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A dramatic slowing down of acoustic wave transport in dense fish shoals is observed in
open-sea fish cages. By employing a multi-beam ultrasonic antenna, we observe the co-
herent backscattering (CBS) phenomenon. We extract key parameters of wave transport
such as the transport mean free path and the energy transport velocity of diffusive waves
from diffusion theory fits to the experimental data. The energy transport velocity is found
to be about 10 times smaller than the speed of sound in water, a value that is exceptionally
low compared with most observations in acoustics. By studying different models of the
fish body, we explain the basic mechanism responsible for the observed very slow trans-
port of ultrasonic waves in dense fish shoals. Our results show that, while the fish swim
bladder plays an important role in wave scattering, other organs have to be considered to
explain ultra-low energy transport velocities.
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INTRODUCTION

Because of their swim bladder (analogous to an immersed air bubble), bony fish (Osteichthyes)
are very strong scatterers for underwater acoustic waves. Thus, (multi-beam) sonar techniques
are very efficient to locate and characterize shoals, aggregates or even isolated fish. Most of the
fisheries acoustics methods are developed under the single scattering approximation1, i.e. for low
fish concentrations when the wave is scattered at most once during propagation. For such low
densities (∼ 1 fish/m3), fish counting is straightforward and efficient using traditional methods
such as echo-counting or echo-integration2. However, fish aggregates can be very dense (∼ 50
fish/m3) for aquaculture purposes, for example, and in naturally occurring fish schools. In these
cases, the backscattered signal received by the antenna is scattered by several fish during the
wave’s propagation, which makes fish counting much more challenging. This multiple scattering
regime is problematic for the aquaculture industry, for which nonintrusive biomass estimation is
one of the most important issues in regular practice3. In a previous work4, we suggested the
use of mesoscopic physics and, in particular, of multiple scattering theory based on the diffusion
approximation to deal with wave propagation in dense fish shoals.

In the diffusion approximation, one assumes that after a propagation distance corresponding to
the transport mean free path `∗, the average intensity of multiply scattered waves follows a diffu-
sion process (such as in heat diffusion) with a characteristic diffusivity D = ve`

∗/3. The diffusivity
involves the energy transport velocity of diffusive waves ve = 3D/`∗. The energy velocity is thus
a key parameter describing wave transport, and is proportional to the ratio of energy flux to energy
density. For diluted or non-resonant systems, ve ' v0 (where v0 is the sound speed in water). How-
ever, as demonstrated with previous model systems, the energy velocity can be highly impacted by
resonant phenomena that are typically encountered when the acoustic wavelength becomes similar
to the typical size of the scatterers5–7.

In this paper, we first report an observation of an ultra-low value of the energy transport ve-
locity of diffusive acoustic waves in a dense fish shoal through coherent backscattering (CBS)
measurements8–11. CBS is a wave interference phenomenon that manifests itself by an enhance-
ment (by a factor of 2) of the average backscattered intensity measured in the direction opposite
to that of the incident wave. The angular profile of backscattered intensity has a cone shape in the
stationary (continuous wave) limit, with a width that depends on `∗. In the dynamic case, accessed
using a pulsed source, the temporal evolution of the backscattering peak’s width depends on D and
hence on ve. In order to scan the angular dependence of the backscattered intensity, we employ a
multi-beam sonar probe (based on the Seapix technological brick12) in a large fish cage anchored
in open sea. In the second part of the paper, we present a comparative study of energy transport
velocity calculations based on Mie theory13,14. The comparison of four scattering models for in-
dividual fish reveals that, while fish are usually approximated as air bubbles in water for scattering
of acoustic waves, their complex structure can play an important role for wave transport in dense
shoals. This comparison enables us to identify the essential features that need to be accounted for,
and to propose a simple model to replicate the scattering properties of fish in dense shoals.

RESULTS

Experiments

Coherent backscattering (or weak localization) is a mesoscopic phenomenon that has been ob-
served for light8,9, ultrasound10, matter waves15 and seismic waves16. This effect is due to the
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constructive interference of waves following time-reversed pairs of paths. This interference pro-
duces a peak, centred on the exact backscattering direction, in the angular profile of backscattered
intensity. In order to observe CBS, we use a Mills Cross multi-beam antenna made of two perpen-
dicular ultrasonic arrays (2×64 transducers with a central wavelength λ = 1 cm). Experiments
involve sending a short acoustic pulse (central frequency 150 kHz) into the fish cage by firing all
transducers at the same time and performing an angular scan of the backscattered intensity using
the beamforming method17. The cage contains a shoal of gilthead sea breams (Sparus aurata)
with an average mass of 150 g and concentration η ∼ 50 fish/m3.

Time integration of the backscattered intensity yields the stationary CBS profile, which has an
angular width of ∆θ ∼ λ/`∗ (where λ is the wavelength in water). We fit the entire profile with
the predictions of diffusion theory11; see Fig. 1a. The fitting parameters are the transport mean
free path `∗ = (6.0± 0.2) cm and the absorption length `a = (100± 3) cm, which characterizes
the exponential decay of acoustic energy due to losses. The value k`∗ = 36� 1 (with k = 2π/λ )
indicates that even if sound is strongly scattered in this shoal, no complex phenomena such as
strong localization (occurring for k`∗ ∼ 1) impact the CBS peak shape.

The time-resolved dynamic CBS peak narrows with time (Fig. 1b). From diffusion theory11,
the CBS width depends on diffusivity as ∆θ ∝ 1/

√
Dt. Using the measured value of `∗ and the

diffusion theory, the fitting of the dynamic CBS peak gives us D = (1.3±0.1) m2/s. In this way,
the simultaneous measurement of `∗ and D leads to the energy velocity ve = 3D/`∗= (65±5) m/s.
This value of ve is surprising low (an order of magnitude lower than the sound speed in water v0 =
1500 m/s) , which is a very rare observation for acoustic waves4,6,7,18,19. Similarly slow diffusion
has been observed previously with CBS measurements in dense shoals of sea breams, sea basses
(Dicentrarchus labrax) or croakers (Argyrosomus regius)4, but no such extreme behaviour has been
found for acoustic waves in other multiply scattering media6,7,18,19. However, unlike this past work
on dense fish shoals, the cage considered in this paper has a sufficiently low fish concentration
to allow us to neglect mesoscopic interferences that might impact the energy velocity, thereby
facilitating a quantitative interpretation of the current results. In the following section, we employ
a model14 that takes into account the scattering delay induced by the fish and explains this ultra
low value of energy velocity.

FIG. 1: (a) Stationary CBS profile (blue open circles) fitted with the diffusion theory (red dashed
line). (b) Dynamic CBS profile fitted with the diffusion theory (black solid lines). In (b), the

intensity is normalized by its peak value at each time to show more clearly the temporal evolution
of the width.

3



Ultra-Slow Acoustic Energy Transport in Dense Fish Aggregates

Energy velocity calculation

Here, we employ a microscopic model of the energy velocity14 in order to identify the mech-
anisms responsible for the ultra low ve value. This description is based on a model that accounts
for the delay ∆tave induced by an immersed scatterer, and predicts a result for ve that may be
approximated as19

1
ve
≈ 1

vgr
+ησT ∆tave. (1)

Here vgr is the group velocity of the average wave field (vgr ∼ v0 in the absence of dispersion
effects) and η is the scatterer concentration. ∆tave is the scattering delay time for a single scattering
event, calculated from the intensity-weighted angle-averaged phase derivative with frequency of
the scattering amplitude [equation (4)], and σT is the total scattering cross section. Thus, to obtain
slow diffusive waves, the system has to be dense (high η) with strong scatterers (high σT ) and
large scattering delay (large ∆tave).

In order to identify the parts of the fish that are responsible for the ultra-low energy velocity,
we use equation (1) to compute ve for four idealized spherically symmetric scattering models
representing different simplifications of the complex fish body (Fig. 2). Since this theory enables
analytic expressions to be obtained for relatively simple scattering geometries, the goal here is
to capitalise on this capability to search for the key features that need to be considered in order
to understand the origin of the remarkably slow energy velocity. Thus, rather than attempting a
complex simulation that might obscure the basic scientific mechanism(s) at play, we focus on very
simple models to reveal the basic scattering mechanisms involved:

• Model a: an air bubble representing the fish swim bladder with radius R1 = 10 mm (Fig.
2a), longitudinal wave speed vl1 = 340 m/s and density ρ1 = 0.001 g/cm3.

• Model b: a homogeneous soft sphere representing the fish flesh with radius R1 = 76 mm,
longitudinal wave speed vl2 = 1600 m/s, shear wave speed vt2 = 10 m/s and density ρ2 =
1.1 g/cm3 (Fig. 2b).

• Model c: a combination of models a and b representing the swim bladder surrounded by a
flesh layer (Fig. 2c).

• Model d: similar to model c with an additional hard thin layer representing fish scales and
bones with radius R3 = 78 mm, longitudinal wave speed vl3 = 1600 m/s, shear wave speed
vt3 = 900 m/s and density ρ3 = 1.4 g/cm3 (Fig. 2d).

Some scattering theories allow calculations for spheroids20 that might be closer to the actual fish
shape, but none of those calculations are developed for multilayer scatterers. However, the spher-
ical approximation is suitable in the present case because of the randomized fish orientation in the
azimuthal plane. Thus on average, the effective scatterer shape seen by the incident plane wave
can be approximated as a sphere.

Model a represents the usual assumption in fisheries acoustics (in the single scattering regime):
since, at least near resonance, the swimbladder is the most reflective organ for acoustic waves, fish
shoals are often seen as clouds of air bubbles in water. However, as shown in Fig. 3a, Eq. (1)
applied to model a fails to explain the ultra-low value of energy velocity found in our experiments.
The same conclusion can be drawn for models b and c, for which we also obtain ve ∼ v0. On the
other hand, model d predicts a very slow energy velocity, ve ≈ 100 m/s, at the frequency f = 150
kHz, and ranges from about 50 to 150 m/s over the bandwidth of the transducers. In comparison
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FIG. 2: On the left: Schematic representation of a sea bream body. On the right: Models a, b, c
and d used for the energy velocity calculation.

with the other models, these values are very close to our measurement (ve = 65± 5 m/s). The
phase and group velocities (see Supplementary Information, Fig. S2) can also be calculated for
these models. Both of these velocities are found to be very close to v0 for all four models. These
results indicate that the complex fish structure mostly impacts only the diffusive waves; the ballistic
wave velocities (the “line-of-sight” propagation through the shoal) are not significantly affected
by the fish scattering and concentration.

Thus, the hard thin layer surrounding the soft solid representing fish flesh seems to play an
important role for the slowing down of diffusive acoustic waves. Figure 3(b) shows the calculation
of energy velocity for a range of fish concentrations η and as a function of size variation ∆R/R
(here the size variation ∆R/R is a factor that is equally applied to the three radii R1, R2 and R3).
It is important to note the weak size dependence of energy velocity on ∆R/R that proves that the
drop of ve/v0 in model d with respect to model c is not due to size differences (outer radius R3
versus R2). In contrast, the fish concentration η seems to have a significant impact on ve. This
effect could be interesting for enabling a new method of biomass assessment with acoustic waves
compared with more traditional acoustic methods (see, for example, Ref.2).

DISCUSSION

In this section, we interpret the role of each part of the fish model on the scattering delay.
The double core-shell structure of model d seems to explain the observed ultra-low energy ve-
locity. As has been observed in the past21, core-shell scatterers can indeed exhibit very strong
scattering. However, no slow diffusive waves have been measured for such scatterers in the past.
Resonant mechanisms have been identified5–7 as being responsible for the decrease of ve in both
optics and acoustics, but only for homogeneous scatterers. These effects result in large energy
velocity variations, with ve ∼ v0 far from resonant frequencies and ve � v0 around resonances.
In the present case, such frequency fluctuations (expected over several tens of kHz) cannot be
observed in our experiments, since the sonar bandwidth is too narrow; hence, frequency-resolved
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FIG. 3: (a) Normalized velocity ve/v0 calculations versus frequency for the four different models.
(b) Normalized velocity ve/v0 calculations versus fish size variation ∆R/R and concentration η at
a given frequency f = 150 kHz for model d. The inset represents ve/v0 versus fish concentration

for ∆R/R = 0 and f = 150 kHz.

measurements were not feasible, and our experimental determination of ve corresponds to a narrow
bandwidth-limited average around the central frequency (150 kHz) of the transducers. Thus, from
experimental observations, we can measure conclusively the low ve value but we cannot conclude
anything about its potential variations over a larger frequency range.

A way to interpret the scattering delay impacting the energy velocity is the calculation of the
acoustic energy density inside and outside the scatterer19,22. High values of energy density suggest
that waves are “stored” in the scatterer. This energy is then released in the surrounding medium
with a certain delay resulting in a slowing down of diffusive wave transport. Figure 4 shows
the energy density calculations for longitudinal waves at the frequency f = 150 kHz for the four
different model scatterers.

The energy density calculation for an air bubble (model a) exhibits predominantly forward
scattering as expected at high frequency for small scatterers with large acoustic contrast23. Since
the frequency being considered in this study is far from the resonance of the bubble ( fres ∼ 0.5
kHz), the scattering is very weak for this model, and the energy density inside the scatterer is
small. Thus, one might expect only a modest scattering delay, and the scattering strength (or total
cross section σT ) induced by the isolated swim bladder is not high enough for the product of
scattering delay and cross section to cause a significant decrease of ve. For models b and c, both
the energy density inside the scatterers and the forward scattering are somewhat larger than for
model a, suggesting that there could be a bigger difference between group and energy velocities,
but additional information would be needed to assess if they could be interesting candidates for
predicting a slow energy velocity. However, for the double core-shell system (model d), the result
of the energy density calculation is much more striking, as we observe a very strong increase of
scattered energy density (the large increase in wave energy stored in the fish body is due to the
hard scales and bones layer). The subwavelength-scale outer layer helps the generation of slow
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FIG. 4: Calculations of the longitudinal acoustic energy density W for the four different model
scatterers at f = 150 kHz. W0 is the incident energy density. The white dotted line represents the

limits of the swim bladder, the dashed pink line the flesh layer and the solid black line the thin
scales and bones layer. White arrows indicates the direction of the incident plane wave.

shear waves via mode conversion and the trapping of both longitudinal and shear waves in the
fish flesh. This stored acoustic energy is then re-radiated into the surrounding water with a large
delay14.

The link between the stored energy and the large scattering delay becomes clear when compar-
ing Fig. 4 and Fig. 5, which shows the angular dependence of the scattering delay ∆t(θ) for all
models [Fig. 5(a)-(d)] (see the Supplementary Information for calculation details). In particular,
this figure shows that the angle-resolved scattering delays are much larger, typically by a couple of
orders of magnitude, for model d than for the other models, for which the energy densities inside
the scatterers are much less. Specifically, for model a, the delay is relatively small and negative
at all scattering angles, whereas for models b and c, the delays are negative for most angles and
have, typically, somewhat larger magnitudes. In all three cases, these results suggest that the total
angle averaged delay will be fairly small and certainly negative (indicating a slight enhancement
of the energy velocity relative to the group velocity). For model d, however, very large delays,
both positive and negative, are seen, with the positive delays dominating. These observations are
confirmed by doing the angular integration of ∆t(θ), yielding average scattering delays per wave
period ∆tave/T0 for models a through d of −0.4,−1.4,−1.4 and 80.8, respectively. Thus, we find
that adding the hard coating increases the magnitude of the angle-averaged delay by a factor of
approximately 100 or more in comparison with the other models.

To further illustrate this large scattering delay, we calculate the dynamic energy density of the
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FIG. 5: (a) to (d) Angular dependence of the normalized scattering delays ∆tθ calculated for the
four models (a, b, c and d), at a frequency of 150 kHz.

scattered waves 〈W s〉 outside the scatterers (Fig. 6). 〈W s〉 is obtained by integrating W ( f ) (c.f.,
Fig. 4 at f = 150 kHz) over the bandwidth of the incident pulse. The resulting temporal evolution
of W is spatially averaged on the region R3 < r < b (where r =

√
x2 + y2 and b = 85 mm is the

average inter-scatterer distance for the concentration η considered here. In this way, we obtain the
dynamics of the acoustic energy density in the surroundings of each scatterer.

The higher overall energy obtained with model d confirms the strong influence on the scattering
induced by the presence of scales and bones. Furthermore, while models a, b and c all predict that
〈Wd〉 decreases quickly (which explains ve ∼ v0 for these systems), a much slower decay of 〈Wd〉
with time is obtained with model d. This slow decay for model d demonstrates clearly that the
large stored acoustic energy in the fish body (Fig. 4(d)) is slowly radiated into the surrounding
medium (Fig. 6). To summarize, the core-shell model system with swim bladder + flesh + scales-
and-bones layer leads to a large slowly decaying energy density associated with a large scattering
delay. These observations and the quite large fish concentration η successfully explain the slow
diffusion of acoustic waves observed in the sea bream shoal.

CONCLUSION

In conclusion, while the assumption that fish shoals are equivalent to air bubble clouds is ad-
equate for most acoustic studies1, some cases with dense fish shoals have to be considered more
carefully. Indeed, high fish concentration (η ∼ 50–100 fish/m3) can lead to an accumulation of
scattered energy, a resulting increase in scattering delay and a drastic slowing down of sound dif-
fusion. Thus, it is essential to properly estimate ve in fish shoals in order to extend the range of
application of acoustic fisheries techniques to very dense shoals. Several improvements (such as

8
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FIG. 6: Temporal evolution of scattered energy density 〈W s〉 (plots are normalized by the total
incident energy density E i). The solid blue line represents the energy density of incident pulse

(without a scatterer). The time axis is normalized by the width of the incident pulse T0 = 0.1 ms.

scatterer shape and structure) can, in principle, be implemented in the model in order to calculate
more accurate ve values. Nonetheless, as a first study, the simple models used here are sufficient to
reveal the essential wave physics behind our observations, and enable us to demonstrate the strong
impact of coating layers surrounding the swim bladder on wave transport in dense shoals.

As shown in Fig. 3b, the strong energy velocity dependence on the fish concentration could be
useful for fish counting purposes. The method is particularly interesting since ve depends strongly
on concentration and only weakly on fish size variation (over a reasonable size range for aquacul-
ture conditions: ∆R/R 6 ± 15%). In particular, such a tool could help the aquaculture industry
for which large fish concentrations make acoustic biomass estimation impossible using traditional
acoustic approaches based on the assumption of single scattering. Noninvasive monitoring of
fish farms using diffusive waves4,24 is currently under study with long-term experiments (sev-
eral weeks) in order to investigate the impact of fish size and biomass variations on the diffusive
transport of sound waves.

METHODS

The sea cages are located in the Mediterranean Sea (Cannes, France) where the water temper-
ature is about 20◦and salinity 3.6%. The cage in which experiments were conducted is cubic with
a volume of 125 m3. The distance from the bottom of the cage to the sea bottom is z = 6.5 m. To
maintain the organic label of the farm and to avoid the need for drug treatments, the fish densities
in these cages are lower than those in intensive farming facilities (where mass densities can reach
100 kg/m3). The feeding procedures are controlled to obtain a calibrated fish size.

The theory used to fit the experimental CBS data is derived from a diffusion equation for the
average intensity 〈I(r, t)〉11 that is solved for a disordered medium occupying the half-space z > 0,
with a delta-function source at z = z′ = `∗25:

〈I(t)〉= I0

2π

∫ +∞

−∞

z0exp(−γ0z′)
D(1+ γ0z0)

exp(−iΩt)dΩ, (2)
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where γ2
0 (Ω) = −iΩ

D + 1
Dτa

, τa is the characteristic absorption time and z0 =
2
3

1+R
1−R`

∗ is the extrap-
olation length, with R = 0.99 as the reflection coefficient for the water/air interface. Theoretical
predictions for both the dynamic and stationary CBS peaks can then be obtained using this theory4.

The energy velocity theory5 (Eq. 1) is based on the calculation of the scattering function
F(θ) = |F(θ)|eiϕ(θ) with magnitude |F(θ)| and phase ϕ(θ). F(θ) represents the scattering am-
plitude in the direction given by the angle θ with respect to the incident wavevector, and is given
by the following expression:

F(θ) =
1

ik0
∑
n
(2n+1)AnPn(cosθ), (3)

where k0 represents the wavenumber of incident wave, Pn the Legendre polynomials and An the
scattering amplitude coefficients of the scattered field. The An coefficients are obtained by solving
the Mie problem13, invoking the calculation of stress and displacement continuity conditions (for
both longitudinal and shear waves) at the boundaries R1, R2 and R3

26. F(θ) is then used to obtain
the scattering cross-section σ and delay ∆tave that are needed for the calculation of equation (1):

σ = 2π

∫
dθ sinθ | f (θ)|2 and ∆tave =

∫
dθ sinθ | f (θ)|2 ∂ϕ

∂ω∫
dθ sinθ | f (θ)|2

. (4)

Additional details on the experimental method and theoretical calculations can be found in the
Supplementary Information.
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INTRODUCTION

This document provides additional information on the experiments that were performed to
investigate dense fish shoals in open-sea fish cages, and on the theory used to interpret the results
of these measurements.

EXPERIMENTAL SET-UP

The CBS experiments were performed using a Mills cross-shaped antenna that consists of two
perpendicular linear arrays, each with 64 ultrasonic piezoelectric transducers. Each transducer is
narrow band (bandwidth, 10 kHz) with a central frequency of 150 kHz, which corresponds to a
wavelength λ ' of 1 cm in water. The transducers are square in shape and have sides of 0.5 cm
' λ /2. The antenna (expressly designed by the iXblue company for aquaculture monitoring) is
placed just below the water surface, facing the sea bottom.

At full power, the radiation pressure of the ultrasonic antenna is 133 dB·µPa (measured at a
distance d = 1 m from the source and for the frequency f = 150 kHz). The hearing threshold
for sciaenidae fish is about 60 dB·µPa in the frequency range f ∈ [0.1−1] kHzS1. No avoidance
behavior of the fish has been observed during our experiments. For comparison, some vessel noise
signatures are reported in Ref. S2 and turn out to be around 130 dB·µPa in the hearing frequency
range of sciaenidae fish.

DIFFUSION THEORY

As indicated in the Methods section of the main paper, the theory used to interpret the experi-
mental CBS data is obtained from a diffusion model for the average intensityS3 〈I(r, t)〉 in a disor-
dered medium occupying the half-space z > 0 when the source is a delta-function at z = z′ = `∗S4.
The expression for 〈I(r, t)〉 is repeated here for convenience:

〈I(t)〉= I0

2π

∫ +∞

−∞

z0exp(−γ0z′)
D(1+ γ0z0)

exp(−iΩt)dΩ, (S1)

where γ2
0 (Ω) = −iΩ

D + 1
Dτa

, τa is the characteristic absorption time and z0 =
2
3

1+R
1−R`

∗ is the extrapo-
lation length, with R = 0.99 as the reflection coefficient for the water/air interface. The theoretical
expression used to fit the dynamic CBS profile 〈I(θ , t)〉 follows from the same diffusion theory,
and is given by

〈I(θ , t)〉= I0

2π

∫ +∞

−∞

z0

D

{
e−γ0z′

1+ γ0z0
+

e−γz′

1+ γz0

}
exp(−iΩt)dΩ, (S2)

where γ2(θ ,Ω) = −iΩ
D + k2

0sin2(θ)+ 1
Dτa

and γ0 = γ(θ = 0,Ω). The expression for the stationary
CBS profile is obtained by integrating equation (S2) over timeS5.

PHASE AND GROUP VELOCITIES

We outline the calculation of the wave number k for the average field. This wave number, useful
for the energy velocity calculation, is expressed as :

k2 = k2
0 +4πηF(θ = 0), (S3)
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where η is the scatterer concentration and k0 = ω/v0 is the wave number of the incident wave
at frequency f = ω/2π in water. In the far field approximation, the scattering function F(θ) =
|F(θ)|exp[iϕ(θ)], with magnitude |F(θ)| and phase ϕ(θ), represents the scattering amplitude in
the direction given by the angle θ with respect to the incident wave vector. F(θ) is given by the
following expression

F(θ) =
1

ik0
∑
n
(2n+1)AnPn(cosθ), (S4)

where Pn represents the Legendre polynomials and An the scattering amplitude coefficients of
the scattered field. The An coefficients are obtained by solving the Mie problemS6: by imposing
stress and displacement continuity conditions at the interfaces of a spherical scatterer (model a),
one obtains a system of 3 linear equations with 3 coefficientsS7. The solution of this system of
equations requires inverting a 3× 3 matrix, and leads to all of the 3 partial wave amplitudes (the
scattered longitudinal wave, the refracted longitudinal wave and the refracted shear wave). The
calculation of scattering amplitude of a coated sphere (model c) is obtained by solving a system
of 7 linear equations with 7 coefficients, as detailed in Ref. S8. Following the same procedure,
the last case of a double coated sphere (model d) requires the solution of a system of 10 linear
equations with 10 coefficients given by stress and displacement continuity conditions at the 3
interfaces.

FIG. S1: Scattering cross section calculated for the four model scatterers.

The scattering function allows the calculation of the scattering cross-section σ to be performed:

σ = 2π

∫
dθ sinθ |F(θ)|2. (S5)

The scattering cross-section of our four spherical scatterers (models a-d) is represented in figure
S1. As expected from the energy density calculations (Fig. 4), the scattering from the simple air
bubble is weak in comparison with the more elaborate spherical models b, c and d. The signifi-
cantly larger scattering strengths for the three more complicated spherical models indicate that they
are more promising candidates for achieving slower wave transport, especially model d. However
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it is evident that scattering strength alone is not sufficient to explain the energy velocity predictions
obtained from these models (see Fig. 3(a) of the main paper).

The knowledge of the wave number k leads to the calculation of the phase velocity vp =
ω/Re[k] and the group velocity vgr = ∂ω/∂Re[k]. Both these velocities are plotted in figure S2 for
the four model scatterers. In all cases, both of these velocities are very close to the water velocity
v0. These calculations reveal the weak phase shift of the forward scattered waves (since vp and
vgr only depend on F(θ = 0) and ∂Re[F(θ = 0)]/∂ω , respectively). In terms of energy transport,
these results indicate that the transport velocity of the average wave field (vgr) is barely affected
by the scattering. Thus, the ultra-slow transport of diffusive waves must result only from the very
large scattering delay of multiply scattered waves that is described in the next section.

FIG. S2: Phase (upper panel) and group (lower panel) velocities calculated for the four different
models.

ENERGY VELOCITY

The energy velocity calculation is based on the renormalization of the sound speed in pure
water due to the scattering delayS10,S11

ve =
v2

0/vp

1+δ
, (S6)

where the delay parameter δ is equal to

δ = 2πηvgr

(
vp

ω

∂ReF(0)
∂ω

+
∫

π

0
sin(θ)|F(θ)|2 ∂ϕ(θ)

∂ω
dθ

)
. (S7)
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Under the approximation v2
0/vpvgr ≈ 1 (for weak dispersion of the average wave field), the energy

velocity can be rewritten asS12

1
ve

=
1

vgr
+ησ∆tave, (S8)

where the average scattering delay ∆tave is equal to

∆tave =

∫
dθ sinθ |F(θ)|2 ∂ϕ(θ)

∂ω∫
dθ sinθ |F(θ)|2

= 2π

∫
dθ sinθ∆t(θ). (S9)

The right side of this equation follows from the definition of the total scattering cross section
[equation (S5)], and is expressed in terms of the angle-dependent scattering delay ∆t(θ) =
|F(θ)|2 ∂ϕ(θ)

∂ω
/σ . While the average-field velocities only involve the scattering function in the

forward direction, the scattering delay of diffusive waves depends on the frequency derivative of
phase shift in all scattering directions ∂ϕ(θ)/∂ω . The group velocity being similar to the sound
speed in pure water (vgr ∼ v0), it is this scattering delay that is responsible for the remarkably
slow values of the energy velocity obtained for the multi-layer sphere (model d). Thus, the adding
of the hard scales layer significantly slows down the diffusive wave transport by facilitating the
storing of acoustic energy within the scatterer, and the releasing of this energy with a large delay.
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