Jules Pitcho 
email: jules.pitcho@uzh.ch
  
Massimo Sorella 
email: massimo.sorella@epfl.ch
  
  
  
ALMOST EVERYWHERE NON-UNIQUENESS OF INTEGRAL CURVES FOR DIVERGENCE-FREE SOBOLEV VECTOR FIELDS

Keywords: Sobolev vector fields, generalized flows, continuity equation, ODE, integral curves 35A02 -35D30 -35Q49 -34A12

We construct divergence-free Sobolev vector fields in C([0, 1]; W 1,r (T d ; R d )) with r < d and d ≥ 2 which simultaneously admit any finite number of distinct positive solutions to the continuity equation. We then show that the vector fields we produce have at least as many integral curves starting from L d -a.e. point of T d as the number of distinct positive solutions to the continuity equation these vector fields admit. Our work uses convex integration techniques introduced in [4, 20] to study nonuniqueness for positive solutions of the continuity equation. We then infer non-uniqueness for integral curves from Ambrosio's superposition principle.

Introduction

In this paper we study positive solutions of the continuity equation

∂ t ρ + div(ρu) = 0, ρ(•, t) = ρ 0 (•) (1.1)
where u : [0, 1] × T d → R d is a prescribed vector field on the d-dimensional torus and ρ 0 : T d → R is the initial datum. Throughout this work, (1.1) will be understood in the sense of distributions which only requires that ρ and ρu be integrable. We then study integral curves of the vector field u.

In the smooth setting, the Cauchy-Lipschitz theory guarantees the existence of a unique flow X : [0, 1] × T d → T d of the vector field u satisfying ∂ t X(t, x) = u(t, X(t, x)), X(0, x) = x.

(1.

2)

The classical Liouville theorem then gives a representation of solutions of (1.1) in terms of the flow X of the vector field u through the formula ρ(t, •)L d = X(t, .) # (ρ 0 L d ).

(1.3)

For rough vector fields, the relationship between the continuity equation and the corresponding flow is an active field of research since the foundational work of DiPerna and Lions in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]. By means of a regularization scheme, they showed that if u ∈ L 1 ((0, 1); W 1,r (T d )) and div u ∈ L 1 ((0, 1) × T d ), then (1.1) is well-posed in the class L ∞ ((0, 1); L p (T d )), where p, r ≥ 1 satisfy the relation

1 p + 1 r ≤ 1.
In [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF], Ambrosio extended the work of DiPerna and Lions to the setting of BV vector fields. We now gather some useful definitions to investigate the relation of the ODE (1.2) and the PDE (1.1) in the non-smooth setting. Definition 1.1. Let u : (0, 1) × T d → R d be a Borel map. We say that γ ∈ AC([0, 1]; T d ) is an integral curve of u starting at x if γ(0) = x and γ ′ (t) = u(t, γ(t)) for a.e. t ∈ (0, 1).

The regular Lagrangian flow is then a suitable selection of integral curves of u by a compressibility condition (introduced in [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF][START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]). Definition 1.2 (Regular Lagrangian flow). Let u : (0, 1) × T d → R d be Borel. We say that a Borel map X : [0, 1] × R d → R d is a regular Lagrangian flow of u if (i) for L d -a.e. x ∈ T d , t → X(t, x) is integral curve of u with X(0, x) = x, (ii) there is a constant C > 0 such that for every t ∈ [0, 1], X(t, .)

# L d ≤ CL d .
The well-posedness of the regular Lagrangian flow for vector fields u in L 1 ((0, 1); W 1,1 (T d )) with the negative part of the divergence satisfying [div u] -∈ L 1 ((0, 1); L ∞ (T d )) was first derived from the wellposedness of (1.1) for bounded densities, and for such densities the formula (1.2) holds using as X the regular Lagrangian flow (see [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] and see [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF] for the BV vector fields case). Later in [START_REF] Crippa | Estimates and regularity results for the DiPerna-Lions flow[END_REF], Crippa and De Lellis proved well-posedness of the regular Lagrangian flow without resorting to the PDE (1.1), but their approach only works for vector fields in L 1 ((0, 1); W 1,r (T d )) with r > 1. At any rate, the uniqueness of the regular Lagrangian flow does not imply L d -a.e. uniqueness of integral curves. Indeed, Bruè, Colombo and De Lellis recently produced divergence-free Sobolev vector fields -uniqueness of the regular Lagrangian flow associated to these vector fields therefore holds -for which almost everywhere uniqueness of integral curves fails (see [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]Theorem 1.3]). We note that the case of continuous vector field is still open (question posed in [1, Section 2.3]) although in [START_REF] Caravenna | A directional lipschitz extension lemma, with applications to uniqueness and lagrangianity for the continuity equation[END_REF], Crippa and Caravenna proved almost everywhere uniqueness of the trajectories when u ∈ C((0, 1); W 1,r ) when r > d.

In this work we show that, for divergence-free Sobolev vector fields, uniqueness of integral curves of the ODE (1.2) can fail for a set of initial data with full measure. In fact, we show that the non-uniqueness for integral curves is even worse: for any natural number N we produce divergence-free Sobolev vector fields with at least N integral curves starting almost everywhere. We highlight that our result demonstrates the power of the selection principle of the regular Lagrangian flow ((ii) in Definition 1.2) for integral curves of Sobolev vector fields. Indeed, amongst at least N integral curves starting from L d -a.e. point of T d , the regular Lagrangian flow selects a single integral curve for L d -a.e. starting point.

Theorem 1.3. For every d, N ∈ N, d ≥ 2, r ∈ [1, d) and s < ∞ there is a divergence-free vector field u ∈ C((0, 1); W 1,r (T d ; R d ) ∩ L s ) such that the following holds for every Borel map v with u = v L d+1 -a.e.:

(NU) For L d -a.e. x ∈ T d there are at least N integral curves of v starting at x.

Ambrosio's superposition principle [START_REF]Transport equation and Cauchy problem for non-smooth vector fields[END_REF]Theorem 3.2] bridges the gap between positive solutions of the continuity equation (1.1) for a vector field u and the integral curves of u (as in Definition 1.1): it gives a way of representing positive solutions of the continuity equation in terms of integral curves of the vector field without any differentiability assumption, i.e. under more general assumptions than DiPerna-Lions theory. Using Ambrosio's superposition principle, we will derive Theorem 1.3 from a non-uniqueness result for positive solutions of (1.1), which in turn will be proved using a convex integration iterative procedure. The term convex integration is generic to designate iterative techniques by which wild solutions of PDEs are constructed. Such techniques were introduced in the study of the continuity equation in the groundbreaking work of Modena and Székelyhidi [START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF][START_REF]Non-renormalized solutions to the continuity equation[END_REF] (see also [5, 6, 8-11, 13-15, 17, 18] for interesting results using the convex integration methods).

Theorem 1.4. Let d, N ∈ N with d ≥ 2. Let p ∈ (1, ∞), r ∈ [1, ∞] be such that 1 p + 1 r > 1 + 1 d ,
and denote by p ′ the dual exponent of p, i.e. 1/p + 1/p ′ = 1. Then there exists a divergence-free vector field In order to prove Theorem 1.4, we adapt the convex integration scheme for positive solutions of the continuity equation introduced in [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]: our proof makes use of two new ideas. Firstly, we keep track of a fixed number of densities and one single vector field throughout the iteration scheme. Each density is perturbed using a distinct family of building blocks 1 . Each of these building blocks then interacts only with one term of the perturbation to the vector field (see the key identity (4.11)). Secondly, we localize in space the corrector parts of the perturbation to the densities (see (3.15)) which will be negative, in order to preserve the positivity of the solutions. We also note that to prove Theorem 1.4 in dimension d = 2 the ideas of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]Section 7] need to be adapted for technical reasons. This will be explained in Section 6.

u ∈ C 0 ([0, 1], W 1,r (T d ) ∩ L p ′ (T d ))

Preliminary lemmas

In this section, we gather some useful lemmas from [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF][START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF]. We will write

T d for R d /Z d . Lemma 2.1. Let d, N ∈ N + . Then, there exist disjoint families, Λ i , of finite sets {ξ} ξ∈Λ i ⊆ ∂B 1 ∩ Q d for i = 1, .., N and smooth nonnegative coefficients a ξ (R) such that for every R ∈ ∂B 1 R = ξ∈Λ i a ξ (R)ξ
for any i = 1, .., N .

2.1.

Antidivergences. We recall that the operator ∇∆ -1 is an antidivergence when applied to smooth vector fields of zero mean. The following lemma proven in [START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF]Lemma 2.3] and [START_REF] Modena | Convex integration solutions to the transport equation with full dimensional concentration[END_REF]Lemma 3.5] gives an improved antidivergence operator for functions with a particular structure. Lemma 2.2. (Cp. with [START_REF] Modena | Convex integration solutions to the transport equation with full dimensional concentration[END_REF]Lemma 3.5]) Let λ ∈ N and f, g : T d → R be smooth functions, and

g λ = g(λx). Assume that ´g = 0. Then if we set R(f g λ ) = f ∇∆ -1 g λ -∇∆ -1 (∇f • ∇∆ -1 g λ + ´f g λ ),
we have that div R(f g λ ) = f g λ -´f g λ and for some C := C(k, p) 

D k R(f g λ ) L p ≤ Cλ k-1 f C k+1 g W k,p for every k ∈ N, p ∈ [1, ∞]. ( 2 
f (x)g(λx) L p ≤ f L p g L p + C(p) √ d f C 1 g L p λ 1/p (2.2) and ˆf (x)g(λx) dx ≤ ˆf (x) g(λx) - ˆg dx + ˆf • ˆg ≤ √ d f C 1 g L 1 λ + ˆf • ˆg . (2.
3)

1
The term building block refers to smooth functions or vector fields which are fixed before iteration, and which are used to construct perturbations in a convex integration iterative scheme.

Building blocks.

The building blocks are the same as those of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]Section 4]. We recall them here for the convenience of the reader. Let 0 < ρ < 1 4 be a constant. We consider

ϕ ∈ C ∞ c (B ρ ) and ψ ∈ C ∞ c (B 2ρ ) which satisfy ˆϕ = 1, ϕ ≥ 0, ψ ≡ 1 on B ρ .
Given µ ≪ 1 we define the 1-periodic functions φµ (x) :=

k∈Z d µ d/p ϕ(µ(x + k)) ψµ (x) := k∈Z d µ d/p ′ ψ(µ(x + k)) .
Let ω : R d → R be a smooth 1-periodic function such that ω(x) = x • ξ ′ on B 2ρ (0). Given Λ as in Lemma 2.1, for any ξ ∈ Λ we chose ξ ′ ∈ ∂B 1 such that ξ • ξ ′ = 0 and we define

Ω µ ξ (x) := µ -1 ω(µ x)(ξ ⊗ ξ ′ -ξ ′ ⊗ ξ). Notice that div Ω µ
ξ is divergence-free since Ω µ ξ is skew-symmetric and div Ω µ ξ = ξ on supp( ψµ ) and supp( φµ ). For σ > 0 we set Wξ,µ,σ (t, x)

:= σ 1/p ′ div (Ω µ ξ ψµ )(x -µ d/p ′ σ 1/p ′ tξ) (2.4) Θξ,µ,σ (t, x) := σ 1/p φµ (x -µ d/p ′ σ 1/p ′ tξ) . ( 2.5) 
Notice that Wξ,µ,σ is divergence-free since it is also the divergence of the skew-symmetric matrix Ω µ ξ ψµ . By construction we have

Wξ,µ,σ (t, x) = σ 1/p ′ ψµ ξ + Ω µ ξ • ∇ ψµ (x -µ d/p ′ σ 1/p ′ tξ)
, hence the following properties are easily verified. If we consider the translations

W ξ,µ,σ (t, x) = Wξ,µ,σ (t, x -v ξ ), Θξ,µ,σ (t, x) = Θξ,µ,σ (t, x -v ξ ),
we can prove the following result.

Lemma 2.3. Let d ≥ 3, Λ ⊂ ∂B 1 ∩ Q d be a finite set. Then there exists µ 0 > 0 such that the following holds.

There exist two families of functions

{Θ ξ,µ,σ } ξ,µ,σ ⊂ C ∞ (T d ), {W ξ,µ,σ } ξ,µ,σ ⊂ C ∞ (T d ; R d )
, where ξ ∈ Λ, σ, µ ∈ R such that for any µ ≥ µ 0 , σ > 0 we have

∂ t Θ ξ,µ,σ + div(W ξ,µ,σ Θ ξ,µ,σ ) = 0, (2.6) div W ξ,µ,σ = 0, ˆWξ,µ,σ = 0, (2.7) ˆWξ,µ,σ Θ ξ,µ,σ = σξ. (2.8)
For any k ∈ N and any s ∈ [1, ∞] one has

D k Θ ξ,µ,σ L s ≤ C(d, k, s)σ 1/p µ k+d(1/p-1/s) , ∂ k t Θ ξ,µ,σ L s ≤ C(d, k, s)σ 1+ k-1 p ′ µ k+d( k-1 p ′ +1-1 s ) (2.9) D k W ξ,µ,σ L s ≤ C(d, k, s)σ 1/p ′ µ k+d(1/p ′ -1/s) , ∂ k t W ξ,µ,σ L s ≤ C(d, k, s)σ k+1 p ′ µ k+d( k+1 p ′ -1 s ) . (2.10)
Finally, they have pairwise compact disjoint supports for any ξ = ξ ′ , namely

suppW ξ,µ,σ ∩ suppΘ ξ ′ ,µ,σ = suppW ξ,µ,σ ∩ suppW ξ ′ ,µ,σ = suppΘ ξ ′ ,µ,σ ∩ suppΘ ξ,µ,σ = ∅, (2.11) 
for any ξ = ξ ′ .

The proof of the previous lemma follows combining [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]Lemma 4.1 and Lemma 4.2].

Iteration scheme

The convex integration scheme to construct solutions of the continuity equation was first introduced in [START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF]. The scheme was later adapted in [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF] to construct positive solutions of the continuity equation. To prove Theorem 1.3 we will adapt the convex integration scheme of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF].

First, we define the notion of a family of a-open sets. This notion is useful because of the convolution step in the iteration scheme.

Definition 3.1. Let N ∈ N, a ∈ R + and {A i } 1≤i≤N be a finite family of open sets of T d . We say that the family {A i } 1≤i≤N is a-open if for any i = 1, . . . , N there exists a ball B i of radius 1 4aN such that B i ⊂ A i .
As in [START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF] we consider the following system of equations in

[0, 1] × T d , where d ≥ 2,      ∂ t ρ q,i + div(ρ q,i u q ) = -div R q,i div u q = 0, (3.1)
where the indices are i, q ∈ N and 1 ≤ i ≤ N . We then fix three parameters a 0 , b > 0 and β > 0, to be chosen later only in terms of d, p, r, and for any choice of a > a 0 we define

λ 0 = a, λ q+1 = λ b q and δ q = λ -2β q .
The following proposition builds a converging sequence of functions with the inductive estimates

max t R q,i (t, •) L 1 ≤ δ q+1 (3.2) max t ( ρ q,i (t, •) C 1 + ∂ t ρ q,i (t, •) C 0 + u q (t, •) W 1,p ′ + u q (t, •) W 2,r + ∂ t u q (t, •) L 1 ) ≤ λ α q , ( 3.3) 
for any i = 1, . . . , N , where α is yet another positive parameter which will be specified later.

Proposition 3.2. Let d, N ∈ N, d ≥ 3.
There exist α, b, a 0 , M > 5, 0 < β < (2b) -1 such that the following holds. For every family {A i } 1≤i≤N of a 0 -open in T d and for every a ≥ a 0 , if {(ρ q,i , u q , R q,i )} 1≤i≤N solve (3.1) and enjoy the estimates (3.2), (3.3), then there exist {(ρ q+1,i , u q+1 , R q+1,i )} 1≤i≤N which solve (3.1) and enjoy the estimates (3.2), (3.3) with q replaced by q + 1. Moreover, for any i = 1, . . . , N , the following hold:

(a) sup [0,1] [ (ρ q+1,i -ρ q,i )(t, •) p L p + (u q+1 -u q )(t, •) r W 1,r + (u q+1 -u q )(t, •) p ′ L p ′ ] ≤ M δ q+1 ; (b) the following properties inf [0,1]×(T d \Ai) ρ q,i ≥ 0, inf [0,1]×Ai ρ q,i ≥ c > 0, imply inf [0,1]×(T d \Ai) ρ q+1,i ≥ 0, inf [0,1]×Ai ρ q+1,i ≥ c -δ q+1 , (c) if for some t 0 > 0 we have that ρ q,i (t, •) = 1, R q,i (t, •) = 0 and u q (t, •) = 0 for every t ∈ [0, t 0 ], then ρ q+1,i (t, •) = 1, R q+1,i (t, •) = 0 and u q+1 (t, •) = 0 for every t ∈ [0, t 0 -λ -1-α q ], (d) if for some t 0 > 0 we have that supp ρ q,i (t, •) ⊂ B i , R q,i (t, •) = 0 and u q (t, •) = 0 for every t ∈ [t 0 , 1], then supp ρ q+1,i (t, •) ⊂ B i,λ -1-α q , R q+1,i (t, •) = 0 and u q+1 (t, •) = 0 for every t ∈ [t 0 + λ -1-α q , 1], where B i,λ -1-α q := {x ∈ T d : d(x, B i ) < λ -1-α q }.
Remark 3.3. We highlight that the constant a 0 in the proposition above does not depend on the sets A i but only on the number N . Therefore, when we apply this proposition (to prove Theorem 1.4), we choose the sets A i after having fixed a 0 .

To prove Proposition 3.2 we use a convex integration scheme similar to the one in [4, Proposition 2.1]. However, the end products of our scheme are different from those of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF]. Indeed, we seek to produce a single vector field u and N densities ρ i with mutually disjoint compact supports for some time such that (ρ i , u) weakly solves (1.1). Accordingly, we modified the iterative proposition of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF] in two essential ways: we index N distinct densities ρ q,i by the parameter i = 1, . . . , N ; we have refined the control inf ρ q+1,i over the subregion T d \ A i thanks to (b). The former is achieved by taking N disjoint families of building blocks {Λ i } 1≤i≤N , and the latter by localizing to A i the corrector part of the perturbation to ρ q,i .

3.1. Choice of the parameters. The choice of parameter is the same of [4, Section 5.1]. We define first the constant

γ := 1 + 1 p min d p , d p ′ , -1 -d 1 p ′ - 1 r -1 > 0,
Notice that, up to enlarging r, we can assume that the quantity in the previous line is less than 1/2, namely that γ > 2. Hence we set α

:= 4 + γ(d + 1), b := max{p, p ′ }(3(1 + α)(d + 2) + 2), (3.4) 
and

β := 1 2b min p, p ′ , r, 1 b + 1 = 1 2b(b + 1) . (3.5)
Finally, we choose a 0 and M sufficiently large (possibly depending on all previously fixed parameters) to absorb numerical constants in the inequalities. We set

ℓ := λ -1-α q , ( 3.6 
)

µ q+1 := λ γ q+1 . ( 3.7) 
3.2. Convolution. The convolution step is the same of [4, Section 5.2]. We just write here the definitions. We first perform a convolution of ρ q and u q to have estimates on more than one derivative of these objects and of the corresponding error. Let φ ∈ C ∞ c (B 1 ) be a standard convolution kernel in space-time, ℓ as in (3.6) and define ρ ℓ,i := ρ q,i * φ ℓ , u ℓ := u q * φ ℓ , R ℓ,i := R q,i * φ ℓ . We observe that (ρ ℓ,i , u ℓ , R ℓ,i + (ρ q,i u q ) ℓρ ℓ,i u ℓ ) solves system (3.1) for any i = 1, . . . , N and by (3.2), (3.5) enjoys the following estimates

R ℓ,i L 1 ≤ δ q+1 , (3.8) ρ ℓ,i -ρ q,i L p ≤ ℓ ρ q,i C 1 ≤ ℓλ α q ≤ λ -1 q ≤ δ 1/p q+1 2 , (3.9) u ℓ -u q L p ′ ≤ Cℓλ α q ≤ Cδ 1/p ′ q+1 , u ℓ -u q W 1,r ≤ Cℓλ α q ≤ Cδ 1/r
q+1 . Indeed note that by (3.5)

ℓλ α q = λ -1 q = δ 1 2bβ q+1 ≤ δ max{1/p,1/p ′ ,1/r} q+1 . Next observe that ∂ S t ρ ℓ,i C 0 + ρ ℓ,i C S + u ℓ W 1+S,r + ∂ S t u ℓ W 1,r ≤ C(S)ℓ -S+1 ( ρ q,i C 1 + u q W 2,r ) ≤ C(S)ℓ -S+1 λ α q
for every S ∈ N \ {0} and for every i = 1, . . . , N . Using the Sobolev embedding W d,r ⊂ W d,1 ⊂C 0 we then conclude

∂ S t u ℓ C 0 + u ℓ C S ≤ C(S)ℓ -S-d+2 λ α q
. By Young's inequality we estimate the higher derivatives of R ℓ,i in terms of R q,i L 1 to get

R ℓ,i C S + ∂ S t R ℓ,i C 0 ≤ D S ρ ℓ,i L ∞ R q,i L 1 ≤ C(S)ℓ -S-d ≤ C(S)λ (1+α)(d+S) q (3.10)
for every L ∈ N and i = 1, . . . , N . Finally, thanks to [4, Lemma 5.1] for the last part of the error we have

(ρ q,i u q ) ℓ -ρ ℓ,i u ℓ L 1 ≤ Cℓ 2 λ 2α q ≤ 1 4 δ q+2 , (3.11)
where we have assumed that a is sufficiently large.

3.3. Definition of the perturbation. Let µ q+1 > 0 be as in (3.7) and let

χ ∈ C ∞ c (-3 4 , 3 4 ) such that n∈Z χ(τ -n) = 1 for every τ ∈ R. Let χ ∈ C ∞ c (-4 5 , 4 5 ) be a nonnegative function satisfying χ = 1 on [-3 4 , 3 4 ]. Notice that n∈Z χ(τ -n) ∈ [1, 2] and χ • χ = χ. Fix a parameter κ = 40p ′ /δ q+2 and consider 2N disjoint families {Λ 1 i } 1≤i≤N , {Λ 2 i } 1≤i≤N as in Lemma 2.1. Next, for n ∈ N, define [n]
to be 1 or 2 depending on the congruence class of n. Finally, we take our building blocks according to Lemma 2.3 with Λ = ∪ 2 i=1 ∪ N j=1 Λ i j and observe that their spatial supports are disjoint. We define the new density and vector field by adding to ρ ℓ and u ℓ principal terms and correctors, namely we set

ρ q+1,i := ρ ℓ,i + θ (p) q+1,i + θ (c) q+1,i , u q+1 := u ℓ + N i=1 (w (p) q+1,i + w (c) q+1,i ) .
The principal perturbations are given, respectively, by

w (p) q+1,i (t, x) = n≥12 χ(κ|R ℓ,i (t, x)| -n) ξ∈Λ [n] i W ξ,µq+1,n/κ (λ q+1 t, λ q+1 x), (3.12) θ (p) q+1,i (t, x) = n≥12 χ(κ|R ℓ,i (t, x)| -n) ξ∈Λ [n] i a ξ R ℓ,i (t, x) |R ℓ,i (t, x)| Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) , (3.13) 
where it is understood that the terms in the second sum vanish at points where R ℓ,i vanishes. In the definition of w

(p)
q+1,i and θ

(p)
q+1,i the first sum runs for n in the range

12 ≤ n ≤ Cℓ -d δ -1 q+2 ≤ Cλ d(1+α)+2βb 2 q ≤ Cλ d(1+α)+1 q ≤ λ d(1+α)+2 q , ( 3.14) 
where the last holds providing

a 0 ≥ C. Indeed χ(κ|R ℓ,i (t, x)| -n) = 0 if n ≥ 20δ -1 q+2 R ℓ,i C 0 + 1

and by (3.10) we obtain an upper bound for n.

The aim of the corrector term for the density is to ensure that the overall perturbation has zero average. So we set

θ (c) q+1,i (t, x) := -g i (x) ˆθ(p) q+1,i (t, x) dx, ( 3.15) 
where

{g i } 1≤i≤N ⊂ C ∞ (T d ) such that ´Td g i = 1
, g i ≥ 0 and supp(g i ) is compactly contained on A i and g i C S (λ 0 N ) d+S (where means inequality up to a geometric constant depending only on d). Here we used the property that the family {A i } 1≤i≤N is λ 0 -open. We observe that the functions {g i } 1≤i≤N do not depend on q, they only depend only on the fixed open sets {A i } 1≤i≤N . The aim of the corrector term for the vector field is to ensure that the overall perturbation has zero divergence. Thanks to (2.7), we can apply Lemma 2.2 to define

w (c) q+1,i := - n≥12 ξ∈Λ [n] i R ∇χ(κ|R ℓ,i (t, x)| -n) • W ξ,µq+1,n/κ (λ q+1 t, λ q+1 x)
Moreover, since W ξ,µq+1,n/κ is divergence-free, the argument inside R has 0 average for every t ≥ 0, and so w (c) q+1,i is indeed well defined. Notice finally that the perturbations equals 0 on every time interval where R ℓ,i vanishes identically for any i = 1, . . . , N .

Proof of Proposition 3.2

For the sake of readability, the quantifier "for every i = 1, . . . , N " will be implicit in the rest of this paper. Before coming to the main arguments, we recall [4, Lemma 6.1] for the "slowly varying coefficients". 

∂ m t χ(κ|R ℓ,i | -n) C S + ∂ m t χ(κ|R ℓ,i | -n) C S ≤ C(m, S)δ -2(S+m) q+2 ℓ -(S+m)(1+d) ≤ C(m, S)λ (S+m)(d+2)(1+α) q ∂ m t (a ξ ( R ℓ,i |R ℓ,i | )) C S ≤ C(m, S)δ -S-m q+2 ℓ -(S+m)(1+d) ≤ C(m, S)λ (S+m)(d+2)(1+α) q on {χ(κ|R ℓ,i | -n) > 0}.
4 

q+1,i L p ≤ n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i (t, x)| -n)a ξ R ℓ,i (t,x) |R ℓ,i (t,x)| L p Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) L p + 1 λ 1/p q+1 n≥12 ξ∈Λ [n] χ(κ|R ℓ,i (t, x)| -n)a ξ R ℓ,i (t,x) |R ℓ,i (t,x)| C 1 Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) L p ≤ C n≥12 (n/k) 1/p χ(κ|R ℓ,i (t, x)| -n) L p + Cλ -1/p q+1 δ 1/p q+2 λ (d+2)(1+α)+(1+1/p)((d(1+α)+1)) q ≤ C R ℓ,i 1/p L 1 + Cλ -1/p q+1 δ 1/p q+2 λ 3(d+2)(1+α) q ≤ Cδ 1/p q+1 , (4.1) 
provided that in the second last inequality we use

(d + 2)(1 + α) + (1 + 1/p)((d(1 + α) + 1)) ≤ 3(1 + α)(d + 2)
and in the last inequality we use (3.8).

Next , we use Θ ξ,µq+1,n/κ L 1 ≤ ( n κ ) 

q+1,i (t, x)| ≤ √ dλ -1 q+1 n≥12 ξ∈Λ [n] g i L ∞ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | C 1 Θ ξ,µq+1,n/κ L 1 + n≥12 ξ∈Λ [n] g i L ∞ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | L 1 Θ ξ,µq+1,n/κ L 1 ≤ g i L ∞ λ -1 q+1 µ -d/p ′ q+1 λ 3(1+α)(d+2) q + g i L ∞ µ -d/p ′ q+1 n≥12 (n/κ) 1/p χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | L 1 ≤ g i L ∞ µ -d/p ′ q+1 + g i L ∞ µ -d/p ′ q+1 R ℓ,i 1/p L 1 (N λ 0 ) d λ -1 q+1 ≤ δ q+1 2 , ( 4.2) 
where in the second to last inequality, we enlarge a to absorb the constant N . Now, recall that θ

(p) q+1 is nonnegative by definition. Therefore, inf [0,1]×T d [θ (p) q+1,i + θ (c) q+1,i ] ≥ inf [0,1]×T d θ (c) q+1,i ≥ - δ q+1 2 . Also inf [0,1]×(T d \Ai) [θ (p) q+1,i + θ (c) q+1,i ] ≥ 0.
Since ρ ℓ,i is nonnegative whenever ρ q,i is nonnegative, by (3.9) we get property (b) of Proposition 3.2.

4.2. Estimate on w q+1,i L p ′ and Dw q+1,i L r . Exactly with the same computation as in (4.1), replacing p with p ′ , we have that

w (p) q+1,i L p ′ ≤ C R ℓ,i 1/p ′ L 1 + Cλ -1/p ′ q+1 δ 1/p ′ q+2 λ 3(d+2)(1+α) q ≤ Cδ 1/p ′ q+1 (4.3)
Concerning the corrector term w

(c) q+1 , we use (2.10) (precisely W ξ,µq+1,n/κ L p ′ ≤ ( n κ ) 1/p ′ ≤ λ (d+2)(1+α) q ) Lemma 2.2 and (3.14) to get w (c) q+1,i L p ′ ≤ 1 λ q+1 n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n) C 2 W ξ,µq+1,n/κ L p ′ ≤ Cλ -1 q+1 n≥12 λ 2(d+2)(1+α) q (n/κ) 1/p ′ ≤ Cλ -1 q+1 δ 1/p ′ q+2 λ 4(d+2)(1+α) q ≤ δ 1/p ′ q+2 ≤ δ 1/p ′ q+1 . (4.4)
Computing the gradient of w (p) q+1 and combining Lemma 4.1 with (2.10) we have

Dw (p) q+1,i L r ≤ n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n) C 1 W ξ,µq+1,n/κ L r + n≥12 ξ∈Λ [n] i λ q+1 DW ξ,µq+1,n/κ L r (4.5) ≤ Cδ 1/p ′ q+2 λ 3(1+α)(d+2)+2+bγd(1/p ′ -1/r) q + Cδ 1/p ′ q+2 λ b+3(1+α)(d+2)+bγ(1+d(1/p ′ -1/r)) q (4.6) ≤ δ 1/p ′ q+2 ≤ δ 1/r q+1 . ( 4.7) 
Concerning the corrector, by Lemma 2.2 and similar computations as above,

Dw (c) q+1,i L r ≤ C n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n) C 3 W ξ,µq+1,n/κ L r (4.8) ≤ Cδ 1/p ′ q+2 λ 5(1+α)(d+2) q µ d( 1 r -1 p ′ ) q+1 ≤ δ 1/p ′ q+2 λ 5(1+α)(d+2)-b(1+1/p) q ≤ δ 1/r q+1 .
(4.9) 4.3. Definition of the new error R q+1,i . This part is the similar to [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF], however here θ (c) q+1,i is not constant in space and we have to adapt the argument accordingly: we will pick up a new error term which we call R space .

By definition the new error R q+1,i must satisfy

-div R q+1,i = ∂ t ρ q+1,i + div(ρ q+1,i u q+1 ) = div(θ (p) q+1,i w (p) q+1 -R ℓ,i ) + ∂ t θ (p) q+1,i + ∂ t θ (c) q+1,i + div(θ (p) q+1,i u ℓ + ρ ℓ,i w q+1 + θ (p) q+1,i w (c) q+1 ) + div((u ℓ + w q+1 )θ (c) q+1,i ) + div((ρ q,i u q ) ℓ -ρ ℓ,i u ℓ ) (4.10)
In the second equality above we have used that (ρ ℓ , u ℓ , R ℓ,i + (ρ q,i u q ) ℓρ ℓ,i u ℓ ) solves (3.1).

We now decompose

∂ t θ (p) q+1,i = n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | ∂ t Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) + n≥12 ξ∈Λ [n] i ∂ t χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) =: (∂ t θ (p) q+1,i ) 1 + (∂ t θ (p) q+1,i ) 2 ,
We now observe that

θ (p) q+1,i N k=1 w (p) q+1,k = θ (p) q+1,i w (p) q+1,i = n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x), (4.11) 
where the first equality holds because Λ k i ∩ Λ p j = ∅ for any p, k and i = j; the second equality follows from (2.11) and the definitions of χ and χ. Also, Θ ξ,µq+1,n/κ and W ξ,µq+1,n/κ solve the transport equation (2.6). These observations in conjunction with Lemma 2.1 yield the cancellation of the error R ℓ,i up to lower order terms div(θ

(p) q+1,i N k=1 w (p) q+1,k ) + (∂ t θ (p) q+1,i ) 1 -div R ℓ,i = n≥12 ξ∈Λ [n] i ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) -div R ℓ,i + n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | λ q+1 ∂ t Θ ξ,µq+1,n/κ + div(Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ ) (λ q+1 t, λ q+1 x) = n≥12 ξ∈Λ [n] i ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) - n κ ξ + n≥12 ξ∈Λ [n] i ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | n κ ξ -div R ℓ,i = n≥12 ξ∈Λ [n] i ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) - n κ ξ + div( Rℓ,i -R ℓ,i ), (4.12) 
where Rℓ,i :

= n≥12 χ(κ|R ℓ,i | -n) R ℓ,i |R ℓ,i | n k .
We have We can now define R q+1,i which satisfies (4.10) as

|R ℓ,i -Rℓ,i | ≤ 11 n=-1 χ(κ|R ℓ,i | -n)R ℓ,i + n≥12 χ(κ|R ℓ,i | -n) R ℓ,i |R ℓ,i | n k -R ℓ,i ≤ 13 κ + n≥12 χ(κ|R ℓ,i | -n) |R ℓ,i | - n κ ( 4 
-R q+1,i :=R quadr i + ( Rℓ,i -R ℓ,i ) + R time i + R space i + θ (p) q+1,i u ℓ + ρ ℓ,i w q+1 + θ (p) q+1,i w (c) q+1 + [(ρ q,i u q ) ℓ -ρ ℓ,i u ℓ ], (4.14) 
where

R quadr i := n≥12 ξ∈Λ [n] i R ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | • (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) - n κ ξ , (4.15)
R time i := ∇∆ -1 ((∂ t θ (p) q+1,i ) 2 + ∂ t θ (c) q+1,i + m i ), (4.16 
) 

m i := n≥12 ξ∈Λ [n] i ˆ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) - n κ ξ dx, R space i := (u ℓ + w q+1 )θ (c) q+1,i . ( 4 
q+1,i ) 2 + ∂ t θ (c) q+1,i + m i has 0 mean, so that R time i is well defined. 4.4. Estimate on R q+1,i L 1 .
Recall that the estimate on (ρ q,i u q ) ℓρ ℓ,i u ℓ L 1 has been already established in (3.11). By the property (2.1) of the antidivergence operator R, Lemma 4.1 and (3.14) we have

R quadr i L 1 ≤ C λ q+1 n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | C 2 Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ L 1 ≤ Cδ q+2 λ 4(1+α)(d+2)+2 q λ q+1 ≤ δ q+2 20 .
To estimate the terms which are linear with respect to the fast variables, we take advantage of the concentration parameter µ q+1 . First of all, by Calderon-Zygmund estimates we get 

R time i L 1 ≤ C (∂ t θ (p) q+1,i ) 2 + ∂ t θ (c) q+1,i -m i L 1 ≤ (∂ t θ (p) q+1,i ) 2 L 1 + |∂ t θ (c) q+1,i | + |m i |. Next, notice that (∂ t θ (p) q+1,i ) 2 L 1 ≤ C n≥12 ξ∈Λ [n] ∂ t χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | C 0 Θ ξ,µq+1,n/κ L 1 (4.18) ≤ Cδ 1/p q+2 λ 3(1+α)(d+2) q µ -d/p ′ q+1 ≤ δ q+2 20λ q+1 . ( 4 
|∂ t θ (c) q+1,i | + |m i | ≤ g i L ∞ n≥12 ξ∈Λ [n] ˆχ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | ∂ t Θ ξ,µq+1,n/κ (λ q+1 t, λ q+1 x) dx + |m i | + g i L ∞ (∂ t θ (p) q+1,i ) 2 L 1 ≤ g i L ∞
n≥12 ξ∈Λ [n] ˆχ(κ|R

ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | div (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) dx + |m i | + δ q+2 20 = 2 g i L ∞ n≥12 ξ∈Λ [n] ˆ∇ χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | • (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) - n k ξ dx + δ q+2 20 ≤ δ q+2 20 + 2 g i L ∞ √ d λ q+1 n≥12 ξ∈Λ [n] χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | C 2 Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ L 1 ≤ δ q+2 20 + C g i L ∞ λ -1 q+1 δ q+2 λ 4(1+α)(d+2) q ≤ 1 10 δ q+2 ,
and using also (4.2) and (3.3) , we estimate the error

R space i R space i L 1 ≤ (u ℓ + w q+1 )θ (c) q+1,i L 1 ≤ ( u ℓ L 1 + w q+1 L 1 ) θ (c) q+1,i L ∞ ≤ 2λ α q (N λ 0 ) d λ -1 q+1 ≤ δ q+2 20 ,
where the last inequality holds up to enlarging a 0 depending on N . We also have that

θ (p) q+1,i u ℓ + ρ ℓ,i w (p) q+1 L 1 ≤ θ (p) q+1,i L 1 u ℓ L ∞ + ρ ℓ,i L ∞ w (p) q+1 L 1 ≤ n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | L ∞ Θ ξ,µq+1,n/κ L 1 u ℓ L ∞ + ρ ℓ,i L ∞ χ(κ|R ℓ,i | -n) L ∞ W ξ,µq+1,n/κ L 1 ≤ Cδ 1/p q+2 λ 2(1+α)(d+2) q µ -d/p ′ q+1 + Cδ 1/p ′ q+2 λ 2(1+α)(d+2) q µ -d/p q+1 ≤ δ q+2 20 .
In the last inequality we used 2βb 2 ≤ 1, the definition of γ, and b(1

+ 1/p) ≥ 2(1 + α)(d + 2) + 1.
Finally, from (4.1) and (4.4)

(ρ ℓ,i + θ (p) q+1,i )w (c) q+1 L 1 ≤ ( ρ ℓ,i C 1 + θ (p) q+1,i L p ) w (c) q+1 L p ′ ≤ Cλ 4(1+α)(d+2)+α q λ -1 q+1 ≤ 1 20 δ q+2 . (4.20)
4.5. Estimates on higher derivatives.

ρ q+1,i C 1 ≤ ρ ℓ,i C 1 + θ q+1,i C 1 ≤ ρ q,i C 1 + n≥10 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i |R ℓ,i | C 1 Θ ξ,µq+1,n/κ (λ q+1 x) C 1 ≤ Cλ α q + Cλ 3(1+α)(d+2) q λ q+1 µ 1+d/p q+1 ≤ λ α q+1 . (4.21)
An entirely similar estimate is valid for ∂ t ρ q+1,i C 0 and the one for

u ℓ + w (p) q+1,i W 2,r is analogous. Concerning w (c)
q+1,i , we use Lemma 2.2 and (3.14)

w (c) q+1,i W 2,r ≤ n≥12 ξ∈Λ [n] i λ q+1 χ(κ|R ℓ,i | -n) C 4 W ξ,µq+1,n/κ W 2,r ≤ Cλ 6(1+α)(d+2) q λ 2 q+1 µ 2+d(1/p ′ -1/r) q+1 ≤ λ α q+1 . It remains just to estimate ∂ t u q+1 L 1 ≤ ∂ t u ℓ L 1 + N i=1 ∂ t w (p) q+1,i L 1 + ∂ t w (c) q+1,i L 1 .
From (2.10) and Lemma 4.1

∂ t w (p) q+1,i L 1 ≤ n≥12 ξ∈Λ [n] i λ q+1 ∂ t W ξ,µq+1,n/κ L 1 + ∂ t χ(κ|R ℓ,i | -n) L ∞ W ξ,µq+1,κ/n L 1 Cδ 2/p ′ q+2 λ (1+2/p ′ )(d(1+α)+1) q λ q+1 µ 1+γ(1+d(2/p ′ -1)) q+1 ≤ λ 2+γ(d+1) q+1 ≤ λ α q+1 .
A similar computation is valid for

∂ t w (c) q+1,i L 1 .
5. Proof of main results

Proof of Theorem 1.4.

Proof of Theorem 1.4 assuming Proposition 3.2. Let α, b, a 0 , M > 5, β > 0 be fixed as in Proposition 3.2.

Let a ≥ a 0 be chosen such that

+∞ q=0 δ 1/p q+1 < 1 32M , +∞ q=0 λ -1-α q < 1 32N
,

Let {φ i } 1≤i≤N ⊂ C ∞ (T d ) be nonnegative functions with mutually disjoint compact supports such that ´Td φ i (x)dx = 1, {x ∈ T d : φ i (x) > 1} contains a ball of radius 1
4N , and d(supp φ i , supp φ j ) ≥ 1/4N for i = j. We also require that φ i C S ≤ (100N ) d+S for any S ∈ N. Let χ : [0, 1] → [0, 1] be a smooth function such that χ ≡ 0 on [0, 2/5], χ ≡ 1 on [3/5, 1] with χ ′ is compactly supported on (2/5, 3/5), and

∂ t χ L ∞ ≤ 20. Define ρ 0,i (t, x) := (1 -χ(t)) + χ(t)φ i (λ 0 x) and set u 0 ≡ 0. We also set R 0,i (t) := -∇∆ -1 ∂ t ρ 0,i (t) + div(ρ 0,i (t)u 0 (t)) = -∇∆ -1 ∂ t ρ 0,i (t) = -∂ t χ∇∆ -1 (φ i (λ 0 •) -1) .
We then have N starting triples {(ρ 0,i , u 0 , R 0,i )} 1≤i≤N for our iteration scheme which enjoy (3.1) with q = 0 for any i = 1, . . . , N . Moreover, thanks to Lemma 2.2, we have R 0,i L 1 ≤ Cλ -1 0 . Thus (3.2) is satisfied because 2β < 1 (here we have taken λ 0 = a 0 sufficiently large to absorb the constant C). Next, we have ∂ t ρ 0,i C 0 + ρ 0,i C 1 ≤ Cλ 0 . Since u 0 ≡ 0 and α > 1 we conclude that (3.3) is satisfied as well.

Finally we observe that the family of sets

A i := {x ∈ T d : φ(λ 0 x) > 1} for i = 1, . . . , N form a a 0 -open family.
We can recursively apply Proposition 3.2 to obtain a family of sequences {(ρ q,i , u q , R q,i ) q∈N } 1≤i≤N of smooth solutions to (3.1) and such that

• the sequences {ρ q,i } q∈N is Cauchy in C(L p ) and we denote by ρ i its limit for any i = 1, . . . , N ,

• the sequence of divergence-free {u q } q∈N is Cauchy in C(L p ′ ∩ W 1,r ) and we denote by u its limit (whose divergence understood in the sense of distribution vanishes). Thanks to property (3.2) we get that (u, ρ i ) solve the continuity equation for any i = 1, . . . , N . Property (b) and inf Ai ρ 0,i (t,

•) ≥ 1 also yield inf Ai ρ i (t, •) ≥ 1 - +∞ q=0 δ 1/p q+1 ≥ 1 2 .
This implies that A i ⊂ supp(ρ i (t, •)) for any t ∈ [0, 1] and any i = 1, • • • , N . Thus supp(ρ i (t, •)) has non-empty interior, and inf

T d \Ai ρ i ≥ 0.
So ρ i are nonnegative.

Finally, since ρ 0,i (t, •) ≡ 1 for t ∈ [0, 2/5] and

+∞ q=0 λ -1-α q < 1 λ 1+α 0 < 1 15
, and by property (c) and (d) of Proposition 3.2, we get that ρ i (t, •) ≡ 1 for t ∈ [0, 1/3] for any i = 1, . . . , N . Also, by property (d), and since

+∞ q=0 λ -1-α q < 1
λ0N and d(supp ρ 0,i (1, •), supp ρ 0,j (1, •)) ≥ 1 λ0N for i = j, we must have that supp(ρ i ) ∩ supp(ρ j ) is negligible for i = j.

Proof of Theorem 1.3.

Proof of Theorem 1.3 assuming Theorem 1.4. Let {ρ 0 } 1≤i≤N ⊂ C t L p be nonnegative densities and u ∈ C t (L p ′ ∩ W 1,r ) a divergence-free vector field given by Theorem 1.4. Then (ρ i , u) solves (1.1) for i = 1, . . . , N . Thanks to the Ambrosio's superposition principle (see [START_REF]Transport equation and Cauchy problem for non-smooth vector fields[END_REF]Theorem 3.2]), each nonnegative L 1 ([0, 1] × T d ) solution is transported by a generalized flow η i of the vector field u. More precisely,

η i ∈ M + (AC([0, 1]; T d ) × T d
) is concentrated on pairs (γ, x) such that γ an integral curve of u starting from x, and we have ρ i (x, t)L d = (e t ) ♯ η i for every t ∈ [0, 1].

Observe that the family of probability measures {η i } 1≤i≤N does not depend on the pointwise representative of u. Indeed, given two pointwise representative v and w of u (u and v are two Borel maps such that v = u = w L d+1 -a.e.), by Fubini and by the superposition principle, we have for each integer 1

≤ i ≤ N ˆAC([0,1],T d )×T d ˆ1 0 |v(γ(s)) -w(γ(s))|ds dη i (γ, x) = ˆ1 0 ˆTd |v(y) -w(y)|ρ i (s, x)dL d (x) ds = 0.
(5.1)

Thus, η i is concentrated on integral curves of v if and only if η i is concentrated on integral curves of w.

By the superposition principle we have

ˆTd ψ(x)ρ i (1, x)dL d (x) = ˆTd ˆAC([0,1],T d ) ψ(γ(1))dη i x (γ)dL d (x), (5.2) 
and for every ψ ∈ C(T d ). Therefore, for L d -a.e. x ∈ T d and η i x -a.e. γ ∈ AC([0, 1]; T d ), we have γ(1) ∈ A i . Since A i ∩ A j = ∅ for i = j, it follows that for L d -a.e. x ∈ T d , the measures {η i x } 1≤i≤N have mutually disjoint supports. Therefore, for L d -a.e. x ∈ T d , there are at least N integral curves starting from x.

Dimension d = 2

The two dimensional case (i.e. for d = 2) is slightly more technical. We can no longer use Lemma 4.2 of [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF] to translate in space the tubes supporting the building blocks and thereby make these tubes disjoint. In [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF], the authors found a way around this issue. They are able make the building blocks in the case d = 2 disjoint. They take advantage of the presence of a single error to argue that only building blocks with comparable speeds -that is building blocks for which the speed ratio is of order ∼ 10 -2 need to have disjoint supports. Indeed in [START_REF] Brué | Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves[END_REF], the speeds at the inductive step q ∈ N of the convex integration scheme are

w n = µ d/p ′ q+1 ( n κ ) 1/p ′ for n = 1, ..., λ d(1+α)+2 q
. The supports of the building blocks are then translated in space suitably, the speeds {w n } n=1,..,λ d(1+α)+2 q are approximated by {v n } n=1,..,λ d(1+α)+2 q , and at the price of a small error the authors obtain building blocks satisfying

W ξ,µq+1,vn • Θ ξ ′ ,µq+1,vm (t, x) = 0 for any (x, t) ∈ T 2 × R + , ( 6.1) 
for any ξ = ξ ′ , |n -m| ≤ 1, n, m = 1, .., λ d(1+α)+2 q . However, they deal with only two distinct families Λ 1 and Λ 2 of directions for the building blocks in and a single error R q at each step q of the iteration, whereas in our setting there are 2N distinct families of directions {Λ i } 1≤i≤2N for the building blocks and N errors {R q,i } 1≤i≤N . We therefore need that any building block with direction in Λ i has disjoint support with any other building block with direction in Λ j for any i = j because in the convex integration scheme we need the key identity (4.11) to hold. More precisely we will need W ξ,µq+1,vn • Θ ξ ′ ,µq+1,vm (t, x) = 0 for any (x, t) ∈ T 2 × R + , (6.2)

whenever ξ = ξ ′ ∈ Λ, n, m = 1, .., λ d(1+α)+2 q
. This identity is achievable because the speed ratios of the building blocks are at most of order λ d(1+α)+2 q , typically a very small number compared to µ q+1 in the iterative proposition (see Section 3.1). So we will prove that we can find ∼ λ d(1+α)+2 q balls of radius ∼ µ -1 q+1 which are moving with speed ratio at most ∼ λ d(1+α)+2 q and which don't intersect at any time. We will proceed similarly to [4, Section 7], although our argument differs in some parts for reasons which were outlined above.

Lemma 6.1. Let ξ, ξ ′ ∈ S 1 ∩ Q 2 be two distinct vectors and let w = A N < λ d(1+α)+2 q
where A and N are positive, coprime integers such that N < λ d(1+α)+2 q

. Then there exists C = C(ξ, ξ ′ ) such that for any ε > 0

L 1 ([0, 1] \ {s : d T 2 (tξ, (tw + s)ξ ′ ) ≥ ε ∀ t ≥ 0}) < CN ελ d(1+α)+2 q . Proof. Let ε > 0. Set T int := {(t, t ′ ) : ξt = ξ ′ t ′ on T 2 }
and observe that T int ⊂ Q 2 since the matrix with columns ξ and ξ ′ is invertible with rational coefficients. Moreover T int is an additive discrete subgroup of R 2 , hence it is a free group of rank k ∈ {0, 1, 2}. Denoting by T and T ′ the period of, respectively, t → ξt and t → ξ ′ t one has that (T, 0), (0, T ′ ) ∈ T int . This implies that the rank of T int is two, hence we can find two generators (t 1 , t ′ 1 ), (t 2 , t ′ 2 ) ∈ T int . Let us finally introduce A := {ξt ∈ T 2 : (t, s) ∈ T int for some s ∈ R} to denote the set of points in T 2 where the supports of the curves t → tξ and t → tξ ′ intersect. Let s ∈ [0, 1] be such that d T 2 (tξ, (t + s)wξ ′ ) < ε for some t ≥ 0. There exists q ∈ A such that d T 2 (tξ, q) ≤ cε, where c = c(ξ, ξ ′ ) > 1, hence up to modifying t we can assume that tξ =: q ∈ A and d T 2 (q, (tw + s)ξ ′ ) ≤ 3cελ d(1+α)+2 q . Since tξ ∈ A there exists t ′ such that (t, t ′ ) ∈ T int and, exploiting the fact that (t 1 , t ′ 1 ), (t 2 , t ′ 2 ) ∈ T int are generators, we can find

k 1 , k 2 ∈ Z such that t = k 1 t 1 + k 2 t 2 and t ′ = k 1 t ′ 1 + k 2 t ′ 2 .
The following identity holds on T

2 (tw + s)ξ ′ = t ′ ξ ′ -t ′ ξ ′ + (tw + s)ξ ′ = q -(k 1 t ′ 1 + k 2 t ′ 2 )ξ ′ + ((k 1 t 1 + k 2 t 2 )w + s)ξ ′ = q + (k 1 (t 1 w -t ′ 1 ) + k 2 (t 2 w -t ′ 2 ) + s)ξ ′ therefore d T 2 ((k 1 (t 1 w-t ′ 1 )+k 2 (t 2 w-t ′ 2 )+s)ξ ′ , 0) ≤ 3cελ d(1+α)+2 q this implies that -s ∈ B 3cελ d(1+α)+2 q ((k 1 (wt 1 - t ′ 1 ) + k 2 (wt 2 -t ′ 2 ))) + ZT ′ . Notice now that the set E := {k 1 (wt 1 -t ′ 1 ) + k 2 (wt 2 -t ′ 2 ) : k 1 , k 2 ∈ Z} is discrete, so any two neighbouring points in E are at least a distance c ≥ c ′ (ξ, ξ ′ )N -1 > 0 from each other, and E + ZT ′ = E. In particular L 1 ([0, 1]\{s : d T 2 (tξ, (tw + s)ξ ′ ) ≥ ε ∀ t ≥ 0}) ≤ L 1 [0, 1] ∩ r∈E B 3cελ d(1+α)+2 q (r) (6.3) ≤ 2 c ′ (ξ, ξ ′ )N -1 3cελ d(1+α)+2 q ≤ 6c c ′ (ξ, ξ ′ ) ε(λ d(1+α)+2 q ) 2 ,
where in the last we used the inequality N < λ d(1+α)+2 q

.

We now need a number theory lemma, it is just a property on real numbers, but we state it for a sequence of real numbers, since we will apply it for a sequence.

Lemma 6.2. Let {α

n } n∈N ⊂ R + such that α n ≤ λ d(1+α)+2 q
, then there exists {ṽ n } n∈N ⊂ Q such that the following holds:

• ṽn = a n + pn qn , with p n , q n ∈ N, • a n = ⌊α n ⌋ ≤ λ α q , • q n , p n ≤ λ d(1+α)+2 q , • 0 ≤ α n -ṽn ≤ 2 λ d(1+α)+2 q , for any n ∈ N.
Proof. Fix α n , we define a n := ⌊α n ⌋ and α n := α na n ∈ [0, 1). We want to approximate α n with dyadic numbers. We define ℓ := max{N ∈ N : 2 N ≤ λ d(1+α)+2 q }. Since the dyadic intervals are such that

2 ℓ -1 i=0 i 2 ℓ , i + 1 2 ℓ = [0, 1)
there exists i = 0, .., 2 ℓ such that α n ∈ i 2 ℓ , i+1 2 ℓ , defining p n = i and q n = 2 ℓ , we get the thesis. Proposition 6.3. Consider a finite number of disjoint sets Λ j i for i = 1, .., N , j = 1, 2, as in Lemma 2.1 and their union Λ :=

N i=1 2 j=1 Λ j i ⊂ R 2 . Let {w n } n=1,..,λ d(1+α)+2 q ⊂ R satisfy w n = a n + p n q n
where a n , q n , p n are positive integers and they are less or equal than λ d(1+α)+2 q

. Then there exists a constant c 0 := c 0 ( C, Λ) > 0 with the following property: for every ξ ∈ Λ and n ∈ N there exists a ξ,n ∈ [0, 1] such that the family of curves

x ξ,n (t) := (w n t + a ξ,n )ξ with ξ ∈ Λ, n = 1, .., λ d(1+α)+2 q (6.4) satisfies d T 2 (x ξ,n (t), x ξ ′ ,m (t)) ≥ c 0 (λ d(1+α)+2 q
) 4 for every t ≥ 0, when ξ = ξ ′ . (6.5)

Proof. We fix c 0 such that Cc 0 |Λ| < 1. We define the following sets A ξ,ξ ′ ,n,m := s ∈ [0, 1] : d T 2 ((w n t + s)ξ, (w m t + s)ξ ′ ) ≥ c 0 (λ

d(1+α)+2 q ) 4
for ξ, ξ ′ ∈ Λ and n, m = 1, .., λ d(1+α)+2 q . We define

A := λ d(1+α)+2 q n,m=1 ξ =ξ ′ ∈Λ A ξ,ξ ′ ,n,m
and the thesis will follow by proving that A is not empty. We claim that L 1 (A) > 0. Using Lemma 6.1 we notice that the measure of the complement of the set A ξ,ξ ′ ,n,m satisfies L 1 (A c ξ,ξ ′ ,n,m ) ≤

Cc0(λ d(1+α)+2 q ) 2 (λ d(1+α)+2 q ) 4 = Cc0 (λ d(1+α)+2 q ) 2 . Then L 1 (A c ) = L 1   λ d(1+α)+2 q n,m=1 ξ =ξ ′ ∈Λ A c ξ,ξ ′ ,n,m   ≤ λ d(1+α)+2 q n,m=1 ξ =ξ ′ ∈Λ L 1 (A c ξ,ξ ′ ,n,m ) ≤ (λ d(1+α)+2 q ) 2 |Λ| Cc 0 (λ d(1+α)+2 q ) 2 ≤ Cc 0 |Λ| < 1,
and so A is not empty. , where the sequence {ṽ n } n=1,..,λ d(1+α)+2 q is given by Lemma 6.2 applied to the sequence α n = n k 1/p ′ and v n = ṽp ′ n (notice that the assumption α n ≤ λ d(1+α)+2 q is satisfied thanks to the bound (3.14)). We apply Proposition 6.3 to {w n } n=1,..,λ d(1+α)+2 q (notice that the assumptions are satisfied in view of Lemma 6.2) obtaining the family {a ξ,n : ξ ∈ Λ, n = 1, .., λ d(1+α)+2 q }. Finally, starting from the building blocks introduced in Section 2.3, we define W ξ,µq+1,vn (t, x) := Wξ,µq+1,vn (t, xa ξ,n ξ), Θ ξ,µq+1,vn (t, x) := Θξ,µq+1,vn (t, xa ξ,n ξ), (6.6) for any n = 1, ..., λ d(1+α)+2 q and ξ ∈ Λ. We now show that W ξ,µq+1,vn • Θ ξ ′ ,µq+1,vm (t, x) = 0 for any (x, t) ∈ T 2 × R + , (6. ) 4 . (6.9) (6.9) follows from our choice of µ q+1 = λ bγ q , because γ > 1 and b > 4(d(1 + α) + 2). 

q+1,i = n≥12 ξ∈Λ [n] i χ(κ|R ℓ,i | -n)a ξ R ℓ,i
|R ℓ,i | (Θ ξ,µq+1,vn W ξ,µq+1,vn )(λ q+1 t, λ q+1 x), (6.10) as a consequence of (6.2), (3.14), the fact that χ • χ = χ and χ(κ|R ℓ,i |n) • χ(κ|R ℓ,i |m) = 0 when |n -m| > 1.

Since the average of Θ ξ,µq+1,vn W ξ,µq+1,vn which appears from the forth line of formula (4.12), in the definition of R quadr and in m is now v n ξ rather than n/κξ, the definition of Rℓ,i should now be replaced by Rℓ,i := 

Lemma 4 . 1 .

 41 For m ∈ N, S ∈ N \ {0} and n ≥ 2 we have

6. 1 .

 1 Disjointness of the supports. Set wn := µ d/p ′ q+1 v 1/p ′ n

7 )

 7 for any ξ = ξ ′ ∈ Λ, n, m = 1, .., λ d(1+α)+2 q . Indeed for any fixed t ≥ 0 one has the inclusionssupp W ξ,µq+1,vn (t, •) ⊂ B 2ρµ -1 q+1 (tw n ξ + a ξ,n ξ), supp Θ ξ ′ ,µq+1,vm (t, •) ⊂ B ρµ -1 q+1 (tw m ξ ′ + a ξ ′ ,m ξ ′ ), (6.8) hence we just need to check that B 2ρµ -1 q+1 (tw n ξ + a ξ,n ξ) ∩ B ρµ -1 q+1 (tw m ξ ′ + a ξ ′ ,m ξ ′ ) = ∅. Proposition 6.3 guarantees d T 2 (tw n ξ + a ξ,n ξ, tw m ξ ′ + a ξ ′ ,m ξ ′ )

6. 2 .

 2 Proof of the Proposition 3.2 in the case d=2. The estimates up to Section 4.2 are done in the same way by observing that ṽn = v 1/p ′ n and (n/κ) 1/p ′ are comparable up to a factor 2. In Section 4.3, we computed the product θ(p) q+1,i w (p)q+1 in (4.12) with which we were able to compensate the old error R ℓ,i (for i = 1, . . . , N ). Now this product has the form θ

  n≥12 χ(κ|R ℓ,i |n) R ℓ,i |R ℓ,i | v n ,and the obvious modification takes place for the definition of R quadr and m. Observing that|v n -n k | ≤ p ′ n k |v 1/p ′ n -( n k ) 1/p ′ | ≤ p ′ λ d(1+α)+2 q δq+2 40p ′ 2 λ d(1+α)+2 q = δq+220 the estimate (4.13) now works analogously to give |R ℓ,i -Rℓ,i | ≤ 16 20 δ q+2 . The rest of the estimates work as in Sections 4.3, 4.4 and 4.5.

  .1. Estimate on θ q+1,i L p and on inf T d θ q+1,i . We apply the improved Hölder inequality of (2.2),

	Lemma 4.1 and (3.14) to get
	θ	(p)

  .17) Property (d) is now clear from the definition of R q+1,i and the definition of ρ q+1,i . Notice that R quadr i is well defined since by (2.8) the function (Θ ξ,µq+1,n/κ W ξ,µq+1,n/κ )(λ q+1 t, λ q+1 x) -n κ ξ has 0 mean. From the second equality in (4.10) and since the average of (∂ t θ ) 1 is m i by integration by parts, we deduce that (∂ t θ

	(p)
	q+1,i (p)

this hypothesis is in [4,Lemma 7.2] where it is required that w < 10
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