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An analytic extension of the full-Poincaré beams to the nonparaxial regime is presented. Instead
of the stereographic mapping used in the paraxial case, these full-Poincaré fields are defined in terms
of a mapping from the polarization Poincaré sphere onto the sphere of plane-wave directions. It is
shown that multipolar fields with complex arguments can be used to implement this mapping and
provide closed-form expressions. The three-dimensional polarization singularities of the resulting
fields are studied with the help of auxiliary fields presenting vortices at points where the polarization
is circular or linear. Finally, the Mie scattering and trapping properties of the full-Poincaré fields
are studied, both of which are greatly simplified by the choice of fields.

I. Introduction

The study of structured light has seen significant
growth in the last decades, leading to applications in nu-
merous fields such as imaging, information transfer, and
micromanipulation [1–3]. This is in large part due to
the development of efficient and accessible methods for
structuring light, such as the generation of phase singu-
larities by Soskin and collaborators through diffraction
holograms [4–6]. These methods have since evolved, and
now allow shaping all of light’s degrees of freedom [7–10],
including polarization [3, 11]. For example, the use of ra-
dially and azimuthally polarized light has expanded the
control of optical traps [12], and the generally nonsepa-
rable nature of modal and polarization structure of light
has proven useful for quantum information applications
[13, 14].

Just like scalar fields can have phase singularities,
nonuniformly polarized vector beams generally possess
polarization singularities [15–18]. These structurally-
stable features come in two types: C points, which are
points of circular polarization where the direction of the
major axis is ill-defined, and L points, which are points
of linear polarization where handedness is ill-defined.
Particular emphasis has been placed on the study of C
points, since they trace lines in three-dimensional space,
which can form closed loops and knots, even in the parax-
ial regime [19–23]. C points can be further classified
according to the distribution of the polarization lines
traced by the major axes of the surrounding polariza-
tion ellipses. There are three main types of C points:
“lemon”, “star”, and “monstar”, where one, three, and an
infinite number of polarization lines terminate, respec-
tively. These types of C points are the ones that appear
“in the wild”, i.e. in random fields [16, 17, 20]. However,
higher-order singularities can be generated with purpose-
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fully designed fields [18, 24–26]. Note that for the very re-
strictive case of purely linearly-polarized fields there is a
third type of polarization singularity, V points [24], where
the direction of linear polarization is not defined, e. g. at
the axis of radially and azimuthaly polarized fields. In
this work we consider the more common case of fields in
which the polarization ellipticity changes in space.

Full-Poincaré (FP) beams are examples of vector
beams with nonuniform polarization distributions, which
were introduced as a way to map all possible paraxial po-
larization states onto each transverse plane of a beam
[27–29]. They can be expressed as the superposition
of orthogonaly-polarized Gaussian and vortex Laguerre-
Gauss beams. At the waist plane this superposition can
be written as

E = E0

(
cosα v1 + sinα

ρ

w
eiφ v2

)
e−ρ

2/w2

, (1)

where v†1 · v2 = 0, ‖v1‖ = ‖v2‖ = 1, w is the waist of
the Gaussian, α is the mixing angle controlling the ratio
between the two polarization components, E0 is the am-
plitude of the field, and ρ and φ are the polar coordinates.
Fully polarized paraxial light is commonly described with
the help of a Jones vector,

v(ϑ, ϕ) = cos
ϑ

2
e−iϕ/2ε+ + sin

ϑ

2
eiϕ/2ε−, (2)

written here in terms of the circular polarization vectors
ε± = (x̂ ± iŷ)/21/2. The angles ϑ and ϕ are the polar
and azimuthal coordinates on the Poincaré sphere (PS)
as shown in Fig. 1. Comparing Eqs. (1) and (2), it can be
seen that, geometrically, the polarization distribution of
a FP beam is given by a stereographic projection of the
PS onto the transverse plane mapping the polarization
v1 to the origin and v2 to infinity. In particular, if v1

and v2 are chosen to be circular left and right polariza-
tion vectors then the resulting FP beam exhibits either
a lemon or star C point polarization singularity at the
origin. For a FP beam as in Eq. (1) the mapping is one-
to-one; however, by changing the vortex charge and/or
considering higher-order radial modes, the PS sphere can
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FIG. 1. Mapping of the PS (left) onto the SD (right) through
the function ϑ−1

γ given in Eq. (6). The axes of the PS are
the normalized Stokes parameters sj and the inset shows the
area around the south pole. The amplitude and polarization
distribution of the plane-wave spectrum for the lemon FP field
with kζ = 5 and δ = π/4, which determine the parameter γ
of the mapping, are shown in the SD.

be mapped several times onto to transverse plane. These
higher-order FP beams can also lead to higher-order po-
larization singularities [24, 25, 29]. Generalizations of FP
beams into the nonparaxial regime have been proposed
[27, 30, 31], but these are either not given by analytic ex-
pressions or are not defined in terms of a simple geomet-
rical mapping allowing a direct extension to higher-order
fields.

Here, it is shown that a geometrical mapping is pos-
sible in the nonparaxial regime between the PS and the
sphere of directions. This is achieved by considering su-
perpositions of simple multipoles evaluated at complex
arguments [32, 33] leading to closed-form solutions of
Maxwell’s equations that reduce to LG beams in the
paraxial regime [34–37]. It is shown that, for these fields,
the transverse polarization distribution (which only takes
into account the transverse components of the electric
field) mimics that of the paraxial FP beams. Addition-
aly, the full three-dimensional structure is examined with
the help of auxiliary complex scalar and vector fields pre-
senting phase vortices at points where the polarization is
circular or linear. Lastly, the Mie scattering and trapping
properties of the nonparaxial FP fields is studied.

II. Definition of nonparaxial full-Poincaré fields

A. Sphere-to-sphere mapping

An electromagnetic monochromatic field with
wavenumber k propagating in free space can be written
as a superposition of plane waves,

E(r) =

∫
4π

A(u) eiku·r dΩ, (3)

where the unit vector u = (cosφ sin θ, sinφ sin θ, cos θ) in-
dicates the direction of propagation of each plane wave,
parametrized here in terms of the polar and azimuthal
angles θ and φ. The plane-wave spectrum A(u), which

is proportional to the far field, is a vector field defined
over the sphere of directions (SD) for u. The transver-
sality condition implies that u · A(u) = 0 so that A is
tangent to the surface of the SD and can be expressed
in terms of a polarization basis conformed of a pair of
orthogonal vectors Vu and u×V†u satisfying u ·Vu = 0.
Locally, these vectors span a plane in which we can de-
fine a polarization state through the standard paraxial
formulas. Therefore, we can generalize FP beams to the
nonparaxial regime by means of the more natural map-
ping from the PS to the SD (see Fig. 1). This mapping is
further motivated by the fact that, in the paraxial regime,
only the small cap of the SD in the forward direction is
occupied by the plane-wave spectrum, which then coin-
cides with the 2D Fourier transform of the paraxial beam
at the waist plane; for paraxial FP beams, this Fourier
spectrum exhibits a polarization pattern similar to that
in configuration space, so that the stereographic projec-
tion of the Poincaré sphere also applies to the plane-wave
spectrum.

To implement this sphere-to-sphere mapping, we must
use an appropriate polarization basis over the SD. A good
option is V(±)

u = exp(iπ/4)(u × ε± × u ± iu × ε±) [36],
which maps circular polarization according to parallel
transport from the forward +ẑ direction and is therefore
consistent with the Richards-Wolf theory of focusing sys-
tems [35, 36, 38, 39]. These vectors are not normalized to
unity; instead they satisfy ‖V(±)

u ‖ = cos(θ/2) and thus
vanish at the −ẑ direction, which is a degenerate singu-
larity of this basis [35, 36, 40], chosen to be as distant as
possible from the +ẑ direction around which the plane-
wave spectrum of directional fields concentrates.

These considerations raise, in turn, requirements on
the mapping from the PS to the SD. This mapping must
mimic the plane-wave spectrum of focused fields and
hence allow the concentration of most polarization states
within the forward-propagating hemisphere. By rewrit-
ing the Jones vector in the following form

v(ϑ, ϕ) =
e−iϕ/2

2 cos ϑ2

[
(1 + cosϑ)ε+ + sinϑeiϕε−

]
, (4)

we can see that one way to concentrate polarization states
around the forward direction is to write the plane-wave
spectrum for a lemon (+) or a star (−) FP field as

A(±)(θ, φ) =E0

[
(1 + cos θ)V(±)

u + γ sin θeiφV(∓)
u

]
f(θ),

(5)

which has the same basic form as the Jones vector in
Eq. (4) but changes the ratio of each polarization by the
introduction of the parameter γ. This change of ratio
defines the mapping

ϑγ(θ) =
π

2
− tan−1

(
1

γ
cot θ +

1− γ2

2γ
tan

θ

2

)
, (6)

between the PS and the SD. For the lemon FP field,
when γ > 1 the circle of linear polarization is moved
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FIG. 2. Effect to the parameters ζ and δ on the plane-wave
spectrum and its polarization distribution: for the (a-c) lemon
and (d-f) star FP fields with (a,d) kζ = 5 and δ = π/4, (b,e)
kζ = 1 and δ = π/4, and (c,f) kζ = 5 and δ = π/3.

into the forward-propagating hemisphere while leaving
the left-circular polarization fixed at the south pole, as
can be appreciated from Fig. 1 and two lemon C point
singularities are created at the poles. For the star FP
fields, the locations of right and left circular polarizations
are reversed and two star C points are created at each
pole. Note that the mapping defined by Eqs. (5) and (6)
over the SD is analogous to the one enacted on the PS
by a dichroic element [41].

B. Plane-wave spectrum

Equation (5) allows concentrating most of the polariza-
tion structure into the forward-propagating hemisphere.
The same type of concentration is then needed for the
amplitudes of the plane waves through the function f(θ).
Many such weight functions could be used but not all
would lead to a simple analytic expression in configu-
ration space. One option that provides both an an-
alytic expression for the electric field through Eq. (3)
and a continuous connection to the paraxial regime is
f(θ) = exp(kζ cos θ) [42]. This real exponential can be
interpreted as an imaginary shift z → z − iζ in configu-
ration space [32, 33]. Assuming a normalized plane wave
spectrum according to

∫
‖A‖ dΩ = |E0|2, the expression

for the lemon and star FP fields in Eq. (5) can be rewrit-
ten as

A(±)(u) =
E0√
4π

[
αr(ζ) cos δ (1 + cos θ) V(±)

u

− αv(ζ) sin δ

√
3

2
sin θ eiφ V(∓)

u

]
ekζ cos θ

=E0

{
αr(ζ) cos δ V(±)

u

[
Y0,0(θ, φ) +

1√
3
Y1,0(θ, φ)

]
− αv(ζ) sin δ V(∓)

u Y1,1(θ, φ)

}
ekζ cos θ, (7)

where αr and αv are normalization coefficients. In order
to give a hint of how these expressions can be generalized
to higher orders, the second form is written in terms of
the spherical harmonics,

Yl,m(θ, φ) = σmm

√
(2l + 1)(l −m)!

4π(l +m)!
P

(m)
l (cos θ)eimφ (8)

where σm = sgn(m + 1/2) and P
(m)
l is the associated

Legendre polynomial. (Note that other FP fields can
be generated by replacing the two polarization vectors
V(±)

u with two orthogonal linear combinations of these
vectors.) The parameter γ introduced in Eq. (6) becomes
a function of δ and ζ,

γ(δ, ζ) =

√
3

2

αv(ζ)

αr(ζ)
tan δ. (9)

The effect of ζ and δ on the amplitude and polarization
distribution of A is shown in Fig. 2. The directionality
parameter ζ, which corresponds to the Rayleigh range in
the paraxial limit, has a similar effect on both the am-
plitude and the polarization distribution: for increasing
ζ they become more concentrated around the +ẑ direc-
tion, whereas the parameter δ only controls the ratio of
the two orthogonal components thus allowing changing
the polarization distribution independently from the fo-
cusing properties.

In the paraxial limit, i.e. for kζ � 1, the plane-wave
spectrum in Eq. (7) expressed as an exponential weight
times the superposition of Y0,0 and Y1,1 indeed corre-
sponds to the superposition of a Gaussian and the lowest-
order Laguerre-Gauss mode with a vortex [as the one in
Eq. (1)]. However, note that the term Y1,0 is needed
to achieve the one-to-one mapping between the spheres.
This term alone tends in the paraxial limit to an LG beam
with a higher-order radial structure, which is not present
in the original FP beams (see Eq. (1)) [32, 33, 35, 36].
This extra term is a nonparaxial correction whose relative
amplitude vanishes in the paraxial limit. For kζ > 3, the
relative weight of this extra term is less than 5%, hinting
that its effect is only significant for considerably focused
fields. Therefore, the FP fields defined here do reduce to
the standard FP beams in the paraxial limit.

C. Configuration space

The advantage of using imaginary shifts in z is the
resulting simplicity of the expressions in configuration
space, as opposed to the most common approach of using
the Richards-Wolf theory which usually requires numer-
ical integration [30, 31, 38, 39]. Using the relation

Λl,m(r) =

∫
4π

Yl,m(u)eiku·rdΩ, (10)

satisfied between the spherical harmonics and the scalar
multipoles,

Λl,m(r) = 4πiljl(kr)Yl,m(θr, φr), (11)
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FIG. 3. Amplitude distribution along the (first column) x−y
and (second column) y−z planes plane and (third column) the
intensity along the x−y plane with the transverse polarization
distribution overlaid, with the dashed blue line corresponding
to the L line, for the (first row) lemon and (second row) star
with kζ = 5 and δ = π/4.

where jl are the spherical Bessel functions, and the fact
that the polarization operators in configuration space are
obtained by performing the substitution u → ∇/ik, the
FP fields in configuration space can be written as

E(±)(r; ζ) = E0

{
αr(ζ) cos δ V(±)

r

[
Λ0,0(r− iζẑ)

+
1√
3

Λ1,0(r− iζẑ)
]

− αv(ζ) sin δ V(∓)
r Λ1,1(r− iζẑ)

}
, (12)

where

V(±)
r =

1

k2
ε± ×∇×∇∓

1

k
ε± ×∇. (13)

Note that the derivatives can be computed analytically
using the recurrence relations for spherical Bessel func-
tions and associated Legendre polynomials, thus provid-
ing a closed-form expression for the fields in configura-
tion space. As shown in Fig. 3, the amplitude distribu-
tion depends on the polarization distribution. For both
the lemon and star FP fields the amplitude distribution
is no longer circularly symmetric but carries a distinct
signature from the polarization distribution in the SD.
This coupling between amplitude and polarization has
the same origin as the spin-orbit coupling [43].

Figure 3 also shows the transverse polarization distri-
bution (which consider only the x and y components of
the field) at the focal plane. This distribution resembles
that of the paraxial FP beams and the one encoded in the
plane-wave spectrum. Nonetheless, focusing causes some
small changes such as a slight deformation of the L line
in the lemon FP due to the asymmetric shape. It should
also be noticed that the polarization pattern at the focal

plane is rotated by 45◦ with respect to the one encoded
in the plane-wave spectrum due to the difference in Gouy
phase acquired between the two polarization components
as they propagate from the focal plane to the far field [27].

III. True polarization singularities

A. Transverse VS true polarization singularities

The transverse polarization of electromagnetic fields
exhibits an analogous behavior to the polarization of
paraxial fields since it only takes into account two field
components. In particular, upon propagation, transverse
C singularities trace three-dimensional lines while L sin-
gularities are distributed across surfaces. This fact can
be understood from the number of constraints required
to obtain each type of singularity. C point singulari-
ties are formed when the real and imaginary parts of the
electric field vector are orthogonal and have equal norm.
These two constraints restrict the C singularities to lines
in space. L points, on the other hand, are formed when
the phase difference between the two components is zero
modulo π. This single constraint restrict L points to sur-
faces in space.

In the nonparaxial regime, the longitudinal component
becomes non-negligible and thus must be taken into ac-
count for a complete description. This extra component
allows the polarization ellipse to have an arbitrary 3D
orientation. The true circular and linear polarization sin-
gularities, denoted respectively by CT and LT, take all
three components into account [15]. Both these singular-
ities behave similarly, tracing lines across space, due to
the number of constraints needed to define them: for a
CT point the real and imaginary parts of the electric field
must be orthogonal and of equal norm, as in the trans-
verse case; for LT points, the phase difference between
the three components must vanish modulo π, hence im-
posing also two constraints.

The dimensionality of transverse (or paraxial) and true
polarization singularities can also be understood from
the corresponding geometrical representations of polar-
ization. The paraxial or transverse polarization can be
represented as a point on the surface of the PS. Circular
polarization corresponds to isolated points (the poles),
while linear polarization spans a line (the equator). The
prescription of three-dimensional polarization requires
instead two points on the surface of a unit sphere rather
than one [44, 45], and the limiting cases of linear and cir-
cular polarization correspond to these two coinciding or
being antipodal, respectively, both situations imposing
the same number of constraints.
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FIG. 4. Modulus squared (top) and argument (bottom) of
the field ψ for the lemon FP field with kζ = 5 and δ = π/4 at
(from left to right) kz = 0, .5 and 1. The CT points, which
correspond to the zeros, are marked with circles and the LT

points, which correspond to the maximum value of one, are
marked with crosses.

B. True C point singularities

The electric spin density vector is defined as

S =
Im(E∗ ×E)

||E||2
, (14)

which points along the normal of the polarization ellipse
and whose length determines the ellipticity. The norm of
this vector is unity at CT points and zero at LT points.
Another relevant quantity is the complex scalar field,

ψ =
E ·E
||E||2

, (15)

which vanishes at CT points where it exhibits phase
singularities. The vortices of ψ greatly simplify the
identification and tracking of CT lines across space
[16, 21, 46, 47]. These two quantities are related via

||S||2 = 1− |ψ|2. (16)

Figures 4 and 5 show the modulus squared and phase of
the field ψ for the lemon and star FP fields, respectively.
Both fields have a CT point near or at the transverse C
point (which lies at the origin); for the lemon FP field it
is translated slightly along the positive y axis due to the
field’s asymmetry while for the star FP field it is exactly
at the origin. Both fields present other CT points at
regions where the fields becomes negligible.

C. True L point singularities

LT points correspond to the zeros of the electric spin
field. Nonetheless, it is possible to define a complex vec-
tor field with a role somewhat analogous to that of the

FIG. 5. Modulus squared (top) and argument (bottom) of
the field ψ for the star FP field with kζ = 5 and δ = π/4 at
(from left to right) kz = 0, .5 and 1. The CT points, which
correspond to the zeros, are marked with circles and the LT

points, which correspond to the maximum value of one, are
marked with crosses. These plots use the same color coding
as the ones in Fig. 4.

field ψ, whose vortices facilitate tracking the LT lines:

ξ =
1√
2

(Sz − iSy, Sx − iSz, Sy − iSx), (17)

which vanishes where S does, since it satisfies ‖ξ‖ = ‖S‖.
The components of this field can be written in terms of
the electric field as

ξx =

√
2

||E||2
[Im(E∗xEy) + i Im(E∗xEz)] , (18a)

ξy =

√
2

||E||2
[
Im(E∗yEz) + i Im(E∗yEx)

]
, (18b)

ξz =

√
2

||E||2
[Im(E∗zEx) + i Im(E∗zEy)] . (18c)

These expressions show that a given component ξj is zero
if one of two conditions is met; either the corresponding
electric field component Ej is zero or it is in phase or π
out of phase with the other two components. The latter
indicates the presence of a LT point while the former is
a pathological case which can be a LT point if any of the
other components of the field ξ vanish. This definition is
analogous to the one used to introduce the Stokes fields
given by complex combinations of the Stokes parameters
providing a simple way to identify polarization singular-
ities in paraxial fields [26, 48, 49].

Figure 6 shows the argument of each component of the
field ξ for the lemon and star FP fields presenting differ-
ent possible behaviors. The points marked with a cross
indicate the presence of an LT point and they correspond
to zeros for all three components of ξ. These also cor-
responds to the maxima of |ψ| shown in Figs. 4 and 5.
Other vortices that do not correspond to LT points can be
seen in Fig. 6; these are points where the corresponding
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FIG. 6. Argument of the components of the field ξ for the
lemon (top) and star (bottom) FP fields with kζ = 5 and
δ = π/4 with the LT points marked by crosses. These plots
use the same color coding as the one used in Fig. 4 for the
argument of ψ.

component of the electric field is zero but the remain-
ing two are not in phase or π out of phase, as evidenced
by the lack of vortices for the other components of ξ at
that location. Note that both FP fields no longer have
a line of linear polarization across the transverse plane
but rather a set of three LT points, which are equally
distributed azimuthally for the star FP field but not for
the lemon FP field.

D. True polarization lines

Upon propagation, the CT and LT points form lines
that can either remain open or form closed loops. Figure
7 shows these trajectories, which have been found numer-
ically, along with transverse cuts of the amplitude of the
field. For the lemon FP field all the singularities rotate
around the origin under propagation, and two of the LT

points merge to form an unknotted closed LT loop, an
unknot. This loop becomes smaller/larger for fields with
smaller/larger ζ (more/less focused). The CT line near
the z axis turns around it and approaches it asymptoti-
cally away from the focal region. For the star FP field, on
the other hand, the singularities rotate around the origin
but remain open since the threefold symmetry prevents
any two of them from merging, and the central CT line
coincides exactly with the z axis. For both FP fields,
the CT points that are further from the origin spiral out
away from the focal plane moving further into regions
where the fields are negligible (Figs. 4 and 5) and are
thus not shown in Fig. 7. Note that LT points always
coincide with transverse L points (but not conversely),
as opposed to CT points. This confines LT lines to the
surfaces traced by the transverse L points. These L sur-
faces need to be topologically different from a cylinder
in order to support knotted or linked LT lines. However,

FIG. 7. Trajectories of the LT (blue) and CT (red) points
for the lemon (top) and star (bottom) FP fields with kζ = 5
and δ = π/4.

for the FP fields studied here, the L surfaces are topolog-
ically equivalent to cylinders and can therefore support
only open lines and unknots.

IV. Mie scattering of FP fields

An advantage of the simple form of the FP fields de-
fined here is that their multipolar decomposition can
be computed analytically given any relative position be-
tween the focus of the multipolar basis and that of the
FP fields. Therefore, the FP fields lend themselves to
an analytic treatment of their scattering by a spherical
particle, albeit with an infinite sum, from which the in-
duced forces and torques can be computed [37, 50, 51]
without recurring to Rayleigh’s approximation [39, 52].
Figure 8 shows the total field after being scattered by a
spherical particle of radius kR = 3 and refractive index
ν0 = 1.3 + 10−4i in free space, for both lemon and star
FP fields. Note that the scattering changes significantly
the intensity profile of the fields, but not the polariza-
tion distribution which is topologically stable. This can
be appreciated in Fig. 8 where the polarization distribu-
tion is deformed but the lemon and star C points are still
present.

Having solved the scattering problem, the forces and
torques induced on the scatterer can be easily computed
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FIG. 8. Amplitude distribution along the (first column) x−y
and (second column) y−z planes plane and (third column) the
intensity along the x − y plane with the transverse polariza-
tion distribution overlaid for the total field generated by the
scattering of the lemon (first row) and star (second row) full-
Poincaré fields with kζ = 5 and δ = π/4. The scattering parti-
cle is a spherical particle of index of refraction ν0 = 1.3+10−4i
and radius kR = 3 located at krp = (−2.5, 1.5, 1). The yellow
circles show the transverse cut of the sphere by the corre-
sponding plane.

[37, 53]. Figure 9 shows the variations of the y com-
ponent of the force and the z component of the torque
along the y axis for the lemon FP field. Due to the field’s
asymmetric intensity distribution, the zero point of lat-
eral force is offset to the negative y values for smaller par-
ticles. However, surprisingly, for larger particles this zero
force point is shifted to the positive y values. Both shifts
become more pronounced for particles with a higher re-
fractive index. Another interesting feature is that the z
component of the torque can take negative values at the
edges of the focus even if the total angular momentum of
the surrounding vortex field is zero due to its polarization
opposite to the vortex charge.

Given the symmetric shape of the star FP field, the
point of zero transverse force is always located at the ori-
gin, as shown in Fig. 10. This allows on-axis trapping
if the particle properties are chosen correctly. Trapping
in three directions is only possible if the z component of
the force also presents a zero point along the z axis with
negative slope. Figure 11 shows that, as a general rule,
it is easier to trap smaller particles with a lower index
of refraction. The trapping location is located after the
focus of the field where the gradient force balances the
radiation pressure. The presence and location of a stable
point also depends on the degree of focusing of the field:
a field that is more focused produces a greater intensity
gradient closer to the focal region thus increasing its trap-
ping capabilities, as shown in Fig. 12. These observations
are in line with intuition.

The torque induced by the star FP field along the z
axis only has a z component which is highly dependent
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FIG. 9. Variation of the y component of the force (first
row) and the z component of the torque (second row) along
the y axis for a lemon FB field (kζ = 10 and δ = π/4) on
a spherical particles with varying size and relative index of
refraction ν0 = 1.1+10−4i (first column) and ν0 = 1.3+10−4i
(second column).
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FIG. 10. Variation of the y component of the force (first row)
and the z component of the torque (second row) along the y
axis for a star FB field (kζ = 10 and δ = π/4) on a spherical
particles with varying size and relative index of refraction
ν0 = 1.1 + 10−4i (first column) and ν0 = 1.3 + 10−4i (second
column).

on the size of the scattering particle (see Fig. 11). This
can be understood by the fact that the size of the particle
dictates which parts of the field interact with it: If the
particle is small then it only interacts with the inner part
of the field which mainly carries left-circularly polarized
light generating a negative torque; on the other hand,
if the particle is large then it is affected by the vortex
in which the orbital and spin angular momentum couple
constructively in the opposite sense than the angular mo-
mentum of the inner part of field. Therefore, the z com-
ponent of the induced torque goes from being negative
for smaller particles to being positive for larger particle.
Alternatively, if the field is more focused then the region
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FIG. 11. Variations of the z components of the force (first
row) and torque (second row) along the z axis for a star FB
field (kζ = 10 and δ = π/4) on a spherical particles with
varying size and relative index of refraction ν0 = 1.1 + 10−4i
(first column) and ν0 = 1.3 + 10−4i (second column).
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FIG. 12. Variations of the z components of the force (first
row) and torque (second row) along the z axis for a star FB
field with varying degree of focusing kζ (δ = π/4) on a spher-
ical particle of radius kR = 6 and relative index of refraction
ν0 = 1.1 + 10−4i (first column) and ν0 = 1.3 + 10−4i (second
column).

of left circular polarization shrinks, and thus increases
the effect of the outer region of the field on smaller parti-
cles. The behavior of the induced torque as the focusing
properties are changed is shown in Fig. 12 where its sign
changes as the field is more focused. The parameter δ,
controlling the ratio between the two orthogonal polar-
ization components, can also be tuned to obtain a desired
effect. As already mentioned, this parameter changes the
spread of the polarization distribution without changing
the focusing properties of the field. This effect allows the
control of the induced torque without affecting the trap-
ping properties of the field, as shown in Fig. 13. It can
then be used to twist the trapped particle by generating
a torque that changes sign on each side of the trapping
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FIG. 13. Variations of the z components of the force (first
row) and torque (second row) along the z axis for a star FB
field with kζ = 10 and varying ratio δ on a spherical particle of
radius kR = 6 and relative index of refraction ν0 = 1.1+10−4i
(first column) and ν0 = 1.3 + 10−4i (second column).

location.

V. Concluding remarks

In the paraxial regime FP beams are defined through
the stereographic mapping of the PS onto the transverse
plane. However, they can equivalently be defined through
a mapping from the PS onto the Fourier plane. This
alternative view was exploited here to define nonparaxial
FP fields through a mapping of the PS onto the SD,
which is the nonparaxial extension of the Fourier plane
for monochromatic fields. The mappings of polarization
and amplitude were chosen so that the resulting fields had
simple analytic expressions in terms of vector multipoles
evaluated at complex arguments. It was shown that the
transverse polarization has the same generic structure as
of the paraxial FP beams.

The true polarization singularities, obtained by taking
into account the three-dimensional nature of polariza-
tion, were studied with the help of the auxiliary fields ψ
and ξ. The vector field ξ was introduced to aid in the
identification of LT points since it exhibits phase vortices
in its components at LT points. Therefore, it plays an
analogous role to that of the field ψ for CT points. These
true singularities trace lines across space that either re-
main open or form closed loops.

While the original FP beams were introduced as a way
to map all paraxial polarization states into the trans-
verse plane, in the nonparaxial case it becomes impossi-
ble for a monochromatic field to span all possible three-
dimensional polarization states. This is a simple conse-
quence of the difference in dimensionality between the
polarization space and physical space; the former is a
four-dimensional manifold (the product of two spheres
[44, 45]) while the latter is the three-dimensional Eu-
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clidean space.
Several generalizations to this work are possible. One

would be the extension of the sphere-to-sphere mapping
to include higher order (radial and azimuthal) FP fields
by increasing the number of cycles in the polar and az-
imuthal angles. This would involve replacing the spher-
ical harmonics in Eq. (7) by higher-order ones, so that
the field can still be expressed analytically in terms of
multipoles. Also, other polarization singularities could

be considered, such as the monstar [54] or asymmetric
structures [55]. Finally, an interesting alternative would
be to consider other forms of the function f(θ) intro-
duced in Eq. (5) to generate the sphere-to-sphere map-
ping. One possibility is to use combinations of real expo-
nentials leading to sums of CF fields with different values
of the parameter ζ, as in a type of basis function intro-
duced recently [36, 56, 57].
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