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Abstract 19 

It is commonly accepted that species should move toward higher elevations and latitudes to track 20 

shifting isotherms as climate warms. However, temperature might not be the only limiting factor 21 

determining species distribution. Species might move to opposite directions to track changes in other 22 

climatic variables. Here, we used an extensive occurrence dataset and an ensemble modelling 23 

approach to model the climatic niche and to predict the distribution of the seven baobab species 24 

(genus Adansonia) present in Madagascar. Using climatic projections from three global circulation 25 

models, we predicted species’ future distribution and extinction risk for 2055 and 2085 under two 26 

representative concentration pathways (RCPs) and two dispersal scenarios. We disentangled the role 27 

of each climatic variable in explaining species range shift looking at relative variable importance and 28 

future climatic anomalies. Four baobab species (A. rubrostipa, A. madagascariensis, A. perrieri¸ and A. 29 

suarezensis) could experience a severe range contraction in the future (> 70% for year 2085 under RCP 30 

8.5, assuming a zero-dispersal hypothesis). For three out of the four threatened species, range 31 

contraction was mainly explained by an increase in temperature seasonality, especially in the North of 32 

Madagascar, where they are currently distributed. In tropical regions, where species are commonly 33 

adapted to low seasonality, we found that temperature seasonality will generally increase. It is thus 34 

very likely that many species in the tropics will be forced to move equatorward to avoid an increase in 35 

temperature seasonality. Yet, several ecological (e.g. equatorial limit, or unsuitable deforested habitat) 36 

or geographical barriers (absence of lands) could prevent species to move equatorward, thus 37 

increasing the extinction risk of many tropical species, like endemic baobab species in Madagascar. 38 

Key-words: Baobabs; climatic anomaly; climate change; elevation; extinction risk; latitude; 39 

Madagascar; temperature seasonality; species distribution models, species range shift40 
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1. Introduction 41 

Climate change has already modified the spatial distribution of tropical biodiversity (Chen et al., 2009; 42 

Fadrique et al., 2018; Feeley, Silman, & Duque, 2016). Increasing temperatures, anomalous 43 

precipitation regimes (Anderson-Teixeira et al., 2013) and more frequent and severe extreme events 44 

(e.g. heatwaves, droughts and wildfires; Garcia, Cabeza, Rahbek, & Araújo, 2014) all pose significant 45 

challenges to biodiversity by pushing species towards the limits of their climatic tolerances (Rodríguez-46 

Castañeda, 2013). Temperature has been the main variable considered when studying biotic responses 47 

to climate change for several reasons. First, it is an easy to measure variable. The first reliable 48 

thermometers have been used to measure air temperature since the beginning of the 18th century 49 

(Fahrenheit, 1724). Second, temperature generally decreases with elevation and latitude and has been 50 

historically used to define habitat types on Earth (FAO, 2010; von Humboldt, 1817; Holdridge, 1947). 51 

Third, temperature is a known determinant of species biology and distribution (Sentinella, Warton, 52 

Sherwin, Offord, & Moles, 2020; Tewksbury, Huey, & Deutsch, 2008). Fourth, temperature is strongly 53 

correlated to CO2 concentration in the atmosphere and is expected to significantly increase at the 54 

global scale in the future, in association with increasing CO2 emissions due to human activities (IPCC, 55 

2014). As a consequence, it is commonly accepted that species will move towards higher elevations 56 

(i.e. upslope) and latitudes (i.e. poleward) to track shifting isotherms as the climate warms (Colwell, 57 

Brehm, Cardelús, Gilman, & Longino, 2008; Lenoir, Gégout, Marquet, de Ruffray, & Brisse, 2008; Lenoir 58 

& Svenning, 2015). 59 

However, it has also been observed that species may go “against the flow” under the effect of climate 60 

change: towards lower elevations (i.e. downslope) and lower latitudes (i.e. equatorward) to find 61 

suitable climate conditions (Lenoir et al., 2010). These unexpected directional range shifts may involve 62 

several potential determinants, e.g. indirect biotic response due to the combined effect of both climate 63 

warming and land-use change; changes in interspecific interactions such as competition release; 64 

sensitivity to other environmental gradients not conforming with upslope and poleward range shifts; 65 

physiological or evolutionary adaptations; and random shifts due to stochastic ecological processes 66 

(Crimmins, Dobrowski, Greenberg, Abatzoglou, & Mynsberge, 2011; Lenoir et al., 2010; Pinsky, Worm, 67 

Fogarty, Sarmiento, & Levin, 2013). Yet, studies reporting species range shifts in response to 68 

anthropogenic climate change usually focus on two geographical dimensions solely – latitude and 69 

elevation (Lenoir & Svenning, 2015) – and one single climatic dimension, namely mean annual 70 

temperature. Hence, these studies disregard other relevant climatic predictors such as changes in 71 

precipitation regime, water balance, or temperature seasonality, which may force species to shift 72 

downward in elevation (Crimmins et al., 2011; Lenoir et al., 2010). Given that, it is extremely important 73 

to account for additional climatic variables different from the mean annual temperature and consider 74 

other potential ecological processes that could explain species range shifts in multiple directions. 75 

The most commonly employed tools to predict current and future distribution of species under climate 76 

change from a set of observations and climatic predictors are correlative species distribution models 77 

(SDMs) (Elith & Graham, 2009; Foden et al., 2019; Guisan et al., 2013; Porfirio et al., 2014). The main 78 

outputs of these SDMs are maps of species potential distributions in the present and future. Nowadays, 79 

many easy-to-use softwares (the JAVA Maxent; Phillips, Anderson, & Schapire, 2006) or libraries (e.g. 80 

“sdm” and “biomod2”; Naimi & Araújo, 2016; Thuiller, Lafourcade, Engler, & Araújo, 2009) have been 81 

made available to easily derive such redistribution maps. Comparing present with future species 82 

distribution maps, one can assess species vulnerability to climate change by looking at species range 83 

shift, contraction, or expansion (Vieilledent, Cornu, Cuní Sanchez, Leong Pock-Tsy, & Danthu, 2013). 84 
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Surprisingly, conservation studies that employ correlative SDMs to assess species vulnerability to 85 

climate change mostly do not disentangle the respective effect of predictor variables in explaining 86 

species range shift (Fourcade, Besnard, & Secondi, 2018). Thus, they fail at explaining the possible 87 

underlying mechanisms behind such changes. For example, in an article studying the vulnerability of 88 

three baobab species to climate change in Madagascar, Vieilledent et al. (2013) showed that Adansonia 89 

suarezensis H. Perrier, and A. perrieri Capuron, will likely become extinct by 2085. However, the study 90 

does not analyze the respective role of each variable in explaining species range shift and does not 91 

suggest potential mechanisms that could explain the species extinction. In addition, a recent study 92 

assessing the vulnerability of Madagascar endemic baobabs to future climate change also failed to 93 

explore the underlying mechanisms behind expected species range shifts (Wan et al., 2020). 94 

To help fill this gap, we investigate here the specific role of a set of climatic variables in explaining shifts 95 

in species distribution associated with climate change. We chose the seven emblematic baobab species 96 

that can be found in Madagascar (Adansonia L. genus; Malvaceae family) for this purpose. Six of the 97 

seven species are endemic to Madagascar (Adansonia grandidieri Baill., A. madagascariensis Baill., A. 98 

perrieri, A. rubrostipa Jum. and Perr., A. suarezensis, and A. za Baill), while the remaining species also 99 

occurs in the African continent: A. digitata L. (Wickens 2008). Each of the seven baobab species are 100 

located in different regions of Madagascar, being adapted to different climates and could potentially 101 

have different responses to climate change. We gathered an extensive and unprecedented occurrence 102 

dataset obtained from more than 15 years of field prospection and photo-interpretation of high-103 

resolution satellite images. We used an ensemble modelling approach to model the climatic niche and 104 

to predict the distribution of these seven species. Using SDMs and climatic projections, we assessed 105 

whether each species could experience range shift, contraction or expansion, and in which direction. 106 

Looking at the relative climatic variable importance and future climatic anomalies, we disentangled 107 

the role of each climatic variable in explaining species range shift. Based on species’ extinction risk, we 108 

made suggestions to update the current baobab species conservation status. Finally, we attempted to 109 

generalize our results to other species in the tropics that should experience similar climatic anomalies 110 

in the future.111 
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2. Material and methods 112 

2.1 Presence and pseudo-absence data 113 

We used photo-interpretation of very high-resolution QuickBird (61 cm resolution: most of the cases, 114 

especially for baobab identification from the crown or by their projected shadow) and Spot5 (2.5 m 115 

resolution: only in few specific cases, such as dense and homogeneous forests) satellite images 116 

available on Google Earth (http://www.google.com/earth/index.html; see Yu & Gong, 2012) to locate 117 

A. grandidieri and A. suarezensis individual trees in Madagascar. To validate occurrence data from 118 

photo-interpretation, ground-truth verifications were conducted identifying baobabs trees by the 119 

basis of their crown size, shape and color during flowering period (see Vieilledent et al. 2013). Ground-120 

truth verification was conducted during the flowering period to facilitate species identification and 121 

validation of species occurrence data (see Vieilledent et al., 2013 for further details). For the other five 122 

Malagasy baobab species (A. digitata, A. madagascariensis, A. perrieri, A. rubrostipa, and A. za) we 123 

used an extensive presence only data-set available thanks to prospective fieldwork (2000 to 2015) 124 

from the Cirad Madagascar team. During fieldwork, baobab trees were identified at the species level 125 

and georeferenced with a GPS to generate a unique occurrence data-set for all Malagasy baobab 126 

species. 127 

Our raw data-set contains 137,285 occurrence records encompassing all seven Malagasy baobab 128 

species. First, we removed all points with coordinates outside Madagascar (only for A. digitata because 129 

occurrence records were also collected in Comoro islands). Then, for each of the seven species 130 

separately, we created a grid with 1-km² cell resolution covering the Madagascar territory and 131 

identified all cells that had at least one occurrence record for the focal baobab species. Finally, we 132 

removed all cells and respective presence observation data with incomplete bioclimatic information. 133 

For instance, the initial set of 1,686 occurrence records available for A. suarezensis was reduced to a 134 

total of 170-pixel units of 1-km2 each (Table S1 for all baobabs species). Our observation sample size 135 

was sufficient to perform SDMs because the recommended minimum sample size (see van Proosdij, 136 

Sosef, Wieringa, & Raes, 2016) for narrow-ranged species (as for A. perrieri – 21 1-km2 grid cells) is as 137 

low as 3 while it is recommended to have at least 13 occurrence points for widespread species (as for 138 

A. grandidieri or A. za – 3,772 and 460 1-km2 grid cells, respectively). We randomly sampled 10,000 139 

pseudo-absences (i.e. virtual absence data which are drawn to be representative of the environmental 140 

variability in the study-area; Barbet-Massin, Jiguet, Albert, & Thuiller, 2012) across all Madagascar for 141 

each species to constitute a presence/pseudo-absence data-set. By using pseudo-absences we used 142 

both presence and pseudo-absence information to predict species’ habitat suitability and distribution, 143 

optimizing spatial and environmental discrimination (Senay, Worner, & Ikeda, 2013). Consequently, 144 

we aimed to have a good representativity of the climate variability in Madagascar and to be able to 145 

compute a relative probability of presence across the country. 146 

2.2 Bioclimatic data 147 

We used current (~1950-2000) and future (2055 and 2085) climatic data at 30 arc-seconds resolution 148 

(about 1 km at the equator) over the entire spatial extent of Madagascar. This data is freely available 149 

on MadaClim (https://madaclim.cirad.fr/). The MadaClim website provides climatic data for 150 

Madagascar obtained from the WorldClim (http://worldclim.org/bioclim/) and CGIAR-CCAFS climate 151 

data portal (http://www.ccafs-climate.org/). We selected four bioclimatic variables (Hijmans, 152 

Cameron, Parra, Jones, & Jarvis, 2005) to model species distribution which were weakly correlated 153 

http://www.google.com/earth/index.html
https://madaclim.cirad.fr/
http://worldclim.org/bioclim/
http://www.ccafs-climate.org/


6 

 

among each other and easy to interpret with regard to baobab species distribution. Three of them 154 

were previously selected via a principal component analysis among all the 19 WorldClim bioclimatic 155 

variables (following Vieilledent et al. (2013): (1) mean annual precipitation – prec (mm.y-1); (2) mean 156 

annual temperature – tmean (°C); (3) temperature seasonality – tseas (sd x 100 ⁰C). In addition, we 157 

included a synthetic variable reflecting (4) climatic water deficit – cwd (mm). The cwd variable was 158 

computed from monthly precipitation (mcprec) and potential evapotranspiration (pet) using the 159 

following formula (Equation 1): 160 

𝑐𝑤𝑑 =  − ∑𝑖 𝑚𝑖𝑛  (𝑚𝑐𝑝𝑟𝑒𝑐𝑖 − 𝑝𝑒𝑡𝑖, 0) (1) 161 

Potential evapotranspiration is defined as the evaporation amount that would occur if a sufficient 162 

water source was available. We used the Thornthwaite formula (Thornthwaite, 1948) to compute the 163 

monthly potential evapotranspiration. The four selected bioclimatic variables are widely used (i) to 164 

define biomes globally, known as Holdridge Life Zones System (Holdridge, 1947) and (ii) as proxies for 165 

other bioclimatic variables. For instance, the mean annual temperature (tmean) is a proxy for solar 166 

radiation and temperature stress (Haigh, 2007). Additionally, the mean annual temperature may 167 

indicate potential losses of plant productivity (Hatfield & Prueger, 2015). The temperature seasonality 168 

(tseas) can be interpreted as a proxy for the growing season (Hatfield & Prueger, 2015) while the 169 

annual precipitation (prec) is a proxy for potential water availability (Amissah, Mohren, Kyereh, 170 

Agyeman, & Poorter, 2018). Finally, the climatic water deficit (cwd) can be indicative of water stress 171 

and drought periods (Fayolle et al., 2014; Stephenson, 1990). 172 

For future climate data (2055 and 2085) we selected three different global circulation models (GCMs) 173 

from the World Climate Research Programme (CMIP5) (i.e., NorESM1-M, GISS-E2-R, and HadGEM2-ES) 174 

under two representative concentration pathways (RCPs: carbon dioxide emission scenarios) (i.e., RCP 175 

4.5 and 8.5). The RCP 8.5 scenario is characterized by high concentration and increasing CO2 gas levels 176 

emissions (Riahi, Grübler, & Nakicenovic, 2007; van Vuuren et al. 2011) and can be considered the 177 

most likely emission scenario in the absence of effective mitigation policies regarding CO2 emissions, 178 

whereas RCP 4.5 is known as the “mitigation scenario” because of projected reduction of CO2 gas levels 179 

emissions (van Vuuren et al. 2011). A recent discussion has been brought in the literature affirming 180 

that RCP 8.5 is a problematic scenario for near-term (2030-2050) emissions and indicate that RCP 4.5 181 

is more likely than RCP 8.5 (Hausfather & Peters, 2020). Despite this recent discussion, we projected 182 

our main results under RCP 8.5 because: (i) we projected for long-term climate change (i.e. 2085) 183 

where projections presented by RCP 8.5 in 2100 are more probable than RCP 4.5 (Schwalm, Glendo & 184 

Duffy, 2020a); (ii) historical cumulative CO2 emissions from 2005 to 2020 are more in accordance with 185 

RCP 8.5 than RCP 4.5 (Schwalm, Glendo & Duffy, 2020)b; (iii) RCP 4.5 underestimate biotic feedbacks 186 

(e.g. changes in soil dynamics, forest fires frequency and severity, permafrost thaw) which accelerates 187 

warming, further supporting RCP 8.5 (Schwalm, Glendo & Duffy, 2020b); (iv) in our study we used RCP 188 

8.5 for the sake of risk assessment and not to compare RCPs effectiveness, despite RCP 4.5 projected 189 

temperature by 2100 is 1.7-3.2 °C, whereas for RCP 8.5 is 3.2-5.4 °C (Fuss et al. 2014). As a 190 

consequence, the outputs of RCP 4.5 in our study are presented in the supplementary material. 191 

2.3 Species distribution modeling: statistical algorithms, model performance and 192 

importance of bioclimatic variables 193 

We selected four statistical algorithms to model the bioclimatic niche and distribution of the seven 194 

studied baobab species: generalized linear models (GLMs); generalized additive models (GAMs); 195 

random forests (RF); and Maxent. Algorithms selection included standard regression models, such as 196 
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the parametric GLM and the non-parametric GAM, classification tree (RF), and maximum entropy 197 

approach (Maxent). We aimed to quantify output uncertainty and generate a gradient from robustness 198 

(GLM and GAM) to complex algorithms, i.e. RF and Maxent (Elith & Graham, 2009). The uncertainty 199 

quantification of predictive modeling follows the premise of the ensemble modelling approach (Araújo 200 

& New, 2007), which enables a consensus identification among all forecasts and the exploration of the 201 

full breadth of intermodal variability (Kujala, Moilanen, Araújo, & Cabeza, 2013). 202 

As we used two regression models (GLM and GAM) and two machine learning approaches (RF and 203 

Maxent) to fit SDMs, the inclusion of 10,000 pseudo-absence points (background points for Maxent 204 

algorithm) is advised for better SDM outputs to obtain more accurate results (Barbet-Massin et al., 205 

2012). We randomly split our presence/pseudo-absence data-set using 70% for model calibration 206 

(training data-subset) and 30% for model validation (testing data-subset) to evaluate the predictive 207 

performances of our SDMs (Hijmans, 2012). We repeated the cross-validation procedure five times. 208 

Model performance in predicting species presence-absence was estimated using four different and 209 

complementary metrics: Area Under the Receiving Operating Characteristics Curve (AUC); True Skills 210 

Statistics (TSS); Sensitivity (Sen); and Specificity (Spe; Liu, White, & Newell, 2011). We thus calculated 211 

the mean value of AUC and TSS metrics across the five testing data-subsets obtained from the cross-212 

validation procedure for each selected algorithm. By doing this we were able to describe the modelling 213 

performance in predicting species presence-absence. We also computed AUC and TSS metrics across 214 

the full data-set. 215 

The AUC computes the model probability to rank a randomly chosen presence site instead of a 216 

randomly absent site (Liu et al., 2011; Pearce & Ferrier, 2000) and is commonly used as an accuracy 217 

index for SDMs using ensemble modelling approaches (Hao, Elith, Guillera-Arroita, & Lahoz-Monfort, 218 

2019). It is a threshold-independent index, and it is also independent to prevalence (Allouche, Tsoar, 219 

& Kadmon, 2006), which is the proportion of samples representing species presence (McPherson, Jetz, 220 

& Rogers, 2004). If AUC values are >= 0.9, the model is commonly considered as highly accurate 221 

(Thuiller et al., 2009). The TSS metric is a threshold-dependent index (Liu et al., 2011) and is computed 222 

with a probability threshold maximizing its values. TSS values range from -1 to 1, and accurate models 223 

(correctly predicting both presences and absences) lead to values close to one (Thuiller et al., 2009). 224 

The TSS index is equal to Sensitivity + Specificity - 1. Sensitivity is the probability of correctly predicting 225 

a presence while specificity is the probability of correctly predicting an absence (Liu et al. 2011). As 226 

well as the AUC index, TSS is not sensitive to prevalence (Allouche et al., 2006; Lawson, Hodgson, 227 

Wilson, & Richards, 2014), so we used both accuracy indexes to evaluate SDM outputs for rare (such 228 

as A. perrieri) or abundant (such as A. grandidieri) baobab species.  229 

To evaluate the performance of the ensemble model based on committee averaging we used three 230 

previously mentioned metrics: TSS, Sen, and Spe, following Araújo and New (2007). We previously 231 

defined an evaluation threshold using the accuracy index TSS (i.e. minimum score of 0.6 or 60%) in 232 

order to: (i) remove “bad algorithms/models”; (ii) build our ensemble model; (iii) test and evaluate the 233 

ensemble model forecasting capability (i.e. predicting species presence-absence); and (iv) make the 234 

binary transformation for the committee averaging computation (Thuiller et al. 2009). 235 

For each statistical algorithm, we calculated the relative variable importance among the four studied 236 

bioclimatic variables selected for the SDMs. The computation principle follows the one used for RFs, 237 

where one bioclimatic variable is shuffled over the full data-set or the testing data-subset. To compute 238 

variable importance (I), the model prediction is calculated in this shuffled data-set, and a correlation 239 
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(Pearson’s correlation) is computed between baseline predictions (pred_ref) and the shuffled 240 

predictions (pred_shuffled; see Equation 2). 241 

𝐼 = 1 −  𝑐𝑜𝑟 (𝑝𝑟𝑒𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑑𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑)  (2) 242 

We thus generated a rank according to the variable importance over the four statistical algorithms for 243 

each species. The rank was defined by calculating the mean obtained from 6 model runs (5 runs from 244 

the testing data-subset and 1 run from the full data-set). The rank with higher mean values indicates 245 

which bioclimatic variable is more important to explain the species distribution. We used the Biomod2 246 

R package (Thuiller et al. 2009) to generate the SDMs. 247 

2.4 Current species distribution, climatic niche and elevational range 248 

For each species and each modelling algorithm, predicted probabilities of occurrence during the 249 

current period were binary transformed (0 for species absence and 1 for species presence) using the 250 

probability threshold maximizing TSS. Then, the current species distribution area (SDAp in km²) was 251 

defined as the set of 1-km2 pixels where two out of the four modelling algorithms predicted the 252 

presence of the focal species. When only one algorithm out of the four predicted a presence for a given 253 

species, it was considered as uncertain. The species was considered absent when none of the four 254 

algorithms predicted a presence. 255 

To characterize each species bioclimatic niche, we randomly sampled 1,000 points in the current 256 

species distribution area and computed the density (i.e. frequency), mean values, and 95% quantiles 257 

for each of the four studied bioclimatic variables, as well as for elevation. Elevation data in Madagascar 258 

was obtained from the SRTM (Shuttle Radar Topography Mission) 90 m Digital Elevation Data available 259 

from the CGIAR-CSI GeoPortal. Elevation data was aggregated at 1 km resolution and is also available 260 

for download on the MadaClim website. 261 

2.5 Ensemble forecasting and future species distribution 262 

To predict species distribution area in the future, we used an ensemble forecasting approach (Araujo 263 

& New 2007). For each of the two RCPs separately (RCP 4.5 and RCP 8.5), we combined climatic 264 

projections obtained from the three different GCMs (NorESM1-M, GISS-E2-R, and HadGEM2-ES) and 265 

across the four modelling algorithms (GLM, GAM, Random Forest, and Maxent). We thus obtained, for 266 

each species under each RCP and for each year (2055 and 2085), 12 maps of the future probability of 267 

presence. Again, the probability of presence was converted into binary data (0 for species absence and 268 

1 for species presence) using the same probability threshold which maximizes TSS during current 269 

conditions. Species distribution area in the future (SDAf) was defined as the set of 1-km2 pixels where 270 

most projections (6 out of 12) predicted the presence of the focal species. When less than 6 models 271 

out of the 12 predicted a presence, the species presence in the future was considered uncertain. The 272 

species was considered absent in the future when none of the 12 projections predicted a presence. 273 

When predicting future range maps under each RCP for 2055 and 2085, we also considered two 274 

contrasting dispersal hypotheses, with the reality likely to fall in between. The full-dispersal hypothesis 275 

considers the possibility for all baobab species to colonize new climatically favorable sites outside the 276 

current species distribution range. The zero-dispersal hypothesis considers the impossibility for 277 

baobab species to naturally colonize new climatically favorable sites outside the current species 278 

distribution range. This can be due to unsuitable conditions (other than climate, such as land-use) 279 
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outside the current species distribution area, or to that baobab species may not be able to disperse 280 

seeds due to geographical barriers or in the absence of animal dispersers (see Vieilledent et al. 2013). 281 

2.6. Species range shift and vulnerability to climate change 282 

To evaluate the effect of climate change and the vulnerability of the seven Malagasy baobab species, 283 

we calculated the percentage of area change between the future (SDAf) and present (SDAp) 284 

distribution range (in km²). To compute SDAf, SDAp, and mean elevational shifts, we extracted all 285 

presence points indicated as ‘presence’ by the ensemble modelling and calculated the changes for 286 

each of the investigated future scenarios (mean, 95% quantiles interval, and percentage of area change 287 

in km²). Focusing on the year 2085, under RCP 8.5 for the full-dispersal and zero-dispersal scenarios, 288 

we suggested updates for baobabs conservation management strategies given their future distribution 289 

and vulnerability to climate change according to the International Union for Conservation of Nature 290 

Red List (IUCN, 2012a). Finally, we calculated potential latitudinal and elevational species range shifts 291 

by extracting 1,000 random points inside each species distribution range projected for the present and 292 

the future (2055 and 2085), under both RCPs 4.5 and 8.5 scenarios and for the full-dispersal hypothesis.293 
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3. Results 294 

3.1 Range contraction and vulnerability of baobab species to climate change 295 

For all seven baobab species we obtained high True Skill Statistics (TSS) values for both the model 296 

cross-validation (Table S2) and the ensemble model (Table S3). For the ensemble model, the TSS was 297 

>=0.83 for all the species except for A. za, for which the TSS was equal to 0.67 due to a relatively lower 298 

specificity (Table S3). High TSS values indicate that the models can then be confidently used to predict 299 

the vulnerability of species to climate change. Four baobab species are expected to be highly 300 

vulnerable to climate change under RCP 8.5, whereas for RCP 4.5 three species are expected to be 301 

highly vulnerable. Adansonia perrieri and A. suarezensis might experience a complete range loss 302 

modelled by 2085 (under RCPs 4.5 and 8.5), and could face extinction, under both the full and zero -303 

dispersal hypothesis (Figures 1, S2; Tables 1, S4). Still, under RCP 8.5, A. madagascariensis and A. 304 

rubrostipa could experience a contraction in modelled suitable range by 2085, and thus might be 305 

threatened by extinction, under both the full (≥ -32% area) and zero-dispersal hypothesis (≥ -71% area). 306 

The three other baobab species modelled under RCP 8.5 (A. za, A. grandidieri and A. digitata), are 307 

expected to be resilient to climate change (Figure S1). These species might experience a small range 308 

contraction (down to -3%) under the zero-dispersal hypothesis and a strong range expansion (from 309 

+118% for A. za up to +300% for A. grandidieri and A. digitata) when modelled under the full-dispersal 310 

hypothesis (Table 1). Under RCP 4.5 and zero-dispersal hypothesis A. madagascariensis is predicted to 311 

lose 8% of its current distribution area, indicating that the species might not be threatened (Figure S2). 312 

The projections under RCP 4.5 and full-dispersal hypothesis also indicated a strong range expansion 313 

from +78% for A. za up to +268% for A. grandidieri and A. digitata (Figure S2; Table S4). Among these 314 

three species, only A. digitata is expected to contract its modelled suitable range by 2085 under zero-315 

dispersal hypothesis: -20% (Figure S2). Both A. grandidieri and A. za might not be affected according 316 

to this predictive scenario. 317 
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3.2 Baobab species range shift in latitude and elevation 318 

Among the four vulnerable baobab species, A. suarezensis and A. perrieri are expected to contract their 319 

range equatorward in 2085 under RCP 4.5 and for the full-dispersal hypothesis (both species are 320 

expected to go extinct under RCP 8.5 whatever the dispersal hypothesis). Adansonia madagascariensis 321 

is also expected to move equatorward while A. rubrostipa is expected to move poleward under RCP 322 

8.5 and full-dispersal hypothesis (Figures 1, 2). For the three resilient species (A. za, A. grandidieri and 323 

A. digitata), their distributional ranges should expand equatorward (A. za), poleward (A. digitata), or 324 

in both directions for A. grandidieri under RCP 8.5 and the full-dispersal hypothesis (Figure S1). 325 

Regarding shifts in elevation, all baobab species are expected to shift upward in the future (from +100 326 

m for A. za to +351 m for A. rubrostipa; Figures 2 and S3) when considering the full-dispersal hypothesis 327 

and scenario RCP 8.5 (except for A. perrieri and A. suarezensis where we considered RCP 4.5). When 328 

considering RCP 8.5 and the zero-dispersal hypothesis all threatened baobab species are expected to 329 

shrink their distribution upward (Figure 2; Table 1). Under RCP 4.5 for 2085, baobabs are expected to 330 

remain at current elevational gradient or to move upwards until 2085 (Figure S4). The potential 331 

redistribution of these species in 2085 and RCP 4.5 indicates that the A. digitata and A. rubrostipa 332 

might move poleward, whereas the other species are expected to remain in similar latitudes in the 333 

future (Figure S4). 334 

3.3 Climatic gradients and future climatic anomalies in Madagascar 335 

We identified four main climatic gradients in Madagascar (Figure 3) which are important to 336 

subsequently interpret species distribution on the island. A first gradient shows a decrease of the mean 337 

annual temperature with elevation. A second one shows an increase in temperature seasonality 338 

associated with higher latitude (lower seasonality at the North, toward the Equator, higher seasonality 339 

at the South, toward the South pole). A third gradient shows a decrease in annual precipitation from 340 

East to West associated with dominant Eastern winds and orographic precipitation (higher 341 

precipitation in the East). Finally, a fourth gradient shows an increase of the climatic water deficit from 342 

East to West due to the combining effects of precipitation and temperature. Computation of future 343 

climatic anomalies in 2085 under RCP 8.5 shows a general increase in the mean annual temperature 344 

over the whole Madagascar (from +2.5 to +4.0 °C), with a stronger increase in the inner-land than on 345 

the coast. Temperature seasonality should also generally increase over the whole Madagascar, 346 

especially at the North of the island where the temperature seasonality anomaly should reach up to 347 

+3 °C. Precipitation should generally decrease over the island (from 0 to -300 mm/yr) with a stronger 348 

decrease in the North-East. Associated with the general increase in temperature and decrease in 349 

precipitation, the climatic water deficit should generally increase (from 0 to +1500 mm/yr) over the 350 

island and decrease should be stronger in the Western part of Madagascar (> 500 mm/yr). 351 

3.4 Importance of each bioclimatic variable in explaining species redistribution 352 

For A. madagascariensis, A. perrieri, and A. suarezensis, three out of the four potentially threatened 353 

baobab species in 2085 under RCP 8.5, the most important variable for explaining species distribution 354 

and thus redistribution was temperature seasonality (Figure 4 and Table 2). These three species are 355 

currently distributed in the Northern part of Madagascar (Figure 1) and might experience, by 2085 356 

under RCP 8.5, a strong increase in temperature seasonality (from +1,13 to +1,48 °C) inside their 357 

current distribution range (Figures 1 and 4, Table S5). For the fourth threatened species (A. rubrostipa), 358 

the most important variable was climatic water deficit (Table 2). This species could experience, by 2085 359 

under RCP 8.5, a strong increase in climatic water deficit inside its current distribution range (+870 360 



12 

 

mm/yr; Figures 1, 3 and 4). The second most important variable for the four threatened species were 361 

either annual mean temperature (A. madagascariensis), mean annual precipitation (A. rubrostipa and 362 

A. suarezensis), or climatic water deficit (A. perrieri). 363 

For A. grandidieri, and A. za, two out of the three non-threatened baobab species under RCP 8.5 in 364 

2085, the most important variable for explaining these species distribution and redistribution was 365 

mean annual precipitation (Figure 4 and Table 2). Mean annual precipitation should not significantly 366 

change (from -31 to -70 mm/yr) inside the current distribution range of A. grandidieri and A. za (Figures 367 

3, 4, and Table S5), which are two species already adapted to dry climate (precipitation < 1000 mm/yr, 368 

Figure S5; Table S5). The second most important variable for these two species was annual mean 369 

temperature which is expected to significantly increase inside the two species’ distribution range in 370 

the future (+3.5 °C, Figure 3; Table S5), although not affecting their distribution (Figure 1). For A. 371 

digitata, the third non-threatened species, the two most important variables were temperature 372 

seasonality (+0,87 °C) and the climatic water deficit (+680 mm/yr). These two variables are expected 373 

to increase inside the species distribution range in the future (Figures 3, 4 and Table S5), although not 374 

affecting its distribution.375 
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4. Discussion 376 

4.1 Vulnerability of baobab species to climate change and conservation status 377 

We showed that four out of the seven Malagasy baobab species are expected to experience a strong 378 

range contraction under the effect of climate change (> 70% for year 2085 under RCP 8.5 and the zero-379 

dispersal hypothesis) and could be strongly threatened with extinction according to our predictive 380 

scenarios. These four species are: A. madagascariensis, A. perrieri, A. suarezensis, and A. rubrostipa. 381 

Among these four species, A. perrieri and A. suarezensis could face a complete loss of their habitat by 382 

2085 due in particular to an increase in the temperature seasonality in the future. The three other 383 

Malagasy baobab species, A. grandidieri, A. za, and A. digitata did not indicate any significant range 384 

contraction when modelled under climate change scenarios, except for A. digitata which might reduce 385 

its modelled distribution by 20% in 2085 under RCP 4.5 (Figure S2). For A. grandidieri and A. za, this 386 

resilience can be easily explained. A. za is a generalist species that can be found in a large range of 387 

climatic conditions and has a large distribution over Madagascar (Figures S1, S5). For A. grandideri, 388 

while it has a much narrower climatic niche than A. za and can be considered as a specialist species, it 389 

is already adapted to hot and dry climates (Figures 4, S1 and S5). Conversely, we did not find a simple 390 

explanation for the resilience of A. digitata under RCP 8.5 in 2085. Temperature seasonality and 391 

climatic water deficit (which are expected to increase in the future, Figure 3) were the most important 392 

climatic variables in explaining the distribution of this species (Figure 4). We hypothesize that the 393 

potential combination of the four climatic variables (which are rather close in terms of importance, 394 

Table 2) determines the large suitable habitat for the species in the future and its predicted resilience 395 

to climate change (Figure S1). 396 

These results are in line with those obtained by Vieilledent et al. (2013) who have previously 397 

demonstrated, with different statistical models and IPCC climate scenarios, that both A. perrieri and A. 398 

suarezensis should become extinct by 2085 due to climate change, and that A. grandidieri should not 399 

be vulnerable to climate change. In a recent study, Wan et al. (2020) found contradictory results to 400 

ours: a resilience of A. perrieri and A. suarezensis, and a vulnerability of A. za to climate change. 401 

However, these conclusions were taken by using a much smaller dataset (245 occurrence points 402 

distributed among the 6 endemic Malagasy baobab species) than ours (4830 in total, see Table S1). In 403 

addition, their statistical approach was very limited in comparison to ours. Wan et al. (2020) used only 404 

one algorithm (Maxent), while we used four algorithms for both the ensemble modelling and the 405 

forecasting approach. In particular, the vulnerability of A. za to climate change found by Wan et al. 406 

(2020) seems to be in contradiction with its known biology and distribution as a generalist species 407 

(Figures S1, S2, S5 and Table S5). 408 

In light of these results, we recommend updating the IUCN conservation status for the four threatened 409 

baobab species (Table 1) based on the risk assessment under RCP 8.5. We base our recommendations 410 

on the IUCN Red List Categories and Criteria version 3.1 (IUCN, 2012b). We recommend updating A. 411 

madagascariensis from “Near Threatened” to “Endangered A3c” (population reduction >= 50% in the 412 

future). For A. suarezensis, we recommend updating the conservation status from “Endangered B1ab 413 

+ B2ab” to “Critically Endangered B1ab + B2ab” (complete extent of occurrence loss by 2085). For A. 414 

perrieri, we recommend updating the conservation status from “Critically Endangered C2a(i)” to 415 

“Critically Endangered C2a(i) + A3c” (few mature individuals and potential extinction in the long-term). 416 

Finally, for A. rubrostipa, we recommend updating the conservation status from “Least Concern” to 417 

“Endangered A3c” (> 85% habitat loss in 2085). Climate change is not the only threat to Malagasy 418 
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baobab species. The seven baobab species are also severely threatened by habitat loss associated with 419 

the rampant deforestation in Madagascar (Vieilledent et al., 2018) which prevents species from 420 

regenerating. 421 

4.2 Species range shifts in latitude and elevation under climate change 422 

We have shown in our study that temperature seasonality was the most important variable at 423 

explaining species distribution for three out of the four threatened Malagasy baobab species. These 424 

three species (A. madagascariensis, A. perrieri, and A. suarezensis) are currently distributed in the 425 

Northern part of Madagascar, close to the Equator line, where the seasonality is lower. These three 426 

baobab species might experience, by 2085 under RCP 8.5, a strong increase in temperature seasonality. 427 

This strong increase in temperature seasonality is expected to be general to all the Northern region of 428 

Madagascar. To track the change in temperature seasonality, these three species might move 429 

equatorward, where the temperature seasonality is lower. Specifically for A. madagascariensis, mean 430 

annual temperature was the second most important variable explaining its distribution, and could also 431 

influence the species redistribution equatorward, thanks to suitable habitats in Northeastern 432 

Madagascar in 2085. Several studies on climate change have considered that the general trend for 433 

species, under the effect of climate change, will be to shift their distribution upward or poleward to 434 

escape from the increasing mean temperature globally (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; 435 

Lenoir et al., 2008; Parmesan & Yohe, 2003; Pecl et al., 2017; Vanderwal et al., 2013). Using emblematic 436 

Malagasy baobab species as an example, we demonstrate that this might not always be the case. 437 

Depending on both the bioclimatic variables that preferentially determine their distribution (the 438 

temperature seasonality in our study) and the future climatic anomalies (increase in temperature 439 

seasonality in our study), some species are expected to move in the opposite direction under the effect 440 

of climate change, i.e. equatorward. 441 

In a review article, Lenoir et al. (2010) have examined the potential mechanisms that could push 442 

species to go “against the flow” under climate change. They underlined the importance of additional 443 

ecological processes, in addition to climate change, to explain observed downslope range shifts in a 444 

warming climate. These mechanisms encompass biotic interactions (release of the competition 445 

associated with species range shift under climate change) and land-use change (new suitable habitats 446 

available downward). In our study, we show that it is not necessary to invoke other processes than 447 

climate change to explain shifts in species distribution in opposite directions. Studying the past range 448 

shift of 464 Australian bird species, VanDerWal et al. (2013), showed that complex interactions 449 

between temperature, precipitation, and species-specific tolerances could result in multi-directional 450 

distribution shifts, including equatorward. In our study, we illustrate one simple climatic mechanism, 451 

based on the change in temperature seasonality, by which species can shift their distribution 452 

equatorward. 453 

We have also shown that it is not contradictory for a species to move both equatorward and upward 454 

under climate change, as is the case for A. perrieri, A. suarezensis, and A. madagascariensis (Figure 2). 455 

This counter-intuitive range shift has already been reported for sub-mountainous forest plant species 456 

in France which have shifted their distribution both southward (i.e. equatorward in France) and 457 

upward (Kuhn, Lenoir, Piedallu, & Gégout, 2016). The explanation lies in the presence of mountainous 458 

areas towards the south of the species’ current distribution areas. In Madagascar, the explanation is 459 

different. We have shown that temperature seasonality is much more correlated to latitude than to 460 

elevation and that conversely, mean annual temperature is much more correlated to elevation than 461 

to latitude (Figure S6). Consequently, a species can shift its distribution both equatorward and upward 462 
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to track changes in both temperature seasonality and mean annual temperature, respectively. 463 

Moreover, assuming that a species moves towards the equator to track changes in temperature 464 

seasonality, it might be that the lands towards the equator are located at higher elevation, thus leading 465 

to an upward shift of the species. 466 

 4.3 Vulnerability of tropical species to change in temperature seasonality 467 

Our findings could have strong implications regarding species response to climate change in the 468 

tropics. In tropical regions, species are adapted to low temperature seasonality (Hua, 2016; Janzen, 469 

1967; Pacifici et al., 2017; Sheldon, Leaché, & Cruz, 2015). Because sunlight duration (~12 hours a day) 470 

and solar incidence do not change significantly throughout the year, the temperature seasonality in 471 

tropical regions close to the Equator is narrower in comparison with subtropical or temperate regions 472 

(Figure 5a). For instance, temperature seasonality influences plant species biology and traits as it 473 

determines the length of the growing season and their phenology, such as the date of foliation, 474 

flowering and fruiting (Pacifici et al. 2017; Wright, 1996). 475 

Here we have shown that an increase in temperature seasonality could force species to shift their 476 

distribution equatorward. Looking at the projected change in temperature seasonality in 2085 under 477 

RCP 8.5, a general increase in temperature seasonality across the tropics is expected (up to +10°C for 478 

the standard deviation of the monthly temperatures), with a particularly marked change in the Amazon 479 

region (Figure 5b). As for A. perrieri and A. suarezensis in Madagascar, the species redistribution 480 

equatorward to track changes in temperature seasonality might be impeded by several geographic and 481 

climatic barriers. This might also happen through several tropical lands located on islands in the 482 

Caribbean, Indian Ocean, or Southeast Asia for example. On these islands, the absence of land 483 

equatorward could act as a geographical barrier for species moving equatorward due to climate 484 

change. In addition, much of the tropical natural areas have been degraded, largely because of 485 

deforestation (Hansen et al., 2020). This could also prevent species from finding suitable habitats 486 

equatorward in tropical forests. Finally, species already distributed at the equator will not be able to 487 

move toward areas with lower seasonality, in analogy with species already at the top of the mountain 488 

which cannot shift their distribution upward to track temperature changes.  489 

To conclude, our study shows that not all species should migrate poleward or upward as the climate 490 

warms, which reinforces the results of previous studies (Kuhn et al. 2016, VanDerWal et al. 2013). 491 

Depending on the relative importance of the bioclimatic variables at explaining species distribution 492 

and regional climatic anomalies, shifts in species distribution can be multi-directional, including 493 

equatorward. We also underline the importance of the increase in temperature seasonality in the 494 

tropics that could potentially drag to extinction a large number of species adapted to low seasonality, 495 

among which three out of the seven emblematic baobab species of Madagascar.496 
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7. Figures 706 

 707 

Figure 1. Species range contraction under climate change for the four threatened baobab species under RCP 708 

8.5. The four species are A. madagascariensis, A. perrieri, A. rubrostipa, and A. suarezensis (one species per row). 709 

(a, e, i, m) Occurrence points over Madagascar elevation map (elevation in m); (b, f, j, n) Current predicted 710 

species distribution. Legend indicates the number of models (0-4) predicting the species presence; (c, g, k, o) 711 

Projected species distribution in 2085 under scenario RCP 8.5 and the full-dispersal hypothesis. Legend indicates 712 

the number of models (0-12) predicting the species presence; (d, h, l, p) Projected species distribution in 2085 713 

under scenario RCP 8.5 and the zero-dispersal hypothesis. Legend indicates the number of models (0-12) 714 

predicting the species presence. For the distribution maps, the species is assumed to be present (green areas) 715 

when a majority of models predicts a presence (votes >= 2 in the present, and >= 6 in the future). The species is 716 

considered absent (grey areas) when no model (votes = 0), or a minority of models (votes < 2 in the present, and 717 
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< 6 in the future), predicts a presence. Maps for A. perrieri and A. suarezensis, two species distributed at the 718 

extreme North of Madagascar, have been zoomed in (black squares).  719 
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 720 

Figure 2. Change in elevation and latitude for the most threatened baobab species. We randomly sampled 1000 721 
points inside the species predicted occurrence area in the present and in the future (due to the extremely 722 
reduced distribution area for A. perrieri and A. suarezensis, we only sampled 416 and 105 points, respectively for 723 
year 2085, and another 15 points for A. suarezensis in 2055). For A. madagascariensis and A. rubrostipa we 724 
considered the scenario RCP 8.5 and the full-dispersal hypothesis. Under RCP 8.5, both A. perrieri and A. 725 
suarezensis became extinct in 2055 and 2085. As a consequence, we used RCP 4.5 to show change in elevation 726 
and latitude for these two species. (a, b) A. madagascariensis could migrate to higher elevation under climate 727 
change scenarios for 2055 and 2085 and also change its latitudinal range to lower latitudes (i.e. equatorward) in 728 
2085. (e, f) Adansonia rubrostipa is expected to move to higher elevations and shift its latitudinal range to higher 729 
latitudes, i.e. poleward. (c, g) Both A. perrieri and A. suarezensis could shift their range to more elevated areas. 730 
(d) Adansonia perrieri might shift its range towards lower latitudes, i.e. equatorward. (h) Adansonia suarezensis 731 
is expected to retain its niche at lower latitudes  732 

 733 
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 734 

Figure 3. Spatial variability of the climatic variables in Madagascar and map of the future climatic anomalies. 735 
The four climatic variables used to perform the SDMs were considered: (a, e) annual mean temperature 736 
(Temperature in °C x 10); (b, f) temperature seasonality (T. seasonality, standard deviation of monthly 737 
temperatures x 100); (c, g) annual mean precipitation (Precipitation in mm/y); (d, h) climatic water deficit 738 
(mm/y). Climatic anomalies (e, f, g, h) were computed as the difference between the mean of future climatic 739 
data in 2085 (2070-2100) and present (1970-2000) climatic data. Mean future climatic data in 2085 were 740 
computed from three GCMs (NorESM1-M, GISS-E2-R, and HadGEM2-ES) under RCP 8.5. Four climatic gradients 741 
are well visible in Madagascar: (i) a North-South temperature seasonality gradient associated with latitude (low 742 
seasonality at the North, equatorward); (ii) a decrease in precipitation from East toward West Madagascar due 743 
to dominant Eastern winds and orographic precipitation (higher precipitation in the East); (iii) East-West water 744 
deficit gradient due to combining effect of both precipitation and temperature; and (iv) a decrease in mean 745 
temperature in more elevated areas. Temperature seasonality should increase for the whole Madagascar. This 746 
increase will be particularly important in the North of Madagascar (> +150) where seasonality is currently low. A 747 
general increase in temperature (> +3°C) is expected in 2085 over Madagascar with climate change, with a higher 748 
increase in the inner land than on the coast. All Madagascar should experience a decrease in precipitation. 749 
Decrease in precipitation is expected to be stronger in the East (between -150 and -300 mm.y-1). and a strong 750 
increase in the climatic water deficit.  751 
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 752 

 753 

Figure 4. Comparison of current (blue) and future (green) bioclimatic conditions experienced by each species 754 
within the current extent of their respective geographical ranges. We selected only the two most important 755 
climatic variables determining species distribution. Left column (panels a, c, e, g, i, k, m) shows the first most 756 
important variables; Right column (panels b, d, f, h, k, l, n) shows the second most important variables. Horizontal 757 
axis represents one of the four bioclimatic variables: mean annual temperature (temp - °C x 10), temperature 758 
seasonality (°C, standard deviation [sd] x 100), mean annual precipitation (mm/y), and climatic water deficit 759 
(mm). Vertical axis shows the distribution of values for that bioclimatic variable. Density plots show current (blue 760 
density plots) and future (2085, RCP 8.5, mean of 3 GCMs; green density plots). Dark-green shaded areas show 761 
current and future overlapping values. Bioclimatic envelope (current and future) of each variable was calculated 762 
within the current species distribution area (1000 random points extracted within occurrence areas indicated by 763 
the Ensemble approach). Vertical lines: dashed lines represent 95% bioclimatic envelope of future (green) and 764 
current (blue) variables within each species current distribution area; solid lines represent the computed mean 765 
value for current (blue) and future (green) bioclimatic data.  766 
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 767 

 768 

Figure 5. Map of temperature seasonality and future anomaly in the tropics. (a) Map of the temperature 769 

seasonality at 10’ resolution across the tropics. Black dashed line represents the equator. Intertropical regions in 770 

South America, Africa, Southeast Asia, and Oceania have similar low temperature seasonality values and 771 

temperature seasonality is decreasing from the poles to the equator. (b) Temperature seasonality anomaly 772 

obtained while comparing future temperature seasonality in 2085 under RCP 8.5 with current temperature 773 

seasonality. Future temperature seasonality in 2085 under RCP 8.5 is the mean of three GCMs (NorESM1-M, 774 

GISS-E2-R, and HadGEM2-ES). Temperature seasonality will increase throughout most of the tropics, with a 775 

particular strong increase in South America. (c) Future temperature seasonality in 2085 under RCP 8.5. (mean of 776 

the three selected GCMs). Despite changes in temperature seasonality in the future, the gradient of temperature 777 

seasonality, with a lower temperature seasonality at the equator, will be conserved in the future.778 

https://d.docs.live.net/547d3c1176e36632/Documentos/baobabs_2020_vd.docx#_msocom_2
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8. Tables 779 

Table 1. Baobabs’ vulnerability to climate change and elevational range shift in 2085 under scenario RCP 8.5. 780 

We calculated the species distribution area (km²) in the present (SDAp) and future (SDAf) to describe the change 781 

in the species distribution area (Change SDAp SDAf %) according to two dispersal hypotheses (full and zero-782 

dispersal). See IUCN Red List categories and criteria, version 3.1, second edition | IUCN Library System for criteria 783 

explanation. *IUCN criteria suggested for Madagascar; ** IUCN status defined by populational aspects for the 784 

referred species once our models did not predict vulnerability for this species.  785 

Baobab species  
IUCN status 

SDAp (km²) 

Current 
mean 

elevation 
(m) 

Dispersal 
hypothesis 

SDAf 

(km²) 

Future 
mean 

elevation 
(m) 

Change 
SDAp f 

(%) 

IUCN 
Updated 

Status 

Adansonia digitata 
Not assessed by 
IUCN  

47 872 76 
Full 194 447 195 

+306 
 

 NT* 
Zero 47 017 77 

-2 

A. grandidieri 
Endangered A2c* 

27 651 135 
Full 

118 907 365 
+330 

EN A2c** 

Zero 
27 591 135 

0 

A. 
madagascariensis 
Near threatened 

92 311 105 
Full 

62 881 263 
-32 

EN A3c 

Zero 
26 878 102 

-71 

A. perrieri 
Critically 
endangered C2a(i) 

14 872 377 
Full 

0 Extinct 
-100 

CR C2a(i) 
+ A3C 

Zero 
0  Extinct 

-100 

A. rubrostipa 
Least concern 

74 194 77 
Full 

44 833 428 
-40 

EN A3c 

Zero 
11 488 82 

-85 

A. suarezensis 
Endangered B1ab 
(i,ii,iii,iv,v) + B2ab 
(i,ii,iii,iv,v) 

3347 194 
Full 

0  Extinct 
-100 

CR B1ab + 
B2ab 

Zero 
0  Extinct 

-100 

A. za 
Least concern 

170 625 265 
Full 

372 134 365 
+118 

Least 
concern 

Zero 
166 254 271 

-3 

  786 
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Table 2. Relative importance of the four bioclimatic variables in determining species distribution. Here we 787 

present the variable mean rank of importance over the four statistical models for each species. Temperature 788 

seasonality was the most important variable in determining species distribution for four baobab species: A. 789 

digitata, A. madagascariensis, A. perrieri, and A. suarezensis. Precipitation was the most important for A. 790 

grandidieri and A. za, while climatic water deficit was the most important variable for A. rubrostipa. 791 

Abbreviations: Tmean for mean annual temperature; Tseas for temperature seasonality; Prec for mean annual 792 

precipitation; Cwd for climatic water deficit. The two most important variables for each species are in bold. 793 

Species Mean 
Annual 
Temperature 

Temperature 
Seasonality 

 

Precipitation Climatic 
Water 
Deficit 

Most 
Important 

Variables (1st 
and 2nd) 

A. digitata 0.364 0.633 0.372 0.552 Tseas/Cwd 

A. grandidieri 0.526 0.239 0.550 0.110 Prec/Tmean 

A. madagascariensis 0.651 0.824 0.309 0.153 Tseas/Tmean 

A. perrieri 0.369 0.954 0.336 0.518 Tseas/Cwd 

A. rubrostipa 0.320 0.330 0.360 0.730 Cwd/Prec 

A. suarezensis 0.211 0.987 0.620 0.150 Tseas/Prec 

A. za 0.471 0.309 0.625 0.168 Prec/Tmean 

794 
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9. Supporting Information 795 

9.1 Supplementary Figures 796 

 797 

Figure S1. Species range shifts under climate change for the three resilient baobab species under RCP 8.5. The 798 

three species are A. digitata, A. grandidieri, and A. za (one species per row). (a, e, i) Occurrence points over 799 

Madagascar elevation map (elevation in m); (b, f, j) Current predicted species distribution. Legend indicates the 800 

number of models (0-4) predicting the species presence (c, g, k) Projected species distribution in 2085 under 801 

scenario RCP 8.5 and the full-dispersal hypothesis. Legend indicates the number of models (0-12) predicting the 802 

species presence (d, h, l) Projected species distribution in 2085 under scenario RCP 8.5 and the zero-dispersal 803 

hypothesis. Legend indicates the number of models (0-12) predicting the species presence. For the distribution 804 

maps, the species is assumed to be present (green areas) when a majority of models predicts a presence (votes 805 

>= 2 in the present, and >= 6 in the future). The species is considered absent (grey areas) when no model (votes 806 

= 0), or a minority of models (votes < 2 in the present, and < 6 in the future), predicts a presence. 807 
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Figure S2. Species range contraction under climate change (RCP 4.5) for all baobab species. The seven species 809 

are A. digitata, A. grandidieri, A. madagascariensis (A. mada.), A. perrieri, A. rubrostipa, A. suarezensis, and A. za 810 

(one species per row). (a, e, i, m, q, u, y) Occurrence points over Madagascar elevation map (elevation in m); (b, 811 

f, j, n, r, v, z) Current predicted species distribution. Legend indicates the number of models (0-4) predicting the 812 

species presence; (c, g, k, o, s, w, a’) Projected species distribution in 2085 under scenario RCP 4.5 and the full-813 

dispersal hypothesis. Legend indicates the number of models (0-12) predicting the species presence; (d, h, l, p, 814 

t, x, b’) Projected species distribution in 2085 under scenario RCP 4.5 and the zero-dispersal hypothesis. Legend 815 

indicates the number of models (0-12) predicting the species presence. For the distribution maps, the species is 816 

assumed to be present (green areas) when a majority of models predicts a presence (votes >= 2 in the present, 817 

and >= 6 in the future). The species is considered absent (grey areas) when no model (votes = 0), or a minority of 818 

models (votes < 2 in the present, and < 6 in the future), predicts a presence. Maps for A. perrieri and A. 819 

suarezensis, two species distributed at the extreme North of Madagascar, have been zoomed in (black squares). 820 

  821 
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822 
Figure S3. Change in elevation and latitude for the climate-resilient baobab species. We randomly sampled 823 

1000 points inside the species predicted occurrence area in the present and in the future under RCP 8.5 scenario 824 

and full-dispersal hypothesis. (a, b) For A. digitata, the species should maintain stable its average elevational and 825 

latitudinal gradient from the current projection until 2085. (c, d) Adansonia grandidieri might move to higher 826 

elevations and shift its latitudinal range to lower latitudes. (e, f) Adansonia za could slightly shift its elevational 827 

gradient to more elevated areas in 2085 and higher latitudes, i.e. equatorward, from the present to 2085.   828 
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 829 

Figure S4. Change in elevation and latitude for the all baobab species under RCP 4.5 in the present and under 830 

two future scenarios (2055 and 2085). We randomly sampled 1000 points inside the species predicted 831 

occurrence area in the present and in the future (due to the extremely reduced distribution area for A. perrieri 832 

and A. suarezensis, we only sampled 416 and 105 points, respectively for year 2085, and another 15 points for 833 

A. suarezensis in 2055). (a, c, e, g, i, k, m) All species showed a tendency to maintain their current elevational 834 

range in the future or move upwards in 2055 or 2085 considering elevation. (b, d, j) Considering latitude 835 

distributional range, A. digitata, A. grandidieri, and A. rubrostipa are expected to move polewards in the future, 836 

while (h, l, m) A. perrieri, A. suarezensis, and A. za are expected to move equatorward, and (f) A. 837 

madagascariensis might keep stable its current latitudinal range in 2055 and 2085. 838 
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 839 

Figure S5. Bioclimatic niche of the seven baobabs species found in Madagascar. We computed species 840 

bioclimatic niche by randomly sampling 1000 points within each species distribution area for the four climatic 841 

variables selected in this study: annual mean temperature, temperature seasonality, mean annual precipitation, 842 

and climatic water deficit. Dashed lines (red) represent the climatic conditions through Madagascar. Baobab 843 

niche breadth indicates difference between species’ climatic niche, with climatic specialist ones (A. digitata and 844 

A. madagascariensis – adapted to warmer temperatures –; A. grandidieri – adapted to higher seasonality in 845 

temperature and drier climate –; A. perrieri and A. suarezensis – adapted to lower seasonality in temperature), 846 

and generalist/ubiquitous species (A. rubrostipa and A. za), with a wider climatic niche which encompass almost 847 

every other baobab species bioclimatic niche.  848 
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 849 

Figure S6. Relationship between climatic, elevational, and latitudinal gradients in Madagascar. We sampled 850 

1000 random points through Madagascar extent. (a) Mean annual temperature is significantly lower as elevation 851 

increases. (b) Temperature seasonality remains stable as elevation increases, however, as elevation is > 1500 m, 852 

temperature seasonality might increase. (c) The mean annual temperature variation according to latitude in 853 

Madagascar. Mean annual temperature ranges between 22 °C to 25 °C across the entire country. (d) The 854 

temperature seasonality variation according to latitude in Madagascar. We see a decrease in seasonality from 855 

South (7200000 UTM) to North Madagascar (8400000 UTM). Shaded area surrounding the red line represents 856 

the smooth fitting values of the 1000 random points sampled. 857 



 
 
 

 

9.2 Supplementary Tables 858 

 859 

Table S1. Presence data-set used for the species distribution modeling (SDM). We computed the number 860 
of presence points with GPS coordinates for each species. Considering a 1-km² spatial grid covering 861 
Madagascar, we identified the cells including at least one presence point for each species independently. 862 
Doing so we obtained a presence data-set at 1-km² resolution for each species. We removed cells with 863 
incomplete associated bioclimatic data from the presence data-set. 864 

Species 
Number of initial 

presence points with 
GPS coordinates 

Number of 1-km² cells 
with presence data 

Number of 1-km² cells 
with presence data in 

Madagascar and 
complete bioclimatic 

data 

A. digitata 1854 151 62 
A. grandidieri 128 609 3772 3770 
A. madagascariensis 1222 159 153 
A. perrieri 150 21 21 
A. rubrostipa 794 93 90 
A. suarezensis 1686 174 170 
A. za 2970 460 460 

  865 



 
 
 

 

Table S2. Performance of the four statistical models in predicting species presence–absence. AUCc and 866 

TSSc indicate the mean of the Area Under the ROC Curve and the True Skills Statistics respectively after a 867 

5-fold cross-validation procedure (data were split into 70% of the training data and 30% of test data). AUC 868 

full and TSS full indicate the Area Under the ROC Curve and the True Skills Statistics calculated for the full 869 

data-set (100% of the data).  870 

Species Model AUC full AUCc TSS full TSSc 

A. digitata 

GLM 0.972 0.955 0.900 0.903 

GAM 0.989 0.974 0.977 0.949 

Random Forests 1 0.969 0.999 0.927 

Maxent 0.970 0.967 0.859 0.875 

A. grandidieri 

GLM 0.991 0.991 0.951 0.951 

GAM 0.991 0.990 0.950 0.951 

Random Forests 1 0.994 0.988 0.965 

Maxent 0.989 0.989 0.936 0.936 

A. madagascariensis 

GLM 0.961 0.958 0.834 0.834 

GAM 0.966 0.963 0.834 0.837 

Random Forests 1 0.964 0.993 0.839 

Maxent 0.959 0.958 0.812 0.819 

A. perrieri 

GLM 0.993 0.954 0.967 0.913 

GAM 0.991 0.941 0.981 0.887 

Random Forests 1 0.960 1 0.917 

Maxent 0.987 0.987 0.924 0.946 

A. rubrostipa 

GLM 0.959 0.961 0.839 0.856 

GAM 0.962 0.963 0.831 0.858 

Random Forests 1 0.967 0.999 0.891 

Maxent 0.951 0.953 0.783 0.841 

A. suarezensis 

GLM 0.998 0.998 0.993 0.991 

GAM 0.999 0.998 0.995 0.993 

Random Forests 1 0.996 0.999 0.989 

Maxent 0.949 0.960 0.992 0.917 

A. za 

GLM 0.881 0.870 0.631 0.621 

GAM 0.893 0.880 0.676 0.655 

Random Forests 0.999 0.944 0.992 0.742 

Maxent 0.881 0.870 0.638 0.622 

871 



 
 
 

 

Table S3. Performance of the ensemble model based on committee averaging. Values of the threshold-872 

dependent indices True Skill Statistics (TSS), Sensitivity, and Specificity are described below. Almost all TSS 873 

values were >= 0.83 except for A. za, where the TSS was 0.672 due to a relatively lower specificity. The 874 

performance metrics thus indicate good performance of the ensemble model by correctly predicting 875 

species presence/absence on committee averaging method. 876 

Species TSS Sensitivity Specificity 

A. digitata 0.92 1.00 0.92 

A. grandidieri 0.95 0.99 0.96 

A. madagascariensis 0.83 0.99 0.84 

A. perrieri 0.97 1.00 0.97 

A. rubrostipa 0.85 0.97 0.87 

A. suarezensis 0.99 1.00 0.99 

A. za 0.67 0.94 0.72 

 877 

878 



 
 
 

 

Table S4. Baobabs’ vulnerability to climate change and elevational range shift in 2085 under scenario 879 

RCP 4.5. We calculated the species distribution area (km²) in the present (SDAp) and future (SDAf) to 880 

describe the change in the species distribution area (Change SDAp SDAf %) according to two dispersal 881 

hypotheses (full and zero-dispersal).  882 

Baobab species  
IUCN status 

SDAp (km²) 

Current 
mean 

elevation 
(m) 

Dispersal 
hypothesis 

SDAf (km²) 

Future 
mean 

elevation 
(m) 

Change 
SDAp f (%) 

Adansonia digitata 
Not assessed by IUCN  

47 872 76 
Full 91 692 100 

+92 

Zero 38 293 68 
-20 

A. grandidieri 
Endangered A2c* 

27 651 135 
Full 

101 727 285 
+268 

Zero 
27 651 135 

0 

A. madagascariensis 
Near threatened 

92 311 105 
Full 

123 913 184 
+34 

Zero 
 85 023 108 

-8 

A. perrieri 
Critically endangered 
C2a(i) 

14 872 377 
Full 

427 762 
-97 

Zero 
427  762 

-97 

A. rubrostipa 
Least concern 

74 194 77 
Full 

53 367 283 
-28 

Zero 
15 636 277 

-79 

A. suarezensis 
Endangered B1ab 
(i,ii,iii,iv,v) + B2ab 
(i,ii,iii,iv,v) 

3347 194 
Full 

100  393 
-97 

Zero 
100  393 

-97 

A. za 
Least concern 

170 625 265 
Full 

304 482 294 
+78 

Zero 
170 622 265 

0 

 883 

 884 



 
 
 

 

Table S5. Climate change within the current species distribution areas. We computed the climatic 885 

variables’ mean and 95% quantiles within the current species distribution areas for the current and future 886 

climates. For the future climate, we considered the mean of the climatic projections of three GCMs (GISS-887 

E2-R; HadGEM2-ES; NorESM1-M) for the year 2085 under RCP 8.5. Abbreviations: Temppf for mean annual 888 

temperature (in °C x 10); Tseaspf for temperature seasonality (in °C sd x 100); Precpf for mean annual 889 

precipitation (in mm.y-1); Cwdpf for climatic water deficit (in mm) in the present (p) and future (f).  890 

Baobab species Confidence 
interval 

Tempp 

  
Tempf 

  
Tseasp Tseasf Precp Precf Cwdp Cwdf 

A. digitata Mean 264 298 1525 1612 1390 1205 800 1680 

  2.5% 258 291 1136 1267 953 937 691 1372 

  97.5% 270 306 2246 2208 1665 1454 882 1926 

A. grandidieri Mean 251 286 2649 2729 746 715 764 1670 

  2.5% 243 277 2338 2402 467 474 642 1447 

  97.5% 260 296 2887 3045 956 895 877 1978 

A. madagascariensis Mean 263 296 1510 1623 1485 1298 724 1546 

  2.5% 253 282 1133 1269 1110 986 399 980 

  97.5% 272 308 2008 2101 1953 1733 890 1989 

A. perrieri Mean 243 272 1391 1539 1483 1257 465 962 

  2.5% 192 223 948 1117 1262 1063 230 436 

  97.5% 267 300 1890 2108 1764 1483 738 1563 

A. rubrostipa Mean 258 292 1972 2046 1088 969 808 1678 

  2.5% 240 273 1224 1335 413 395 719 1455 

  97.5% 270 306 2898 2921 1650 1451 913 1914 

A. suarezensis Mean 255 283 1275 1389 1288 1103 629 1242 

  2.5% 233 259 1221 1333 1121 932 402 724 

  97.5% 267 295 1357 1479 1498 1303 794 1653 

A. za Mean 245 280 2583 2668 830 760 689 1488 

  2.5% 220 256 1282 1406 430 388 378 870 

  97.5% 270 307 3183 3229 1524 1363 902 2010 

 891 


