 536 

Conclusions 537 



 

European woodlands show clear signs of invasion debt for alien plants, with regional hotspots 538 

of invasions, links to predictors representing propagule pathways, and the strongest 539 

environmental predictions for maximum levels of invasion. Looking into the future, our 540 

results imply that alien plant invasions will continue to expand in European woodlands, likely 541 

driven by the complex effects of regional introduction history, factors associated with 542 

differences between habitat types, and the prevalence of dispersal corridors and urban areas. 543 

A challenge for future research is to clarify the role of local and historic factors as drivers of 544 

alien plant invasions. Avoidance strategies, such as regulations of alien plant introductions 545 

and plantings (Brundu and Richardson, 2017; Pötzelsberger et al. 2020), must be key 546 

components for the protection of European woodlands from future invasions. Given that alien 547 

plant invasions are dynamic processes and will likely proceed further, we advocate for 548 

continuous surveys in European woodlands at the local and regional scales. 549 

 550 
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Table 1. Overview of predictor variables. EEA = European Environment Agency, T = 840 

Temperature, Min = Minimum, SD = standard deviation, CV = coefficient of variation. See 841 

Appendix S1. Methods supplement for more details on data extractions. 842 

 Source Data type 

Habitat type, Appendix S2.4, Table 

S2.1  

Custom assignment based 

on Schaminée et al. (2014) 

and Janssen et al.  (2016), 

see Wagner et al. (2017) for 

details 

Categorical, 15 levels 

Region (regional grid cells) Custom calculation Categorical, 41 levels (250 

km × 250 km cells) 

Environmental variables 

Elevation [m] Original plot data, Jarvis et 

al. (2008) 

Continuous. Original entry or 

extracted from a raster of 90 

m × 90 m resolution*)  

BIO1: Mean annual T × 10 (C) Karger et al. (2017) Continuous. Extracted from a 

raster of 30 arcsec (~1 km × 1 

km*) resolution 

BIO4: T seasonality (SD × 100) " " 

BIO6: Min. T of coldest month × 10 

(C) 

" " 

BIO10: Mean T of warmest quarter × 

10 (C) 

" " 

BIO12: Annual precipitation sum 

(mm) 

" " 

BIO15: Precipitation seasonality 

(CV) 

" " 

Topsoil pH Wieder et al. (2014) Continuous, extracted from 

raster of 0.05 (~5.5 km × 5.5 

km*) resolution 

Topsoil sand fraction (% weight) " Percentage, extracted from a 

raster of 0.05 resolution 

Topsoil organic carbon (% weight) " " 

Topsoil gravel fraction (% weight)  " " 

Degree of human disturbance 

Imperviousness % (year 2006) 

= percentage of sealed soil 

Copernicus (Geoland-2), 

EEA (2013) 

Percentage, extracted from a 

raster of 100 m × 100 m  

resolution (mean, max in 

buffer**) 

Human population density Eurostat 2012 (year 2011) Count, extracted from grid 

polygons of 1 km × 1 km** 



 

resolution  (mean, max in 

buffer**) 

Degree of woodland fragmentation 

(m) 

Custom calculation based 

on Copernicus (EEA 2016) 

Continuous, extracted from a 

raster of XX m XX m  (mean 

in buffer**) 

Woodland edge complexity " Continuous, extracted from a 

raster of XX m XX m  

resolution (mean in buffer**) 

Distance to the nearest road (km) OpenStreetMap 

Contributors (2019) 

Polyline vector 

Distance to the nearest railroad (km) " " 

Road density Meijer et al. (2018) Continuous, extracted from a 

raster of 5 arc minutes (~9 × 

9 km*) resolution (mean, max 

in buffer**) 

Cover of human-dominated land 

types %, four different variables, 

Appendix S2, Table S2.1 

Aggregated CORINE land- 

cover types; Bossard et al. 

(2000) 

Continuous, extracted from a 

raster of 500 m × 500 m** 

resolution (mean in buffer**) 

* at equator 843 

**  extracted within 200, 500, 1000 and 2000 m buffer circles around plots844 



 

Table 2. Regional origin of plots associated with peaks in 99% and 90% quantiles of relative 845 

alien species richness along selected predictor variables; peaks were defined as plots falling 846 

into the range of a predictor variable and the response quantile, as inspected for a bivariate 847 

relationship; n = no. of plots and % = percentage of plots in the peak; displayed are only the 848 

three regions with the highest plot numbers. 849 

 850 

 ≥ 99% quantile ≥ 90% quantile 

region n %  region n % 

Elevation: 0-500 m Elevation: 0-500 m 

Netherlands 72 42.6  Netherlands 344 22.2 

Belgium 45 26.6  Czech Republic 269 17.4 

Poland 13 7.7  Belgium 165 10.6 

Distance to nearest road: 0-2 km Distance to nearest road: 0-2 km 

Netherlands 70 40.5  Netherlands 338 25.3 

Belgium 45 26.0  Czech Republic 290 18.0 

Poland 13 7.5  Belgium 165 10.2 

Distance to nearest railroad: 0-10 km Distance to nearest railroad: 0-10 km 

Netherlands 70 41.4  Netherlands 329 21.4 

Belgium 42 24.9  Czech Republic 290 18.8 

Poland 13 7.7  Belgium 159 10.3 

Mean annual temperature: 8-12°C Mean annual temperature: 8-12°C 

Netherlands 72 43.6  Netherlands 344 24.7 

Belgium 45 27.3  Czech Republic 259 18.6 

Poland 13 7.9  Belgium 165 11.8 

  851 

  852 



 

Table 3. Regional origin of plots associated with peaks in 99% and 90% quantiles of the sum 853 

of alien species covers along selected predictor variables; peaks were defined as plots falling 854 

into the range of a predictor variable and the response quantile; n = no. of plots and % = 855 

percentage of plots; displayed are only the three regions with the highest plot numbers. 856 

 857 

≥ 99% quantile ≥ 90% quantile 

region n %  region n % 

Elevation: 0-500 m  Elevation: 0-500 m 

France 32 20.4  Czech Republic 341 16.8 

Belgium 25 15.9  Netherlands 322 15.3 

Czech Republic 23 14.6  France 152 14.6 

Distance to nearest road: 0-2 km  Distance to nearest: 0-2 km 

France 32 19.5  Czech Republic 365 22.1 

Czech Republic 28 17.1  Netherlands 317 20.8 

Belgium 25 15.2  France 159 11.2 

Distance to nearest railroad: 0-10 km  Distance to nearest railroad: 0-10 km 

France 31 19.9  Czech Republic 367 23.6 

Czech Republic 27 17.3  Netherlands 312 20.0 

Belgium 25 16.0  France 156 10.0 

Mean annual temperature: 8-12°C  Mean annual temperature: 8-12°C 

France 30 20.3  Czech Republic 329 23.6 

Belgium 25 16.9  Netherlands 322 23.1 

Czech Republic 24 16.2  France 147 10.5 

   858 



 

Fig. 1. Location and relative alien species richness of vegetation plots included in the final 859 

dataset (n = 16,211 plots). 860 

 861 

 862 
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Fig. 2. Differences in (a) the relative alien species richness and (b) the sum of alien species 864 

covers among EUNIS habitat types of European woodlands. Colored symbols are group 865 

estimates as fitted by generalized additive models (GAMs) and quantile GAMs (qGAMs) for 866 

quantiles 𝜏 = 0.90 and 0.99. In both figures, the habitat types are sorted in decreasing order 867 

according to coefficient estimates from qGAMs of relative alien species richness at 𝜏 = 0.99 868 

(panel figure a). 869 
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Fig. 3. Differences in relative alien species richness (a, b) and the sum of alien species covers 871 

(c, d) among regional grid cells. Colored cells are estimates fitted by quantile generalized 872 

additive models (qGAMs) at quantile 𝜏 = 0.99 with the factor variable “region” (n = 41 873 

levels) used as the only predictor variable. Areas in white were not included due to 874 

insufficient data availability. Results for qGAMs at quantile 𝜏 = 0.90 are not displayed since 875 

models failed to converge. 876 
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 878 
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Fig. 4. Bivariate relationships between (a-d) relative alien species richness and (e-h) sum of 880 

alien species covers with elevation, imperviousness (max. of 2000m buffer), distance to the 881 

nearest road, and distance to the nearest railroad. Lines were fitted using generalized additive 882 

models (GAMs) and quantle generalized additive models (qGAMs), with a 95% confidence 883 

interval. Only fits of converged models are shown. See Appendix S3, Figs S3.2 and S3.3 for 884 

relationships with all continuous predictors. 885 
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Fig. 5. Importance of predictors for explaining (a) relative alien species richness and (b) sum 888 

of alien species covers when all aliens are included, assessed by Random Forest analyses. 889 

Bars show an average increase in the mean standard error (MSE), normalized across 890 

predictors to sum to 100%. Only predictors with a generalized variance inflation factor ≤ 2 891 

were included to avoid multicollinearity. See Appendix S3, Fig. S3.4 for importance values 892 

for other alien groups. 893 
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