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In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin striped domain. We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit system for small initial conditions in an appropriate analytic function space.

1. Introduction 1.1. Motivation. The characteristic feature of a turbulent fluid according to Kolmogorov's theory is that the energy cascades from large scales to small scales until it reaches the dissipation scale and then turns into heat. This feature leads to important costs of calculations in numerical simulation because the grid resolutions cannot keep up to the dissipation scale, which is extremely small when the Reynolds number is large (which corresponds to turbulent flows). So the idea is to consider the effects of smaller scales on larger scales instead of capturing all scales and as a consequence, one can achieve a balance between computational costs and precision.

One way to model turbulent flows is the so-called Large Eddy Simulation method. It consists in filtering the small scales and directly calculating the large scales of the turbulent cascade (see [START_REF]Mathematical and physical constraints on large-eddy simulation of turbulence[END_REF] for instance). Another approach is the Reynolds Averaged Navier-Stokes, based on Reynolds decomposition, which provides mean quantities of turbulent flow while fluctuations will be modeled. This second method is used in the industry due to its small computational costs. However, both approaches meet a common problem which is the closure of the model systems where there are more unknowns than equations.

In order to overcome this difficulty, the Navier-Stokes-alpha model was introduced, where an energy "penalty" inhibits the creation of small excitations below a certain length scale α (also called the viscous Camassa-Holm equations, see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Chen | The Camassa-Holm equations as a closure model for turbulent channel and pipe flow[END_REF][START_REF] Holm | Euler-Poincaré models of ideal fluids with nonlinear dispersion[END_REF][START_REF] Kouranbaeva | The CamassaHolm equation as a geodesic flow on the diffeomorphism group[END_REF][START_REF] Marsden | Global well-posedness for the LANS-α equations on bounded domains[END_REF][START_REF] Misiolek | A shallow water equation as a geodesic flow on the BottVirasoro group[END_REF] and the references therein for a survey of Camassa-Holm equations). This "alpha-modification" leads to a change in the convection term of the Navier-Stokes equations. More precisely, this is the following system

   ∂v ∂t + (u • ∇)v + v 1 ∇u 1 + v 2 ∇u 2 = ν∆v -∇q ∇ • u = 0, (1) 
where

v = (v 1 , v 2 ) = (1 -α 2 ∆)u = ((1 -α 2 ∆)u 1 , (1 -α 2 ∆)u 2 )
and u is the velocity of the fluid and q the modified pressure. In [START_REF] Foias | The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equation and turbulence theory[END_REF], Foias, Holm and Titi prove the global existence and uniqueness of the solution of (1) in a periodic domain for H 1 -initial data and the convergence of the solution of 3D Camassa-Holm equation (NS-α) towards a weak solution of 3D NS equations when α tends to zero and in [START_REF] Busuioc | Sur les équations α Navier-Stokes dans un ouvert borné[END_REF], Busuioc gives a simple proof of the global existence and uniqueness of (1) for H 1 0 -initial data in bounded domains with Dirichlet boundary conditions.

In this paper, we consider the system (1) in the thin strip S ε = (x, y) ∈ R 2 , 0 < y < ε , where the width ε is supposed to be very small. This consideration is relevant for planetary-scale oceanic and atmospheric flows (see [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]), for which, the vertical scale (a few kilometers for oceans, 10-20 kilometers for the atmosphere) is much smaller than the horizontal scales (thousands of kilometers). In this framework, the fluid behaviors are approximated by the so-called hydrostatic model, in which the conservation momentum in the vertical direction is replaced by a simple hydrostatic equation. In the case of Navier-Stokes equations for a viscous fluid in a thin strip, the hydrostatic limit leads to the following rescaled system in domain R×]0, 1[

               ∂ t u + u ∂ x u + v∂ z u = ∂ 2 z u -∂ x p ∂ z p = 0 ∂ x u + ∂ z v = 0 (u, v)| z=0 = (u, v)| z=1 = 0 u| t=0 = u 0 .
(2) This model and its three-dimensional counterpart are very important in oceanography and meteorology (see [START_REF] Bourgeois | Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean[END_REF][START_REF] Lions | On the equations of the large-scale ocean[END_REF][START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]). It is known that without any structural assumption on the initial data, real-analyticity is both necessary [START_REF] Renardy | Ill-posedness of the hydrostatic Euler and Navier-Stokes equations[END_REF] and sufficient [START_REF] Kukavica | Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain[END_REF] for the local well-posedness of the system [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]. In [START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF] the authors proved that for convex initial data, the local well-posedness holds under simple Gevrey regularity. In [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], Paicu et al. proved the existence and uniqueness of global analytic solution with small analytic initial data with respect to variable x. We want to emphasize the similarity of the system (2) and the classical Prandtl system for which, without any structural assumption, the loss of one derivative does not allow to work in the classical Sobolev framework and the well-posedness requires more smoothness of the data (see [START_REF] Dietert | Well-posedness of the Prandtl equation without any structural assumption[END_REF][START_REF] Li | Well-posedness in Gevrey function space for 3D Prandtl equations without structural assumption[END_REF]). However, if we impose the monotonicity hypothesis then well-posedness can be obtained in Sobolev frameworks for the classical Prandtl equations (see for instance [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF]) but not for the hydrostatic limit system [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].

In this paper, we will study the hydrostatic limit of the Navier-Stokes-alpha equations as the strip width ε → 0. Using the techniques of [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we prove the global well-posedness of the limit system in appropriate analytic function spaces. We will justify this limit by proving the convergence of the Navier-Stokes-alpha system in a forthcoming paper. In the next subsection, we will give brief derivation of the hydrostatic limit of the system (1) as ε → 0. 1.2. Hydrostatic limit of the Navier-Stokes-alpha model. We consider the system (1) in a thin strip S ε = (x, y) ∈ R 2 , 0 < y < ε , where the width ε > 0 is supposed to be very small. Equipped with no-slip boundary conditions, we rewrite [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF] as

                   ∂ t v ε 1 + u ε 1 ∂ x v ε 1 + u ε 2 ∂ y v ε 1 + v ε 1 ∂ x u ε 1 + v ε 2 ∂ x u ε 2 = ν∆v ε 1 -∂ x q ε ∂ t v ε 2 + u ε 1 ∂ x v ε 2 + u ε 2 ∂ y v ε 2 + v ε 1 ∂ y u ε 1 + v ε 2 ∂ y u ε 2 = ν∆v ε 2 -∂ y q ε ∂ x u ε 1 + ∂ y u ε 2 = 0 u ε 1 = u ε 2 = 0 on {y = 0} ∪ {y = ε} ∂ z u ε 1 = ∂ z u ε 2 = 0 on {y = 0} ∪ {y = ε} (u ε 1 , u ε 2 ) |t=0 = (u 1,0 , u 2,0 )(x, y), (3) 
where, for i = 1, 2,

v ε i = u ε i -α 2 ∆u ε i .
We consider the following rescaling

u ε 1 (t, x, y) = u ε t, x, y ε , u ε 2 (t, x, y) = ε v ε t, x, y ε , q ε (t, x, y) = qε t, x, y ε .
In our model, we consider α of the same order of ε. More precisely, we suppose that α = α 1 ε, where α 1 is a positive constant. We perform the change of variable z = y ε and we set

S = (x, z) ∈ R 2 , 0 < z < 1 .
We remark that for any function ϕ(t, x, y) = ψ t, x, y ε , we have

∂ (k) y (ϕ(t, x, y)) = ε -k ∂ (k) z ψ (t, x, z) . Then the following calculations are immediate v ε 1 (t, x, y) = u ε (t, x, z) -α 2 1 ∂ 2 z u ε (t, x, z) -ε 2 α 2 1 ∂ 2 x u ε (t, x, z) v ε 2 (t, x, y) = ε(v ε (t, x, z) -α 2 1 ∂ 2 z v ε (t, x, z)) -ε 3 α 2 1 ∂ 2 x v ε (t, x, z), The system (3) becomes                  ∂ t ω ε -α 2 1 ε 2 ∂ t ∂ 2 x u ε + u ε ∂ x ω ε -α 2 1 ε 2 u ε ∂ 3 x u ε + v ε ∂ z ω ε -α 2 1 ε 2 v ε ∂ z ∂ 2 x u ε + ω ε ∂ x u ε -α 2 1 ε 2 ∂ x u ε ∂ 2 x u ε + ε 2 γ ε ∂ x v ε -ε 4 α 2 1 ∂ 2 x v ε ∂ x v ε = ∂ 2 z ω ε + ε 2 ∂ 2 x ω ε -ε 2 α 2 1 ∂ 2 z ∂ 2 x u ε -α 2 1 ε 4 ∂ 4 x u ε -∂ x qε ε 2 ∂ t γ ε -α 2 1 ε 4 ∂ t ∂ 2 x v ε + ε 2 u ε ∂ x γ ε -α 2 1 ε 4 u ε ∂ 3 x v ε + ε 2 v ε ∂ z γ ε -α 2 1 ε 4 v ε ∂ z ∂ 2 x v ε + ω ∂ z u ε -α 2 1 ε 3 ∂ 2 x u ε ∂ z u ε + ε 2 γ ε ∂ z v ε -α 2 1 ε 4 ∂ 2 x v ε ∂ z v ε = ε 2 ∂ 2 z γ ε + ε 4 ∂ 2 x γ ε -α 2 1 ε 4 ∂ 2 z ∂ 2 x v ε -α 2 1 ε 6 ∂ 4 x v ε -∂ z qε ∂ x u ε + ∂ z v ε = 0,
where we denote

ω ε = u ε -α 2 1 ∂ 2 z u ε and γ ε = v ε -α 2 1 ∂ 2 z v ε to lighten the notations. Formally taking ε → 0 we obtain                      ∂ t (u -α 2 1 ∂ 2 z u) + u ∂ x (u -α 2 1 ∂ 2 z u) + v∂ z (u -α 2 1 ∂ 2 z u) + (u -α 2 1 ∂ 2 z u)∂ x u = ∂ 2 z (u -α 2 1 ∂ 2 z u) -∂ x q (u -α 2 1 ∂ 2 z u)∂ z u = -∂ z q ∂ x u + ∂ z v = 0 (u, v) = 0, ∂ z u = 0 on z = 0 (u, v) = 0, ∂ z u = 0 on z = 1 u |t=0 = u 0 . (4) 
We consider the modified pressure

p = q + 1 2 u 2 - 1 2 α 2 1 (∂ z u) 2 and we set ω = u -α 2 1 ∂ 2 z u.
Then we can rewrite the system (4) as

                     ∂ t ω + u ∂ x ω + v∂ z ω + α 2 1 (∂ z u ∂ x ∂ z u -∂ 2 z u∂ x u) = ∂ 2 z ω -∂ x p in ]0, +∞[×S ∂ z p = 0 in ]0, +∞[×S ∂ x u + ∂ z v = 0 in ]0, +∞[×S (u, v)| z=0,1 = 0 in ]0, +∞[×R ∂ z u| z=0,1 = 0 in ]0, +∞[×R u| t=0 = u 0 in S. (5) Remark 1.1.
(1) The no-slip boundary conditions

(u, v)| z=0 = (u, v)| z=1 = 0 and the incompres- sibility ∂ x u + ∂ z v = 0 imply v(t, x, z) = z 0 ∂ ỹ v(t, x, ỹ) dỹ = - z 0 ∂ x u(t, x, ỹ) dỹ.
(2) From the incompressibility condition we deduce that

∂ x 1 0 u(t, x, y) dy = - 1 0 ∂ z v(t, x, z) dy = v(t, x, 1) -v(t, x, 0) = 0,
which together with the fact that u(t, x, z) → 0 as |x| → +∞, ensures that

1 0 u(t, x, z) dy = 0. ( 6 
)
Since ∂ z p = 0, integrating the first equation of system (5) and using the boundary conditions, we get

∂ x p(t, x) = α 2 1 ∂ 3 z u| z=0 -α 2 1 ∂ 3 z u| z=1 -∂ x 1 0 u 2 (t, x, z) dz -α 2 1 ∂ x 1 0 (∂ z u) 2 (t, x, z) dz.
We emphasize that, similar to Prandtl equation, the nonlinear term v∂ z ω in the system (5) creates the loss of one derivative in x variable in energy-type estimates. So, in order to overcome this difficulty, it is natural to work in analytic function frameworks. In the next paragraph, we will introduce some elements of Littlewood-Paley theory and functional spaces that we are going to use in this paper.

1.3. Littlewood-Paley theory and functional spaces. We consider a even smooth function χ in C ∞ 0 (R) such that the support is contained in the ball B R (0, 4 3 ) and ψ is equal to 1 on a neighborhood of the ball B R (0, 3 4 ). We set ψ(z) = χ z 2 -χ(z) then the support of ψ is contained in the ring z ∈ R : 3 4 ≤ |z| ≤ 8 3 , and ψ is identically equal to 1 on the ring z ∈ R : 4 3 ≤ |z| ≤ 3 2 . Moreover, the functions χ and ψ verify the following important properties

q ψ(2 -q z) = 1, ∀z ∈ R * , χ(z) + q≥0 ψ(2 -q z) = 1, ∀η ∈ R and ∀ j, j ∈ N, |j -j | ≥ 2, supp ψ(2 -j •) ∩ supp ψ(2 -j •) = ∅.
Let F h and F -1 h be the Fourier transform and the inverse Fourier transform respectively in the horizontal direction. We will also use the notation f = F h f . We introduce the following definitions of the homogeneous dyadic cut-off operators. Definition 1.2. For all tempered distributions in the horizontal direction and for all q ∈ Z we set

∆ h q u(x, y) = F -1 h (ψ(2 -q |ξ|)F h u(ξ, y)), S h q u(x, y) = F -1 h (χ(2 -q |ξ|)F h u(ξ, y)) = q ≤q-1 ∆ h q u.
In our paper, we will use the same functional spaces as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], the definition of which is given in what follows.

Definition 1.3. Let s ∈ R and S = R×]0, 1[. For any u ∈ S h (S), i.e,

u ∈ S (S) with lim q→-∞ S h q u L ∞ = 0, we set u B s = q∈Z 2 qs ∆ h q u L 2 .
For s ≤ 1 2 , we define

B s (S) = {u ∈ S h (S), u B s < ∞} . For s ∈]k -1 2 , k + 1 2 ], with k ∈ N * , we define B s (S) as the subset of distributions u ∈ S h (S) such that ∂ k x u ∈ B s-k (S). Remark 1.4. For u ∈ B s , there exists a summable sequence of positive numbers d q (u) with q d q (u) = 1, such that ∆ h q u L 2 d q (u)2 -qs u B s .
We also need the following time-weighted Chemin-Lerner-type spaces (see [START_REF] Chemin | Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes[END_REF]).

Definition 1.5. Let p ∈ [1, +∞] and T ∈]0, ∞] and let f ∈ L 1 loc (R + ) be non-negative function. We define space L p T,f (B s (S)) as the closure of C([0, T ], B s (S)) with respect to the norm

u L p T ,f (B s (S) = q∈Z 2 qs T 0 f (t) ∆ h q u p L 2 dt 1 p
with the usual change if p = +∞. In the case of f (t) ≡ 1, we will simply use the notations L p T (B s (S)) and u L p T (B s (S)) .

Remark 1.6. For u ∈ L p T (B s ), there exists a summable sequence of positive numbers d q (u, f ) with

q d q (u, f ) = 1, such that ∆ h q u L p T (L 2 )
d q (u, f )2 -pqs u L p T (B s ) . 1.4. Main results. Let C P > 0 be the Poincaré constant on the strip S, in the sens that, for any f ∈ L 2 (S), f | ∂S =0 and ∂ z f ∈ L 2 (S), we have

f L 2 (S) ≤ C P ∂ z f L 2 (S) .
Our main result is the folowing. Theorem 1.1. Let a > 0, α 1 > 0 be fixed. For any s > 0 we assume that

e a|Dx| u 0 , e a|Dx| ∂ z u 0 ∈ B 1 2 ∩ B 3 2 ∩ B s .
There exist positive constants c, C and a decreasing function ρ : R + → [ a 2 , a] such that, if we suppose that e a|Dx| u 0 B

1 2 + α 1 e a|Dx| ∂ z u 0 B 1 2 ≤ c a 1 + e a|Dx| u 0 B 3 2 + α 1 e a|Dx| ∂ z u 0 B 3 2 (7)
and the compatibility condition 1 0 u 0 dz = 0, then a unique global solution for the system (5) exists and satisfies, for any [START_REF] Chemin | Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes[END_REF] where for any f ∈ L 2 (S), we set

0 < R ≤ 1 2C 2 P , e Rt u φ L ∞ (R + ,B s ) + α 1 e Rt ∂ z u φ L ∞ (R + ,B s ) + e Rt ∂ z u φ L 2 (R + ,B s ) + α 1 e Rt ∂ 2 z u φ L 2 (R + ,B s ) ≤ C( e a|Dx| u 0 B s + α 1 e a|Dx| ∂ z u 0 B s ),
f φ (t, x, y) = e φ(t,Dx) f (t, x, y) := F -1 ξ→x (e φ(t,ξ) f (t, ξ, y)) and φ(t, ξ) = ρ(t) |ξ| . Furthermore, if e a|Dx| u 0 ∈ B s+1 , e a|Dx| ∂ z u 0 ∈ B s+1 , e a|Dx| ∂ 2 z u 0 ∈ B s , then e Rt (∂ t u) φ L 2 (R + ,B s ) + α 1 e Rt (∂ t ∂ z u) φ L 2 (R + ,B s ) + e Rt ∂ z u φ L ∞ (R + ,B s ) + α 1 e Rt ∂ 2 z u φ L ∞ (R + ,B s ) ≤ C e a|Dx| ∂ z u 0 B s + α 1 e a|Dx| ∂ 2 z u 0 B s + e a|Dx| u 0 B s+1 + α 1 e a|Dx| ∂ z u 0 B s+1 . ( 9 
)
Remark 1.7. The compatibility condition 1 0 u 0 dz = 0 ensures that 1 0 u(t, •) dz is conserved by the system [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF].

The rest of the paper is arranged as follows : The proof of the main Theorem 1.1 is presented in the next Section 2 and the Appendices 3, 4 and 5 are devoted to the proof of estimates used in Section 2.

Global existence and uniqueness of the hydrostatic limit system

In this section, we prove the existence of a unique global solution of the system (5) using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF]. We recall that, to be able to deal with the lost of one derivative in the tangential direction x, we work in the same functional settings as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]. The main difficulty consists in controlling the nonlinear terms, using the smoothing effect given by the above function spaces. The idea is to define the following auxiliary functions, using the method introduced by Chemin in [START_REF] Cheskidov | Boundary layer for the Navier-Stokes-alpha model of fluid turbulence[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]): for any f ∈ L 2 (S), we set

f φ (t, x, y) = e φ(t,Dx) f (t, x, y) := F -1 ξ→x (e φ(t,ξ) f (t, ξ, y)) with φ(t, ξ) = (a -λθ(t))|ξ|, (10) 
where ∀ t > 0, θ (t) ≥ 0 and θ(0) = 0. (11) We remark that the function ρ(t) = a -λθ(t) describes the evolution of the analytic band of the solution.

Here, if we differentiate a function of the type e φ(t,Dx) f (t, x, y) with respect to the time variable, we have

∂ t (e φ(t,Dx) f (t, x, y)) = -λθ (t)|D x |e φ(t,Dx) f (t, x, y) + e φ(t,Dx) ∂ t f (t, x, y),
where -λθ (t)|D x |e φ(t,Dx) f (t, x, y) plays the role of a "smoothing term", provided that θ (t) ≥ 0, and allows to "absorb" the loss of one derivative in the nonlinear terms when we perform energy-type estimates.

2.1. Energy-type a priori estimates. The aim of the first part of this section is to prove the energytype estimate [START_REF] Chemin | Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes[END_REF]. Our proof is based on the following important estimates of the nonlinear terms. We recall that φ, θ are the auxiliary functions defined as in [START_REF] Cheskidov | Boundary layer for the Navier-Stokes-alpha model of fluid turbulence[END_REF] and [START_REF] Dietert | Well-posedness of the Prandtl equation without any structural assumption[END_REF] and we set

T * = sup t > 0, θ(t) < a λ .
Lemma 2.1. Let s > 0, 0 < T < T * . There exist a generic constant C ≥ 1 and some square root summable positive sequences ( q

d 1 2 q = 1, q ď 1 2 q = 1) such that T 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , (12) 
T 0

e Rt ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , (13) 
T

0 e Rt ∆ h q (∂ z u∂ x u) φ , e Rt ∆ h q ∂ z u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , (14) 
T 0

e Rt ∆ h q (∂ z u∂ x ∂ z u) φ , e Rt ∆ h q u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , (15) 
T 0

e Rt ∆ h q (v∂ z u) φ , e Rt ∆ h q u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) ( 16 
)
and

T 0 e Rt ∆ h q (v∂ 2 z u) φ , e Rt ∆ h q ∂ z u φ dt ≤ C2 -2qs ( dq + ďq ) e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + ∂ z u φ 1 2 L ∞ T (B 3 
2

) e Rt ∂ 2 z u φ L 2 T (B s ) . (17) 
The proof of this lemma is given in appendix 3. For (u, v) solution of (5), we define (u φ , v φ ) be as in [START_REF] Cheskidov | Boundary layer for the Navier-Stokes-alpha model of fluid turbulence[END_REF] and [START_REF] Dietert | Well-posedness of the Prandtl equation without any structural assumption[END_REF]). Direct calculations show that (u φ , v φ ) satisfies the following system

                     ∂ t ω φ + λθ (t)|D x |ω φ + (u ∂ x ω) φ + (v∂ z ω) φ + α 2 1 (∂ z u ∂ x ∂ z u) φ -α 2 1 (∂ 2 z u∂ x u) φ = ∂ 2 z ω φ -∂ x p φ ∂ z p φ = 0 ∂ x u φ + ∂ z v φ = 0 (u φ , v φ ) = 0, ∂ z u φ = 0 on z = 0 (u φ , v φ ) = 0, ∂ z u φ = 0 on z = 1 u φ | t=0 = e a|Dx| u 0 , (18) 
where |D x | denotes the Fourier multiplier of symbol |ξ|. For any q ∈ Z, applying the dyadic operator ∆ h q to the first equation of the system (18) and taking L 2 (S) inner product of the obtained equation with ∆ h q u φ , we get

1 2 d dt ( ∆ h q u φ 2 L 2 + α 2 1 ∆ h q ∂ z u φ 2 L 2 ) + λθ (t) |D x | 1 2 ∆ h q u φ 2 L 2 + α 2 1 λθ (t) |D x | 1 2 ∆ h q ∂ z u φ 2 L 2 + ∆ h q ∂ z u φ 2 L 2 + α 2 1 ∆ h q ∂ 2 z u φ 2 L 2 = -∆ h q (u∂ x ω) φ , ∆ h q u φ -∆ h q (v∂ z ω) φ , ∆ h q u φ -α 2 1 ∆ h q (∂ z u ∂ x ∂ z u) φ , ∆ h q u φ + α 2 1 ∆ h q (∂ 2 z u∂ x u) φ , ∆ h q u φ . ( 19 
)
We remark that

e 2Rt d dt f (t) = d dt e 2Rt f (t) -2Re 2Rt f (t).
Multiplying ( 19) by e 2Rt and using the previous remark, we get

1 2 d dt ( e Rt ∆ h q u φ 2 L 2 + α 2 1 e Rt ∆ h q ∂ z u φ 2 L 2 ) -R( e Rt ∆ h q u φ 2 L 2 + α 2 1 e Rt ∆ h q ∂ z u φ 2 L 2 ) + λθ (t) e Rt |D x | 1 2 ∆ h q u φ 2 L 2 + α 2 1 λθ (t) e Rt |D x | 1 2 ∆ h q ∂ z u φ 2 L 2 + e Rt ∆ h q ∂ z u φ 2 L 2 + α 2 1 e Rt ∆ h q ∂ 2 z u φ 2 L 2 = -e 2Rt ∆ h q (u∂ x ω) φ , ∆ h q u φ -e 2Rt ∆ h q (v∂ z ω) φ , ∆ h q u φ -α 2 1 e 2Rt ∆ h q (∂ z u ∂ x ∂ z u) φ , ∆ h q u φ + α 2 1 e 2Rt ∆ h q (∂ 2 z u∂ x u) φ , ∆ h q u φ . If 0 < R ≤ 1 2C 2 P
, integrating with respect to the time variable, we obtain

e Rt ∆ h q u φ 2 L 2 +α 2 1 e Rt ∆ h q ∂ z u φ 2 L 2 +2λ t 0 θ (t ) e Rt |D x | 1 2 ∆ h q u φ (t ) 2 L 2 dt + t 0 e Rt ∆ h q ∂ z u φ (t ) 2 L 2 dt + 2λ α 2 1 t 0 θ (t ) e Rt |D x | 1 2 ∆ h q ∂ z u φ (t ) 2 L 2 dt + α 2 1 t 0 e Rt ∆ h q ∂ 2 z u φ (t ) 2 L 2 dt = ∆ h q u φ (0) 2 L 2 + α 2 1 ∆ h q ∂ z u φ (0) 2 L 2 + 2D 1,q + 2D 2,q + 2D 3,q + 2D 4,q , where D 1,q = - t 0 e Rt ∆ h q (u∂ x ω) φ , e Rt ∆ h q u φ dt , D 2,q = - t 0 e Rt ∆ h q (v∂ z ω) φ , e Rt ∆ h q u φ dt , D 3,q = -α 2 1 t 0 e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ , e Rt ∆ h q u φ dt , D 4,q =α 2 1 t 0 e Rt ∆ h q (∂ 2 z u∂ x u) φ , e Rt ∆ h q u φ .
Using the definition of ω, we can write

D 1,q = - t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ t + α 2 1 t 0 e Rt ∆ h q (u∂ x ∂ 2 z u) φ , e Rt ∆ h q u φ dt . Since ∆ h q (u∂ x ∂ 2 z u) φ = ∂ z ∆ h q (u∂ x ∂ z u) φ -∆ h q (∂ z u∂ x ∂ z u) φ
, by integration by parts with respect to z variable, we have

t 0 e Rt ∆ h q (u∂ x ∂ 2 z u) φ , e Rt ∆ h q u φ dt = t 0 e Rt ∂ z ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q u φ dt - t 0 e Rt ∆ h q (∂ z u∂ x ∂ z u) φ , e Rt ∆ h q u φ dt = - t 0 e Rt ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ dt - t 0 e Rt ∆ h q (∂ z u∂ x ∂ z u) φ , e Rt ∆ h q u φ dt . Thus D 1,q = A q + B q + D 3,q ,
where

A q = - t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ dt , B q = -α 2 1 t 0 e Rt ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ dt .
In a similar way, we can write D 4,q = C q + D 3,q , where

C q = -α 2 1 t 0 e Rt ∆ h q (∂ z u∂ x u) φ , e Rt ∆ h q ∂ z u φ dt , and 
D 2,q = E q + F q + C q + D 3,q
and where

E q = - t 0 e Rt ∆ h q (v∂ z u) φ , e Rt ∆ h q u φ dt , F q = -α 2 1 t 0 e Rt ∆ h q (v∂ 2 z u) φ , e Rt ∆ h q ∂ z u φ dt .
To summarize, we have

e Rt ∆ h q u φ 2 L 2 + α 2 1 e Rt ∆ h q ∂ z u φ 2 L 2 + 2λ α 2 1 t 0 θ (t ) e Rt |D x | 1 2 ∆ h q ∂ z u φ (t ) 2 L dt + 2λ t 0 θ (t ) e Rt |D x | 1 2 ∆ h q u φ (t ) 2 L 2 dt + 2 t 0 e Rt ∆ h q ∂ z u φ (t ) 2 L 2 dt + 2α 2 1 t 0 e Rt ∆ h q ∂ 2 z u φ (t ) 2 L 2 dt = ∆ h q u φ (0) 2 L 2 + α 2 1 ∆ h q ∂ z u φ (0) 2 L 2 + 2A q + 2B q + 2C q + 8D 3,q + 2E q + 2F q , ( 20 
)
where

A q = - t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ dt , B q = -α 2 1 t 0 e Rt ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ dt , C q = -α 2 1 t 0 e Rt ∆ h q (∂ z u∂ x u) φ , e Rt ∆ h q ∂ z u φ dt , D 3,q = -α 2 1 t 0 e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ , e Rt ∆ h q u φ dt , E q = - t 0 e Rt ∆ h q (v∂ z u) φ , e Rt ∆ h q u φ dt , F q = -α 2 1 t 0 e Rt ∆ h q (v∂ 2 z u) φ , e Rt ∆ h q ∂ z u φ dt.
From now on, we will set

θ (t) = ∂ 2 z u φ B 1 2 .
Let

T * = sup t > 0, θ(t) < a λ .
Lemma 2.1 yields, for any 0 < T < T * ,

e Rt ∆ h q u φ 2 L ∞ T (L 2 ) + α 2 1 e Rt ∆ h q ∂ z u φ 2 L ∞ T (L 2 ) + λ α 2 1 2 q T 0 θ (t ) e Rt ∆ h q ∂ z u φ (t ) 2 L 2 dt + α 2 1 T 0 e Rt ∆ h q ∂ 2 z u φ (t ) 2 L 2 dt + T 0 e Rt ∆ h q ∂ z u φ (t ) 2 L 2 dt + λ 2 q T 0 θ (t ) e Rt ∆ h q u φ (t ) 2 L 2 dt ≤ ∆ h q u φ (0) 2 L 2 + α 2 1 ∆ h q ∂ z u φ (0) 2 L 2 + C2 -2qs d 2 q e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) + C2 -2qs d 2 q e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + ∂ z u φ 1 2 L ∞ T (B ) e Rt ∂ 2 z u φ L 2 T (B s ) .
Multiplying the previous inequality by 2 2qs , taking square root of resulting inequality and then summing with respect to q ∈ Z, we get

e Rt u φ L ∞ T (B s ) + α 1 e Rt ∂ z u φ L ∞ T (B s ) + √ λ e Rt u φ L 2 T ,θ (t) (B s+ 1 2 ) + √ λ α 1 e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + e Rt ∂ z u φ L 2 T (B s ) + α 1 e Rt ∂ 2 z u φ L 2 T (B s ) ≤6 u φ (0) B s + 6 α 1 ∂ z u φ (0) B s + C e Rt u φ L 2 T ,θ (t) (B s+ 1 2 ) + Cα 1 e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + C ∂ z u φ 1 4 L ∞ T (B 3 
2

) e Rt ∂ 2 z u φ 1 2 L 2 T (B s ) e Rt ∂ z u φ 1 2 L 2 T ,θ (t) (B s+ 1 2 )
.

Therefore, there exists a constant C 1 such that

e Rt u φ L ∞ T (B s ) + α 1 e Rt ∂ z u φ L ∞ T (B s ) + √ λ e Rt u φ L 2 T ,θ (t) (B s+ 1 2 ) + √ λ α 1 e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + e Rt ∂ z u φ L 2 T (B s ) + α 1 e Rt ∂ 2 z u φ L 2 T (B s ) ≤C 1 ( u φ (0) B s + α 1 ∂ z u φ (0) B s ) + C 1 e Rt u φ L 2 T ,θ (t) (B s+ 1 2 ) + C 1 α 1 e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + C 1 α 1 ∂ z u φ 1 4 L ∞ T (B 3 
2

) e Rt ∂ 2 z u φ 1 2 L 2 T (B s ) e Rt ∂ z u φ 1 2 L 2 T ,θ (t) (B s+ 1 2 )
.

We remark that Young's inequality implies

C 1 α 1 ∂ z u φ 1 4 L ∞ T (B 3 
2

) e Rt ∂ 2 z u φ 1 2 L 2 T (B s ) e Rt ∂ z u φ 1 2 L 2 T ,θ (t) (B s+ 1 2 ) ≤ C 2 α 1 ∂ z u φ 1 2 L ∞ T (B 3 
2 )

e Rt ∂ z u φ L 2 T ,θ (t) (B s+ 1 2 ) + 1 2 α 1 e Rt ∂ 2 z u φ L 2 T (B s ) . So, putting C 3 = max(C 1 , C 2 ) and choosing λ ≥ C 2 3 (1 + ∂ z u φ L ∞ T (B 3 2 ) 
),

we have for any s > 0

e Rt u φ L ∞ T (B s ) + α 1 e Rt ∂ z u φ L ∞ T (B s ) + e Rt ∂ z u φ L 2 T (B s ) + α 1 e Rt ∂ 2 z u φ L 2 T (B s ) ≤ C 4 ( e a|Dx| u 0 B s + α 1 e a|Dx| ∂ z u 0 B s ). ( 22 
)
where C 4 = 1 2 C 3 . In particular, under the condition (21), we have

∂ z u φ L ∞ T (B 3 2 ) ≤ C 4 ( e a|Dx| u 0 B 3 2 + α 1 e a|Dx| ∂ z u 0 B 3 2 ). Then, by taking λ = C 2 3 (1 + C 4 ( e a|Dx| u 0 B 3 2 + α 1 e a|Dx| ∂ z u 0 B 3 2
)), the inequality ( 22) holds for any s > 0. In particular for s = 1 2 , we have

e Rt u φ L ∞ T (B 1 2 ) +α 1 e Rt ∂ z u φ L ∞ T (B 1 2 ) + e Rt ∂ z u φ L 2 T (B 1 2 ) + α 1 e Rt ∂ 2 z u φ L 2 T (B 1 2 ) ≤ C 3 ( e a|Dx| u 0 B 1 2 + α 1 e a|Dx| ∂ z u 0 B 1 2 ). ( 23 
)
Using Cauchy-Schwarz inequality, we can write

θ(t) = t 0 e -Rt × e Rt ∂ 2 z u φ (t ) B 1 2 dt ≤ T 0 e -2Rt dt 1 2 T 0 e Rt ∂ 2 z u φ (t ) 2 B 1 2 dt 1 2 ≤ 1 √ 2R e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
.

We point out that the constant R > 0 is essential here to obtain a global-in-time control of θ(t). Now, we deduce from [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] the existence of a constant C 5 > 0 such that

θ(t) ≤ C 5 e a|Dx| u 0 B 1 2 + α 1 e a|Dx| ∂ z u 0 B 1 2
.

Taking c small enough (see the assumption on the initial data ( 7)), we obtain, for any t ∈ [0, T * [ that

θ(t) ≤ C 5 e a|Dx| u 0 B 1 2 + α 1 e a|Dx| ∂ z u 0 B 1 2 ≤ a 2λ .
Using the definition of T * and a continuity argument, we deduce T * = +∞.

Conclusion : the inequality ( 22) holds for any T > 0, which concludes the proof of Estimate (8) in Theorem 1.1.

2.2.

Estimate of the time derivative of the solution. In this paragraph, we give brief ideas of the proof of Estimate [START_REF] Chen | The Camassa-Holm equations as a closure model for turbulent channel and pipe flow[END_REF]. Applying ∆ h q to (18) and taking the L 2 inner product of the obtained equation with e 2Rt ∆ h q (∂ t u) φ , we have

e Rt ∆ h q (∂ t u) φ 2 L 2 + α 2 1 e Rt ∆ h q (∂ t ∂ z u) φ 2 L 2 (24) =e 2Rt ∆ h q ∂ 2 z u φ , ∆ h q (∂ t u) φ -α 2 1 e 2Rt ∆ h q ∂ 4 z u φ , ∆ h q (∂ t u) φ -e 2Rt ∆ h q (u ∂ x ω) φ , ∆ h q (∂ t u) φ -e 2Rt ∆ h q (v∂ z ω) φ , ∆ h q (∂ t u) φ -e 2Rt α 2 1 ∆ h q (∂ z u ∂ x ∂ z u) φ , ∆ h q (∂ t u) φ + e 2Rt α 2 1 ∆ h q (∂ 2 z u∂ x u) φ , ∆ h q (∂ t u) φ . Since (∂ t u) φ = ∂ t u φ + λ θ (t)|D x |u φ , then e 2Rt ∆ h q ∂ 2 z u φ , ∆ h q (∂ t u) φ = e 2Rt ∆ h q ∂ 2 z u φ , ∆ h q ∂ t u φ + θ (t)|D x |e 2Rt ∆ h q ∂ 2 z u φ , ∆ h q u φ (25) = - 1 2 e 2Rt d dt ∆ h q ∂ z u φ 2 L 2 -λ θ (t) e Rt |D x | 1 2 ∆ h q ∂ z u φ 2 L 2 ≤ - 1 2 e 2Rt d dt e Rt ∆ h q ∂ z u φ 2 L 2 . Similar calculations give -e 2Rt ∆ h q ∂ 4 z u φ , ∆ h q (∂ t u) φ ≤ - 1 2 e 2Rt d dt e Rt ∆ h q ∂ 2 z u φ 2 L 2 . (26) 
Plugging the estimates ( 25) and ( 26) into [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF], we get

e Rt ∆ h q (∂ t u) φ 2 L 2 + α 2 1 e Rt ∆ h q (∂ t ∂ z u) φ 2 L 2 + 1 2 e 2Rt d dt ∆ h q ∂ z u φ 2 L 2 + 1 2 α 2 1 e 2Rt d dt ∆ h q ∂ 2 z u φ 2 L 2 ≤ -e 2Rt ∆ h q (u ∂ x u) φ , ∆ h q (∂ t u) φ > +α 2 1 e 2Rt < ∆ h q (u ∂ x ∂ 2 z u) φ , ∆ h q (∂ t u) φ -e 2Rt ∆ h q (v∂ z u) φ , ∆ h q (∂ t u) φ > -α 2 1 e 2Rt < ∆ h q (v∂ 2 z u) φ , ∆ h q (∂ t ∂ z u) φ -e 2Rt α 2 1 ∆ h q (∂ z u ∂ x ∂ z u) φ , ∆ h q (∂ t u) φ + 2 e 2Rt α 2 1 ∆ h q (∂ 2 z u∂ x u) φ , ∆ h q (∂ t u) φ and so e Rt ∆ h q (∂ t u) φ 2 L 2 + α 2 1 e Rt ∆ h q (∂ t ∂ z u) φ 2 L 2 + 1 2 e 2Rt d dt ∆ h q ∂ z u φ 2 L 2 + 1 2 α 2 1 e 2Rt d dt ∆ h q ∂ 2 z u φ 2 L 2 ≤ C e Rt ∆ h q (u ∂ x u) φ 2 L 2 + α 2 1 e Rt ∆ h q (u∂ x ∂ 2 z u) φ 2 L 2 + e Rt ∆ h q (v∂ z u) φ 2 L 2 + α 2 1 e Rt ∆ h q (v∂ 2 z u) φ 2 L 2 + α 2 1 e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ 2 L 2 + α 2 1 e Rt ∆ h q (∂ 2 z u∂ x u) φ 2 L 2 .
Integrating with respect to time yields

e Rt ∆ h q (∂ t u) φ 2 L 2 T (L 2 ) + α 2 1 e Rt ∆ h q (∂ t ∂ z u) φ 2 L 2 T (L 2 ) + e Rt ∆ h q ∂ z u φ 2 L ∞ T (L 2 ) (27) + α 2 1 e Rt ∆ h q ∂ 2 z u φ 2 L ∞ T (L 2 ) ≤ C e a|Dx| ∆ h q ∂ z u 0 2 L 2 + α 2 1 e a|Dx| ∆ h q ∂ 2 z u 0 2 L 2 + R e Rt ∆ h q ∂ z u φ 2 L 2 T (L 2 ) + R α 2 1 e Rt ∆ h q ∂ 2 z u φ 2 L 2 T (L 2 ) + e Rt ∆ h q (u ∂ x u) φ 2 L 2 T (L 2 ) + α 2 1 e Rt ∆ h q (u∂ x ∂ 2 z u) φ 2 L 2 T (L 2 ) + e Rt ∆ h q (v∂ z u) φ 2 L 2 T (L 2 ) + α 2 1 e Rt ∆ h q (v∂ 2 z u) φ 2 L 2 T (L 2 ) + α 2 1 e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ 2 L 2 T (L 2 ) + α 2 1 e Rt ∆ h q (∂ 2 z u∂ x u) φ 2 L 2
T (L 2 ) . To be able to obtain Estimate (9), we need the following lemma, the proof of which will be given in the appendix 4.

Lemma 2.2. We have the following estimates for the nonlinear terms for any s > 0 :

e Rt (u ∂ x u) φ L 2 T (B s ) ∂ z u φ L ∞ T (B 1 2 ) e Rt ∂ z u φ L 2 T (B s+1 ) , (28) 
e Rt (u

∂ x ∂ 2 z u) φ L 2 T (B s ) ∂ z u φ L ∞ T (B 1 2 ) e Rt ∂ 2 z u φ L 2 T (B s+1 ) + ∂ z u φ L ∞ T (B s+1 ) e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
, (29)

e Rt (v ∂ z u) φ L 2 T (B s ) ∂ z u φ L ∞ T (B 1 
2 )

e Rt ∂ z u φ L 2 T (B s+1 ) , (30) 
e Rt (v ∂ 2 z u) φ L 2 T (B 3 2 
)

∂ z u φ L ∞ T (B 1 
2

) e Rt ∂ 2 z u φ L 2 T (B s+1 ) + ∂ z u φ L ∞ T (B s+1 ) e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
, (31)

e Rt (∂ z u ∂ x ∂ z u) φ L 2 T (B s ) ∂ z u φ L ∞ T (B 1 
2

) e Rt ∂ 2 z u φ L 2 T (B s+1 ) + ∂ z u φ L ∞ T (B s+1 ) e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
,

e Rt ∆ h q (∂ x u ∂ 2 z u) φ L 2 T (B s ) ∂ z u φ L ∞ T (B (32) 
2

) e Rt ∂ 2 z u φ L 2 T (B s+1 ) + ∂ z u φ L ∞ T (B s+1 ) e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
.

(

) 33 
Conclusion : Multiplying (27) by 2 qs , summing up with respect to q ∈ Z, and then using Lemma 2.2, assumption on initial data [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] and Estimate [START_REF] Misiolek | A shallow water equation as a geodesic flow on the BottVirasoro group[END_REF], we obtain Estimate (9) in Theorem 1.1.

2.3.

Uniqueness of the solution. We suppose that u 1 , u 2 are two solutions of ( 5) on [0, T ] with the same initial data. Let U = u 1 -u 2 , V = v 1 -v 2 , P = p 1 -p 1 then, (U, V, P ) satisfies the following equations

                         ∂ t (U -α 2 1 ∂ 2 z U ) + u 1 ∂ x (U -α 2 1 ∂ 2 z U ) + U ∂ x ω 2 + v 1 ∂ z (U -α 2 1 ∂ 2 z U ) + V ∂ z ω 2 + B = ∂ 2 z (U -α 2 1 ∂ 2 z U ) -∂ x P ∂ z P = 0 ∂ x U + ∂ z V = 0 (U, V ) = 0, ∂ z U = 0 on z = 0 (U, V ) = 0, ∂ z U = 0 on z = 1 U | t=0 = 0, (34) 
where we set ω 2 = u 2 -α 2 1 ∂ 2 z u 2 and where

B = α 2 1 ∂ z u 1 ∂ x ∂ z U + α 2 1 ∂ z U ∂ x ∂ z u 2 -α 2 1 ∂ 2 z u 1 ∂ x U -α 2 1 ∂ 2 z U ∂ x u 2 .
We now consider the following auxiliary functions

Φ(t, ξ) = (a -µΘ(t))|ξ| with Θ (t) = ∂ 2 z u 1 φ (t) B 1 2 + ∂ 2 z u 2 φ (t) B 1 2
and following [START_REF] Cheskidov | Boundary layer for the Navier-Stokes-alpha model of fluid turbulence[END_REF] we define

f Φ (t, x, y) = e Φ(t,Dx) f (t, x, y) := F -1 ξ→x (e Φ(t,ξ) f (t, ξ, y)),
where µ ≥ λ will be determined later. From Theorem 1.1, we deduce that

u 1 φ L ∞ (B 3 2 
)

+ u 2 φ L ∞ (B 3 2 
)

+ ∂ z u 1 φ L ∞ (B 3 2 
)

+ ∂ z u 2 φ L ∞ (B 3 
2

) ≤ M,
where M ≥ 1 is a constant. Following the proof of (20), we get from (34) the following estimate

e Rt ∆ h q U Φ 2 L 2 + α 2 1 e Rt ∆ h q ∂ z U Φ 2 L 2 + 2η α 2 1 t 0 Θ (t ) e Rt |D x | 1 2 ∆ h q ∂ z U Φ (t ) 2 L 2 dt + 2µ t 0 Θ (t ) e Rt |D x | 1 2 ∆ h q U Φ (t ) 2 L 2 dt + t 0 e Rt ∆ h q ∂ z U Φ (t ) 2 L 2 dt + α 2 1 t 0 e Rt ∆ h q ∂ 2 z U Φ (t ) 2 
L 2 dt = 2 I 1,q + 2 I 2,q + 2 I 3,q + 2 I 4,q + 2 I 5,q + 2 I 6,q + 2 I 7,q + 2 I 8,q , (35) where

I 1,q = -α 2 1 t 0 e Rt ∆ h q (∂ z u 1 ∂ x ∂ z U ) Φ , e Rt ∆ h q U Φ dt , I 2,q = - t 0 e Rt ∆ h q (u 1 ∂ x (U -α 2 1 ∂ 2 z U )) Φ , e Rt ∆ h q U φ dt , I 3,q = α 2 1 t 0 e Rt ∆ h q (∂ 2 z u 1 ∂ x U ) Φ , e Rt ∆ h q U Φ dt , I 4,q = - t 0 e Rt ∆ h q (V ∂ z ω 2 ) Φ , e Rt ∆ h q U Φ dt , I 5,q = - t 0 e Rt ∆ h q (v 1 ∂ z (U -α 2 1 ∂ 2 z U )) Φ , e Rt ∆ h q U Φ dt , I 6,q = α 2 1 t 0 e Rt ∆ h q (∂ 2 z U ∂ x u 2 ) Φ , e Rt ∆ h q U Φ dt , I 7,q = -α 2 1 t 0 e Rt ∆ h q (∂ z U ∂ x ∂ z u 2 ) Φ , e Rt ∆ h q U Φ dt , I 8,q = - t 0 e Rt ∆ h q (U ∂ x ω 2 ) Φ , e Rt ∆ h q U Φ dt .
The terms I j,q , j ∈ {1, . . . , 8} can be controlled as in the following lemma. The proof of this lemma is very close to the proof of Lemma 2.1. We will give a brief version of this proof in the appendix 5.

Lemma 2.3. Let s ∈]0, 1 2 [, T > 0.
There exists a generic constant C ≥ 1 such that, for any 0 < t < T , we have

|I 1,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ 2 L 2 T ,Θ (t) (B s+ 1 2 ) , (36) 
|I 2,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ 2 L 2 T ,Θ (t) (B s+ 1 2 ) , ( 37 
)
|I 3,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ 2 L 2 T ,Θ (t) (B s+ 1 2 ) , ( 38 
)
|I 4,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ 2 L 2 T ,Θ (t) (B s+ 1 2 ) , ( 39 
)
|I 5,q | ≤ C2 -2qs d 2 q u 1Φ 1 2 L ∞ T (B 3 
2

) e Rt ∂ 2 z U Φ L 2 T (B s ) e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) , (40) 
|I 6,q | ≤ C2 -2qs d 2 q u 2Φ 1 2 L ∞ T (B 3 
2

) e Rt ∂ 2 z U Φ L 2 T (B s ) e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) , (41) 
|I 7,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) , (42) 
× e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) + ∂ z u 2Φ 1 2 L ∞ T (B 3 
2 )

e Rt ∂ z U Φ L 2 T (B s ) , |I 8,q | ≤ C2 -2qs d 2 q e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) (43) × e Rt ∂ z U Φ L 2 T ,Θ (t) (B s+ 1 2 ) + ∂ z u 2Φ 1 2 L ∞ T (B 3 
2 )

e Rt ∂ z U Φ L 2 T (B s ) .
Now, using Lemma 2.3 and choosing µ = C 2 M 2 , we deduce from (35) that, for any s ∈]0, 1 2 [

e Rt U Φ L ∞ T (B s ) + e Rt ∂ z U Φ L ∞ T (B s ) + e Rt ∂ z U Φ L 2 T (B s ) + e Rt ∂ 2 z U Φ L 2 T (B s ) ≤ C( e a|Dx| U 0 B s + e a|Dx| ∂ z U 0 B s ) = 0,
which implies the uniqueness of the solution.

2.4. Construction of approximate solutions. Before introducing the construction methods, we remark that if (u, v, p) is a solution of ( 5) such that all the following expressions make sense, then we have :

Lemma 2.4. 1 2 d dt u 2 L 2 + α 2 1 ∂ z u 2 L 2 + ∂ z u 2 L 2 + α 2 1 ∂ 2 z u 2 L 2 = 0. ( 44 
)
We also remark that Estimate (44) is also true for the approximate solutions.

Proof. We set w = u -α 2 1 ∂ 2 z u. Taking L 2 scalar product of ( 5) with u, we have

∂ t ω, u + u ∂ x ω, u + v∂ z ω, u + α 2 1 ∂ z u ∂ x ∂ z u, u -α 2 1 ∂ 2 z u∂ x u, u = ∂ 2 z ω, u -∂ x p, u .
We first consider the linear terms. Performing integration by parts in z-variable and remarking that

∂ x p, u = -p, ∂ x u = p, ∂ z v = -∂ z p, v = 0.
We obtain 1 2

d dt u 2 L 2 + α 2 1 ∂ z u 2 L 2 + ∂ z u 2 L 2 + α 2 1 ∂ 2 z u 2 L 2 + NL = 0, where the non-linear term NL is NL = u ∂ x ω, u + v∂ z ω, u + α 2 1 ∂ z u ∂ x ∂ z u, u -α 2 1 ∂ 2 z u∂ x u, u .
Performing integration by parts in x or z variable and using the incompressibility condition, we can write

u ∂ x ω, u = - 1 2 R×]0,1[ (∂ x u) u 2 + 2α 2 1 R×]0,1[ (∂ 2 z u)(∂ x u) u, v ∂ z ω, u = 1 2 R×]0,1[ v∂ z (u 2 ) -α 2 1 R×]0,1[ ∂ z (∂ 2 z u)(uv) = - 1 2 R×]0,1[ (∂ z v) u 2 - 1 2 α 2 1 R×]0,1[ (∂ z u) 2 (∂ z v) -α 2 1 R×]0,1[ (∂ 2 z u)(∂ x u) u and α 2 1 ∂ z u ∂ x ∂ z u, u = - 1 2 α 2 1 R×]0,1[ (∂ z u) 2 ∂ x u.
Putting these identities into NL, we get NL = 0 and this concludes the proof of the lemma.

We now introduce the following Hilbert spaces

H 2 0 = f ∈ H 2 (]0, 1[) | f (0) = f (1) = f (0) = f (1) = 0 , H 1 0 = f ∈ H 1 (]0, 1[) | f (0) = f (1) = 0 equipped with their respective norms f H 2 0 = α 2 1 1 0 (f (z)) 2 dz + 1 0 (f (z)) 2 dz 1 2 , f H 1 0 = α 2 1 1 0 (f (z)) 2 dz + 1 0 (f (z)) 2 dz 1 2
and let be a common Hilbert basis {ẽ k } k≥1 such that

∀v ∈ H 2 0 , ẽk , v H 2 0 = λ k ẽk , v H 1 0 .
For any (u, v, p) sufficiently smooth on [0, T ] × S, T > 0, such that

∂ x p = α 2 1 ∂ 3 z u| z=0 -α 2 1 ∂ 3 z u| z=1 -∂ x 1 0 (u) 2 (t, x, y) dz -α 2 1 ∂ x 1 0 (∂ z u) 2 (t, x, y) dz, v(t, x, z) = - z 0 ∂ x u(t, x, z)dz.
We set

R(u) = -(u ∂ x u) + α 2 1 (u ∂ x ∂ 2 z u) -(v ∂ z u) + α 2 1 (v ∂ z ∂ 2 z u) -α 2 1 (∂ z u ∂ x ∂ z u) + α 2 1 (∂ 2 z u∂ x u) -∂ x p. (45)
For any n ∈ N, we will look for an approximate solution u n of (5) of the form

u n (t, x, z) = n i=1 ũin (t, x) ẽi (z),
where {ũ in } is solution of the following system of n equations

     ∂ t (u n -α 2 1 ∂ 2 z u n ), ẽk L 2 z = ∂ 2 z (u n -α 2 1 ∂ 2 z u n ), ẽk L 2 z + R(u n ), ẽk L 2 z , k = 1, . . . , n u n|t=0 = n k=1 u 0 , ẽk H 1 0 ẽk , which also means that, for 1 ≤ k ≤ n, ∂ t ũkn (t, x) = -λ k ũkn (t, x) + R(u n )(t, x, •), ẽk L 2 z .
Next, we define the following frequency cut-off operators J n in x-variable. For f ∈ L 2 (R), we set

J n f (x) = F -1 h 1 1 [-n,n] F h f (x).
The operator J n is continuous from L 2 to L 2 , satisfies J 2 n f = J n f and for any positive integers n and p, we have

|∂ p x J n f | L 2 (R) ≤ n p |f | L 2 (R) , |∂ p x J n f | L ∞ (R) ≤ c np |f | L 2 (R)
. Now, we consider the following approximate system

∂ t ũkn (t, x) = -λ k ũkn (t, x) + J n R(J n u n )(t, x, •), ẽk L 2 z , k ∈ {1, . . . , n} ũkn|t=0 = J n u 0 , ẽk H 1 0 . (46) 
Since ũkn → J n R(J n u n )(t, x, •), ẽk L 2 z is locally Lipschitz in L 2 , (46) is a system of ordinary differential equations in L 2 . Then, Picards theorem implies the existence of a unique maximal solution {ũ kn (t, x)} of (46) on [0, T n [. Since J 2 n = J n , we deduce that {J n ũkn } is also a solution of (46) on [0, T n [. Thus, the uniqueness of the solution implies that ũkn = J n ũkn , for any k ∈ {1, . . . , n}. We remark that {ẽ k } is not necessarily orthogonal in L 2

z (]0, 1[) but using the Gram-Schmidt process, we can always construct a orthogonal family {e k } of L 2 z (]0, 1)[ such that Vect {e 1 , . . . , e n } = Vect {ẽ 1 , . . . , ẽn } .

We denote P n the orthogonal projection in L 2 z (]0, 1)[ onto Vect {e 1 , . . . , e n }

P n f = n k=1 f, e k L 2 z e k .
Then, we remark that u n is also the solution of the system

∂ t (u n -α 2 1 ∂ 2 z u n ) = ∂ 2 z (u n -α 2 1 ∂ 2 z u n ) + P n R(u n ) u n|t=0 = P n u 0 . ( 47 
)
Same calculations as in the proof of Lemma 2.4 and the fact that P n the orthogonal projection in L 2 z (]0, 1)[ onto Vect {e 1 , . . . , e n } imply that 1 2

d dt u n 2 L 2 + α 2 1 ∂ z u n 2 L 2 + ∂ z u n 2 L 2 + α 2 1 ∂ 2 z u n 2 L 2 = 0, for any t ∈ [0, T n [, which means T n = +∞.
Remark 2.5. Estimates (8) and (9) also apply to the approximate solutions u n .

2.5. Passage to the limit. Now, we want to take the limit of the sequence of approximate solutions (47). We already see that {u n } is bounded in L ∞ (R + , L 2 loc ) and due to (9), we remark that {∂ t u n } is bounded in L 2 (R + , H -1 loc ). Applying Aubin-Lions lemma, we deduce the existence of a subsequence, always noted by {u n } for the sake of simplicity, such that u n -→ u in L ∞ loc (R + , H -1 loc ). By interpolation, we obtain

u n -→ u in L ∞ loc (R + , H -δ loc ), for all 0 < δ < 1. ( 48 
)
We recall that u n is solution of the following system

     ∂ t (u n -α 2 1 ∂ 2 z u n ), e k L 2 z = ∂ 2 z (u n -α 2 1 ∂ 2 z u n ), e k L 2 z + R(u n ), e k L 2 z , k = 1, . . . , n u n|t=0 = n k=1 u 0 , e k L 2 z e k ,
where R is defined in (45). So the main point of this paragraph is to prove the following lemma on the convergence of the nonlinear term R(u n ).

Lemma 2.6. We have the following convergence as n → ∞

R(u n ) -→ R(u) in L 2 loc (H -4 loc ).
Proof of Lemma 2.6. We will only prove the convergence of the term u n ∂ x u n . The other terms of R(u n ) can be treated in a similar way. We first write

u n ∂ x u n -u∂ x u = (u n -u)∂ x u n + u∂ x (u n -u).
From Estimates ( 8) and ( 48), we have

{∂ x u n } is uniformly bounded in L 2 loc (H 1 2
loc ). Choosing δ < 1 2 in (48) and using the product law in Sobolev spaces on R 2 , we get

(u n -u)∂ x u n L 2 loc (H -1 2 -δ loc ) ≤ u n -u L ∞ loc (H -δ loc ) ∂ x u n L 2 loc (H 1 2 loc )
-→ 0. Now, using again Estimate (8), we have that u is bounded in L 2 loc (H 1 2 loc ). Then, (48) and the product law in Sobolev spaces on R 2 yield u∂ x (u n -u)

L 2 loc (H -1 2 -δ loc ) ≤ u L 2 loc (H 1 2 loc ) ∂ x (u n -u) L ∞ loc (H -δ loc ) -→ 0.
Now, coming back to (47), Lemma 2.6 proves that the limit u is solution of (5) in the sense of distributions. This concludes the proof or Theorem 1.1.

Appendix -proof of the Lemma 2.1

We first introduce some notations and classical mathematical tools. Then we will prove the estimations of Lemma 2.1. We will only detail the proof of estimates ( 12) and ( 16). The same procedure can be followed to prove the other estimates.

We recall the following Bernstein-type lemma, which states that derivatives act almost as multipliers on distributions whose Fourier transforms are supported in a ball or an annulus. We refer the reader to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for a proof of this lemma. 

( u) ⊂ ξ ∈ R d | |ξ| ≤ r 1 λ =⇒ sup |α|=k ∂ α u L b ≤ C k λ k+d( 1 a -1 b ) u L a and supp ( u) ⊂ ξ ∈ R d | r 1 λ ≤ |ξ| ≤ r 2 λ =⇒ C -k λ k u L a ≤ sup |α|=k ∂ α u L a ≤ C k λ k u L a .
In order to prove the estimates of Lemma 2.1, we need the Bony decomposition of a product of two functions a and b in the horizontal direction (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF])

ab = T h a b + T h b a + R h (a, b), (49) 
where

T h a b = q∈Z S h q-1 a∆ h q b and R h (a, b) = |q-q |≤1 ∆ h q a∆ h q b = q∈Z ∆ h q a ∆ h q b and ∆ h q f = |q-q |≤1 ∆ h q f.
From the support properties to the Fourier transform of the terms ∆ h q f , we can verify

∆ h q (S h q -1 a ∆ h q b) = 0 if |q -q| ≥ 5 and ∆ h q (S h q +2 a ∆ h q b) = 0 if q ≤ q -4. ( 50 
)
Then, for a function f (we suppose that all the expressions below make sense), we write

T 0 | e Rt ∆ h q (a b) φ , e Rt ∆ h q f |dt ≤ A q + B q + R q , ( 51 
)
where

A q = T 0 | e Rt ∆ h q (T h a b) φ , e Rt ∆ h q f |dt , B q = T 0 | e Rt ∆ h q (T h b a) φ , e Rt ∆ h q f |dt , R q = T 0 | e Rt ∆ h q (R h (a, b)) φ , e Rt ∆ h q f |dt .
Then we have from the definition of the operator T h a and (50)

A q ≤ |q -q|≤4 T 0 e 2Rt ∆ h q S h q -1 a ∆ h q b φ , ∆ h q f φ dt , B q ≤ |q -q|≤4 T 0 e 2Rt ∆ h q S h q -1 b ∆ h q a φ , ∆ h q f φ dt , R q ≤ q≥q-3 T 0 e 2Rt ∆ h q ∆ h q a ∆ h q b φ , ∆ h q f φ dt .
Throughout this section, we will keep these notations (which can however be modified when needed). Following the remark 1.4, we define For any f ∈ L 2 (R), we define

f + = F -1 h (| f |).
We remark that, for any q ∈ Z, we have

∆ h q f + = (∆ h q f ) + , S h q f + = (S h q f ) + and f + L 2 = f L 2 . ( 52 
)
We will use the following lemma (see [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF]):

Lemma 3.2. For smooth functions we have

F h (S h q -1 a ∆ h q b) φ (ξ, y) ≤ |F h (S h q -1 a + φ ∆ h q b + φ )(ξ, y)|, F h (∆ h q a ∆ h q b) φ (ξ, y) ≤ |F h (∆ h q a + φ ∆ h q b + φ )(ξ, y)|.
Proof. Setting ã = S h q -1 a and b = ∆ h q b, we have from the inequality φ(t, ξ) ≤ φ(t, ξ -η) + φ(t, η)

F h (ã b) φ (ξ, y) = e φ(t,ξ) R F h (ã)(ξ -η, y) F h ( b)(η, y) dη ≤ R e φ(t,ξ-η) F h (ã)(ξ -η, y) e φ(t,η) F h ( b)(η, y) dη ≤ R F h (ã + φ )(ξ -η, y) F h ( b+ φ )(η, y) dη,
and this concludes the proof of the first inequality, and the same procedure can be followed to deduce the second inequality.

Therefore from this lemma, we derive the following corollary from Plancherel formula, Fubini's theorem and the Hölder's inequality.

Corollary 3.3. For smooth functions we have

∆ h q f φ L 2 f φ L 2 , ∆ h q (S h q -1 a ∆ h q b) φ , ∆ h q f φ S h q -1 a + φ L ∞ ∆ h q b φ L 2 ∆ h q f φ L 2 , S h q -1 a + φ L 2 z (L ∞ x ) ∆ h q b φ L ∞ z (L 2 x ) ∆ h q f φ L 2 , S h q -1 a + φ L 2 z (L ∞ x ) ∆ h q b φ L 2 ∆ h q f φ L ∞ z (L 2 x )
and

∆ h q (∆ h q a ∆ h q b) φ , ∆ h q f φ ∆ h q a + φ L ∞ ∆ h q b φ L 2 ∆ h q f φ L 2 , ∆ h q a + φ L 2 z (L ∞ x ) ∆ h q b φ L ∞ z (L 2 x ) ∆ h q f φ L 2 , ∆ h q a + φ L ∞ z (L 2 x ) ∆ h q b φ L 2 ∆ h q f φ L 2 z (L ∞ x ) .
We will also use the following Poincaré inequality : For a function u ∈ H 2 such that u and u vanish for z = 0, 1 we have

u L ∞ ∂ z u L 2 and u L 2 ∂ z u L 2 ∂ 2 z u L 2 . ( 53 
)
Proof of Estimate [START_REF] Foias | The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equation and turbulence theory[END_REF]. We apply the Bony's decomposition with a = u, b = ∂ x u and f = u ϕ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h u ∂ x u) φ , e Rt ∆ h q u φ > |dt .
We have from (50)

A q = T 0 e Rt ∆ h q q ∈Z S h q -1 u ∆ h q ∂ x u φ , e Rt ∆ h q u φ dt ≤ |q -q|≤4 T 0 e 2Rt ∆ h q S h q -1 u ∆ h q ∂ x u φ , ∆ h q u φ dt .
From the previous inequality and corollary 3.3 we get

A q |q -q|≤4 T 0 e 2Rt S h q -1 u + φ L ∞ ∆ h q ∂ x u φ L 2 ∆ h q u φ L 2 dt .
Since the support of ∆ h q u φ is in a ring and using the first inequality of Lemma 3.1 with λ = 2 q , we get

∆ h q u + φ L ∞ 2 q 2 ∆ h q u + φ L ∞ z (L 2 x ) = 2 q 2 ∆ h q u φ L ∞ z (L 2 
x ) . Therefore from Poincaré inequality (53) and remark 1.4 we get

∆ h q u + φ L ∞ 2 q 2 ∆ h q u φ L 2 x (L ∞ z ) 2 q 2 ∆ h q ∂ 2 z u φ L 2 d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 .
Then from the definition 1.2 of S q -1 and using q d q (∂ 2 z u φ ) = 1,

S h q -1 u + φ L ∞ ∂ 2 z u φ B 1 2 . (54) 
We deduce from the previous inequalities, lemma 3.1 and the cauchy-schwarz inequality that

A q |q -q|≤4 T 0 e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q u φ L 2 ∆ h q u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 dt 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 dt 1 2 . Since θ (t) = ∂ 2 z u φ B 1 2 , we have from remark 1.6 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 dt 1 2 2 -q (s+1/2) d q (u φ , θ ) e Rt u φ L 2 T ,θ (t) (B s+ 1 2 )
and we finaly obtain

A q 2 -2qs dq e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , ( 55 
)
where dq is the square root summable sequence (since q d q (u φ ) = q d q (u φ , θ ) = 1) defined by

dq = d q (u φ )   |q -q|≤4 d q (u φ , θ )2 (q-q )(s-1/2)   . (56) 
• Estimate of

B q = T 0 | < e Rt ∆ h q (T h ∂xu u) φ , e Rt ∆ h q u φ > |dt .
From the notations (51),

B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ x u + φ L ∞ ∆ h q u φ L 2 ∆ h q u φ L 2 dt .
Then, following the proof of Estimate (54) and the definition 1.2 of S h q , we have

S h q -1 ∂ x u + φ L ∞ 2 q ∂ 2 z u φ B 1 2
. Therefore using the Cauchy-Schwarz inequality and remark 1.4 we derive

B q |q -q|≤4 T 0 e 2Rt 2 q ∂ 2 z u φ B 1 2 ∆ h q u φ L 2 ∆ h q u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 1 2 2 -2qs d q (u φ )   |q -q|≤4 d q (u φ )2 (q-q )(s-1/2)   e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) 
.

Then from the definition (56) of dq

B q 2 -2qs dq e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) . (57) 
• Estimate of R q . We have from the definition (51)

R q ≤ q ≥q-3 T 0 e 2Rt ∆ h q ∆ h q u ∆ h q ∂ x u φ , ∆ h q u φ dt .
Following the proof of (54) and using corollary 3.3 and lemma 3.1 we get

R q q ≥q-3 T 0 e 2Rt ∆ h q u + φ L ∞ z (L 2 x ) ∆ h q ∂ x u φ L 2 ∆ h q u φ L 2 z (L ∞ x ) dt q ≥q-3 T 0 e 2Rt 2 -q 2 d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 2 q ∆ h q u φ L 2 2 q 2 ∆ h q u φ L 2 dt .
Them using d q (∂ 2 z u φ ) ≤ 1, the Cauchy-Schwarz inequality and remark 1.4 we get

R q 2 q 2 q ≥q-3 2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q u φ 2 L 2 1 2 2 q 2 q ≥q-3 2 q 2 2 -q (s+1/2) d q (u φ , θ ) e Rt u φ L 2 T ,θ (t) (B s+ 1 2 ) 2 -q(s+1/2) d q (u φ , θ ) e Rt u φ L 2 T ,θ (t) (B s+ 1 2 )
.

That is

R q 2 -2qs ďq e Rt u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) , ( 58 
)
where ďq is the square root summable sequence defined by ďq = d q (u φ , θ )

q ≥q-3

2 (q-q )s d q (u φ , θ ).

• By Summing the estimates (55), ( 57) and (58) we deduce [START_REF] Foias | The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equation and turbulence theory[END_REF].

Proof of Estimate [START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF]. We apply the Bony's decomposition with a = u, b = ∂ x ∂ z u and f = ∂ z u ϕ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (u∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h u ∂ x ∂ z u) φ , e Rt ∆ h q ∂ z u φ > |dt . A q |q -q|≤4 T 0 e 2Rt S h q -1 u + φ L ∞ ∆ h q ∂ x ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 T 0 e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) 
, where

dq = d q (∂ z u φ , θ )   |q -q|≤4 d q (∂ z u φ , θ )2 (q-q )(s-1 2 )   . ( 59 
) • Estimate of B q = T 0 | < e Rt ∆ h q (T h ∂x∂zu u) φ , e Rt ∆ h q ∂ z u φ > |dt . B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ x ∂ z u + φ L ∞ ∆ h q u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 T 0 e 2Rt 2 q ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, with the same previous definition (59) of dq .

• Estimate of R q = T 0 | < e Rt ∆ h q (R h (u, ∂ x ∂ z u)) φ , e Rt ∆ h q ∂ z u φ > |dt . R q q ≥q-3 T 0 e 2Rt ∆ h q u + φ L ∞ z (L 2 x ) ∆ h q ∂ x ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 z (L ∞ x ) dt q ≥q-3 T 0 e 2Rt 2 -q 2 ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 2 q 2 ∆ h q ∂ z u φ L 2 dt 2 q 2 q ≥q-3 2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs ďq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) 
, where ďq = d q (∂ z u φ , θ )

q ≥q-3

2 (q-q )s d q (∂ z u φ , θ ).

(60)

• By Summing the above estimates for A q , B q and R q , we deduce [START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF].

Proof of Estimate [START_REF]Mathematical and physical constraints on large-eddy simulation of turbulence[END_REF]. We apply the Bony's decomposition with a = ∂ z u, b = ∂ x u and f = ∂ z u ϕ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (∂ z u ∂ x u) φ , e Rt ∆ h q ∂ z u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h ∂zu ∂ x u) φ , e Rt ∆ h q ∂ z u φ > | dt . A q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ z u + φ L 2 z (L ∞ x ) ∆ h q ∂ x u φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 .
Using Lemma 3.1, Poincaré inequality we have

∆ h q ∂ z u + φ L 2 z (L ∞ x ) 2 q 2 ∆ h q ∂ z u φ L 2 d q ∂ 2 z u φ B 1 2 . Then S h q -1 ∂ z u + φ L 2 z (L ∞ x ) ∂ 2 z u φ B 1 2 .
Using Poincaré inequality and Lemma 3.1, we have

∆ h q ∂ x u φ L ∞ z (L 2 x ) ∆ h q ∂ x ∂ z u φ L 2 2 q ∆ h q ∂ z u φ L 2 . Then A q |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where dq is given by (59).

• Estimate of B q = T 0 | < e Rt ∆ h q (T h ∂xu ∂ z u) φ , e Rt ∆ h q ∂ z u φ > | dt . B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ x u + φ L ∞ ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 T 0 e 2Rt 2 q ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) 
.

• Estimate of R q = T 0 | < e Rt ∆ h q (R h (∂ z u, ∂ x u)) φ , e Rt ∆ h q ∂ z u φ > | dt . R q q ≥q-3 T 0 e 2Rt ∆ h q ∂ z u + φ L 2 ∆ h q ∂ x u φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 z (L ∞ x ) dt q ≥q-3 T 0 2 -q 2 d q (∂ z u φ )e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 2 q 2 ∆ h q ∂ z u φ L 2 dt 2 q 2
q ≥q-3

T 0 2 q 2 ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt 2 q 2 q ≥q-3 2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs ďq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where ďq is given by (60).

• Summing up the above estimates for A q , B q and R q , we obtain [START_REF]Mathematical and physical constraints on large-eddy simulation of turbulence[END_REF].

Proof of Estimate [START_REF] Holm | Euler-Poincaré models of ideal fluids with nonlinear dispersion[END_REF]. We apply the Bony's decomposition with a = ∂ z u, b = ∂ x ∂ z u and f = u ϕ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ , e Rt ∆ h q u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h ∂zu ∂ x ∂ z u) φ , e Rt ∆ h q u φ > | dt . A q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ z u + φ L 2 z (L ∞ x ) ∆ h q ∂ x ∂ z u φ L 2 ∆ h q u φ L ∞ z (L 2 
x ) .

Using Lemma 3.1 and Poincaré inequality, we have

∆ h q ∂ z u + φ L 2 z (L ∞ x ) 2 q 2 ∆ h q ∂ z u + φ L 2 d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 . Then S h q -1 ∂ z u + φ L 2 z (L ∞ x ) ∂ 2 z u φ B 1 2 . By Poincaré inequality we have ∆ h q u φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 . Then T 0 | < e Rt ∆ h q (T h ∂zu ∂ x ∂ z u) φ , e Rt ∆ h q u φ > | dt |q -q|≤4 T 0 e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where dq is defined by (59).

• Estimate of B q = T 0 | < e Rt ∆ h q (T h ∂x∂zu ∂ z u) φ , e Rt ∆ h q u φ > | dt . B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ x ∂ z u + φ L 2 z (L ∞ x ) ∆ h q ∂ z u φ L 2 ∆ h q u φ L ∞ z (L 2 
x ) dt .

We have

S h q -1 ∂ x ∂ z u + φ L 2 z (L ∞ x ) l≤q -2 2 3l 2 ∆ h l ∂ z u + φ L 2 = l≤q -2 2 3l 2 ∆ h l ∂ z u φ L 2 l≤q -2 2 l 2 l 2 ∆ h l ∂ 2 z u φ L 2 l≤q -2 2 l d l (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 2 q ∂ 2 z u φ B 1 2
, and by the Poincaré inequality, we get

∆ h q u φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 .
From the previous estimates,

B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ x ∂ z u + φ L 2 z (L ∞ x ) ∆ h q ∂ z u φ L 2 ∆ h q u φ L ∞ z (L 2 x ) dt |q -q|≤4 T 0 e 2Rt 2 q ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
.

Then

B q 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) . • Estimate of R q = T 0 | < e Rt ∆ h q (R h (∂ z u, ∂ x ∂ z u)) φ , e Rt ∆ h q u φ > | dt . R q q ≥q-3 T 0 e 2Rt ∆ h q ∂ z u + φ L 2 ∆ h q ∂ x ∂ z u φ L 2 ∆ h q u φ L ∞ dt q ≥q-3 T 0 2 -q 2 d q (∂ z u φ )e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 2 q 2 ∆ h q ∂ z u φ L 2 dt 2 q 2 q ≥q-3 T 0 2 q 2 ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt 2 q 2 q ≥q-3 2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs ďq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where ďq is given by (60).

• By summing the three estimates for A q , B q and R q , we obtain [START_REF] Holm | Euler-Poincaré models of ideal fluids with nonlinear dispersion[END_REF].

Proof of Estimate [START_REF] Kouranbaeva | The CamassaHolm equation as a geodesic flow on the diffeomorphism group[END_REF]. We apply the Bony's decomposition with a = v, b = ∂ z u and f = u ϕ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (v ∂ z u) φ , e Rt ∆ h q u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h v ∂ z u) φ , e Rt ∆ h q u φ > | dt . From corollary 3.3, A q |q -q|≤4 T 0 e 2Rt S h q -1 v + φ L ∞ ∆ h q ∂ z u φ L 2 ∆ h q u φ L 2 .
From the incompressibility condition (see remark 1.1) and the definition of f φ we get

∂ x u φ + ∂ z v φ = 0. Since v φ | z=0 = 0, then v φ (t, x, z) = - z 0 ∂ x u φ (t, x, z )dz and ∆ h q v φ (t, x, z) = - z 0 ∂ x ∆ h q u φ (t, x, z )dz .
Therefore from lemma 3.1 we get

∆ h q v φ L ∞ z (L 2 x ) ≤ 1 0 ∂ x ∆ h q u φ (t, ., z ) L 2 x dz 1 0 2 q ∆ h q u φ (t, ., z ) L 2 x dz 2 q ∆ h q u φ L 2 . ( 61 
)
Again by Lemma 3.1 and the properties of (52) of f + , and the previous inquality we have

∆ h q v + φ L ∞ 2 q 2 ∆ h q v φ L ∞ z (L 2 x ) 2 3q 2 ∆ h q u φ L 2 . ( 62 
)
Then from the Poincaré inequality and the remark 1.4,

∆ h q v + φ L ∞ 2 3q 2 ∆ h q ∂ 2 z u φ L 2 2 q d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 . Then S h q -1 v + φ L ∞ l≤q -2 2 l d l (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 2 q ∂ 2 z u φ B 1 2 .
From the previous estimates and lemma 3.1,

A q |q -q|≤4 T 0 e 2Rt 2 q ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 ∆ h q u φ L 2 |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where dq is given by (59).

• Estimate of B q = T 0 | < e Rt ∆ h q (T h ∂zu v) φ , e Rt ∆ h q u φ > | dt . B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ z u + φ L 2 z (L ∞ x ) ∆ h q v φ L ∞ z (L 2 x ) ∆ h q u φ L 2 dt |q -q|≤4 T 0 e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q u φ L 2 ∆ h q u φ L 2 |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 ) 
.

• Estimate of R q = T 0 | < e Rt ∆ h q (R h (v, ∂ z u)) φ , e Rt ∆ h q u φ > | dt . R q q ≥q-3 T 0 e 2Rt ∆ h q v φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 ∆ h q u φ L 2 z (L ∞ x ) dt .
From Estimate (61) we derive

∆ h q v φ L ∞ z (L 2 x ) ≤ 1 0 ∂ x ∆ h q u φ (t, ., z ) L 2 x dz 2 q 1 0 ∆ h q u φ (t, ., z ) L 2 x dz 2 q ∆ h q u φ L 2 . Then, we have R q q ≥q-3 T 0 e 2Rt ∆ h q v φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 2 q 2 ∆ h q u φ L 2 dt 2 q 2 q ≥q-3 T 0 e 2Rt 2 q ∆ h q u φ L 2 2 -q 2 d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 ∆ h q u φ L 2 dt 2 q 2 q ≥q-3 T 0 e 2Rt 2 q 2 ∆ h q u φ L 2 ∂ 2 z u φ B 1 2 ∆ h q u φ L 2 dt 2 q 2 q ≥q-3 2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs ďq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where ďq is given by (60).

• By summing up the above three estimates for A q , B q and R q , we obtain [START_REF] Kouranbaeva | The CamassaHolm equation as a geodesic flow on the diffeomorphism group[END_REF].

Proof of Estimate [START_REF] Kukavica | Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain[END_REF]. We apply the Bony's decomposition with a = v, b = ∂ 2 z u and f = ∂ z u φ . Then following the notations of (51) we can write

T 0 | < e Rt ∆ h q (v ∂ 2 z u) φ , e Rt ∆ h q ∂ z u φ > |dt ≤ A q + B q + R q . • Estimate of A q = T 0 | < e Rt ∆ h q (T h v ∂ 2 z u) φ , e Rt ∆ h q ∂ z u φ > | dt . By Poincaré inequality we have ∆ h q u φ L 2 ∆ h q ∂ z u φ 1 2 L 2 ∆ h q ∂ 2 z u φ 1 2
L 2 . Then from (62) and the previous estimate, and remark 1.4 we get

∆ h q v + φ L ∞ 2 3q 2 ∆ h q ∂ z u φ 1 2 L 2 ∆ h q ∂ 2 z u φ 1 2 L 2 2 q 2 d q (∂ z u φ ) 1 2 ∂ z u φ 1 2 B 3 2 d q (∂ 2 z u φ ) 1 2 ∂ 2 z u φ 1 2 B 1 2
.

Then we have

S h q -1 v + φ L ∞ 2 q 2 ∂ z u φ 1 2 B 3 2 ∂ 2 z u φ 1 2 B 1 2 . Therefore A q |q -q|≤4 T 0 e 2Rt S h q -1 v + φ L ∞ ∆ h q ∂ 2 z u φ L 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 2 q 2 T 0 e Rt ∂ z u φ 1 2 B 3 2 ∆ h q ∂ 2 z u φ L 2 e Rt ∂ 2 z u φ 1 2 B 1 2 ∆ h q ∂ z u φ L 2 |q -q|≤4 2 q 2 T 0 e 2Rt ∂ z u φ B 3 2 ∆ h q ∂ 2 z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 |q -q|≤4 2 q 2 ∂ z u φ 1 2 L ∞ T (B 3 2 ) 
T 0 , where dq = d q (∂ 2 z u φ , 1))

e 2Rt ∆ h q ∂ 2 z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq ∂ z u φ 1 2 L ∞ T (B 3 
  |q -q|≤4
d q (∂ z u φ , θ )2 (q-q )(s-1 2 )   .

• Estimate of B q = T 0 | < e Rt ∆ h q (T h ∂ 2 z u v) φ , e Rt ∆ h q ∂ z u φ > | dt . B q |q -q|≤4 T 0 e 2Rt S h q -1 ∂ 2 z u + φ L 2 z (L ∞ x ) ∆ h q v φ L ∞ z (L 2 x ) ∆ h q ∂ z u φ L 2 dt |q -q|≤4 T 0 e 2Rt ∂ 2 z u φ B 1 2 2 q ∆ h q ∂ z u φ L 2 ∆ h q ∂ z u φ L 2 dt |q -q|≤4 2 q T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs dq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where dq is given by (59).

• Estimate of R q = T 0 | < e Rt ∆ h q (R h (v, ∂ 2 z u)) φ , e Rt ∆ h q ∂ z u φ > | dt . From corollary 3.3, we have R q q ≥q-3

T 0 e 2Rt ∆ h q v φ L ∞ z (L 2 x ) ∆ h q ∂ 2 z u φ L 2 ∆ h q ∂ z u φ L 2 z (L ∞ x ) dt .
From (61), we have

∆ h q v φ L ∞ z (L 2 x )
2 q ∆ h q ∂ z u φ L 2 . Then, using remark 1.4 and lemma 3.1, remark 1.6, we have for any s > 0 R q q ≥q-3

T 0 e 2Rt 2 q ∆ h q ∂ z u φ L 2 2 -q 2 d q (∂ 2 z u φ ) ∂ 2 z u φ B 1 2 2 q 2 ∆ h q ∂ z u φ L 2 dt 2 q 2
q ≥q-3

2 q 2 T 0 e 2Rt ∆ h q ∂ z u φ L 2 ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ L 2 dt 2 q 2
q ≥q-3

2 q 2 T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 × T 0 e 2Rt ∂ 2 z u φ B 1 2 ∆ h q ∂ z u φ 2 L 2 1 2 2 -2qs ďq e Rt ∂ z u φ 2 L 2 T ,θ (t) (B s+ 1 2 )
, where ď is given by (60).

• Summing up the above three estimates, we obtain (17).

4. Appendix -Proof of the lemma 2.2

Proof of Estimate (28). We first recall the Bony's decomposition (49) .

u∂ x u = T h u ∂ x u + T h ∂xu u + R h (u, ∂ x u). Then T 0 e Rt ∆ h q (u ∂ x u) φ 2 L 2 dt
• Estimate of e Rt ∆ h q (T h u ∂ x u) φ L 2 . From the definition of T h we have

e Rt ∆ h q (T h u ∂ x u) φ L 2 = e Rt ∆ h q q ∈Z S h q -1 u ∆ h q ∂ x u φ L 2 |q-q |≤4
e Rt S h q -1 u ∆ h q ∂ x u φ L 2

.

From corollary 3.3, Poincarre inequality and lemma 3.1 we get

T 0 e Rt ∆ h q (T h u ∂ x u) φ 2 L 2 dt |q-q |≤4 T 0 S h q -1 u + φ 2 L ∞ e Rt ∆ h q ∂ x u φ 2 L 2 dt |q-q |≤4 T 0 ∂ z u φ 2 B 1 2 
2 2q e Rt ∆ h q ∂ z u φ 2 L 2 dt |q-q |≤4 ∂ z u φ 2 L ∞ T (B 1 2 
)

2 2q T 0 e Rt ∆ h q ∂ z u φ 2 L 2 dt .
Then from the remark 1.6

T 0 e Rt ∆ h q (T h u ∂ x u) φ 2 L 2 dt 1 2 |q-q |≤4 ∂ z u φ L ∞ T (B 1 2 
)

2 q T 0 e Rt ∆ h q ∂ z u φ 2 L 2 dt 1 2 |q-q |≤4 ∂ z u φ L ∞ T (B 1 
2 )

2 q 2 -(s+1)q d q (∂ z u φ , 1) e Rt ∂ z u φ L 2 d q (∂ z u φ , 1)2 s(q-q ) . (64)

T (B s+1 ) (63) dq 2 -qs ∂ z u φ L ∞ T (B
• Estimate of e Rt ∆ h q (T h ∂xu u) φ L 2 . Following the previous estimates we get T 0 e Rt ∆ h q (T h ∂xu u) φ L 2 dt

• Estimate of e Rt ∆ h q (R h (v, ∂ z u)) φ L 2 .

T 0 e Rt ∆ h q (R h (v, ∂ z u)) φ 2 L 2 dt q ≥q-3

T 0 ∆ h q v φ 2 L ∞ z (L 2 x ) e Rt ∆ h q ∂ z u φ 2 L 2 z (L ∞ x ) dt q ≥q-3 T 0 2 2q ∆ h q ∂ z u φ 2 L 2 ∂ z u φ 2 B 1 2
dt q ≥q-3

2 2q T 0 ∆ h q ∂ z u φ 2 L 2 dt ∂ z u φ 2 L ∞ T (B 1 
2

)
Multiplying the previous inequality by 2 qs and taking the sum over Z, we obtain (31) .

Proof of Estimate (32). We have by Bony's decomposition in x variable e Rt ∆ h q (∂ z u ∂ x ∂ z u) φ L 2 ≤ e Rt ∆ h q (T h ∂zu ∂ x ∂ z u) φ L 2 + e Rt ∆ h q (T h ∂x∂zu ∂ z u) φ L 2 + e Rt ∆ h q (R h (∂ z u, ∂ x ∂ z u)) φ L 2 . By adapting the proof of Estimate (63) we get

T 0 e Rt ∆ h q (T h ∂zu ∂ x ∂ z u) φ e Rt ∂ 2 z u φ L 2 T (B s+1
) . Multiplying the previous inequality by 2 qs and taking the sum over Z, we obtain (32).

Proof of Estimate (33). We have by Bony's decomposition in x variable e Rt ∆ h q (∂ x u ∂ |q -q|≤4

T 0 S h q -1 ∂ x u + φ 2 L ∞ ∆ h q ∂ 2 z u φ 2 L 2 dt 1 2 dq,2 2 -qs ∂ z u φ L ∞ T (B 1 
2

)
e Rt ∂ 2 z u φ L 2 T (B s+1 ) , where dq,2 = |q-q |≤4 d q (∂ 2 z u φ , 1)2 s(q-q ) .

• Estimate of

T 0 e Rt ∆ h q (T h ∂ 2 z u ∂ x u) φ L 2 dt 1 2 . T 0 e Rt ∆ h q (T h ∂ 2 z u ∂ x u) φ L 2 dt 1 2 |q-q |≤4 T 0 S h q -1 e Rt ∂ 2 z u + φ 2 L 2 z (L ∞ x ) ∆ h q ∂ x u φ 2 L ∞ z (L 2 
x ) dt

1 2 |q-q |≤4 T 0 e Rt ∂ 2 z u φ 2 B 1 2 2 2q ∆ h q ∂ z u φ 2 L 2 dt 1 2 dq 2 -qs e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
∂ z u φ L ∞ T (B s+1 ) . By adapting the proof of Estimate (66) we get

T 0 e Rt ∆ h q (R h (∂ x u, ∂ 2 z u)) φ 2 L 2 dt 1 2
q ≥q-3

T 0 ∆ h q ∂ x u φ 2 L ∞ z (L 2 
x ) e Rt ∆ h q ∂ 2 z u φ

2 L 2 z (L ∞ x ) 1 2 ďq 2 -qs ∂ z u φ L ∞ T (B s+1 ) e Rt ∂ 2 z u φ L 2 T (B 1 2 ) 
.

Lemma 3 . 1 .

 31 Let k ∈ N, d ∈ N * and r 1 , r 2 ∈ R satisfy 0 < r 1 < r 2 .There exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any u ∈ L a (R d ), we have supp

2 )e

 2 Rt ∂ 2 z u φ L 2 T (B s ) e Rt ∂ z u φ L 2 T ,θ (t) (B s+12 )

e 2 L 2 dt 1 2

 22 Rt ∆ h q (R h (u, ∂ x u)) φ

e

  Rt ∂ z u φ L 2 T (B s+1 ) ,

  2 z u) φ L 2 ≤ e Rt ∆ h q (T h ∂xu ∂ 2 z u) φ L 2 + e Rt ∆ h q (T h ∂ 2 z u ∂ x u) φ L 2 + e Rt ∆ h q (R h (∂ x u, ∂ 2 z u)) φ L 2 .By adapting the proof of Estimate (63) we get

		1
	T	2
	e Rt ∆ h q (T h ∂xu ∂ 2 z u) φ	2 L 2 dt
	0	

Then by summing up the previous estimates, we get

)

2

e Rt ∂ 2 z u φ L 2 T (B s+1 ) . Multiplying the previous inequality by 2 qs and taking the sum over Z, we obtain (33).

Appendix -Proof of the lemma 2.3

In this Appendix, we give a brief proof of estimates used to prove the uniqueness of the solution.

• Estimate of I 1,q . From Lemma 3.1 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] we obtain (36).

• Estimate of I 2,q . From Lemma 3.1 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] we have

.

By using integration by parts, and from Lemma 3.1 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] we have

.

By summing up the above estimates we obtain (37).

• Estimate of I 3,q . By integration by parts in z variable and from Lemma 3.1 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we obtain (38).

• Estimate of I 4,q . It follows from the proof of Estimate (5.14) in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] that

By integration by parts

Following the prove of Lemma 3.2 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] we deduce for any s ∈]0, 1[ that

.

From Lemma 3.1 in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] we deduce that

.

By summing the estimates ( 71) and (72) we obtain (39).

• Estimate of I 5,q . Following the proof of Estimate (5.13) in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we deduce for

2 )

.

By integration by parts in z variable, we have

2

.

This conclude the proof of (40).

• Estimate of I 6,q . Following the proof of Estimate (5.13) in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we get (41) for s ∈]0, 1 2 [. • Estimate of I 7,q . Following the proof of Estimate (5.11) in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we obtain (42) for s ∈]0, 1 2 [. • Estimate of I 8,q . Following the proof of Estimate (5.11) in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we deduce for

2 )

2 )

e Rt ∂ z U Φ L 2 T (B s ) . Then by summing up the previous estimates, we get (43).